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Review & Perspective for

Distance Based Clustering of Vehicle Trajectories
Philippe C. Besse, Brendan Guillouet, Jean-Michel Loubes, and François Royer,

Abstract—In this paper we tackle the issue of clustering
trajectories of geolocalized observations based on distance be-
tween trajectories. We first provide a comprehensive review
of the different distances used in the literature to compare
trajectories. Then based on the limitations of these methods, we
introduce a new distance: Symmetrized Segment-Path Distance
(SSPD). We compare this new distance to the others according
to their corresponding clustering results obtained using both
the hierarchical clustering and affinity propagation methods. We
finally present a python package : trajectory distance, which
contains the methods for calculating the SSPD distance and the
other distances reviewed in this paper.

Index Terms—Trajectory clustering

I. INTRODUCTION

A
TRAJECTORY is a set of positional information for a

moving object, ordered by time. This kind of multidi-

mensional data is prevalent in many fields and applications,

for example, for understanding migration patterns through

studying trajectories of animals, predicting meteorology with

hurricane data, improving athletes performance, etc. Our study

concentrates on vehicle trajectories within a road network. The

growing use of GPS receivers and WIFI-embedded mobile

devices equipped with hardware for storing data enables the

collection of an enormous amount of data that can be used to

extract relevant information in order, for instance, to find the

optimal path to go from point A to point B, detect abnormal

behavior, optimize the traffic flow in a city, predict the next

location or final destination of a moving object etc. This

aims actually to build from the data the different features that

characterize the different daily movement of the vehicles on

the road network. For this, we consider clustering methods

for trajectories. Clustering techniques aim to regroup similar

trajectories together into groups that are different from one

another. The complexity of trajectory makes this a challenging

task as objects can move along many different paths in a given

area, moreover the road network of a highway does not have

the same complexity as that of a city, and finally the road

network in a city differs between the suburbs and downtown.

In addition, the speed of an object varies between regions, and

between paths taken within a single region. Even within the

same path the speed depends on exogenous variables such as

the time of day, or whether it is a weekday or the weekend.

Several methods can be used to cluster trajectories. We will

focus on distance based trajectory clustering but other spe-

cific methodologies have been investigated. Dealing with the

functional properties of trajectories considered as continuous

function of time Gaffney (2009, [1]), Vasquez et al. (2004[2]),

Hu et al. (2006[3]) successfully apply trajectory clustering

methods on video-stream trajectories. Gariel et al. [4] also

use the continuous definition of trajectory to re-sample the

trajectories and obtain time series of equal length. A principal

components analysis is then applied on these new trajectories

to obtain principal components and finally cluster them. This

method is applied to airplane routes. All these methods take

into account both the spatial and the temporal aspect of the

trajectory, they are not adapted to the vehicle trajectories

constrained to a road network whose time progression is

very irregular. Rinzivillo et al. (2008,[5]) and Kim et al.[6])

propose density-based methods. Both require the definition

of a density parameter and a minimum cluster size which

implies an extensive knowledge of the studied area or a precise

question to obtain good results. Hence, these methods are hard

to automatically adapt from one dataset to another. Finally

Lee et al. (2007,[7]) and Wu et al. (2014[8]) propose to use

clustering methods on trajectory line segments to enable the

detection of important areas of flow, though this does not

consider the trajectory as a whole path. Our main objective

here is to detect the main path and traffic flow which can later

be used to study the different behaviors along these paths.

In this context, the goal of this work is to construct, in a

data driven way, a collection of trajectories that model the

behaviors of car drivers. These models are learned from a

data set of car locations. In this work we focus on clustering

trajectories having similar paths. This clustering is based on

the comparison between trajectory objects, and as such a new

definition of distance between the studied trajectory objects is

required.

A large amount of work has been done to give new defini-

tions of trajectory distance. Tiakas et al.(2009[9]) , Rossi et

al. (2012[10]), Han et al.(2015[11]) or Hwang et al.(2005[12])

propose road network based distances. They assume that the

trajectories studied are perfectly mapped on the road network.

However, this task is strongly dependent on the precision of

the GPS device. When the time interval between two GPS

locations is significant, several paths on the graph are possible

between locations, especially when the network is dense.

Moreover it requires the knowledge of the road network. Here,

we focus on entirely data driven methods without any a priori

information. Several methods have been used to cluster data set

of trajectories. Clustering methods using Euclidean distance

lead to inaccurate results mainly because trajectories have

different lengths. Hence, several methods based on warping

distance have been defined , Berndt (1994[13]), Vlachos et

al. (2002[14]), Chen et al. (2004[15]), and Chen et al. (2005
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[16]). These methods reorganize the time index of trajectories

to obtain a perfect match between them. Another approach is

to focus on the geometry of the trajectories, in particular their

shape. Shape distances like Hausdorff and Fréchet distances

can be adapted to trajectories but fail to compare them as

a single entity. Lin et al. (2005[17]) proposed a method

based exclusively on the shape of the trajectory but at high

computational cost.

In section II the papers definitions, notations and problem

statement are introduced. In section III several distances on

trajectory are studied and compared. A new distance will

be presented in section IV: the Symetrized Segment-Path

Distance (SSPD). SSPD is a shape-based distance that does not

take into account the time index of the trajectory. It compares

trajectories as a whole, and is less affected by incidental

variation between trajectories. It also takes into account the

total length, the variation and the physical distance between

two trajectories. For all these different distances, we obtain

different clusterings. So we can compare the distance on these

results. The choice of clustering used is detailed section V. The

SSPD and the other studied distances were implemented in a

python package, trajectory distance available on github. The

presentation of this package and the experimental evaluation

of these distances with the chosen clustering techniques on

some trajectory sets are analyzed in section VI.

