
Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

REVIEW AND FUTURE DIRECTIONS OF THE AUTOMATED
VALIDATION IN SOFTWARE PRODUCT LINE

ENGINEERING

ABDELRAHMAN OSMAN ELFAKI, OMAR AMER ABOUABDALLA, SIM LIEW FONG, MD
GAPAR MD JOHAR, KEVIN LOO TEOW AIK, RUZI BACHOK

Faculty of Information Sciences and Engineering
Management and Science University, Malaysia

E-mail: abdelrahmanelfaki@gmail.com ,{ omar_amer, lfsim ,gapar, Kevin, & ruzi}@msu.edu

ABSTRACT

Context: Software Product Line Engineering (SPLE) has emerged as a thriving approach for software
products constructions. In SPLE, a triumphant software product is highly reliant on the validity of an
SPLE. Hence, validation is a significant process within SPLE.
Objective: In this paper, we reviewed the related works in the area of automated validation of SPLE to
bring to light the pros and cons of the related works and suggest the future directions in this research area.
Method: We started by defining the validation operations followed by classification of the related works in
eight groups based on the technique or method that is used. The general attributes of each class are
highlighted and the main strengths and weaknesses of each class related to the validation of SPLE are
thrashed out. Subsequently, we analyzed each work to find out which validation operations are achieved
and how they are satisfied. Finally, we abridged the current situation and recommended how the validation
of SPLE can be enhanced in each operation.
Results: The research gap in the area of validation of SPLE has been clarified by recommending the future
directions.
Conclusion: It is concluded that some works cannot gratify all the validation operations because the
technique or method used has its weaknesses that prevented the completion of the validation process.
Moreover, we conclude that this area of research has room for improvement by validating the domain-
engineering directly instead of validating software products during the configuration process.

Keywords: Software Product Line, Domain-Engineering, Configuration, Automated Analysis.

1. INTRODUCTION

Software Product Line Engineering (SPLE)
consists of two processes known as, domain-
engineering and application-engineering.
Collecting software-assets regarding a specific
business area is a domain-engineering
consciousness. The process of presenting the
software assets (in domain-engineering) is called
variability modelling. The principal objective of
application-engineering is to configure a
successful specific software product from the
domain-engineering process by managing SPLE
assets using variability modelling technique.
Configuration is the task of selecting a valid and
suitable set of features for a single system. From
this definition, it is clear that configuration is
part of the application-engineering process.

Now, what is the meaning of the validation of
SPLE? Mannion [1] defines validation in SPLE
as a mechanism that is used to ensure that an
SPLE can produce at least one product that can
satisfy the constraint dependency rules. Lan et al.
[2] define validation (in variability) as a
mechanism to check if the configuration output
satisfies corresponding variability constraints (in
a specific domain) or not. As a conclusion,
validation of SPLE means ensuring that domain
engineering contains no errors and that the
configuration process is error-free.

In this paragraph, we clarify the significance of
the validation of SPLE by providing two reasons.
The first is based on the size of SPLE. Usually, a
medium-sized SPL contains thousands of
features with constraint dependency rules among
them. The second is based on the nature of
domain-engineering. Developing domain-

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

engineering is a continuous process; when there
are new assets, these are added to the existing
assets. Cumulative aggregation (for the software
assets) may produce some errors. The grouping
of assets may be made at different times and by
different groups of people. In some cases, there
is a parallel development process, i.e., several
people add assets (to develop domain-
engineering) at the same time. Concluding from
the above two reasons, the validation of SPLE is
a vital process. The first reason justifies
validation in application-engineering process and
the second justifies the validation in domain-
engineering process. In addition, configuring a
successful software product is highly dependent
on the validity of an SPLE. Hence, validation is a
significant process within SPLE.

Automated validation of SPLE is considered as a
part of the automated analysis of SPLE. The
automated analysis of SPL is a software program
that extracts useful information from the SPL for
SPL engineers, experts, or users [3]. In other
words, the automated analysis of SPLE is a
research field answering the questions of how to
get constructive information and how to ensure
the correctness of the software products. Two
steps are formulated for the lifecycle of the
automated analysis of SPLE [4]: 1)
Formalization. In formalization, SPL is
translated into a specific representation that
allows auto-reasoning; and 2) Reasoning. By
using standard tools or ad hoc software
programs, the SPL representation (formalization)
can be reasoned [5].

Although the Feature Model (FM) [6] and the
Orthogonal Variability Model (OVM) [7] are the
most popular techniques for modelling
variability in Software Product Line (SPL), both
lack a formal mechanism to reason SPL [8]. This
has encouraged the development of other
techniques that can be used for modelling and
validating variability at the same time. All of
these methods are supported by a specific
software tool. On the other hand, some methods
have been developed for validating SPL within
the existing variability modelling technique.

There are numerous papers in the literature
which have surveyed methods of modelling the
domain-engineering process [9-14]. These
studies focus only on methods of variability
modelling. Although automated analysis of the

SPL is a relatively new issue, there are a great
many works in this research area. However, to
the best of our knowledge, there are only two
papers [15, 16] and one technical report [17]
which have surveyed the automated analysis of
SPL. These three survey papers are limited only
to those works which have used the FM as a
variability modelling technique and ignore the
other methods of variability modelling.

There are many works used to validate FM,
because FM was the first and remains the more
popular method to model variability. The
automated validation of FM has already been
identified as a critical task in [18-21]. Although
the FM is a successful variability modelling
technique for SPL, some other techniques have
also been used to model variability in SPL.

Although the automated validation of SPL is a
relatively new area of research, a great many
proposals have been put forward in both the
academic and industrial fields. We analysed the
literature in two steps by: 1) classifying the
previous studies based on the technique used to
automate the validation operations, and the
strengths and weaknesses of each class are
presented; and 2) analysing each study and
highlighting the validation operations that were
implemented.

This paper is structured as follows: in section 2,
the validation operations are defined and
classified under two groups: domain-
engineering, and configuration. Methods for the
automated validation of SPLE are discussed and
section 3. In section 4, the current situation is
highlighted and some directions to improve the
validation operations are suggested.

2. OPERATIONS FOR THE

VALIDATION OF SOFTWARE
PRODUCT LINE ENGINEERING

In the literature, the works in the automated
analysis of SPL is divided into several
operations. These operations have been identified
and discussed in [16, 17]. These operations can
be divided into two groups: 1) operations for
validating the SPL and 2) operations for
analysing the SPL. The first group (operations
for validating the SPL) is responsible for
detecting, removing, or overcoming errors in
SPL; whereas the second group (operations for
analysing the SPL) is responsible for providing

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

77

more information about the SPL. In this paper,
we focus only on the operations that relate to the
validation of SPL.
In the introduction of this paper, we defined the
meaning of the validation method in SPL as a
method used to ensure the correctness of assets
in domain engineering and to produce error-free
products, including the possibility of providing
explanations to the modeller so that errors can be
detected and eliminated in both the domain-
engineering and configuration process.

In the following, we will discuss each operation.
The diagrams used to describe these operations
are based on a FM. Some figures and definitions
are borrowed from [16].

2.1. Determine the validity of SPL

This operation examines SPL validity. An SPL is
valid if it can produce at least one product. Due
to the incorrect usage of constraint dependency
rules, SPL may fail to produce any product. An
SPL without any product is called a void SPL. In
Figure 1, both features B and F are common
features, which means they both must be
included in any product. The exclude relation R1
between feature B and feature F means that both
features cannot be included together in any
product. This condition cannot be implemented
because of the nature of features B and F (both
are common features). Thus, the SPL in Figure 1
cannot produce any product.

Figure 1: Example of Void SPL.

2.2. Dead Feature
A dead feature is a feature that never appears in
any valid product. Dead features occur as a result
of the incorrect usage of constraint dependency
rules. In Figure 2, common feature B excludes
feature C. Feature B must be included in any
product (common feature). According to the

exclude relation, feature B and feature C cannot
be included together in any product. This means
feature C is excluded from all products. Thus,
feature C is defined as a dead feature.

Figure 2: Example of a Dead Feature

2.3. Redundancy Detection

This operation deals with redundancy in an SPL.
In an SPL, it is possible that the same set of
products can be modelled more than once [19].
This operation is also known as normalization or
simplification. Although redundancy is a
lightweight error, a huge number of redundancies
increase the complexity of an SPL. In addition,
removing the redundancy enhances the
readability and comprehensibility of an SPL.
Figure 3 shows an example of redundancies in an
SPL. In Figure 3, feature C denotes the
redundancy. Feature B is a common feature
which means that it must be included in any
product. Common feature B requires feature C,
which means that feature C must follow feature
B. Therefore, feature C should be included in any
product. Feature D also requires feature C, which
is repeated information. Thus, the require
relation between features D and C is redundant.

