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Abstract
Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, µ/ρ,
are among the most widely used physical parameters employed in medical
diagnostic and therapy computations, as well as in diverse applications in other
fields such as nuclear power plant shielding, health physics and industrial
irradiation and monitoring, and in x-ray crystallography. This review traces
the evolution of this data base from its empirical beginnings totally derived
from measurements beginning in 1907 by Barkla and Sadler and continuing
up through the 1935 Allen compilation (published virtually unchanged in all
editions up through 1971–1972 of the Chemical Rubber Handbook), to the
1949 semi-empirical compilation of Victoreen, as our theoretical understanding
of the constituent Compton scattering, photoabsorption and pair production
interactions of photons with atoms became more quantitative. The 1950s
saw the advent of completely theoretical (guided by available measured data)
systematic compilations such as in the works of Davisson and Evans, and by
White-Grodstein under the direction of Fano, using mostly theory developed in
the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World
War II new theoretical activity, and the introduction of the electronic automatic
computer, led to the more extensive and more accurate compilations in the
1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today’s
µ/ρ compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by
others, collectively spanning the ten decades of photon energy from 10 eV to
100 GeV, for all elements Z = 1 to 100, draw heavily on the 1970s shell-by-shell
photoabsorption computations of Scofield, the 1960s coherent and incoherent
scattering computations of Cromer et al, and the 1980 computations of electron–
positron pair and triplet computations of Hubbell, Gimm and Øverbø, these

* Work supported by the National Institute of Standards and Technology.

0031-9155/06/130245+18$30.00 © 2006 IOP Publishing Ltd Printed in the UK R245

http://dx.doi.org/10.1088/0031-9155/51/13/R15
mailto:john.hubbell@nist.gov
http://stacks.iop.org/PMB/51/R245


R246 Review

names being representative of the vast legions of other researchers whose work
fed into these computations.

1. Introduction

Some opening personal remarks. My first acquaintance with photon (x-ray, gamma-ray,
bremsstrahlung) mass attenuation coefficients (µ/ρ) was in the spring of 1950 as a lab exercise
measurement of this quantity in Prof. Marc Wiedenbeck’s Nuclear Physics Lab course at the
University of Michigan in Ann Arbor. I was pursuing an MS (Master of Science) in physics,
following an undergraduate degree in engineering physics, having been lured to physics from
an electrical engineering (E.E.) curriculum in which I had originally enrolled. I had originally
chosen E.E. because my uncle, an E.E., came intact through the Great Depression in the 1930s;
my father, a civil engineer, did not, including his untimely death from cancer when I was too
young to remember him. My switch to physics, after two years of E.E., I am sure was a result
of the sparkling and dramatic physics lectures and demonstrations of Prof. James Cork in his
course required for all the engineering undergrads. His textbook Radioactivity and Nuclear
Physics (Cork 1947) is still at my elbow on my bookshelf. I was one of the many beneficiaries
of the United States ‘GI Bill’ (‘GI’ for ‘government issue’ originally applied to army clothing
and equipment, later applied to the soldiers themselves) following World War II, providing to
the returning veterans a trade school or college education commensurate with one’s time in
military service, mine including combat, in Europe, and sufficing to carry me through to the
MS. As an epilogue to my introduction to µ/ρ in Marc Wiedenbeck’s lab class at Michigan in
1950, after I was established at NBS/NIST (National Bureau of Standards; name changed in
1988 to National Institute of Standards and Technology) and was agressively collecting µ/ρ

measured data from around the globe for undergirding NBS theoretical compilations, Marc
went beyond assigning µ/ρ as a lab exercise, and published his own measurements for 19
elements from Be (Z = 4) to Th (Z = 90) for photon energies 40 keV to 412 keV (Wiedenbeck
1962). Marc’s data points were thus duly added to the NBS/NIST µ/ρ data collection (see,
e.g., Saloman and Hubbell (1986), Saloman et al (1988), Hubbell (1994)).

My second major encounter with photon attenuation coefficients, and giving me an inkling
of their importance, was in 1952, soon after I joined Ugo Fano’s Radiation Theory Group at
NBS. The focus of this inkling was a party in Ugo’s home on Rodman Street in Washington
DC, easy walking distance from NBS, before NBS moved to Gaithersburg in 1965. The party
was in celebration of the completion of an ‘unpublished’ internal report NBS 1003 (1952)
by Gladys White (later to use her married name Gladys White Grodstein) ‘X ray attenuation
coefficients from 10 keV to 100 MeV’. Report NBS 1003 (White 1952) overnight became a
global ‘best seller’ primarily in medical diagnostic and therapy applications, but also in various
shielding situations including for civil defense shelters against radioactive fallout from nuclear
weaponry, a major national concern through the ‘Cold War’ which was especially tense through
the 1950s and 1960s.