II. MODEL FOR TRAJECTORY CLUSTERING

A. Trajectory

A continuous trajectory is a function which gives the

location of a moving object as a continuous function of time.

In our case we will only consider discrete trajectories defined

here after.

Definition 1. A trajectory T is defined as

T : ((p1, t1), . . . , (pn, tn)),
where pk ∈ R

2, tk ∈ R ∀k ∈ [1 . . . n], ∀n ∈ N and n is the

length of the trajectory T .

The exact locations between time ti and ti+1 are unknown.

When these locations are required, a piece wise linear repre-

sentation is used between each successive location pi and pi+1

resulting in a line segment si between these two points. This

new representation is called a piece wise linear trajectory. In

this representation, no assumption is made about time indexing

of segment si.

Definition 2. A piece wise linear trajectory is defined as Tpl

: ((s1), . . . , (sn−1)) , where sk ∈ R
4 and npl is the length of

the trajectory.

The length of the trajectory npl is the sum of the lengths of

all segments that compose it : npl =
∑

i∈[1...n−1] ‖pipi+1‖2.

The notation used in this paper are summarized in Table I.

B. Distance

There are many ways to define how close two objects are

from one another. Beyond the notion of mathematical distance,

many functions can be used to qualify this dissimilarity. The

terminology used in literature to define them is not completely

standardized. Therefore we will use the definition established

in Deza et al. (2009[18]) as a reference.

Definition 3. Let T be a set of trajectories. A function d :

T ×T 7→ R is called a dissimilarity on T if for all T 1, T 2 ∈
T :

• d(T 1, T 2) ≥ 0
• d(T 1, T 2) = d(T 2, T 1)
• d(T 1, T 1) = 0

If all of these conditions are satisfied and d(T 1, T 2) =
0 =⇒ T 1 = T 2 d is considered to be a symmetric. If

the triangle inequality is also satisfied, d is called a metric.
These notations are summarized in Table II.

X indicates the required properties for each distances, while

∗ indicates properties that are automatically satisfied (by the

presence of the other required properties for the metric).

C. Desired properties of clustering and distances

Our aim is to regroup trajectories sharing similar behaviour.

We want that trajectories in the same cluster, take similar

paths. Hence our goal is to define a clustering method that

will regroup trajectories

• with similar shape and length

• which are physically close to each other

• which are similar as a whole with more than just similar

sub-parts

• all of these properties should be considered without

regard to their time indexing

Moreover we want to design a very general procedure which

is able to treat all trajectories data, without prior knowledge of

the particular geographical location where they are collected.

To obtain such clustering, the goal of this work is to find

a distance that respects such properties and to succeed in

extracting these features. Actually, the desired distance should

have the following properties,

• it compares trajectories as a whole

• the compared trajectories can be of different lengths,

• the time indexing can be very different from one trajec-

tory to another

• the trajectories can have similar shapes but can be phys-

ically far from each other and vice versa

TABLE I: Notation

T The set of trajectories

T i The ith trajectory of set T

T i
pl

The piece wise linear representation of T i

ni Length of trajectory T i

ni
pl

Length of the T i
pl

pi
k

The kth location of T i

pi
pl

The set of continuous points that compose T i
pl

si
k

The line segment between pij and pi
k+1

ti
k

The time index of location pi
k

‖pkpl‖2 The Euclidean distance between pk and pl
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TABLE II: Metric Definition

Property
Metric Name

di
ss

im
ila

ri
ty

sy
m

m
et

ri
c

m
et

ri
c

Non-Negativity D(T 1, T 2) ≥ 0 X X ∗
Symmetry D(T 1, T 2) = D(T 2, T 1) X X X

Reflexivity D(T 1, T 1) = 0 X ∗ ∗
Triangle Inequality D(T 1, T 3) ≤ D(T 1, T 2) +D(T 2, T 3) X

Identity of indiscernible D(T 1, T 2) = 0 =⇒ T 1 = T 2 X X

• extra parameters should not be required.

III. DISTANCE ON TRAJECTORIES: A REVIEW

Three main kind of distances have been introduced in

the literature. The first uses the underlying road network,

Network-Constrained Distance. These distances will not be

detailed in this paper. They assume that the road network is

known and that trajectory data are perfectly mapped on it.

Distances that do not use the underlying road network can also

be classified into two categories: those who only compare the

shape of the trajectory, Shape-Based Distance and those who

take into account the temporal dimension, Warping based

Distance.

Performance of clustering algorithms using these distances

will be compared in section II, as well as their computation

cost and their metric properties.

A. Warping based Distance

Euclidean distance, Manhattan distance or other Lp-norm

distances are the most obvious and the most often used

distances. They compare discrete objects of the same length.

They can be used to look for common sub-trajectories of

a given length but they cannot be used to compare entire

trajectories. Moreover, these distances will compare locations

with common indexes one by one. At a given index i, location

p1i of trajectory T 1 will be compared only to location p2i
of trajectory T 2. However, these locations can be strongly

different according to the speeds of the trajectories. Hence,

it makes no sense to compare them without taking this into

account. This problem is also common in time series analysis

and not restricted to trajectory analysis.

Warping distance aims to solve this problem. To accomplish

this, they enable matching locations from different trajectories

with different indexes. Then, they find an optimal alignment

between two trajectories, according to a given cost δ between

matched location. Several warping based distances have been

defined. DTW (Berndt et al., (1994 [13])) and later LCSS
(Vlachos et al., 2002[14]), EDR (Chen et al., 2005[16]) and

ERP (Chen et al., 2005[15]). These distances are defined the

same way, but they use different cost functions.