Require

Figure 3: Example of Redundancy

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

78

2.4. False Option Feature Detection

A false optional feature is a feature included in
any product but not assigned as a common
feature, i.e. a common feature without a common
label [20]. Figure 4 illustrates an example of a
false option. Feature B is a common feature,
which means B must be included in any product.
Feature B requires feature D, which means that
feature D must be included in all products. This
property formulates feature D as a common
feature. Thus, feature D has the same behaviour
as a common feature but is not labelled as a
common feature, which means feature D is a
false option.

Require

Figure 4: Example of False-Option Feature

2.5. Inconsistency Detection

Inconsistency is identified in [18] as a particular
research challenge. Inconsistency occurs as a
result of contradictions in constraint dependency
rules. This type of error is very complicated
because it can take different forms and can occur
between groups of features or between individual
features. Inconsistency in a FM describes
relations between features that cannot be true at
the same time, e.g. (A requires B) and (B
excludes A), which means selection of A must be
followed by selection of B, but selection of B
prevents selection of A. Therefore, these
relations cannot be true at the same time. An SPL
can contain some other complicated forms of
inconsistency. For instance, (A requires B) and
(B requires C) and (C requires D) and (D
excludes A), or ((A and B and C) require (E and
F)) and (F excludes B). Another example is: ((A
and B and C) requires (D and E)) and (A
excludes E). This example describes the
existence of features A, B, and C together which
requires the existence of features D and E. At the

same time, feature A excludes feature E. Thus,
these relations could not be implemented at the
same time.

Inconsistency is a critical error; it can
prevent the production of any software product
that has an inconsistency relation between its
features. Inconsistency is also known as a
conditional dead feature [22].

2.6. Wrong Cardinality Detection

Cardinality is wrong if the maximum or
minimum number of variants those allowed to be
selected from a variation point cannot be
implemented [20]. Figure 5 illustrates an
example of wrong cardinality. The maximum
number allowed to be selected from this group is
3. Feature B excludes feature D, which means
both features B and D cannot be included in one
product. Therefore, only two features can be
selected for the exclude relation. Thus,
describing the maximum number as 3 is wrong.

Exclud
e

Figure 5: Example of Wrong Cardinality

2.7. Explanation

In general, the source of error is defined in the
explanation operation. Debugging a huge SPL
manually is almost impossible. Although a
software solver can be used to detect whether or
not an SPL has errors, defining the sources of
errors is still a challenge. For example, the
source of error (dead feature) in Figure 2 is the
exclude relation between feature B and feature C.
Generally, incorrect usage of constraint
dependency rules (require, exclude) is the main
reason for errors in the configuration process. In
this research, the explanation operation is limited
to defining the source of error within the
configuration process. The other types of error
are detected using other operations.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

79

2.8. Corrective Explanation

Corrective suggestions (to overcome the error)
are provided in a corrective explanation
operation. These operations are vital in the stage-
configuration process because they allow users to
correct their errors. For instance, in Figure 2, the
suggestions to overcome the error (dead feature)
could be either: 1) remove the exclude relation or
2) remodel feature B as an option. Determining
the best suggestion from the list of provided
suggestions represents a challenge in this area of
research.

2.9. Decision propagation

The selected feature represents the input for this
operation. This operation describes auto-select
and auto-deselect features during the
configuration process. Based on constraint
dependency rules (require and exclude) some
features are auto-selected or auto-deselected. For
instance, if feature A requires feature B and A is
selected then B must be auto-selected.
Conversely, if A is removed from the
configuration then B must be auto-deselected.
This operation is also recognized as dependency
analysis or satisfying constraint dependency
rules.

2.10. Deadlock Detection

Deadlock is always a serious issue in concurrent
systems. In an SPL, deadlock is presented as a
challenge that needs to be overcome [23, 24].
Deadlock occurs when two or more
configuration actions are blocked and are waiting
for each other‟s decisions before they can
continue [24]. In an SPL, deadlock can occur in
parallel configuration where different users
configure solutions simultaneously and the
quantity of features is limited. There are four
conditions for deadlock: mutual exclusion, hold
and wait, no pre-emption, and circular wait [25].
The first three conditions exist in parallel
configuration by default. Therefore, circular wait
is the most important condition to detect
deadlock in parallel configuration. Deadlock
detection is a basic operation designed to handle
the deadlock problem [25]. Czarnecki [26]
illustrates examples using diagrams to describe
deadlock situations.

3. METHODS FOR THE AUTOMATED
VALIDATION OF SOFTWARE
PRODUCT LINE

The methods that are used for validating SPL are
classified into eight approaches. This
classification is done based on the general
properties of each method. These approaches are:
unified modelling language, propositional and
first order logic, description logic, constraint
programming, domain specific language,
extensible markup language, higher order logic,
and ad-hoc algorithms. In this section, these
methods are described in brief and the main
characteristics of each method are highlighted.
The works in automated validation of SPL also
are highlighted and grouped under these eight
approaches. Each work is discussed to show how
the validation operations (that are included in the
work) were solved. Generally, there are
advantages and disadvantages to the use of each.

3.1. Unified Modelling Language (UML)

Unified Modelling Language (UML) is a
standard modelling language that is used to
define, model, and share requirements. It
contains different diagrams that allow developers
and users to share a common standard language.
These UML diagrams can be used to describe the
system at different levels of abstraction.
Standardization is the main benefit that can be
gained from using UML as a variability
modelling technique. Mainly, UML was
developed for modelling single systems;
however, the ability of UML to have standard
extensions also makes it suitable for the SPL
[27]. Although variability modelling needs many
notations, UML can easily provide extensions
using UML comments [28]. In the literature,
UML is used mainly for modelling variability
including the description of how the software
product can be derived [29]. Standardization of
UML notations has encouraged developers to
move from using FMs to using UML [27, 30,
31]. In UML, Object Constraint Language (OCL)
is used as a validation tool [32]. Various
researchers have adopted UML in different ways
to provide solutions for modelling variability in
the SPL [33-40]. These methods also
implemented OCL to satisfy dependency
constraint rules.

The advantages of using UML as a
variability modelling technique are:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

80

standardization, usability and provision of
multiple views for SPL [40]. On the other hand,
using only OCL as a validation tool represents
the main drawback of UML as a variability
modelling technique because OCL is usually
implemented over a specific object or an object’s
structure [26]. This property limits the
implementation of OCL.

Figure 6 shows how use case diagrams (the use
case diagram is a popular UML diagram) can be
used to represent variability. In Figure 6(a),
“Authentication” is illustrated as a variation
point. Both “Give fingerprint” and “Insert chip
card” represent variants of the “Authentication”
variation point. In Figure 6(b), both “Choose
bank transfer” and “Choose standing order”
illustrate variants of the “Select order” variation
point. Figure 6 is borrowed from [20].

Figure 6: Use case diagrams representing
variability Source

Clauss[27] suggests two stereotypes for
modelling variability “<<variation point>>”,
which indicates the variability of an element and
„<<variant>>‟, which indicates the extension
part. Clauss [30] suggests the use of OCL to
satisfy constraint dependency rules. Korherr and
List [41] proposes a UML 2 profile to model
variability. Korherr and List’s [41] model uses
OCL to satisfy the three levels constraint
dependency rules (variant-variant, variant-
variation point, and variation point-variation
point). Ziadi et al. [42] and Ziadi and Jézéquel
[43] use OCL in the form of a meta-model level
to satisfy constraint dependency. Sturm and
Berge [44] present an approach to model domain
engineering. This approach enables the
validation of domain-specific application models
against their domain models and uses OCL to
satisfy constraint dependency rules. Various
other works have adopted UML in different ways
to provide solutions for modelling variability in

the SPL [33, 34, 35, 37, 38 , 40, 45,46, 47].
These methods implemented OCL to satisfy
dependency constraint rules. Sinnema et al. [48]
introduced a framework (base on UML) to model
dependency constraints based on formalized,
documented and tacit knowledge. Czarnecki and
Kim [49] introduce a method to satisfy constraint
dependency rules and filtering using OCL.
According to [32], OCL is a common tool used
to satisfy the dependency constraint rule when
variability is modelled using UML.

Table 1 demonstrates an example of OCL code
for the variant-variation point constraint. In this
example, each variant has only one
representation in each variation point.