Hence, in the late 1960s when I inherited this NBS data compilation activity ‘from the
ladies’ (besides White (1952), see also, e.g., Nelms (1953), Nelms and Oppenheim (1955),
White Grodstein (1957), McGinnies [now Berger] (1959), Berger [R.T.] (1961)), I warmly
welcomed this assignment. I have for the subsequent several decades enjoyed my supportive-
physics role as a ‘middleman’ between the producers, both theoretical and experimental, of
photon cross section data around the globe, and the x-ray attenuation data user communities,
widely dispersed both geographically and by discipline, also from around the globe. In the
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remainder of this review, much of the material is taken from and updated from portions of an
earlier invited review in this journal (Hubbell 1999).

Definitions, and new values of the relevant fundamental physical constants. The mass
attenuation coefficient1 µ/ρ (cm2 g−1) can be defined as

µ/ρ = t−1 ln{I0/I (t)} (1)

in which t is the mass thickness of an absorber layer in units of g cm−2. I0 is the intensity
of the incident beam of photons measured with the absorber layer removed from the beam,
and I(t) is the intensity of the transmitted beam measured with the absorber interposed in the
beam, and in which dx is the thickness of a differential layer at distance x into the absorber.
ρ is the density of the absorber layer in g cm−3 and µ is the linear attenuation coefficient in
cm−1. Since µ is dependent on the sample density ρ which can vary considerably for a given
element or compound, for compilation purposes this dependence is removed by tabulating the
mass attenuation coefficient µ/ρ.

The fractional reduction of the beam intensity, −dI/I , is proportional to the above mass
attenuation coefficient µ/ρ, and to the layer thickness, dx, i.e.,

−dI/I = (µ/ρ) dx. (2)

Integrating this equation, one obtains the intensity I (t) transmitted through the slab

I (t) = I0 exp

{
−

∫ t

0

µ

ρ
(x) dx

}
. (3)

For a homogeneous medium, equation (3) reduces to the well-established Bouguer (1729)–
Lambert (1760)–Beer (1852) exponential attenuation law

I (t) = I0 exp{−(µ/ρ)t} (4)

from which equation (1) follows.
Calculations of photon interaction data are generally in terms of atomic cross sections, in

units of cm2/atom, customarily in units of barns/atom (or b/atom) where 1 barn = 10−24 cm2.
The total atomic cross section σtot is thus related to the total mass attenuation coefficient
according to

µ/ρ (cm2 g−1) = σtot (cm2/atom)/{mu(g)A}
= σtot (b/atom) × 10−24/{mu(g)A} (5)

where mu (g) (=1.660 538 86 × 10−24 g, formerly with symbol ‘u’, Mohr and Taylor (2005))
is the atomic mass unit, which is defined as 1/12 of the mass of an atom of the nuclide 12C,
and A is the relative atomic mass of the target element (Martin 1988). It can be noted that
mu (g) = 1/NA, where NA is Avogadro’s number (=6.022 1415 × 1023 atoms mol−1).

The total atomic cross section σtot can be written as the sum over the cross sections for
the most-probable individual processes by which photons interact with atoms

σtot = σpe + σincoh + σcoh + σpair + σtrip + σph.n. (6)

1 The quantity µ/ρ has often been referred to in the literature (e.g., Allen (1935, 1971/1972), Leroux (1960),
Victoreen (1943, 1948, 1949), Liebhafsky et al (1960), Heinrich (1966, 1986)) as the ‘mass absorption coefficient’.
However, the term ‘mass absorption coefficient’ has also been used to refer to the mass energy-transfer coefficient
(e.g., Evans (1955, 1968)) and mass energy-absorption coefficient (e.g., Allison (1961)), both having to do with photon
energy deposition in the target material. Hence, to avoid confusion, this paper continues to follow the International
Commission on Radiation Units and Measurements (ICRU 1980) nomenclature ‘mass attenuation coefficient’ as used
at NBS/NIST by White (1952), White Grodstein (1957) and in subsequent NBS/NIST publications as well as by
Leroux and Thinh (1977) to refer to the total probability of the photon interaction processes.
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in which σpe (or τ ) is the atomic photoeffect cross section, σincoh and σcoh are the incoherent
(Compton) and coherent (Rayleigh) cross sections, respectively. σpair (or κn) and σtrip (or κe)
are the cross sections for electron–positron pair production (creation) in the field of the nucleus
and in the field of the atomic electrons (‘triplet’ production), respectively. The photonuclear
cross section σph.n. is a measurable effect (see, e.g., Gimm and Hubbell (1978)). However,
this process in which the photon is absorbed by the atomic nucleus and one or more nucleons
(neutrons and/or protons) are ejected, is not readily amenable to systematic calculation and
tabulation. This is due to a number of factors including its irregular dependence, both in
shape and in magnitude, on both A and Z, and its sensitivity to isotopic abundances in a given
sample of an element (see, e.g., Hayward (1970), Fuller and Hayward (1976) and Dietrich
and Berman (1988)). Hence, σph.n. has been omitted from µ/ρ compilations up to the present,
even though at its giant resonance peak between 5 and 40 MeV it can contribute between
2% (high-Z elements) and 6% (low-Z elements) to the total cross section σtot (see, e.g., the
illustrative tables in Hubbell (1969, 1982)).