In order to define a warping distance, two compared time

series trajectories, T i, T j , are arranged to form a ni×nj grid

G. The grid cell, gk,l, corresponds to the pair (pik,pjl ).

Definition 4. A warping path, W = w1, . . . , w|W |, crosses the

grid G such that

• w1 = g1,1,

• w|W | = gni,nj ,

• if wk = gki,kj
, then wk+1 is equal to gki+1,kj

, gki,kj+1

or gki+1,kj+1.

The order of the locations in a trajectory are maintained

but they can be repeated, deleted or replaced by an arbitrary

value, a gap, along the warping path. The distance is then

computed by minimizing or maximizing the sum of a given

cost δ between all pair of locations that make a warping path

W , for all existing warping paths.

Definition 5. A warping distance is defined as

D(T i, T j) = minW

[

∑|W |
k=1 δ(wk)

]

,

or = maxW

[

∑|W |
k=1 δ(wk)

]

,
(1)

where δ(wk) = δ(gki,kj
) = δ(piki

, pjkj
), is the cost function

and W is a warping path.

They are generally computed by dynamic programming.

Table III displays the cost functions as well as the dynamic

formulation of these distances.

Contrary to the three other distances, LCSS is a similarity.

The exact similarity used in Vlachos et al., 2002[14] is

S(T i, T j) = LCSS(T i,T j)
min{ni,nj} , which is between 0 and 1. We

will then use the distance

DLCSS(T i, T j) = 1− S(T i, T j),

to compare distances to each other.

The metric types of these distance functions, and

computational cost for the four methods are summarized in

table IV.

1) Comparisons:

• All of these distances handle local time shifting.

• The cost function δ uses the Euclidean distance. Some of

these distances have been defined using a L1-norm, but

Euclidean distance is more adapted for real values.

• LCSS and EDR’s cost function count the number

of occurrences where the Euclidean distance between

matched location does not match a spatial threshold,

εd. The former counts similar locations, the latter the

difference. This threshold makes the distance robust to

noise. However, it has a strong influence on the final

results. If the threshold is large, all the distances will

be considered similar and if low, only those having very

close locations will be considered similar.

• In comparison, ERP and DTW add a weighting to

these differences by computing the real distance between
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TABLE III: Re-Indexing based distance definition

Cost function Distance

δNAME(p1, p2) = NAME(T i, T j) =

D
T

W
‖p1p2‖2 =































0 if ni = nj = 0
∞ if ni = 0 or nj = 0

δDTW (pi1, p
j
1)+

min

{ DTW (rest(T i), rest(T j)),
DTW (rest(T i), T j)),
DTW (T i, rest(T j)

}

otherwise

N
A

M
E L

C
S

S 





1 if ‖p1p2‖2 < εd
0 if p1 or p2 is a gap
0 otherwise

=



















0 if ni = 0 or nj = 0

LCSS(rest(T i), rest(T j)) + δLCSS(p
i
1, p

j
1) if δLCSS(p

i
1, p

j
1) = 1

max

{

LCSS(rest(T i), T j)) + δLCSS(p
i
1, gap),

LCSS(T i, rest(T j)) + δLCSS(gap, p
j
1)

}

otherwise

E
D

R







0 if ‖p1p2‖2 < εd
1 if p1 or p2 is a gap
1 otherwise

=































ni if nj = 0
nj if ni = 0

EDR(rest(T i), rest(T j)) if δEDR(pi1, p
j
1) = 0

min

{ EDR(rest(T i), rest(T j)) + δEDR(pi1, p
j
1),

EDR(rest(T i), T j)) + δEDR(pi1, gap),

EDR(T i, rest(T j) + δEDR(gap, pj1)

}

otherwise

E
R

P







‖p1p2‖2 if p1, p2 are not gaps
‖p1g‖2 if p2 is a gap
‖gp2‖2 if p1 is a gap

=



























∑ni

k=1 ‖p
i
k
g‖2 if nj = 0

∑nj

l=1 ‖p
j
l
g‖2 if ni = 0

min

{ ERP (rest(T i), rest(T j)) + δERP (pi1, p
j
1),

ERP (rest(T i), T j)) + δERP (pi1, gap),

ERP (T i, rest(T j) + δERP (gap, pj1)

}

otherwise

TABLE IV: Re-Indexing based distance properties

Name Metric Types Computation
Cost

DTW symmetric O(n2)
LCSS distance O(n2)
EDR symmetric O(n2)
ERP metric O(n2)

the locations. In this sense they can be viewed as more

accurate.

• ERP is the only distance which is a metric regardless

of the Lp norm used, yet it works better for normalized

sequences, especially for defining the gap value g. It does

not apply for vehicle trajectories.

• In addition, these distances may include a time threshold,

εt. Thus, two locations will not be compared if the differ-

ence between their time indexing is too large. However, it

is very hard to estimate the value of this threshold when

comparing trajectories due to the presence of noise.

2) Pros and Cons: The main advantage of these distances is

that they enable comparison of sequences of different lengths.

The two main limitations of warping based distance are the

following

• Warping methods are based on one-to-one comparison

between sequences. Hence, it often requires the choice

of a particular series that will be used as a reference,

onto which all other sequences will be mapped. The

index of two sequences being compared should be well

balanced in order to best capture the variability, for

instance, in order to detect if there were accelerations

and decelerations during the measurement of the time

series. Hence the choice of the reference sequence is very

important.

• The performance of the usual methods based on warping

techniques is hampered by the large amount of noise

inherent to road traffic data, which is not the case when

examining time series.