Table 1: OCL code for variant-variation point
constraint.

 context <<variant>>
inv: self.supertype → select(oclIsKindOf(Variation
→size()=1

3.2. Propositional and First Order Logic (PL and

FOL)

In general, truth and provability are the main
concepts considered by logic. In logic, a model
theory denotes how to study the abstraction and
properties of a problem structure [60]. This fact
has encouraged researchers to use logic as a
solution for SPL validation. Propositional logic
attempts to formalize reasoning by using a set of
symbols and a set of logical connectives, e.g.,
not, and, or, and if..., then [51].

Propositional logic as a validation technique for
the SPL is completed in two steps. Step one
consists of representing an SPL formally using
propositional formulas. Step two consists of
reasoning an SPL using off-the-shelf tools such
as Logic Truth Maintenance System (LTMS),
Satisfiability Solvers (SAT), and Binary
Decision Diagram (BDD).

Propositional logic is chosen for the benefit
provided by its supporting tools. However,
unfortunately, propositional logic is not powerful
enough to represent most real-life cases [52].
This drawback has encouraged some researchers
to introduce FOL as a validation technique for
the SPL. First Order Logic adds two quantifiers:
for all and there is. These two quantifiers make
FOL more expressive and more able to handle
most real-life problems [50]. In the literature,

(a)

(b)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

81

there are some contributions which validate the
SPL based on FOL e.g.,[53].

The first proposals which connected
propositional formulas to the FM were those
presented by [54,55]. Mannion in [54] explains
how an SPL can be represented as a logical
expression. However, Mannion and Camaras’s
[55] model did not investigate dependency
constraint rules (require and exclude constraints).
Zhang et al. [56-57] propose a propositional
logic-based method for the validation of a FM. In
[56,57] model, constraints are formalized into
logic sentences and general-purpose model
checkers are suggested in order to automate the
validation process. Two validation operations are
satisfied by [56, 57]: 1) determine the validity of
SPL and 2) constraint dependency checking.
Constraint dependency checking is satisfied at
the basic level (feature-to-feature). Zhang et al.
[56, 57] model classifies features into three
groups: bound, remove, and undecided. After
opting for all products, the undecided group
represents dead features. By defining the pre-
condition and post-condition for each feature,
explanation and dead features operations are
satisfied.

Batory[58] proposes a coherent connection
between the FM, grammar and propositional
formulas. Batory’s study represents the basic FM
using context-free grammars plus propositional
logic. This connection allows arbitrary
propositional constraints to be defined among
features and enables off-the-shelf SATs and
Logic-Truth Maintenance Systems to debug the
FM. The use of SAT and LTMS solvers satisfies
the constraint dependency rules and the
explanation operations. Sun et al. [53] propose a
formal semantics for the FM using first-order
logic. Sun et al. [53] use Alloy Analyser (a tool
for analysing models written in alloy) to
automate the constraint dependency checking
and the explanation operations in the
configuration process. Alloy Analyser is a
declarative specification language for describing
the constraints and structures of complex
systems. Gheyi et al. [59,v60] also validate a FM
using Alloy Analyser. Using Gheyi et al.’s
theory, the constraint dependency checking
operation is satisfied.

Storm [61, 62] suggests a method for mapping
the FM to a propositional logic formula. This
mapping provides a mechanism for validating

both 1) determine the validity of SPL and 2)
constraint consistency checking operations.
Zhang et al. [63] proposed a Binary Decision
Diagram (BBD) data structure to handle the
dependency constraint checking operation.

A knowledge-based product derivation process
[64, 65] is a configuration model that includes
three entities of the Knowledge Base (concept
model, procedural knowledge and task
specification). The second entity (procedural
knowledge) is used to satisfy the constraint
dependency rules.
Hemakumar [66] uses a connection between
context-free grammar and propositional logic to
detect inconsistency in the configuration process.
However, Hemakuma‟s work detects only direct
inconsistency in the software product. Yan et al.
[67] propose an optimization method for
validating the FM. Yan et al’s method removes
validation-irrelevant constraints from the FM in
order to reduce the size of the problem. Yan et
al’s method handles dead features and
determines the validity of SPL operations.
Constraint dependency checking and propagation
are defined and supported in Mendonca et al.
[68-71]. Salinesi et al. [72] developed a tool to
support automatic validation of SPL. Salinesi’s
tool detects dead features and satisfies constraint
dependency checking. Elfaki et al. [73, 74] detect
dead features by searching only for predefined
cases, i.e. defined dead features in the domain-
engineering process. Elfaki et al. [75] propose an
interactive configuration. Elfaki et al.[76]
introduce first order logic rules to detect
inconsistencies in domain-engineering.

As stated earlier, two properties characterize
constraint dependency rules in SPL. These
properties are: require and exclude. Table 2
shows an example of how propositional logic can
be used to represent the constraint dependency
rules in SPL. Table 3 illustrates an example of
FOL representation for constraint dependency
rules.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

82

Table 2: Representation of SPL constraint
dependency rules using propositional logic.

Properties Example Propositional logic
representation

Require In Figure
4, the
feature B
requires
the
feature
D.

B

D

Exclude In Figure
5, B
excludes
D.

¬ (B∧D)

Table 3: Representation of SPL constraint

dependency rules using FOL.
Property FOL representation Explanation
Require ∀ x, y: require(x, y)

∧ select(x) ⟹
select(y)

If x requires
y and x is
selected then
y must be
selected.

Exclude ∀ x, y: exclude(x, y)
∧ select(x) ⟹ ¬
select(y)

If x excludes
y and x is
selected then
y must not
be selected.

In addition to the tools availability, the ability to
describe the problem in an abstract way is the
main advantage of using PL and FOL. PL and
FOL are limited to work with certain
environment in which all elements and variables
are well defined. In SPL, if all constraints
dependency rules are well defined then this is a
certain environment.

3.3. Description Logic (DL)

Description logic (DL) is defined as a knowledge
representation technique. In description logic,
formal knowledge regarding a specific domain is
described in a well-structured and well-
understood way [77]. Description logic is
characterized by its ability to build complex
classes and relation from simple ones. It is the
formal logic used to develop ontologies and is
supported by a wide range of well-established
solvers and reasoners.
Various works (78-82) have proposed different
approaches for representing FMs using
ontologies. These works satisfy two operations:

1) determine the validity of SPL and 2)
constraint dependency rules. Wang et al. [83, 8]
propose that Ontology Web Language (OWL) be
used to validate a FM. Wang et al. [8] use OWL-
DL to capture the inter-relationships between the
features in a FM. Asikainen et al. [84] satisfy the
constraint dependency rules and the explanation
operations by translating the model into Weigh
Constraint Rule Language (WCRL), which is a
general-purpose knowledge representation
language. Wang et al [8] support the constraint
dependency rules and the explanation operations
by using Fast Classification of Terminologies
(FaCT++) and Renamed ABox and Concept
Expression Reasoner (RACER) as tools for
reasoning. Dedeban [85] use OWL-DL and a
rule-based system to support the constraint
dependency rules and the explanation operations.
Kaviani et al. [86] map a FM to ontology in
order to deal with the non-functional
requirements and also satisfy the constraint
dependency rules. AboZaid et al. [87] use
semantic web technology for validating a FM.
AboZaid et al’s [87] proposal detects dead
features and provide explanations. Table 4 shows
the DL representation for require and exclude
constraint dependency rules.

Table 4: Representation of SPL constraint
dependency rules using DL.

Propert
y

Description
logic

representatio
n

Explanatio
n

Require

GRule ⊑
∃has f1.f2

f1 requires
f2

Exclude GRule ⊑ ∃
¬(has f1.f2)

f1 excludes
f2

 The main advantage of DL is the ability
of transmission from simple relations to very
complicated relations. DL is limited to work with
certain environment only.

3.4. Constraint Programming (CP)

In constraint programming, a problem is
structured as a finite set of variables, finite set of
domain values for these variables, and finite set
of constraints between these variables. The
problems that are solved by constraint
programming are recognized as constraint
satisfaction problems. The responsibility of a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

83

constraint program is to find the solutions that
satisfy these constraints. A solution of constraint
programming is described as assigning a value
(from the domain) to each variable in such a way
as to satisfy all constraints simultaneously. The
basic algorithm for solving constraint
programming is based on finding all possible
combinations of values (assigning values to
variables). Afterwards, the algorithm checks
each combination for satisfaction of the
constraint. A successful combination satisfies all
constraints simultaneously. This algorithm is
completely inefficient. This inefficiency has
motivated the researcher to develop different
search algorithms for solving constraint
programming problems.