Hence, current compilations of the mass attenuation coefficient µ/ρ are derived from
theoretical or semi-empirical values of the cross sections for the individual processes according
to

µ/ρ = (σpe + σincoh + σcoh + σpair + σtrip)/muA (7)

referring back to equation (5) for the meaning and units of the conversion factor 1/muA. The
cross sections for the individual processes are discussed in section 3, particularly the cross
sections obtained or derived, and used, in the recent compilations by Berger and Hubbell
(1987), Creagh and Hubbell (1992), Seltzer (1993), Seltzer and Hubbell (1995), Hubbell and
Seltzer (1995), Berger and Hubbell (1996/1997) and by Cullen et al (1997).

2. History

For listings of the available measurements of µ/ρ beginning with the work of Barkla and
Sadler (1907, 1909) up through 2004, for photon energies from 10 eV up to 13.5 GeV in
elements Z = 1 to 94, one can consult the annotated bibliographies of Hubbell (1994, 1996,
2004). From time to time these measurements have been graphically compared with available
theory, in order to evaluate the validity of the various theoretical models for purposes of
systematic compilations aimed at medical, biological and other practical applications. Among
these evaluations are the graphical comparisons by Hubbell (1971) (10 eV to 100 GeV) and
by Saloman et al (1988) (100 eV to 100 keV).

The first major general-purpose compilation of µ/ρ data appears to be that by Allen
(1935), covering the photon energy range 30 eV to 2.5 MeV, 32 elements Z = 1 to 92 based
on his own measurements (e.g., Allen (1924, 1926)), combined with others he found in the
literature. First published in the Compton and Allison book (Allen 1935), these tables were
soon thereafter published in the Chemical Rubber Handbook, appearing virtually unchanged
in all editions from 1935 up through 1971/1972 (Allen 1971/1972). Since no theory was
used in constructing the Allen (1935, 1971/1972) compilation, but only the widely scattered
measurements found in the literature, there were wide gaps, requiring extensive interpolation
and extrapolation across Z and photon energy in order to use this data base in many practical
applications.

Following the work of Allen (1935), the next major µ/ρ compilation was the semi-
empirical set by Victoreen (1949), based on his evaluations in Victoreen (1943, 1948) making
use of the Klein–Nishina formula for total Compton scattering and some interpretation of
the atomic photoeffect and its absorption edges using Sommerfeld (1934) theory, as well as
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available µ/ρ measured data. Davisson and Evans (1952) published tables for 24 elements Z =
1 to 83 and photon energies 102.2 keV to 6.13 MeV (up to 25.54 MeV for Z = 13 and 82),
obtaining pair production cross sections by graphical integration over the Bethe and Heitler
(1934) Born approximation expression.

The National Bureau of Standards (now the National Institute of Standards and
Technology) entered this area of collection, evaluation, analysis and compilation of µ/ρ

data with the work of White (1952), Fano (1953a, 1953b), and White Grodstein (1957) and
McGinnies [now R.T. Berger] (1959). The White (1952) and White Grodstein (1957) µ/ρ

tables were incorporated into Davisson’s (1955a, 1955b, 1965a, 1965b) chapter II appendix
in the two editions of the Siegbahn (1955, 1965) book.

New theory and measurements were incorporated by Hubbell and Berger (1968) for
tables of µ/ρ and µen/ρ (µen/ρ is the mass energy-absorption coefficient: for details, see,
e.g. the earlier review in this journal (Hubbell 1999) and accompanying text for an invited
contribution to the IAEA (International Atomic Energy Agency) Engineering Compendium
on Radiation Shielding). With some additional new material, these tables were published
by Hubbell (1969) in the National Standard Reference Data System report NSRDS-NBS 29
following their appearance also in the chapter 3 by Evans (1968) in Vol. I (Attix and Roesch,
eds.) of the Attix, Roesch and Tochilin, eds. trilogy Radiation Dosimetry (2nd Ed., I: 1968,
II: 1966, III: 1969).

A collaboration of NBS with the Lawrence Livermore National Laboratory (LLNL)
produced extensive tables (McMaster et al 1969, 1970, 1969, 1970, Hubbell et al 1974) based
on a combination of theoretical and measured data, weighted together, and which provided
log–log cubic fitting parameters for the individual component cross sections. This effort was
in conjunction and collaboration with the LLNL series of µ/ρ and related tables beginning
with Plechaty and Terrall (1966) and extending up through the recent tables by Cullen et al
(1989, 1997). A somewhat independent tabulation by Storm and Israel (1970), using pair
production and some of the scattering data interpolated from NBS, covered all Z’s from 1
to 100. Other notable µ/ρ compilations of this period include, for example, the Boeing
compilation by Brown (1966) 1 keV to 10 MeV, Z = 1 to 100, the extensive parametric fits by
Biggs and Lighthill (1971), the 100 eV to 1 MeV, Z = 1 to 94 compilation by Veigele (1973)
and the radiology-oriented compilation by Johns and Cunningham (1969, 1983).