Instead of correcting the time index, the solution is to use

distances that have the effect of time removed.

B. Shape-Based Distance

These distances try to catch geometric features of the

trajectories, in particular, their shape. Among Shape-Based

Distances, the Hausdorff distance (Hausdorff, 1914 [19]),

and the Fréchet distance (Fréchet, 1906[20]) are likely the

most well known.

1) Hausdorff: The Hausdorff distance is a metric. It mea-

sures the distance between two sets of metric spaces. Infor-

mally, for every point of set 1, the infimum distance from this

point to any other point in set 2 is computed. The supremum

of all these distances defines the Hausdorff distance.

Definition 6. The Hausdorff distance between two sets of

metric spaces is defined as

Haus(X,Y ) = max{sup
x∈X

inf
y∈Y

‖xy‖2, sup
y∈Y

inf
x∈X

‖xy‖2}.

This distance is complicated and resource intensive to

compute when applied to most existing sets. But in the case of

polygonal curves like trajectories, some simplification can be

made due to the monotonic properties of a segment. Distance

from a point p to a segment s is defined as follows.

Definition 7. Point− to− Segment distance.

Dps(p
1
i1
, s2i2) =

{

‖p1i1p
1proj
i1

‖2 if p
1proj
i1

∈ s2i2 ,

min(‖p1i1p
2
i2
‖2, ‖p

1
i1
p2i2+1‖2) otherwise.

Where p1proji1
is the orthogonal projection of p1i1 on the

segment s2i2 .

Hence, the Hausdorff distance between two line segments

is

DHaussdorf (s
1
i1
, s2i2) = max{ supp∈s1

i1

Dps(p, s
2
i2
),

supp∈s2
i2

Dps(p, s
1
i1
)}

= max{ Dps(p
1
i1
, s2i2), Dps(p

1
i1+1, s

2
i2
),

Dps(p
2
i2
, s1i1), Dps(p

2
i2+1, s

1
i1
)}.

Indeed, a segment is monotonic. As seen in Fig. 1, the

supremum of the Point− to− Segments distance from any
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Fig. 1: Supremum of Point − to − Segment distance from

point of segment s11 to segment s21.

point of a segment s1i1 to a segment s2i2 occurs at one of the end

points of the segment s1i1 . The Hausdorff distance between two

trajectories can then be computed with the following formula.

Definition 8. Hausdorff distance between two discrete trajec-

tories.

DHaussdorf (T
1, T 2) = max

{

max i1∈[1...n1]

j2∈[1...n2
−1]

{Dps(p
1
i1, s

2
j2},

maxj1∈[1...n1
−1]

i2∈[1...n2]

{Dps(p
2
i2, s

1
j1}

}

.

The Hausdorff distance can then be computed in a O(n2)
computational time.

2) Frechet and discrete Fréchet : The Frechet distance

measures similarity between curves. It is often known as the

”walking-dog distance”. Imagine a dog and its owner walking

on two separate paths without backtracking from one endpoint

to one other. The Fréchet distance is the minimum length

of leash required to connect a dog and its owner. While the

Hausdorff distance takes distance between arbitrary points, the

Fréchet metric takes the form of the two curves into account.

Definition 9. The Fréchet distance between two curves is

defined as

DFrechet(A,B) = inf
α,β∈X

max
t∈[0,1]

{

‖A
(

α(t)
)

, B
(

β(t)
)

‖2

}

.

Similar to the Hausdorff distance, the Frechet distance is

a metric. It is also resource intensive. Alt et al. (1995[21])

developed an algorithm measuring the exact Fréchet distance

for polygonal curves based on the free space definition.

Definition 10. The free space Fǫ(T
1, T 2) between two trajec-

tories is the set of all pairs of points whose distance is at most

ǫ.

Fǫ(T
1, T 2) := {(p1, p2) ∈ (T 1, T 2)}|‖p1, p2‖2 ≤ ǫ}.

The Fréchet distance between two trajectories T 1 and T 2

is the minimum value of ǫ for which a curve exists within the

corresponding Fǫ from (p10, p
2
0) to (p1

n1 , p2n2) with the property

of being monotone existing in both trajectories. Computing the

Fréchet distance means finding the minimum value of ǫ. By

exploiting the monotonic property of the segments and the

definition of free space, this task can be accomplished more

efficiently.

Indeed, the Frechet distance between segments is equal to

the Hausdorff distance between segments, i.e.

DFrechet(s
1
i1
, s2i2) = max{ Dps(p

1
i1
, s2i2),

Dps(p
1
i1+1, s

2
i2
),

Dps(p
2
i2
, s1i1),

Dps(p
2
i2+1, s

1
i1
)}

= ǫi1,i2 .

To compute the Frechet distance between trajectories T 1

and T 2 , we need only look among the set E of Frechet

distances between all pairs of segments of T 1 and T 2.

E = {ǫi1,i2 for (i1, i2) ∈ ([1 . . . n1 − 1] × [1 . . . n2 − 1])}.

This simplification enables us to compute the Frechet distance

between trajectories T 1 and T 2 in O(n2log(n2)). We highlight

that this computational cost is higher than all the other

calculation methods of the studied distances.

Eiter et al. (1994[22]) describes an approximation of this

distance for polygonal curves called the discrete Fréchet

distance. This distance is close to the definition of the warping

based distance.

Definition 11. The discrete Fréchet distance is defined as

DFrechetDiscr
((T 1, T 2) = min

W
{ max
k∈[1...|W |]

‖wk‖2}.

with W being the warping path defined in definition 5. The

discrete Fréchet distance can be computed in O(n2) time.