The use of constraint programming to deal with
the analysis of the FM is suggested in [88, 89]
where the FM is translated into a Constraint
Satisfaction Problem (CSP). In the automated
analyses of SPL, CSP proposals use traditional
constraint solvers as an implementation tool.
These studies satisfy two validation operations
(constraint dependency checking, determine the
validity of SPL, and explanation) in non-
interactive mode. Trinidad et al. [90, 91] define a
method for detecting dead features. Trinidad et
al’s method is based on finding all products and
then searching for unused features. Trinidad et
al. [92, 93] detect false optional features based
on finding all products and then searching for
common features among those which are not
assigned as common. White et al. [94, 95]
propose a method for automated analysis of SPL
configuration errors in the FM. White et al’s
method starts by transferring the current invalid
configuration and the FM constraints into a CSP
solver. Then, the solver derives a classification
of the investigative CSP. Finally, this
classification is transformed into a series of
suggestions to select or deselect features. These
recommendations aim to convert the invalid
configuration into a valid configuration. White et
al’s [95] method solves the configuration
problems without interactivity with the users.
Djebbi et al. [96] use Integer Linear
Programming (ILP) notations to satisfy both the
filtering and dependency constraint checking
operations. Table 5 shows the constraint
programming representation for require and
exclude constraint dependency rules.

Table 5: Representation of SPL constraint
dependency rules using constraint programming.

Property
Constraint
programming
representation

Explanation

Require if (f1 > 0)
 f2>0

f1 requires
f2

Exclude if (f1 > 0)
 f2=0

f1 excludes
f2

Availability of open-source tools is the main
motivation to work with CSP in SPL. On the
other hand, the aiming of CSP searching is to
find all solutions that satisfy the constraints
which mean CSP works in application
engineering. CSP almost fails with the huge size
of data.
3.5. Domain Specific Language (DSL)

Domain specific language (DSL) is a special
type of programming language which is oriented
to a specific domain. Consequently, DSL is not
able to solve general problems [97]. The
advantages and disadvantages of DSL are
summarized below [97]:

Examples of advantages are:
 More expressive than normal

programming languages;
 Explains the domain in high level of

abstraction which provides a clear
picture of the domain. This property
could be used as a learning tool;

 Easy for domain experts to be involved
in the developing, maintaining, testing
and updating processes.

Examples of disadvantages are:

 Cost of learning is comparatively high
considering its limited applicability;
 A supporting tool needs to be

developed;
 Standardization is difficult:

occasionally, there is different
vocabulary within the same domain.

Cao et al. [98] developed an algorithm to transfer
FMs into data structures. This algorithm
generates complete feature instances from a
feature diagram under constraints. Cao et al. [98]
use the Generic Modelling Environment (GME)
to develop the algorithm; however, their
algorithm satisfies only the constraint
dependency checking and explanation
operations. Deursern and Klint [99] propose a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

84

feature description language to describe the FM.
From this language, FM algebra is described
based on rules over the ASF+SDF Meta–
Environment [100]. Using the system of
Deursern and Klint [99], two validation
operations (constraint dependency checking, and
explanation operations) are satisfied, but in non-
interactive mode. Pohjalainen [101] describes a
subset of regular expressions that can be used to
express a FM. Pohjalainen [101] presents a
compiler for translating a FODA model to a
deterministic finite state machine with support
for implementing model constraints via post-
augmentation of the compiled state machines.
This model satisfies three validation operations
(constraint dependency checking, determine the
validity of SPL, and explanation). Groher and
Voelter [102] propose an approach for managing
variability on the model level. The Groher and
Voelter [102] approach uses techniques of DSL
to develop a supporting tool. This approach
satisfies the constraint dependency checking
operation and their approach is validated using a
home automation system. Table 7 shows an
example of how the FM could be represented as
a Java property file. The DSL presented in Table
6 was suggested in Deursern and Klint[99].

Table 6: DSL representation of FM
car.transmission = automatic, manual
car.engine = electric, gasoline
car.body= true
car.cruise = false

3.6. Extensible Markup Language (XML)

Extensible Markup Language (XML) is defined
as a set of rules used for encoding data and
documents electronically [103]. Extensible
Markup Language is considered to be a generic
format which can ensure maximum flexibility in
providing data, information and generating
documents in different structural formats. The
strengths of XML are: simplicity, usability, and
generality. Although XML was initially
developed to deal with documents, due to these
strengths, XML has a wide range of applications
and has proved useful for representing different
data structures [103]. Moreover, the great
strength of XML is the availability of different
XML specifications that satisfy different
applications.

Cechticky et al. [104] propose a feature meta-
model and use a XML for expressing the
complex composition rules that can be found in

features. Cechticky et al. [104] describe a
compiler that can translate the constraint model
designed as a FM into an XML structure and
which can check compliance with the constraints
in the configuration process.

The XML-based Variant Configuration
Language (XVCL) [105-109] is a configuration
language. In this configuration language, domain
models are analysed and variation points, variant
and constraint dependency rules are recorded.
The implementation of XVCL is based on (XML
Metadata Interchange) XMI and XML
technologies, and four validation operations
(constraint dependency checking, determine the
validity of SPL, propagation, and explanation)
are satisfied.

3.7. Higher Order Logic (HOL)

In Higher Order Logic (HOL), a predicate can
handle more predicates as arguments [110] To
the best of our knowledge there is only one work
to date which has used HOL to reason about SPL
variability model. Janota and Kiniry [111]
formalize a FM using HOL. This formalization
satisfies the constraint dependency checking,
determine the validity of SPL, and explanation
operations.

3.8. Ad hoc algorithms
The underpinnings of some the proposals in the
literature are not clearly expressed. We
categorize these types of proposals as ad hoc
algorithms. Lengyel et al. [112] propose an
algorithm to handle constraints in the FM which
is based on graph rewriting-based topological
model transformation. The implementation of the
Lengyel et al. [112] method is done based on the
semantics of OCL and constraint dependency
checking is satisfied based on the feature-to-
feature level. Broek et al. [113] present an
algorithm to eliminate constraints from the FM.
This algorithm only eliminates the require and
exclude constraints. Broek and Galvão [114]
design an algorithm to validate the FM based on
transforming the FM into a generalized feature
tree. In a generalized feature tree, multiple
occurrences could be true for one feature. Using
the algorithm of Broek and Galvão [114], dead
features, and constraint dependency checking are
implemented.

Weyns et al. [115] suggest an SPL for automated
transportation systems. Deadlock avoidance is
done manually through an I/O client. La Rosa et

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

al. [116] define precedence and order constraints
to avoid deadlock. Although these constraints
prevent contradictory constraints that lead to
deadlocks during configuration, there is no
description of the deadlock detection method.
Aalst et al. [117] discuss a deadlock scenario in
the configuration process. Their method checks
the variation points that are attached to parallel
splits, decision points, and synchronization
points. All these points are represented in a
configurable process model. Aalst et al. [117]
represent a process model using workflow nets (a
special type of Petri net) to ensure the
configuration is deadlock-free. Yang et al.
[118,119] propose an SPL design and
implementation method based on the feature-
oriented adaptive component model. In order to
ensure deadlock-free configuration, Yang et al.
[118] define and compose behavioural protocols
using CSP (Communicating Sequential
Processes) composition operators, whereas Yang
et al. [119] integrate a Labelled Transition
System Analyser (LTSA)1 tool in their model.

Cordy et al. [120] developed an algorithm to
verify SPL based on model checking technique.
First, Cordy’s proposed featured transition
systems to formally represent SPL then later
Cordy used abstraction-based model checking
for the verification of SPL. Cordy’s work
satisfying the constraint dependency rules.
Bagheri et al. [121] developed an algorithm to
validate the configuration process. Bagheri’s
algorithm is developed on based of
propositional logic and concrete domains.
Bagheri’s algorithm is validating only the
configuration process.

4. SUMMARY AND DISCUSSION

Various proposals that deal with validation
operations have been discussed in this paper.
First, the main validation operations are
discussed. Then, the proposals were classified in
eight groups based on the main attributes of each
proposal. Later, each class was defined and
discussed, and the main pros and cons were
highlighted. Finally, each proposal was analysed
and its contribution regarding SPL validation
was described.

1 LTSA is a tool for verifying the concurrent
systems. LTSA checks the specifications against
the required properties. www.doc.ic.ac.uk/ltsa/

In the following, the current situation is
summarized and the future directions are
suggested.

The most basic and most important operation of
all SPL validation operations is the constraint
dependency checking. There is no guarantee that
an error-free software product can be produced
without satisfying the constraint dependency
rules. In this paper, many of the works discussed
in section 3 satisfied constraint dependency
rules. These works implement the constraints
checking operation based on the one layer (also
called feature-to-feature or variant-to-variant)
basis. In the configuration process, each selected
feature (selected feature is defined as a feature
selected to be part of the software product) is
checked regarding the constraint dependency
rules. This type of constraints verification is
based on feature-to-feature, i.e. one layer. The
constraint relations between parent features must
be reflected in their child features. The works
that have been discussed in this chapter do not
show how the constraint relations between parent
features are reflected in their child features.