The discrepancies and envelope of uncertainty of available µ/ρ data have been examined
from time to time, including the effects of molecular and ionic chemical binding, particularly in
the vicinity of absorption edges (e.g. Deslattes (1969)). More recent efforts at such assessments
include the International Union for Crystallography (IUCr) project by Creagh and Hubbell
(1987, 1990, 1992) and as examined also by Gerward (1993).

Interest in low-energy photon attenuation led to tables by Henke et al (1967, 1982) for
energies 30 eV to 6 and 10 keV, and more recently the tables by Henke et al (1993) for
photon energies 50 eV to 30 keV, Z = 1 to 92. Responding to low-energy dosimetry standards
requirements, Hubbell (1977) developed µ/ρ and µen/ρ data for a few elements and mixtures
of particular dosimetric interest, for the range 100 eV to 20 MeV, and later Hubbell (1982)
published tables of µ/ρ and µen/ρ for 40 elements and 45 mixtures and compounds over the
energy range 1 keV to 20 MeV. The latter tables are still widely used as reference values,
but should now be replaced by the Berger and Hubbell (1987 [and updates]) XCOM µ/ρ

values and the µen/ρ values of Seltzer (1993) and Hubbell and Seltzer (1995). Extensive new
calculations and theoretical tabulations by Chantler (1995) of scattering cross sections and
quantities related to µ/ρ have recently become available for photon energies from a few eV up
to 1 MeV or less, for Z = 1 to 92. However, this new source of data has yet to be incorporated
into general-use µ/ρ tables for medical, biological and other practical applications.
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In the following sections, computations of cross sections for the individual photon–atom
interactions, and the growth of our theoretical knowledge of them, will be historically reviewed.

3. Atomic photoeffect cross section σpe (or τ )

In the atomic photoeffect, a photon disappears and an electron is ejected from an atom. The
electron carries away all the energy of the absorbed photon, minus the energy binding the
electron to the atom. The K-shell electrons, which are the most tightly bound, are the most
important in the energy range of medical and biological interest. However, if the photon
energy drops below the binding energy of a given shell, an electron from that shell cannot
be ejected. Hence, particularly for medium and high-Z elements, a plot of σpe versus photon
energy exhibits the characteristic absorption edges as the binding energy of each electron
subshell is attained and a new channel for photo-excitation becomes energetically allowed.
Although these absorption edges have superimposed on them some degree of fine structure,
discussed in the last two paragraphs in this section, in medical and other general-purpose
attenuation coefficient compilations, these edges are idealized as simple sawtooth shapes.

In the early semi-theoretical compilations of µ/ρ, the scattering cross sections were
available theoretically to a reasonable approximation from the Klein and Nishina (1929)
formula. Thus the photoeffect cross section was obtained by subtracting the theoretical
scattering cross sections from measured values of µ/ρ and interpolating across Z and photon
energy, taking care to account for the photoeffect absorption edges shifting in energy with Z.

Most of the early calculations of the atomic photoeffect were for the K-shell only, typified
by the high-energy work of Pratt (1960) showing the asymptotic behaviour going to arbitrarily
high energies, and by Pratt et al (1964) in the range 200 keV to 2 MeV. Hultberg et al
(1961, 1968) used the Swedish BESK computer to compute K-shell cross sections, including
photoelectron angular distributions, for 21 elements Z = 1 to 100 for photon energies extending
as low as 1 keV (Z = 1) to as high as 10 MeV (Z = 92).

A significant advance came with the atomic photoeffect cross section calculations by
Rakavy and Ron (1965, 1967) for not only the K shell, but also for all the significantly
contributing higher subshells (LI–III, MI–V, NI–VII, and OI–III) over the energy range 1 keV to
2 MeV for Z = 13, 26, 50, 74 and 92. Other important multi-shell photoeffect calculations
in this time period, which also provide historical reviews of earlier work, are those by
Alling and Johnson (1965), Matese and Johnson (1965) and by Schmickley and Pratt (1967).
Interpolations from these works, along with the K-shell high-energy asymptotic behaviour
provided by Pratt (1960), were helpful in constructing the tables of Hubbell (1969), along with
a large body of experimentally determined total photoeffect cross section data obtained by
subtracting ‘known’ theoretical scattering cross sections from measured total cross sections
(attenuation coefficients).

However, the major advance came with the systematic calculations by Scofield (1973)
of the atomic photoeffect cross sections for all subshells, for all elements Z = 1 to 101,
over the photon energy range 1 keV to 1.5 MeV. These non-relativistic Dirac–Hartree–Slater
(DHS) calculations were based on Scofield’s solution of the Dirac equation for the orbital
electrons moving in a static Hartree–Slater (HS) central potential. In the Hartree–Slater (HS)
approximation (Slater 1951) the electron–electron interaction term is replaced with its average
radial value. Hence the HS model is somewhat less accurate than the full Hartree–Fock (HF)
model which requires calculation of the self-consistent field for each term in the Slater product
and is thus much more costly than HS in computer time. For Z = 2 to 54, Scofield (1973)
provided renormalization factors to convert his cross section results to values expected from a
relativistic Dirac–Hartree–Fock (DHF) computation.
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This renormalization was performed for two subsequent compilations of µ/ρ and µen/ρ by
Hubbell (1977, 1982) and by Hubbell et al (1980). However, detailed comparisons (Saloman
and Hubbell 1986, Saloman et al 1988) with the extensive NBS/NIST µ/ρ measurement
data base tend to favour the unrenormalized σpe Scofield (1973) over the renormalized values.
Hence, in subsequent compilations by Berger and Hubbell (1987) and Hubbell and Seltzer
(1995), the unrenormalized Scofield (1973) σpe values have been used, accounting for shifts
from Hubbell (1977, 1982) of the order of 2% for Z = 2 to 54 and photon energies less than
100 keV.