This distance is bounded as follows.

Theorem 1. For any trajectories T i and T j [22]

DFrechet(T
i, T j) ≤ DFrechetDiscr

((T i, T j) ≤ DFrechet(T
i, T j)+ǫ

Where, ǫ = max{ max
k∈[1...ni−1]

{‖pikp
i
k+1‖2}, max

l∈[1...nj−1]
{‖pjl p

j
l+1‖2}}.

3) One Way Distance: Lin et al. 2005[17] defines the One-

Way-Distance, OWD, from a trajectory T i to another trajectory

T j as the integral of the distance from points of T i
pl to

trajectory T j
pl divided by the length of T i

pl

Definition 12. The OWD distance is defined as

DOWD(T i, T j) =
1

ni
pl

∫

pi∈T i
pl

Dpoint(p
iT j)dpi,

where Dpoint(p, T ) is the distance from the point p to the

trajectory T so that
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TABLE V: Shape based distance properties

Name Metric Types Computation
Cost

Hausdorff metric O(n2)
Frechet metric O(n2log(n2))

discrete Fréchet symmetric O(n2)
OWD symmetric O(n2log(n))

OWDgrid symmetric O(mn)

Dpoint(p, T ) = min
q∈Tpl

‖pq‖2.

The OWD distance is not symmetric, but

DSOWD(T i, T j) = (DOWD(T i, T j) + DOWD(T j , T i))/2
is. This distance is a symmetric because it does not satisfy

the triangle inequality.

Lin et al.[17], have defined two algorithms to compute the

OWD in case of piecewise linear trajectories.

• The first consists of finding the parametrized OWD

function DOWD(sik, T
j) from a segment sik of T i

pl to

all segments sj of T j
pl and for all segments of T i

pl

DOWD(T i, T j) =
1

ni
pl

ni−1
∑

k=1

DOWD(sik, T
j).‖pikp

i
k+1‖,

with a complexity of O(n2log(n)).
• The second uses a grid representation of the trajectory.

As we see in Fig. 2, the space is discrete Trajectories are

defined as the succession of grids they have crossed.

Definition 13. A grid representation trajectory is defined

as

Tgrid := (g0, . . . , gngrid
),

where gn are cells of the discrete space.

Fig. 2: Grid representation of a segment

This representation simplifies the computation and re-

duces the complexity to O(nm) where m is the number

of local min points. Local min points of a grid cell g are

the grids with distances to g shorter than those of their

neighbors’ grid cell.

Table V displays the metric types and the computational

cost of these distances.

4) Pros and Cons:

• Frechet and Hausdorff distances are both metrics, mean-

ing they satisfy triangular inequality. With clustering

algorithms like dbscan or K-medoid this is a necessary

property of the distance used if we want the clustering

algorithm to be efficient. They have been widely used in

many domains where shape comparison is needed. But

they can fail to compare trajectories as a whole. Indeed

both Fréchet and Hausdorff distance return a maximum

distance between two objects at given points within the

two objects. As we can see in Fig. 3, despite the fact

that the trajectories T 1 and T 2 are well separated at

the maximum value of x, they are clearly more similar

to each other than to T 3. But with a Hausdorff calcu-

lated distance, there are no strong differences between

DHaussdorf (T
1, T 2) = 3.26, DHaussdorf (T

1, T 3) =
3.02 and DHaussdorf (T

2, T 3) = 3.5. With Frechet,

DFrechet(T
1, T 2) = 6 is even bigger than both

DFrechet(T
1, T 3) = 4.19 and DFrechet(T

2, T 3) = 4.17.

Fig. 3: Frechet And Hausdorff Computation between three

trajectories

• The Discrete Fréchet distance requires considerably less

computing time compared to the Frechet distance. But

Discrete Frechet is not a metric. Moreover, due to its

similarity with the warping distance it shares the same

inconveniences.

• The distance present in Lin et al. (2005[17]) is by far

the one that best meets our requirements. It compares

trajectories as a whole, taking into account their shapes

and their physical distances, the required features for

our distance. However, its complexity makes it com-

putationally slow. The algorithm for grid representation

is faster. Its computational time is O(mn). Yet it does

not take into account the computation time required for

matching the trajectory to the grid. Moreover, the size of

the grid chosen strongly influences the final result and

makes it imprecise. Furthermore, the distance gives the

same ”weight” to all points defining the trajectory: points

directly issued from the GPS location, and points which

compose the piece wise linear representation. The greater

the length of the segment s is, the stronger its influence

on the trajectory is. The more separated the endpoints

of a segment s are, the less confident the interpolation

between them is.

In the following section, a new distance will be established

inspired from both the OWD and the Hausdorff distances.
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IV. A NEW DISTANCE : SYMMETRIZED SEGMENT-PATH

DISTANCE (SSPD)

In this section, we define a new shape based distance, the

Symmetrized Segment-Path Distance, and we compare it to

other shape based distances. We propose SSPD in order to

fulfill the desired properties defined in section II-C.

Like the Hausdorff distance (Definition 8), the definition

of SSPD is based on the Point − to − Segment distance

(Definition 7). From this definition, we define the Point−to−
Trajectory distance, Dpt, from a point p to a trajectory T like

the minimum of distances between this point and all segments

s that compose T (Figure 4). The Segment-Path distance from

trajectory T 1 to trajectory T 2 is the mean of all distances from

points composing T 1 to the trajectory T 2 (Figure 5).

Definition 14. SPD distance is defined as

DSPD(T 1, T 2) =
1

n1

n1
∑

i1=1

Dpt(p
1
i1
, T 2).

where, Dpt(p
1
i1
, T 2) = mini2∈[0,...,n2−1] Dps(p

1
i1
, s2i2).