Explanation (discovery of errors) is mentioned
and implemented in many of the works discussed
in this paper. In these works, explanation is
implemented at the end of the configuration
process, which generally contains several steps.
Discovery of the errors which need correction at
the end of the configuration process is
considered time consuming. Interactive
explanation in which a user can correct the
configuration errors immediately (i.e. guide the
user step by step) is the best way to reduce time
consumption.

Corrective explanation, which provides
suggestions for a user to resolve errors, is
mentioned in [94] in which a constraint solver is
used to derive the minimal set of features which
should be selected or deselected to bring the
configuration to a valid state. Their method is
also implemented at the end of the configuration
process. The addition of an interactive
mechanism would enhance corrective
explanation.

Dead feature detection is implemented in [90,
91] based on finding all products and searching
for unused features. In the automated analysis of
SPL, finding all products is the toughest

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

operation to perform and unfeasible, even with a
medium-size SPL.

The inconsistency detection operation is
discussed in [22] in which inconsistency is
detected in the configuration process; however, it
is limited in that it only detects inconsistency
between the configuration features. For example,
if there is an inconsistency between two features
and only one of them is included in the
configuration process then this inconsistency
cannot be detected.

Some proposals attempt to deal with deadlock
detection. In the literature, methods dealing with
deadlock use extra constraints, tools or methods.
Detecting deadlock without extra constraints
represents a challenge.

False optional feature detection is discussed in
Trinidad et al. [90,91] based on finding all
products and then searching for common features
(included in all products) among those are not
assigned as common. This method is a very high-
cost solution.

The (FeAture Model Analyser) FAMA
framework [122] defines a deductive operation
for wrong cardinality in general. Wrong
cardinality is described in the literature as a
general problem. However, this description is not
complete. The error could be in the minimum
number, the maximum number or both.
Moreover, regarding the specific variation point,
in some cases, there is no wrong cardinality and
in some cases there is. Wrong cardinality
therefore needs to be divided into more sub-
problems. Table 7 shows the current and future
directions in the validating of SPLE.

Table 7: The current and future directions in the

validating of SPLE.
Operation Current

Situation
Future
Directions

Determine
Validity of
SPL

Configuring at
least one
software
product to
prove the
validity of the
SPL

Providing
auto-solution
for invalid
SPL.

Inconsistency
Detection

Check the
inconsistency
during
configuring a

Remove the
inconsistency
from the
domain-

software
product.

engineering.

Dead Features
Detection

Finding all
products first,
then search for
unused
features.

Finding dead
features in the
domain-
engineering.

Redundancy
Detection

Check the
redundancy
during
configuring a
software
product.

Detect and
remove the
redundancy in
the domain-
engineering.

False-option
features
detection

Finding all
products first,
then search for
common
features (those
features
included in all
products) and
signed as not
common
features.

Finding and
fixing the
false-option
features in the
domain-
engineering.

Wrong
cardinality
detection

Detecting
wrong
cardinality
during the
configuration
process.

Provide auto-
solution for
wrong
cardinality
problem

Constraint
consistency
check

Check the
constraint
consistency
during the
configuration
process.

Provide an
interactive
configuration
which can
guides user
step by step.

Explanation
and corrective
explanation

Implementing
the
explanation
and corrective
explanation
after the
configuration
process.

Provide an
interactive
explanation
and corrective
explanation in
each user
choice.

Deadlock Using extra
constraints

Detect the
deadlock
without
additional
cost.

5. CONCLUSION

Generally, the problem of the current research is
that the checking of the software product’s
correction only happen after it has been

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

developed as in the process of application
engineering. This is not feasible to ensure the
correctness of the SPL because the medium-size
SPL can contain huge number of software
products. Validating domain-engineering itself
represent the challenges due to the huge-size of
data. The second problem is that the current
configuration tools are lack of interactivity. Due
to the type of stage-configuration, the
interactivity is a must.

The current works are limited to work only in a
certain environment, i.e., where constraint
dependency rules are well known in all cases. In
some SPL, constraint dependency rules are
different from product to product. These types of
SPL are known as uncertain SPL environments.
The working with uncertain SPL is a good area
for future work.

REFERENCES

 [1] Mannion, M. (2002). Using first-order logic

for product line model validation, the
Second Software Product Line Conference
SPLC2, San Diego CA,USA.

[2] Lan, Q., Liu, S., Li, B., Chen,Y., Pang, S.,
Yin, J. (2006). Research on Variability
Metamodeling Method, The First
International Symposium on Pervasive
Computing and Applications (SPCA06),
Urumchi, Xinjiang, P.R. China.

[3] Benavides, D., Ruiz-Cort´es, A., Batory, D.,
Heymans, P., (2008). First International
Workshop on Analyses of Software Product
Lines (ASPL’08)’, Limerick, Ireland.

[4] Benavides, D. (2007). On the automated
analysis of software product line using
fearure models. A framework for
developing automated tool support, PhD.
Thesis, University of Sevilla, Spain.

[5] Janota, M., Kiniry,J., Botterweck, G.(2008).
Formal Methods in Software Product Line:
Concepts, Survey, and Guidelines, Lero
Technical Report Lero-TR-SPL-2008-02.

[6] Kang, K., Cohen, S., Hess, J., Novak, W.,
Peterson, S. (1990). Feature oriented
domain analysis (FODA) feasibility study,
Technical Report No. CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie
Mellon University, USA.

[7] Pohl, K., Böckle, G., Linden, F. van
der.(2005). Software Product Line
Engineering Foundations Principles and
Techniques, Springer, Verlag Heidelberg
Germany.

[8] Wang, H., Li, Y.F., Sun, J., Zhang, H., Pan,
J.(2007).Verifying feature models using
OWL, Journal of web semantics , 5 (2)
Elsevier, pp. 117–129.

[9] Harsu, M., A survey on Domain
Engineering.(2002). Report 31, Institute of
Software Systems, Tampere University of
Technology, http://practise2.cs.tut.fi/pub/

[10] Trigaux, J.C., Heymans, P. (2003).
Modeling variability requirements in
Software Product Lines: a comparative
survey, Technical report
(EPH3310300R0462 / 215315), Computer
Science Institute, University of Namur,
Belgique.

[11] Bayer, J., Eisenbarth, M., Lehner, T.,
Puhlmann, F., Richter, E., Schnieders, A.,
Weiland, J.(2004). Domain Engineering
Techniques and Process Modeling,
PESOA-Report No. 09/2004.

[12] Alana, E., Rodriguez, A. I.(2007). Domain
Engineering Methodologies Survey.
Technical Report, GMV, www.gmv.com.

[13] Sinnema, M., Deelstra, S. (2007).
Classifying variability modeling
techniques, Journal on Information and
Software Technology, Vol.49, Elsevier,
pp.717–739.

[14] Chen, L.,Babar, A. M., Ali, N.(2009).
Variability Management in Software
Product Lines: A Systematic Review, 13th
International Software Product Line
Conference, San Francisco, CA, USA.

[15] Benavides, D., Ruiz–Cort´es, A., Trinidad,
P., Segura, S. (2006). A Survey On The
Automated Analyses Of Feature Models,
Jornadas de Ingenier´ıa del Software y
Bases de Datos (JISBD’06).

[16] Benavides, D., Segura, S., Ruiz-Cort´es, A.
(2010). Automated Analysis of Feature
Models 20 Years Later: A Literature
Review,, Information Systems journal,
Volume 35 , Issue 6, Elsevier, PP. 615-
636.

[17] Benavides, D., Segura,S., Ruiz-Cort´es,
A.(2009b), Automated analysis of feature
models: A detailed literature review.
Technical Report ISA-09-TR-04, ISA
research group, 2009. Available at

http://www.jatit.org/
http://www.gmv.com/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

http://www.isa.us.es/, University of
Sevilla, Spain.

[18] Batory, D. , Benavides, D., Ruiz-Cortés, A.
(2006). Automated analysis of feature
models: Challenges ahead,
Communications of the ACM, 49(12),
pp.45–47.

[19] Massen, T. von der., Litcher, H. (2004).
Deficiencies in Feature Models, Workshop
on Software Variability Management for
Product Derivation- Towards Tool Support,
collocated with SPLC 2004: Boston, MA,
USA.

[20] Massen, T. von der., Litcher, H. (2005).
Determining the variation degree of feature
models. In Software Product Lines
Conference, LNCS 3714, pp. 82–88,
Rennes, France.

[21] Czarnecki, K., Eisenecker, U.(2002).
Generative Programming: Methds, Tools,
and Applications, Addison-Wesley, Boston
MA, USA.