Scofield (1985) later extended these calculations down to 0.1 keV, and these
(unrenormalized values) are also included in the comparison by Saloman and Hubbell (1986)
and Saloman et al (1988), both numerically and graphically, with the NBS/NIST µ/ρ

measurement data base as well as with an experiment-based compilation by Henke et al
(1982). Values of σpe are also given in the extensive theoretical results of Chantler (1995)
computed within a self-consistent Dirac–Hartree–Fock framework, mentioned earlier. For
the elements Z = 1 to 92, the lower-bound energy varies between 1 eV and 10 eV, and the
upper-bound energy varies between 0.4 MeV and 1.0 MeV. Further detailed comparisons with
the NBS/NIST measurement data base are needed to consider whether these values could
or should supplant the Scofield (1973, 1985) σpe values presently in the NIST (e.g., Hubbell
and Seltzer (1995)), LLNL (e.g., Cullen et al (1997)) and other currently disseminated µ/ρ

compilations, for medical and biological applications.

Absorption-edge fine structure. Oscillatory structures just above absorption edges are well-
known (e.g. Sommerfeld (1920), Azároff (1963), Stern (1974)) and can be easily observed
with high-resolution spectrometers (e.g. Faessler (1955), Lytle et al (1975), Del Grande (1986,
1990)). Above some thresholds, rather dramatic peaks can occur, due to atomic photoionization
resonances. For example, in her µ/ρ measurements just above the K edge for the series of
metals Ti (Z = 22, EK-edge = 4.97 keV) through Zn (Z = 30, EK-edge = 9.66 keV), Del Grande
(1986) observed oscillations, confined to within ≈0.5 keV above the edge, of the order of
0.05 keV width with peaks extending ≈5% to ≈10% above the smoothed theoretical values.
Fe (Z = 26) and Cu (Z = 29) each showed one of the series of narrow peaks to be extending
≈20% above the smoothed values.

Superimposed on these can be smaller modulations, of the order of ≈2% or less, of
extended x-ray absorption fine structure (EXAFS) associated with chemical binding effects.
However, due to their dependence on temperature and other variable atomic environments,
these and the above oscillatory structures are currently ignored in µ/ρ tabulations for medical
and biological applications.

4. Incoherent (Compton, also inelastic) scattering cross section σincoh

For recent information on the incoherent (Compton) scattering cross section σincoh, attention
is here called to a special issue of Radiation Physics and Chemistry edited by Bradley (1997)
giving collectively a rather comprehensive survey of this topic. The all-invited papers in this
issue include an overview of theory by Bergstrom and Pratt (1997), a summary of experiments
by Kane (1997), a study of momentum distributions by Cooper (1997), resonant Raman
scattering by Manninen (1997), applications in biomedical science and industry by Harding
(1997) and a historical and status review of incoherent scattering by Hubbell (1997).

As mentioned in the extensive review by Kane (1992) and in treatments by Bergstrom et al
(1992, 1993), by Pratt et al (1994), and by Bergstrom and Pratt (1997), relativistic S-matrix
calculations are becoming available and will likely supplant the currently-used incoherent
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scattering function S(x, Z) approach, in which x is a momentum transfer variable related to the
incident photon energy and the deflection angle of the scattered photon, and Z is the atomic
(charge) number of the nucleus of the target atom. However, the S-matrix results and format
are not yet particularly ‘user-friendly’ for medical–biological applications.

The Berger and Hubbell (1987) XCOM PC program, the Hubbell and Seltzer (1995)
tabulation and the Cullen et al (1997) LLNL data base, still rely on the incoherent scattering
function S(x, Z) approach. For these compilations, the incoherent scattering cross section σincoh

was obtained by numerical integration of the Klein and Nishina (1929) formula weighted by the
incoherent scattering function S(x, Z). The values of S(x, Z) were taken from the compilation
by Hubbell et al (1975) for all Z’s 1 to 100, with a span of x values sufficient for computing
σincoh over the photon energy range 100 eV to 100 GeV, which were computed and tabulated in
this compilation. Radiative and double-Compton corrections from Mork (1971) were applied
to the integrated values for σincoh.