Fig. 4: Distance from point p21 to trajectory T 1

Proposition 1. If the points that compose the trajectory T 1

lie in the set of points p2pl that compose the piece wise linear

representation, T 2
pl, of trajectory T 2, then DSPD(T 1, T 2) = 0.

Proof. If the points that compose the trajectory T 1 lie in

the set p2pl that compose the piece wise linear representation,

T 2
pl, of trajectory T 2, all points of T 1 lie within one of the

segments, that compose T 2
pl. By definition Dps(p

1
i1
, s2i2) = 0

Fig. 5: SPD Distance from trajectory T 1 to trajectory T 2

∀p1i1 ∈ T 1, s2i1 ∈ T 2
pl. It follows that Dpt(p

1
i1
, T 2) = 0

∀p1i1 ∈ T 1 and finally DSPD(T 1, T 2) = 0

This distance is not symmetric. If T 1 is a very small sub-

trajectory of T 2, DSPD(T 1, T 2) = 0, DSPD(T 2, T 1) can

be very large. By taking the mean of these distances, the

”Symmetrized Segment-Path Distance”, SSPD, is defined

and is symmetric.

Definition 15. Symmetrized Segment-Path Distance

DSSPD(T 1, T 2) =
DSPD(T 1, T 2) +DSPD(T 2, T 1)

2
.

In definitions 14 and 15, distances SPD and SSPD are

computed by taking the mean of the Point-to-Trajectory dis-

tance and the SPD distance. If the maximum is used instead

of the mean, one recovers the Hausdorff function between

two trajectories. Computing only one distance between two

locations makes it very sensitive to noise. Yet our method

computes the mean of such quantities which makes it less so.

For example, for the trajectories in Fig. 3, the SSPD distance

between T 1 and T 2 is smaller than the distance between T 1

and T 3 or T 2 and T 3 (D(T 1, T 2) = 0.58, D(T 1, T 3) =
1.5, D(T 2, T 3) = 2.03).

Proposition 2. SSDP is a symmetric.

Proof. SSDP is a sum of Euclidean distances. By definition

SSDP is greater or equal to 0. By definition 15, SSDP is sym-

metric. Finally theorem 1 states that, if DSDP (T
1, T 2) = 0,

T 1 is a sub trajectory of T 2. Therefore if DSSDP (T
1, T 2) =

0, both DSDP (T
1, T 2) = 0 and DSDP (T

1, T 2) = 0, and

T 1 = T 2. SSDP is then a symmetric.
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SSDP is quite similar to OWD but its definition resolves

most of the problems of OWD regarding the desired properties

defined in II-C

• The points coming from the interpolation of two observed

locations of a trajectory are less trustworthy that the real

observations. Hence, it is natural to give more weight to

the observed points.

• SSPD distance does not require any additional parameters

such as a threshold or a grid to be computed.

• Its computation cost is O(n2). It only depends on the

number of locations.

V. CLUSTERING

To evaluate these different distances, we will study different

clustering methods obtained with the same algorithm but with

distances computed using all previous distances. The different

selected clustering methods and the quality of cluster criterion

are examined in this section.

A. Methods

The choice of the clustering method is restricted by the

characteristics of the trajectory object. Indeed, trajectories have

different lengths which complicates an easy definition of a

mean trajectory object. The k-means method cannot be used

on our trajectory set, nor spectral clustering method. k-medoid

can be used but an efficient algorithm, like partitioning around

medoids, or dbscan method, require a valid metrics. Indeed,

these algorithms are based on nearest neighbor and require the

distance used to be known in order to satisfy the triangular

inequality. Most of the studied distances, SSPD, LCSS, DTW,

are not metrics. In this way, dbscan or partitioning around

medoids algorithms will not be used. Moreover, dbscan de-

pends on two extra parameters that are hard to estimate in

this case.

To perform the clustering of the trajectories, we will focus

on two methodologies : hierarchical cluster analysis (HCA)

and affinity propagation (AP). As a matter of fact, HCA

and AP can use distance/similarity which does not satisfy

the triangle inequality. We point out that the choice of the

clustering method is restricted to the trajectory object we deal

with. Actually, trajectories have different lengths. HCA and AP

are both methods which only require the distance/similarity

matrix, and thus can cluster objects of different lengths. Both

of these methods will be used to evaluate our distance.

B. Quality criterion of cluster result

A clustering algorithm aims to gather objects into homoge-

neous groups that are far one from another. Hence, the quality

of a clustering is usually evaluated by looking at the between

and within variance of the obtained clusters. On the one hand,

the within variance shows the spread of elements belonging to

the same groups. Because we want the elements of the same

groups to be as similar as possible, we want the within variance

to be as small as possible. On the other hand, we want objects

that belong to different groups to be as far as possible from one

another. Hence, the between variance, which shows the spread

between clusters, should be as big as possible. The definition

of within group variance and between group variance require

the definition of a mean object. In our case, they cannot be

computed here because of the impossibility of computing the

mean of the trajectory object. Therefore, we approximate this

mean by considering an exemplar, T ex, of a set of a trajectory

T of length nT , defined as:

T ex
T = min

T i

i∈[0...nT ]

{

nT

∑

j=1
j 6=i

D(T i, T j)
}

.

By using the exemplar definition, we can define new criteria

to approximate the between and within variance : the Between-

Like and the Within-Like Criteria. Let C1, . . . , CK be a set of

clusters of T , the Between-Like and the Within-Like criteria

are defined as:

Definition 16. Between-Like and Within-Like

BC =

K
∑

k=1

D(T ex
T , T ex

Ck
),

WC =

K
∑

k=1

1

|Ck|

∑

T i∈Ck

D(T ex
Ck

, T i).