[22] Hemakumar, A. (2008). Finding
Contradictions in Feature Models, First
International Workshop on Analyses of
Software Product Lines (ASPL’08)’,
collocated with SPLC08. Limerick, Ireland.

[23] Kurakawa, K., 2004. Feature modeling from
holistic viewpoints in product line
engineering, in the 11th Asia-Pacific
Software Engineering Conference
(APSEC’04),IEEE, Busan, Korea.

[24] Mendonca, M., Oliveira,T., Cowan, D.
(2006). Collaborative and Coordinated
Product Configuration, In international
Software Product Line Conference
(SPLC06) , Doctoral Symposium,
Baltimore, Maryland, USA.

[25]] Kifer, M., Smolka, S.A, 2007. Introduction
to Operating System Design and
Implementation: The OSP 2 Approach.
Springer.

[26] Czarnecki, K., 1998. Generative
Programming: Principles and Techniques
of Software Engineering Based on
Automated Configuration and Fragment-
Based Component Models. PhD Thesis
Technical University of Ilmenau, Germany.

[27] Clauss, M. (2001).Generic Modeling using
UML extensions for variability. In
Workshop on Domain Specific Visual
Languages at OOPSLA01, Tampa Bay, FL,
USA.

[28] Saval, G., Puissant, J.P., Heymans, P.,
Mens, T. (2009), Some Challenges of

Feature-based Merging of Class Diagrams,
Proc. of the third International Workshop
on variability modeling of Software-
intensive Systems (VaMoS09), Sevilla
Spain.

[29] Gomaa, H. (2004). Designing Software
Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures,
Addison-Wesley.

[30] Clauss, M. (2001). Modeling variability
with UML, Generative and Component-
Based Software Engineering, Third
International Conference GCSE 2001-
Young Researchers Workshop, Erfurt,
Germany

[31] Speck, A., Clauss, M., Franczyk, B. (2002),
Concerns of Variability in "bottom-up"
Product-Lines, Proceedings of Second
Workshop on Aspect-Oriented Software
Development, Bonn, University Bonn,
Germany.

[32] Trigaux, J.C., Heymans, P. (2003).
Modeling variability requirements in
Software Product Lines: a comparative
survey, Technical report
(EPH3310300R0462 / 215315), Computer
Science Institute, University of Namur,
Belgique.

[33] Robak, S., Franczyk, B., Politowicz, K.
(2002), Extending The UML For Modelling
Variability For System Families,
international journal of applied
mathematics and computerscience,vol.12,
no.2, pp.285–298.

[34] Riebisch, M., B¨ollert, K., Streitferdt, D.,
Philippow, I. (2002). Extending feature
diagrams with UML multiplicities, 6th
World Conference on Integrated Design &
Process Technology (IDPT2002).

[35] Streitferdt, D., Riebisch, M., Philippow,
I.(2003). Details of formalized relations in
feature models using OCL, 10th IEEE
International Conference on Engineering of
Computer–Based Systems (ECBS 2003),
IEEE Computer Society, pp. 45–54,
Huntsville, USA.

[36] Massen, T. von der., Litcher, H. (2003),
Requiline: A requirements engineering tool
for software product lines. In F. van der
Linden, editor, Proceedings of the Fifth
International Workshop on Product Family
Engineering (PFE), volume 3014 of
Lecture Notes in Computer Sciences,
Siena, Italy,Springer–Verlag.

http://www.jatit.org/
http://www.informit.com/authors/author_bio.aspx?ISBN=9780201775952

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

[37] Philippow, I., Riebisch, M., Boell, K.(2003).
The Hyper/UML Approach for Feature
Based Software Design, the 4th AOSD
Modeling With UML Workshop.
Colocated with 6th international conference
on the Unified Modeling Language UML,
San Francisco, California, USA.

[38] Oliveira, J., Gimenes, I., Huzita, E.,
Maldonado, J. (2005). A Variability
Management Process for Software Product
Lines, the 2005 conference of the Centre
for Advanced Studies on Collaborative
research, IBM Centre for Advanced Studies
Conference, Toranto, pp. 225 – 241,
Ontario Canada.

[39] Schnieders, A. (2006). Modeling and
Implementing Variability in State Machine
Based Process Family Architectures for
Automotive Systems, the 3rd International
workshop on Software Engineering for
Automotive Systems ICSE06, Shanghai,
China.

[40] Gomaa, H., Shin, M. (2007). Automated
Software Product Line Engineering and
Product Derivation, 40th Annual Hawaii
International Conference on System
Sciences, Hawaii, USA.

[41] Korherr, B., List, B. (2007). A UML 2
Profile for Variability Models and their
Dependency to Business Processes, 18th
International Workshop on Database and
Expert Systems Applications, IEEE,
Regensburg, Germany.

[42] Ziadi, T., Jezequel, J.M., Fondement, F.
(2003). Product Line Derivation with
UML, Software Variability Management
Workshop, pp. 94–102, Groningen, The
Netherlands. In J. Davies, editor, ICFEM
2004, volume 3308 of Lecture Notes in
Computer Sciences, pages 115–130.
Springer–Verlag.

[43] Ziadi, T., Jézéquel, J.M.(2006), Product
Line Engineering with the UML: Deriving
Products. Chapter in Software Product
Lines, pp. 557--586, Springer, Berlin
Heidelberg.

[44] Sturm, A., Reinhartz-Berger, I. (2004).
Applying the Application-based Domain
Modeling Approach to UML Structural
Views, book chapter in Conceptual
Modeling – ER 2004,Springer, Berlin
Heidelberg, Germany.

[45] Halmans, G.,Pohl, K. (2003),
Communicating the variability of a
software-product family to customers,
journal of Software and Systems Modeling,
Volume 2, Number 1, PP. 15-36.

[46] Alférez, M, Santos, J., Moreira, A.,
Garcia,A., Kulesza,U, Araújo, J., Amaral,
V. (2010), Multi-view Composition
Language for Software Product Line
Requirements, book chapter in Software
Language Engineering, ISSN 0302-9743,
Springer Berlin / Heidelberg, pp. 103-122

[47] John,I., Muthig D. (2002), Tailoring Use
Cases for Product Line Modeling, proc.
International Workshop on Requirements
Engineering for Product Lines, Co-located
with the IEEE Joint International
Requirements Engineering Conference
(RE02), Essen, Germany.

[48] Sinnema, M., Deelstra, S., Nijhuis, J.,
Bos, J. (2006). Modeling Dependencies in
Product Families with COVAMOF, 13th
Annual IEEE International Symposium and
Workshop on Engineering of Computer
Based Systems (ECBS’06), IEEE.

[49] Czarnecki, K., Kim, C.(2005).Cardinality-
based feature modeling and constraints: A
Progress Report, Proc. of the International
Workshop on Software Factories at
OOPSLA05, San Diego California, USA.

[50] Gallier, J.H. (2003). Logic for Computer
Science Foundations Of Automatic
Theorem Proving, University of
Pennsylvania, Philadelphia, Pa, USA.

[51] Bilaniuk, S. (2003), A Problem Course in
Mathematical Logic, a text for a problem-
oriented course on mathematical logic and
computability, 1991 Mathematics Subject
Classification. 03, Department of
Mathematics Trent University,
Peterborough Ontario Canada.

[52] Copi, I.M., Cohen., C.(2009), Introduction
to Logic, Pearson Prentice Hall, New
Jersey, USA.

[53] Sun, J., Zhang, H., Li, Y.F., Wang, H.
(2005), Formal Semantics and Verification
for Feature Modeling, the 10th IEEE
International Conference on Engineering of
Complex Computer Systems (ICECCS05),
Shanghai, China.

[54] Mannion, M. (2002). Using first-order logic
for product line model validation, the
Second Software Product Line Conference
SPLC2, San Diego CA,USA.

http://www.jatit.org/
http://www.springerlink.com/content/3ujrgq06lh91/?p=79401df68f3746b5ba97340b41a7b99d&pi=0

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

[55] Mannion, M., Camara. J.(2003), Theorem
proving for product line model verification,
In Software Product-Family
Engineering(PFE), volume 3014 of Lecture
Notes in ComputerScience, pages 211–224.
Springer–Verlag, Germany.

 [56]Zhang, W., Zhao, H., Mei, H. (2004). A
propositional logic-based method for
verification of feature models, the 6th
International Conference on Formal
Engineering Methods ICFEM04, LNCS
3308, pp.115-130.

[57] Zhang, W., Mei, H., Zhao, H.(2006),
Feature-driven requirement dependency
analysis and high-level software design.
Requirements Engineering, 11(3), Springer
London, PP.205–220.