The Hubbell et al (1975) S(x, Z) values were pieced together from data available in the
literature, including the work of Pirenne (1946) (Z = 1), Brown (1970a, 1970b, 1972, 1974)
(Z = 2 to 6, with configuration interaction) and by Cromer and Mann (1967) and Cromer
(1969) (Z = 7 to 100, from a non-relativistic Hartree–Fock model). Although giving cross
sections differing by up to 2% to 3% from calculations of cross sections for isolated cases
using relativistic S-matrix and other more sophisticated models, their compactness and ease
of use makes these S(x, Z) and σincoh values still (by default) the reference set used in most
medical, biological and other practical applications. In the future, use may be made of the
relativistic Dirac–Hartree–Fock S(x, Z) values computed by Kahane (1998) over the same
ranges of x and Z as given in the Hubbell et al (1975) non-relativistic composited set. Some
insight into the limitations and use of S(x, Z) tables, and possible refinements, can be found in
the treatments by Ribberfors and Berggren (1982) and by Namito et al (1994, 1995).

5. Coherent (Rayleigh, also elastic) scattering cross section σcoh

In coherent scattering, photons are scattered by bound electrons in a process in which the atom
is neither ionized nor excited. The photon loses only a negligible fraction of its energy, since the
recoil is by the entire atom including the nucleus, rather than by an individual atomic electron
as in the Compton effect, and the scattering is ‘coherent’ resulting in interference effects.
Since this scattering is peaked in the forward direction, particularly at high energies, this cross
section has sometimes been neglected in photon transport computations. However, when this
coherence is spread over an array of atoms, the interference becomes the Bragg diffraction
which is of central importance in x-ray crystallography, crystal diffraction spectrometry and
other areas including studies of molecular structures of biological interest.

The name ‘Rayleigh’ associated with this process stems from research on the scattering
and polarization of visible light by gas molecules (‘blue skies, red sunsets’) by Strutt [Lord
Rayleigh] (1871, 1881). A summary of this and other photon scattering work by Strutt [Lord
Rayleigh] has been given in the more recent literature by Young (1982). This process is also
sometimes called ‘elastic’ scattering, and this terminology is used in the extensive review by
Kane et al (1986).

For recent information on elastic scattering, attention is here also called to a special topical
issue of Radiation Physics and Chemistry edited by Bradley and Speller (1999) providing in
one place a wide-ranging survey of this topic. The all-invited papers in this issue, include, in
addition to papers mentioned elsewhere in this section, polarization effects (Fernandez 1999),
form factor and dispersion effects (Creagh 1999), magnetic x-ray scattering (Cooper and
Stirling 1999), and Delbrück scattering (Schumacher 1999). Other topics in this special issue
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include elastic photon–proton scattering (Nathan 1999), photon–atom scattering measurements
(Bradley et al 1999a, 1999b), magnetic diffraction (Laundy 1999), scattering in polymers and
micelles (Fairclough et al 1999), collagen x-ray diffraction (Wilkinson and Hukins 1999),
tissue molecular cross sections (Tartari 1999), industrial elastic scatter inspection (Luggar and
Gilboy 1999), coherent x-ray scatter imaging in biomedical science and industry (Harding
and Schreiber 1999), and x-ray diffraction analysis in crystalline and amorphous body tissues
(Royle et al 1999).

For µ/ρ compilations in the medical and biological region of interest, the coherent
scattering cross section σcoh has been computed by numerical integration of the Thomson
(1906) formula weighted by F2(x, Z), where F(x, Z) is the atomic form factor. As in the
somewhat complementary incoherent scattering function S(x, Z), x is the momentum transfer
variable dependent on the incident photon energy and the deflection angle of the scattered
photon, and Z is again the atomic (charge) number of the nucleus of the target atom.

Theoretical values of F(x, Z) were compared graphically with available measurements
in the review and compilation by Hubbell et al (1975). Although relativistic Hartree–Fock
values were available at that time, the F(x, Z) values tabulated for 7 � Z � 100 were taken
from the non-relativistic Hartree–Fock Cromer and Mann (1968) and Cromer (1971) results,
in view of the approximate complementarity with S(x, Z), then systematically available only
from non-relativistic computations. For Z = 1 the F(x, Z) values in Hubbell et al (1975) were
computed from the ‘exact’ formula of Pirenne (1946), and for Z = 2 to 6 were taken from
the configuration interaction calculations by Brown (1970a, 1970b, 1971, 1974). Thus, in the
Hubbell et al (1975) compilation, both S(x, Z) and F(x, Z) are tabulated for all Z = 1 to 100
over the range 0.005 Å−1 � x � 109 Å−1, and both σincoh and σcoh are tabulated for all Z = 1
to 100 over the photon energy range 100 eV to 100 MeV.

In the XCOM µ/ρ data set (Berger and Hubbell 1987), and in the Hubbell and Seltzer
(1995) tabulation, the values of σcoh are taken from the relativistic compilation of Hubbell and
Øverbø (1979). For these computations, relativistic theoretical values of F(x, Z) were pieced
together from Pirenne (1946) for Z = 1, and for the other elements, over the different ranges of
x and Z, from Doyle and Turner (1968), Cromer and Waber (1974) and from Øverbø (1977a,
1978a). Somewhat higher accuracy is anticipated from the relativistic Hartree–Fock–Slater
modified atomic form factor (MFF) calculations by Schaupp et al (1983) for F(x, Z) for Z = 1
to 100, 0 � x � 100 Å−1. This compilation was not accompanied by corresponding integrated
values of σcoh, and these MFF values have not yet found their way into the µ/ρ compilations
for medical and biological applications.