The Within-Like criterion shows the spread of elements

belonging to the same cluster while the Between-Like criterion

shows the spread between clusters. As for the variance, for a

given number of clusters, we want the Within-Like criterion

to be as small as possible, and the Between-Like criterion to

be as big as possible.

These quality criteria can also be used to select the number

of clusters. Indeed, the Within-Like criterion decreases with

the number of clusters, while the Between-Like criterion

increases with the number of clusters. Hence, we are looking

for a trade off between these criteria and the number of

clusters. We choose the number of clusters so that adding one

more cluster does not decrease significantly the Within-Like

criteria.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare 7 distances LCSS,

DTW, Hausdorff, Fréchet, Discrete Fréchet, OWD grid and

the SSDP. We present the python package trajectory distance

where the distances have been implemented. We compare

their computational cost and the results of the application

of different clustering techniques for each of them. We also

use python for the implementation of the chosen clustering

algorithms, the sklearn library for affinity propagation and

scipy library for hierarchical clustering analysis. For the latter,

weighted, average, ward, complete and single linkage criteria

are compared.

A. A python package : trajectory distance

All distances have been implemented in python and are

available in the trajectory distance package available on

github from this url : https://github.com/bguillouet/traj-dist.
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Fig. 6: Trajectories subset

Distances have also been implemented in Cython for 2-D tra-

jectories. Cython is a language which enables the declaration

of static variables and to use the C math library. All distances

but OWD grid are based on Euclidean distance for point to

point computation. To compute OWD grid, we implemented

the grid algorithm defined in [17]. The trajectories need to be

mapped in a grid space. We use the Geohash system to accom-

plish this task. It is based on a hash function which subdivides

the geographical space into a grid. Different precision param-

eters of this grid are available from 1 (5009.4km×4992.6km
cell) to 12 (3.7cm× 1.9cm). The hash function enables quick

mapping of latitude/longitude coordinates to the appropriate

grid. Once the trajectory locations have been mapped to a

grid, we implemented a algorithm to find all grids they crossed

between two locations and to obtain the grid representation of

the trajectory as defined in Definition 13.

B. The Data

The data we used are GPS data from 536 San-Francisco

taxis over a 24-day period. These data are public and can be

found on [23]. We extracted a subset of this data as shown

Fig. 6.

This subset is a blend of 2574 trajectories. All have the same

pickup location, the Caltrain station, and all have a drop-off

location in downtown San-Francisco.

TABLE VI: Computation Time in seconds

Distance Computation time

Fréchet 268.32

Discrete Fréchet 0.58

Hausdorff 2.47

DTW 0.66

LCSS 0.60

SSPD 2.46

OWD Grid 5 1.88

OWD Grid 6 7.44

OWD Grid 7 52.96

C. Computation cost

In Table VI we can observe the computation time needed

to compute the matrix distance for a subset of 100 taxis

trajectories of the studied subset described in section VI-B.

Trajectories are composed of 3 to 39 locations, most having

around 10.

Fréchet distance is the distance that requires the most com-

putation time. It is the only method that runs in O(n2log(n2)).
DTW, LCSS and Discrete Fréchet distances are the fastest

computed methods, all having the same order of computation

time. This three methods require computing the Euclidean

distance between each pair of points that compose the two

trajectories. They only differ by their cost function. As ex-

plained in section IV, Hausdorff and SSPD distance also are

computed in the same way. Hausdorff uses the maximum of

the Point-to-Trajectory distance and SSPD the mean, which

explains why they have almost the same computation time. If

they both have the same complexity as that of DTW, LCSS

and Discrete Fréchet, log(n2), they require more operations,

which explains their relative slowness. The time computation

of the OWD grid is strongly dependent on the precision we

choose. Indeed, a precision of 5 resolves the studied space into

a 3× 3 grid space, while precisions of 6 and 7 resolve a grid

space of 10 × 5 and 34 × 25 respectively. This implies that

the number of cells required to represent the trajectory is very

different from one precision to another. With precision 5, 1 to

3 cells are needed to represent the trajectory. With precision

7, the shortest trajectory is represented with only 1 cell but

the longest needs 47 cells to fully describe it. Therefore, with

precision 5, OWD grid is faster than SSPD, but with precision

6 and 7, OWD grid is 3 times and more than 20 times faster

than SSPD distance. A good trade-off needed to be found

to have a precision which enabled to adequately describe the

trajectories in the new grid space, within a reasonable time

computation.

D. Analysis of the clustering method

In Fig. 7 we observe the evolution of the Within- and the

Between- like criteria described in section V for the distance

SSPD and for the selected methods AP and HCA. Both the

Between-Like and the Within-Like criteria are shown because

the sum of these two criteria is not constant as opposed to the

sum of the between and within variance.

The HCA single method gives much worse results than

the other methods, regardless of the number of cluster. All

other HCA methods display the same evolution of the studied
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Fig. 7: Evolution of the Between-Like (a) and Within-Like

(b) criteria depending on cluster size for clusterings obtained

with SSPD. On (c), Within-Like criterion is displayed with a

reduced scale of 0 to 50.

criteria with respect to the cluster size. A plateau can be

observed starting at cluster sizes between 10 and 20. Adding

more clusters does not decrease significantly the Within-

Like Criterion. We can see Figure 7-c, that the HCA ward

give better results than the other HCA method for all the

different number of clusters. The same conclusions can be

made regardless of the distance used.