[58] Batory, D (2005). Feature Models,
Grammars, and Propositional Formulas,
the 9th International Software Product
Lines Conference SPLC05, Rennes France.

[59] Gheyi, R., Massoni, T., Borba, P. (2006), A
Theory for Feature Models in Alloy, the
ACM SIGSOFY First Alloy Workshop,
Portland, United States, PP. 71-80.

[60] Gheyi, R., Massoni, T., Borba, P. (2008),
Algebraic laws for feature models. Journal
of Universal Computer Science,
14(21):3573–3591.

[61] Storm, van der. T. (2004), Variability and
component composition, In Software
Reuse: Methods, Techniques and Tools:
8th International Conference, ICSR 2004.
Proceedings, volume 3107 of Lecutre
Notes in Computer Sciences, Springer,
Berlin Heidelberg, Germany, pp. 157–166.

[62] Storm, van der. T. (2007), Generic feature-
based software composition, In Software
Composition, volume 4829 of Lecture
Notes in Computer Sciences, Springer–
Verlag, pp. 66–80.

[63] Zhang, W., Yan, H., Zhao, H., Jin, Z.
(2008), A bdd-based approach to verifying
clone-enabled feature models’constraints
and customization, In High Confidence
Software Reuse in Large Systems, 10th
International Conference on Software
Reuse, ICSR, Proceedings, volume 5030 of
Lecture Notes in Computer Sciences,
Springer–Verlag, pages 186–199.

[64] Hotez, L., Krebs, T. (2003). Supporting the
Product Derivation Process with A
Knowledge Base Approach, the 25th
International Conference on Software

Engineering ICSE2003, Portland Oregon
USA.

[65] Hotez, L., Krebs, T. (2003). A Knowledge
Based Product Derivation Process and
Some Idea How to Integrate Product
Development, the Software Variability
Management Workshop, Groningen The
Netherlands.

[66] Hemakumar, A. (2008). Finding
Contradictions in Feature Models, First
International Workshop on Analyses of
Software Product Lines (ASPL’08)’,
collocated with SPLC08. Limerick, Ireland.

[67] Yan, H., Zhang, W., Zhao, H., Mei. H.
(2009), An optimization strategy to feature
models’ verification by eliminating
verification-irrelevant features and
constraints. In 11th International
Conference on Software Reuse(ICSR
2009), Falls Church, VA, USA , PP. 65–75.

[68]Mendonca, M., Oliveira,T., Cowan, D.
(2006). Collaborative and Coordinated
Product Configuration, In international
Software Product Line Conference
(SPLC06) , Doctoral Symposium,
Baltimore, Maryland, USA.

[69] Mendonca, M., Cowan, D.D.(2007).
Support for Collaborative Feature-Based
Product Configuration in Software Product
Lines, Technical Report CS-2007-030,
School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada.

[70] Mendonca, M, Bartolomei, T.T., Cowan, D.
(2008a). Decision-Making Coordination in
Collaborative

Product Configuration, 23rd Annual ACM
Symposium on Applied Computing,
Fortaleza, Ceará, Brazil.

[71] Mendonc, M., Cowan, D., Malyk, W.,
Oliveira, T.(2008b), Collaborative product
configuration: Formalization and efficient
algorithms for dependency analysis.
Journal of Software, 3(2), PP.69–82.

[72] Salinesi, C., Rolland, C., Mazo, R.(2009),
Vmware: Tool support for automatic
verification of structural and semantic
correctness in product line models. In
Third International Workshop on
Variability Modelling of Software-
intensive Systems (VaMoS09), Sevilla
Spain, PP.173–176.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

 [73] Elfaki, A., Phon-Amnuaisuk, S., Ho,
C.K.(2008). Knowledge Based Method to
Validate Feature Models, first International
Workshop on Analyses of Software
Product Lines (ASPL’08)’, collocated with
SPLC08, Limerick, Ireland.

[74] Elfaki, A., Phon-Amnuaisuk, S., Ho, C.K.
(2009). Using First Order Logic to
Validate Feature Model, Proc. of the third
International Workshop on variability
modeling of Software-intensive Systems,
Sevilla Spain.

[75] Elfaki, A., Phon-Amnuaisuk, S., Ho, C.K.
(2010). An Interactive Method for
Validating Stage configuration, journal of
software engineering and application,
volume 3, number 6,pp. 614-627.

[76] Elfaki, A., Phon-Amnuaisuk, S., Ho, C.K.
(2009). Investigating Inconsistency
Detection as a Validation Operation in
Software Product Line, Book chapter in
studies in computational intelligence, pp.
159-168, Berlin / Heidelberg Springer.

[77] Baader, F., Calvanese, D., McGuinness,
D.L., Nardi, D., Patel-Schneider, P.F.,
(2003), The description logic
handbook:theory, implementation, and
applications. Cambridge University Press,
New York, NY, USA.

[78] Falbo, de Almeida., Guizzardi, G., Duarte,
K.C., (2002),An Ontological Approach to
Domain Engineering, 4th international
conference on Software engineering and
knowledge engineering, Ischia, Italy.
ACM, PP. 15-19.

[79]] Peng, X., Zhao, W., Xue, Y., Wu,
Y.(2006), Ontology-Based Feature
Modeling and Application-Oriented
Tailoring, 9th International Conference on
Software Reuse (ICSR 2006), Turin, Italy,
LNCS 4039, Springer-Verlag Berlin
Heidelberg, pp. 87 – 100.

[80] Czarnecki, K., Kim, C., Kalleberg,
K.,(2006), Feature Models are Views on
Ontologies, 10th International Software
Product Line Conference (SPLC'06),
Baltimore, Maryland, USA.

[81] Fan, S., Zhang, N. (2006), Feature model
based on description logics. In Knowledge-
Based Intelligent Information and
Engineering Systems, 10th International
Conference, KES, Part II, volume 4252 of
Lecture Notes in Computer Sciences.
Springer–Verlag.

[82] Asikainen, T., Mnnistand, T., Soininen, T.
(2007), Kumbang: A domain ontology for
modelling variability in software product
families, Advanced Engineering
Informatics, Volume 21, Issue 1, Elsevier,
PP. 23-40.

[83] Wang, H., Li, Y.F., Sun, J., Zhang, H., Pan,
J. (2005). A Semantic Web Approach to
Feature Modeling and Verification,
workshop on Semantic Web Enabled
Software Engineering (SWESE’05),
Galway, Ireland.

[84] Asikainen, T., Männistö, T., Soininen, T.
(2004). Using a Configurator for
Modelling and Configuring Software
Product Lines Based on Feature Models, In
the Workshop on Software Variability
Management for Product Derivation,
software Product Line Conference
(SPLC3), Boston, USA.

[85] Dedeban,V. (2007). Ontology-driven and
Rules-based System for Management and
Pricing of Family of Product. Master
Thesis, Norwegian University of Science
and Technology Department of Computer
and Information Science, Norway.

[86]] Kaviani, N., Mohabbati, B., Gasevic, D.,
Finke, M. (2008), Semantic Annotations of
Feature Models for Dynamic Product
Configuration in Ubiquitous Environments,
the 4th International Workshop on
Semantic Web Enabled Software
Engineering at 7th International Semantic
Web Conference, Karlsruhe, Germany.

[87] AboZaid, L., Kleinermann, F., De Troyer.
O.(2009), Applying semantic web
technology to feature modeling. In SAC
’09, Proceedings of the 2009 ACM
symposium on Applied Computing, ACM,
, New York, NY, USA, PP. 1252–1256.

[88] Benavides, D., Ruiz-Cort´es, A., Trinidad,
P.(2004) Coping with automatic reasoning
on software product lines. In Proceedings
of the 2nd Groningen Workshop on
Software Variability Management,
Groningen, The Netherlands.

[89] Karataş, A. et al. Mapping Extended
Feature Models to Constraint Logic
Programming over Finite Domains. SPLC
2010, LNCS 6287, pp. 286–299, 2010.

http://www.jatit.org/
http://www.springerlink.com/content/119788/?p=fbaaee9a2a2f4d80ada9cb77322d8c4f&pi=0

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

[90]Trinidad, P., Benavides, D., Ruiz-Cort´es, A.
(2006).Isolated Features Detection in
Feature Models, in Advanced Information
Systems Engineering, 18th International
Conference, CAiSE2006,short Paper
Proceedings, Luxembourg, Luxembourg.

[91] Trinidad, P., Benavides, D., Dur´an,
A.,Ruiz-Cort´es, A., Toro, M. (2008),
Automated error analysis for the
agilization of feature modeling. Journal of
Systems and Software, 81(6), PP.883–896.