Current theoretical efforts towards improved values of the coherent scattering cross section
σcoh are focused on use of the second-order relativistic S-matrix formalism (e.g. Kissel et al
(1980), Pratt et al (1994), Kissel (1995)). This formalism is capable of revealing anomalous
scattering, particularly in the vicinity of absorption edge energies. For example, Zhou et al
(1992) estimate that anomalous scattering effects can be as much as 15% at the absorption
edge (subshell ionization threshold) energy, decreasing to less than 7% at 0.007 keV above
the threshold, to less than 5% at 0.045 keV above threshold, and to less than 3% for an
incident photon energy 0.35 keV above the threshold. Attention is here called also to recent
measurements using synchrotron radiation and hyper-pure germanium (HPGe) detectors, for
example those by Hugtenburg et al (2002, 2004) disclosing anomalous scattering structures
with a few tens of eV below the K-edge energy.

A major step in this effort is the Chatterjee and Roy (1998) S-matrix computation and
tabulation of the coherent scattering cross section, both differential, (dσcoh/d�)(θ )(b/sr), and
total, σcoh(b), for all elements Z = 13 to 104, for 14 commonly-used γ energies between
50 keV and 1.5 MeV. In their computations, as outlined in an earlier review by Roy et al
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(1993), the authors have included the amplitudes of the small contributions from nuclear
Thomson scattering, Delbrück scattering (see, e.g., Hubbell and Bergstrom (2004)) and nuclear
resonance scattering in addition to the Rayleigh amplitudes. Comparisons with some measured
differential cross sections are included. Also, the total coherent scattering cross sections, σcoh,
are compared with the corresponding non-relativistic (Hubbell et al 1975) and relativistic
(Hubbell and Øverbø 1979) values. For low Z elements the differences are of the order of 1%
to 3%, and for the highest Z elements and the highest photon energy, 1.5 MeV, differences of
the order of 20% are seen. Coherent scattering data in this form, over a more comprehensive
energy range, are likely the wave of the future, with modern computers capable of storing the
required three-dimensional arrays, in contrast to the two-dimensional arrays sufficing for the
F(x, Z) format.

6. Pair and triplet production cross sections σpair (or κn) and σtrip (or κe)

6.1. Electron–positron pair production

In this effect, which is the most likely photon interaction at high energies (above ≈10 MeV), a
photon disappears in the field of a charged particle, and an electron–positron pair appears. The
cross section σpair for pair production in the field of the atomic nucleus varies approximately
as the square of the nuclear charge Z, i.e.

σpair ∼ Z2. (8)

The cross section σtrip (triplet) in the field of one of the atomic electrons varies as Z times the
square of the unit charge, or

σtrip ∼ Z. (9)

This cross section is usually called the ‘triplet’ cross section, since the atomic electron involved
in this process is also ejected from the atom, giving rise to a trident signature including the
created electron and positron, when observed in a cloud chamber. For Z = 1 (hydrogen)
σtrip is approximately equal to σpair, and it becomes progressively less important for higher Z
materials, according to

σtrip/σpair ∼ 1/Z. (10)

Since biological materials, except for bone, are primarily low Z, σtrip can be a minor but
significant contribution for high-energy photon applications (i.e., above ≈10 MeV).

For some recent developments in pair production research, attention is here called to a
special topical issue of Radiation Physics and Chemistry edited by Bergstrom (2006) including
an over-all historical pair production review by Hubbell (2006), an update by Pratt (2006) on
Tseng’s low-energy calculations, intermediate-energy distorted wave Born approximation
calculations by Sud and Sharma (2006), internal-source absolute pair production cross section
measurements by Avignone (2006), the pair production channel in atomic processes by
Belkacem and Sørensen (2006), extreme high energy pair production (10 GeV to 10 ZeV)
by Klein (2006), relativistic positronium physics by Olsen (2006), and pair production of
arbitrary spin particles by electromagnetic fields, by Kruglov (2006).

Both σpair and σtrip are extensively reviewed, calculations are performed, and tabulations
of these cross sections are provided for all elements Z = 1 to 100 over the photon energy range
1 MeV to 100 GeV in Hubbell et al (1980). Values from this 1980 publication are still used in
current µ/ρ compilations2, for example in Berger and Hubbell (1987) (XCOM), Hubbell and
2 For further and updated NIST photon cross section and attenuation coefficient compilations available electronically,
as well as for a variety of other evaluated physical data bases, the reader is encouraged to go to the NIST website:
http://physics.nist.gov/PhysRefData/contents.html.

http://physics.nist.gov/PhysRefData/contents.html
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Seltzer (1995) and in Cullen et al (1997). Some highlights of how these pair and triplet cross
sections were calculated, recently reviewed in more detail by Hubbell and Seltzer (2004) and
by Hubbell (2006), are given below.