AP give the best results. However the latter does not achieve

clustering using any less than 36 clusters, a potentially large

number, given that HCA ward achieves clustering around

15, and with good Within-Like criterion results. Moreover,

the minimum cluster size found by the AP method differs

significantly according to the distance used. No less than

21 clusters are found with the DTW distance and 54 with

Hausdorff. This is the main inconvenient of this method.

The HCA Ward method and the AP method with the

preference parameter fixed to the minimum of the computed

matrix distance will be used to compare the studied distances

in more details.

E. Analysis of the distances

We can observe the evolution of the Within-Like and the

Between-Like criteria for the two selected clustering methods

as well as for all studied distances. The HCA WARD results

are display in Fig. 8, and the AP results in Fig. 9.

In Figure 8, the evolutions of the two criteria when the

number of cluster increase is similar for all the distances but

LCSS. For instance, the curves which represent the Within-

Like criterion decrease quickly when adding more cluster for a

low number of cluster. Then they all reach a point when adding

more clusters does not decrease significantly the Within-Like

criterion. Theses point vary from one distance to another. It is

Fig. 8: Evolution of the Between-Like (a) and Within-Like (b)

criteria depending on cluster size for all distances using the

HCA-WARD method

Fig. 9: Evolution of the Between-Like (a) and Within-Like (b)

criteria depending on the cluster size for all distances using

the AP method

reached around 10 clusters for the OWD grid and around 25
clusters for the Discret Frechet distance. The minimum cluster

size found by the AP method differs significantly according to

the distance used. No less than 21 clusters are found with

the DTW distance, 36 with SSPD and 54 with Hausdorff.

However, the same conclusion can be made in terms of Within-

Like and Between-Like criteria regardless of the number of

cluster.

The Warping-based distances, LCSS and DTW, give the

poorest results with LCSS being significantly worse than DTW.

The two shape-based distances Frechet and Hausdorff give

better results. The evolution of their criteria is very similar to

one another. The Discrete Fréchet distance is between these

two types of distances. These results confirm that shape-based

distances are better adapted than warping-based distances for

our objectives.

OWD grid gives the best results. It has the lowest value

of Within-Like Criterion for all cluster sizes using both HCA

WARD and AP clustering methods. The results for precision

5 are not displayed here. The discretization of the space is

too inaccurate and did not provide good clustering. Precision

7 gives slightly better results than precision 6. This shows

that increasing the precision parameter yields better results.

However, when there are more than 15 clusters found, the
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within and Between-Like criteria are almost the same. In

section VI-C we have seen that the computation time to

compute the distance with precision 7 is seven times higher

than the computation time with precision 6. Hence, we need to

look for the optimal criteria to find a good trade off between

good clustering results, and reasonable computational time.

The choice of this criteria is a strong disadvantage of the

OWD method, because it implies to look for the best precision

parameter for each data set.

Finally, the new distance SSDP is the distance which best

approaches the results found with OWD grid, regardless of

the number of cluster. But unlike with OWD grid, we do not

need to look for the optimal precision parameter, in order to

compute it, nor to map the trajectory to a new space. This

enables our distance to be more easily adapted to different

subsets of trajectories.

We observe the visual results for this distance and both

AP and HCA ward clustering methods, in Fig. 10, and the

isolated clusters, in Fig. 11. For the HCA ward method, we

display the clustering result obtained with 15 clusters because

we have seen Section VI-D that a plateau can be observed on

the evolution of the Within-Like criteria with respect to the

number of cluster starting at cluster sizes between 10 and 20
for the SSPD. For the AP, clustering results with 36 clusters

is displayed since no less cluster can be obtained with this

method.

Fig. 10: Clustering results with SSPD distance

We observe that trajectories are well classified according

to their path. In Fig. 11, clusters found using HCA WARD

seem to be consistent. The cluster size with AP method is 36.

This is a large number according to the Within-Like criterion

computed with HCA. In fact, the Within-Like criterion does

not decrease much between 15 and 36. However, we can see

that the number of clusters found with AP are still consistent.

A cluster computed with the HCA WARD method based on

a matrix distance computed with SSPD gives the best result.

The Between-Like and Within-Like criteria show that this

method is best used to regroup cluster around exemplar. We

obtain a partition of the trajectories subset, such as each cluster

represents a path taken by the drivers. We obtain a partition of

traffic based on the taxi drivers’ behavior leaving the Caltrain

Fig. 11: The isolated clusters

station in San Francisco. The number of trajectories in each

cluster gives us a representation of the importance of each

network traffic stream.

VII. CONCLUSION

Clustering of non Euclidean objects deeply relies on the

choice of a proper distance. For trajectories analysis, we

presented different distances focusing on different features

of such objects. To cope with their different weaknesses

we propose a new distance, the Symmetrized Segment-Path

Distance. This distance is time insensitive, and compares the

shape and the physical distance between two trajectory objects.

It does not require any additional parameters nor mapping

trajectories in a different space. Hence, It can be applied

on any set of trajectories, regardless of the area they come

from. It enables us to obtain good clustering using either

hierarchical clustering and affinity propagation methods. In

this way, the clusters obtained are homogeneous with regard

to shape and seem to properly capture the behaviours of the

drivers. We have thus obtained a partition of the network

based on the drivers’ usage that can still be interpreted as

vehicle trajectories. This partition can be used to solved

different problem. Many applications which recommend places

to visit, or which target advertising based on our destination

need to forecast the final destination of drivers or predict the

travel time of driver trips. Cities which wish to organize trip

distribution of a city, also need to know the behaviours of

the cars drivers. Some of these problems will be tackled in

a following work, based on the partition obtained with our

method to cluster trajectories.
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