 [92] Trinidad, P., Benavides, D., Ruiz-Cort´es,
A.(2006), A first step detecting
inconsistencies in feature models. In
CAiSE Short Paper Proceedings, Advanced
Information Systems Engineering, 18th
International Conference, CAiSE 2006,
Luxembourg, Luxembourg.

[93] Trinidad, P., Benavides, D., Dur´an,
A.,Ruiz-Cort´es, A., Toro, M. (2008a),
Automated error analysis for the
agilization of feature modeling. Journal of
Systems and Software, 81(6), PP.883–896.

[94] White, J., Schmidt, D., Benvides, D.,
Trinidad, P., Ruiz-Cortes, A. (2008).
Automated Diagnosis of Product Line
Configuration Errors on Feature Models,
the 12th international conference of
software product line, Limerick Ireland.

[95] White, J. , Dougherty, B., Schmidt, D.,
Benavides, D. (2009), Automated
Reasoning for Multi-step Feature Model
Configuration Problems, 13th International
Software Product Line Conference, San
Francisco, California, USA, pp. 11-20.

[96] Djebbi, O., Salinesi, C., Diaz, D. (2007),
Deriving product line requirements: the
red-pl guidance approach. In 14th Asia-
Pacific Software Engineering Conference
(APSEC), Los Alamitos, CA, USA, IEEE
Computer Society., pp. 494-501.

[97] Mernik, M., Heering, J., Sloane, A. M.
(2005), When and how to develop domain-
specific languages. ACM Computing
Surveys, 37(4), PP.316–344.

[98]Cao, F., Bryant, R., Carol, B. (2003).
Automating Feature-Oriented Domain
Analysis, the International Conference on
Software Engineering Research and
Practice (SERP’03), Las Vegas, Nevada,
USA,pp. 944–949.

[99]Deursen, A., Klint, P. (2002). Domain–
Specific Language Design Requires
Feature Descriptions, Journal of

Computing and Information Technology,
10(1):1–17.

[100]Klint, P. (1993). A meta-environment for
Generating Programming Environments,
ACM Trans, Softw. Eng. Methodol,
2(2):pp.176–201.

[101]Pohjalainen, P. (2008). Feature Oriented
Domain Analysis Expressions, in Nordic
Workshop on Model Driven Software
Engineering(NW-MoDE'08), Reykjavik,
Iceland.

[102] Groher, I., Voelter, M. (2007), Expressing
Feature-Based Variability in Structural
Models, Workshop on Managing
Variability for Software Product Lines, Co-
located with the 7th software product line
conference SPLC, Kyoto, Japan.

[103] Cunningham, A.L.(2006), Language,
Deals and Standards: The Future of XML
Contracts, Journal of Washington
University Law Review., VOL 84, No 2,
Washington University School of Law,
USA, PP. 313-374.

[104]Cechticky, V., Pasetti, A., Rohlik, O.,
Schaufelberger, W. (2004). XML-Based
Feature Modelling, in the 8th International
Conference on Software Reuse (ICSR-8),
Madrid, Spain.

[105] Wong, T., Jarzabek, S., Swe , S.M., Shen,
R., Zhang, H. (2001), XML implementation
of frame processor, Symposium on
Software Reusability, SSR’01, Toronto,
Canada, pp. 164-172.

[106] Jarzabek, S., Zhang, H. (2001). XML-
based Method and Tool for Handling
Variant Requirements in Domain Models,
5th IEEE International Symposium on
Requirements Engineering RE01, pp. 116-
173, Toronto, Canada.

[107]Swe S.M., Zhang, H., Jarzabek, S. (2002),
XVCL: a tutorial, Proc. of 14th Int. Conf.
on Software Engineeringand Knowledge
Engineering, SEKE’02, Italy, ACM Press,
pp. 341-349.

[108] Zhang, H., Jarzabek, S.(2003), An XVCL-
based Approach to Software Product Line
Development, Int. Conf. on Software
Engineering and Knowledge Engineering,
SEKE’03, San Francisco Bay, USA.

[109] Zhang, H., Jarzabek, S.(2004), XVCL: a
mechanism for handling variants in
software product lines, Science of
Computer Programming, Volume 53 ,
Issue 3, Special issue: Software variability
management PP. 381 – 407.

http://www.jatit.org/
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Olfa%20Djebbi
http://portal.acm.org/author_page.cfm?id=81416595446&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337247&CFTOKEN=58039549
http://portal.acm.org/author_page.cfm?id=81100420705&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337247&CFTOKEN=58039549
http://portal.acm.org/author_page.cfm?id=81100223708&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337247&CFTOKEN=58039549
http://portal.acm.org/author_page.cfm?id=81332527353&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337247&CFTOKEN=58039549
http://portal.acm.org/author_page.cfm?id=81100120495&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337247&CFTOKEN=58039549
http://portal.acm.org/author_page.cfm?id=81100223708&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337915&CFTOKEN=56687018
http://portal.acm.org/author_page.cfm?id=81100120495&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337915&CFTOKEN=56687018
http://portal.acm.org/author_page.cfm?id=81100420705&coll=GUIDE&dl=GUIDE&trk=0&CFID=91337915&CFTOKEN=56687018

Journal of Theoretical and Applied Information Technology
 15 August 2012. Vol. 42 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

93

[110]Peter, A. (2002). An Introduction to
Mathematical Logic and Type Theory: To
Truth Through Proof, 2nd ed, Kluwer
Academic Publishers.

[111] Janota, M. ,Kiniry, J. (2007). Reasoning
about Feature Models in Higher-Order
Logic, the 11th International Software
Product Line Conference (SPLC07),
Heidelberg, Germany.

[112] Lengyel, L., Levendovszky, T., Charaf, H.
(2004). Constraint Handling in Feature
Models, 5th International Symposium of
Hungarian Researchers on Computational
Intelligence, Budapest.

[113] Broek, P., Galvão, I., Noppen, J.
(2008).Elimination of Constraints from
Feature Trees, first international Workshop
on Analyses of Software Product Lines
(ASPL’08)’, collocated with SPLC08.
Limerick, Ireland.

[114] Broek, P., Galvao, I. (2009), Analysis of
feature models using generalized feature
trees. In Third International Workshop on
Variability Modelling of Software-
intensive Systems (VaMoS09) Spain,
number 29 in ICB-Research Report, pages
29–35, Essen, Germany, January 2009.
Universit¨at Duisburg-Essen.

[115] Weyns, D., Helleboogh, A., Holvoet, T.,
Schelfthout, K., Betsbrugge, W., 2008.
Towards a Software Product Line for
Automated Transportation Systems. In the
2nd International Workshop on Dynamic
Software Product Lines (DSPL 2008)
collocated with SPLC08, pp.45-
52,Limerick, Ireland.

[116] La Rosa, M., Aalst, W., Dumas, M.,
Hofstede, A., 2009. Questionnaire-based
variability modeling for system
configuration. J. Software and Systems
Modeling, 8(2), Springer, pp. 251-274.

[117] Aalst, W.M.P., Dumas, M., Gottschalk ,F.,
Hofstede, A.H.M., La Rosa, M., Mendling,
J., (2008), Correctness-Preserving
Configuration of Business Process Models,
Book chapter in Fundamental Approaches
to Software Engineering,pp. 46-61,Springer
Berlin / Heidelberg,Volume 4961/2008.

[118] Yang,Y., Peng, X., Zhao,W. (2007), A
Feature-Oriented Adaptive Component
Model for Dynamic Evolution, In the 11th
European Conference on Software
Maintenance and Reengineering,
Amsterdam, the Netherlands, pp.49-57.

[119] Yang Y., Peng, X., Zhao, W. (2008),
Feature-Oriented Software Product Line
Design and Implementation Based on
Adaptive Component Model, The First
Workshop on Domain Specific Analysis
and Design for Reuse, held with the 10th
International Conference on Software
Reuse(ICSR2008), Beijing China.

[120] Maxime Cordy, Andreas Classen, Patrick
Heymans, Axel Legay, Simulation-Based
Abstractions for Software Product-Line
Model Checking, In 34th International
Conference on Software Engineering, ICSE
2012,, Zurich, Switzerland, 2012.

[121] Ebrahim Bagheri, Tommaso Di Noia,
Dragan Gasevic, Azzurra Ragone,
Formalizing Interactive Stage Feature
Model Configuration, Journal of Software
Maintenance and Evolution: Research and
Practice, 2010.

[122] Trinidad, P., David Benavides, D., Ruiz-
Cort, A., Segura, S., Jimenez, A. (2008b).
FAMA Framework, 2008 12th International
Software Product Line Conference,
Limerick Ireland.

http://www.jatit.org/