6.2. Pair production cross section (coherent, in screened nuclear field), σpair (or κn)

In this process, an electron–positron pair is produced in the screened nuclear field (i.e., atomic
field), and the atom as a whole recoils without internal excitation. This is in contrast to
incoherent (triplet) production σtrip in which the atom is either excited or ionized and the
target electron recoil significantly affects the dynamics and threshold of the process. In the
case of σpair, the threshold for this transmutation of electromagnetic energy (a photon) into
tangible matter (electron and positron) is just the sum of the rest-mass energies (me− = me+ =
9.109 3826 × 10−28 g = 0.510 998 918 MeV, Mohr and Taylor (2005)) of the two particles, or
1.022 MeV.

The σpair calculation (Hubbell et al 1980) begins with the Bethe and Heitler (1934)
Born-approximation unscreened pair-production cross section as an initial approximation, to
which Coulomb corrections, screening corrections and radiative corrections are applied. The
differential Bethe–Heitler unscreened σpair cross section has been cast in forms, suitable for
computation, by Bethe and Maximon (1954), Davies et al (1954) and by Maximon (1968).

The Coulomb correction for the Hubbell et al (1980) computations was pieced together
from the low-energy results of Øverbø et al (1968, 1973), the intermediate-energy results
of Øverbø (1977b) and the high-energy results of Sørenssen (1965, 1966) which in the high
energy limit go to the Davies et al (1954) extreme relativistic Coulomb correction. Screening
corrections were pieced together from the near-threshold results of Tseng and Pratt (1972,
1980) and the intermediate- and high-energy work of Øverbø (1978b). The Øverbø (1978b)
work used the Jost et al (1950) expression for nuclear-field pair production in the Born
approximation for small nuclear recoil but without the extreme high energy approximation.
This expression required values of the atomic form factor F(x, Z), for which Øverbø (1978b)
used the relativistic F(x, Z) values pieced together from Doyle and Turner (1968), Cromer and
Waber (1974) and Øverbø (1977a, 1978a), later published as systematic tabulations by Hubbell
and Øverbø (1979). The radiative corrections (Feynman 1949, Mork and Olsen 1960), of the
order of 1/137 and associated with the emission and reabsorption of virtual photons and with
the emission of both soft and hard real photons, were obtained from Mork and Olsen (1965).

6.3. Triplet production cross section (incoherent pair production, in electron field, with
excitation or ionization), σtrip (or κe)

Due to the sharing of photon energy and momentum between the target electron and the created
pair, the threshold for this process is 4 mec2 (=2.044 MeV). Actually, the process can take
place down to 2 mec2, since momentum can also be transferred to the atom both in excitation
and ionization, but in this region the cross section is negligibly small. Some of the highlights
of the calculations and systematic tabulations of σtrip by Hubbell et al (1980), as a companion
to the σpair tabulations therein, are given in the following.

The starting point for these computations of σtrip is again the Bethe and Heitler (1934)
Born-approximation, now requiring the retardation effect due to the recoil of the target atomic
electron. This effect is included in the unscreened formula of Borsellino (1947), improved by
including higher terms by Ghizzetti (1947). Corrections for exchange could be obtained as a
ratio of results by Haug (1975) to the Borsellino–Ghizzetti results which neglected this effect.
A scheme for including screening is given by Wheeler and Lamb (1939) who presented some
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results computed using Thomas–Fermi (Thomas 1927, Fermi 1928) statistical-atomic-model
values of S(x, Z). In the Hubbell et al (1980) computations, screening corrections were obtained
by replacing the Thomas–Fermi S(x, Z) values in the Wheeler–Lamb formula by the S(x, Z)
values in Hubbell et al (1975) based on the configuration-interaction Z = 2 to 6 values of
Brown (1970a, 1970b, 1972, 1974) and non-relativistic Hartree–Fock Z = 7 to 100 values of
Cromer and Mann (1967) and Cromer (1969).

7. Conclusions and comments

For future tasks, more attention should be paid to the atomic photoeffect absorption edge
structure, which will require a much larger and higher-dimensional data base, to accommodate
the molecular and other matrix environments of the target atoms. Similarly, for the more-
accurate scattering results from the relativistic S-matrix theoretical model, to replace the current
simplistic and approximate F(x, Z) and S(x, Z) atomic form factor and incoherent scattering
function tables, much more extensive and higher-dimensional arrays will be required, as seen
in the work by Chatterjee and Roy (1998). However, modern computers continue to take
giant steps towards greater computing power, speed and data storage and retrieval, so these
objectives should be met within the coming decade, perhaps even including photonuclear data
σph.n..

At the same time, the experimental capabilities, including more-intense and higher-energy
synchrotron light sources, and new detectors with better resolution and higher efficiencies,
should provide more-accurate (towards ‘underlying reality’?) measured values of µ/ρ to test
and undergird the above theoretical advances. Although it is sometimes said that ‘now theory
is better than experiment’, it is still the belief of this author that ‘theory is an interpolation of
experiment’ for purposes of computing and compiling µ/ρ tables for medical, biological and
other practical applications.
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