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 Dental caries, the most common disease of childhood, 
can be associated with severe health, social and econom-
ic consequences, which can persist over a lifetime. Statis-
tical modeling plays an important role in understanding 
caries risk factors and combating their development. 
More than 50 years ago, Grainger and Reid [1954] ob-
served that caries counts are not generally approximated 
by a normal distribution [see also Lewsey et al., 2000]. 
They recommended the negative binomial distribution 
for describing dental caries indices in populations recog-
nizing, as did Böhning et al. [1999] decades later, that car-
ies counts tend to exhibit overdispersion, i.e. excess vari-
ation in them relative to the Poisson distribution. Subse-
quently, researchers [Syrjälä et al., 2003; Broffit et al., 
2007; Ismail et al., 2008; Maserejian et al., 2008b; Thita-
somakul et al., 2009; Wong et al., 2011] have often ana-
lyzed the effects of risk factors on dental caries indices 
using negative binomial regression [Hilbe, 2008].

  As oral health has improved in populations over time 
[Campus et al., 2009, and references therein], epidemio-
logical investigations often find that the traditional count 
data models provide poor fits to caries data. Distributions 
of caries counts are increasingly characterized by a large 
number of zero counts, with proportions in excess of 
what is expected under the Poisson and negative bino-
mial distributions. To handle such ‘excess zeros’, Böhning 
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 Abstract 

 Over the past 5–10 years, zero-inflated (ZI) count regression 
models have been increasingly applied to the analysis of 
dental caries indices (e.g. DMFT, dfms). The main reason for 
that is linked to the broad decline in children’s caries experi-
ence, such that dmf and DMF indices more frequently gener-
ate low or even zero counts. This article specifically reviews 
the application of ZI Poisson and ZI negative binomial re-
gression models to dental caries, with emphasis on the de-
scription of the models and the interpretation of fitted mod-
el results given the study goals. The review finds that inter-
pretations provided in the published caries research are 
often imprecise or inadvertently misleading, particularly 
with respect to failing to discriminate between inference for 
the class of susceptible persons defined by such models and 
inference for the sampled population in terms of overall ex-
posure effects. Recommendations are provided to enhance 
the use as well as the interpretation and reporting of results 
of count regression models when applied to epidemiologi-
cal studies of dental caries. 
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et al. [1999], in a paper published in the statistics litera-
ture [see Simonoff, 2003, for comment], proposed zero-
inflated Poisson (ZIP) regression for modeling the de-
cayed, missing and filled teeth index (DMFT). Yet while 
ZIP models account for large counts of zeros, they do not 
adequately account for data that have sizeable numbers
of large caries counts. To address both excess zeros and 
overdispersion, Lewsey and Thomson [2004] used zero-
inflated negative binomial (ZINB) regression models in 
examining the effect of economic status on DMF data. In 
the past 5 years there have appeared over a dozen publica-
tions with applications of both types of these zero-inflat-
ed (ZI) models to dental caries indices. Their emergence 
warrants a review.

  To help explain the recent trend in applications of ZI 
models to caries, consider the following example that il-
lustrates the potential inadequacy of traditional models 
for suitably describing distributions of caries counts.  Fig-
ure 1 a shows a representative distribution of caries counts 
with a moderately large number of zeros, as is commonly 
encountered in surveys and population-based studies of 

caries. For this distribution, the mean and variance of the 
counts denoted  Y  are 1.2 and 1.68, respectively [calcu-
lated as E( Y ) =  �  y P( y ) and Var( Y ) =  � [ y  – E( Y )] 2 P( y ), re-
spectively, where P( y ) is the relative frequency of count  y ]. 
Furthermore, the frequency of zero counts is 40% while 
the cumulative frequency of counts of size 4 or greater is 
5%. A Poisson distribution cannot adequately describe 
the distribution in  figure 1 a because all Poisson distribu-
tions have a single parameter (i.e. the mean) to describe 
the distribution of counts, where their variance equals 
their mean. Thus, not only does a Poisson distribution 
with a mean of 1.2 have a variance of 1.2, but it addition-
ally specifies a relative frequency of zero counts of 30% 
and a relative frequency for counts of 4 or greater of 3.4% 
(as determined from its probability function), both of 
which are too low to adequately describe the distribution 
in  figure 1 a. Additionally, even the negative binomial dis-
tribution, which has a second parameter allowing for ex-
tra variation (overdispersion) in  Y  relative to the Poisson, 
often fails to account for large fractions of zeros com-
monly observed in studies of dental caries.
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  Fig. 1.  Four representative distributions of caries counts are shown 
in this panel plot.  a  A ZIP distribution ( �  = 0.25,  �  = 1.6) as a 
single population. It has  �  = 0.6, mean  �  = 1.2, variance 1.68 and 
a relative frequency of zero counts of 40%.  b  The same distribu-
tion as in  a  but as a mixture of two subpopulations [or nonsuscep-
tible (grey bar) and susceptible (black bars) latent classes].  �  = 
0.25, mean for at-risk group = 1.6.  c  A ZIP distribution ( �  = 0.10, 
 �  = 2.0) that is defined relative to the distribution of counts in  b  

through a single dichotomous covariate in equations 1 and 2 hav-
ing ‘consistent’ trends in the two ZIP model parts. It has overall 
mean  �  = 1.8, variance 2.16 and a relative frequency of all zero 
counts of 22%.  d  A ZIP distribution ( �  = 0.40,  �  = 2.0) that is de-
fined relative to  b  through a dichotomous covariate having ‘in-
consistent’ trends in the two ZIP model parts. It has overall mean 
 �  = 1.2, variance 2.16 and a relative frequency of all zero counts of 
48%.   
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  To overcome these limitations, the Poisson and nega-
tive binomial models have been extended to better incor-
porate the excess zeros, giving rise to ZIP and ZINB mod-
els. The expanded capacity for describing caries count 
distributions is illustrated by the ZIP distribution (de-
fined in the Appendix) with parameters  �  = 0.25 and
 �  = 1.60 for caries counts  Y , which perfectly describes the 
frequency of counts in  figure 1 a. The fact that this ex-
ample is constructed to give a perfect fit does not dimin-
ish the fact that ZIP models provide expanded families of 
count distributions that often give much better fits than 
the Poisson distribution to counts of caries indices, espe-
cially when large numbers of zeros are present. Analo-
gous arguments exist for the utility of the ZINB model 
relative to the negative binomial model in accounting for 
both extra zeros and extra-Poisson variation.

  Notwithstanding their increased usage due to provid-
ing improved model fits for counts of caries indices, anal-
ysis results based on ZIP and ZINB models may be dif-
ficult to interpret [Mwalili et al., 2008; Solinas et al., 
2009]. For a fixed set of covariate values, ZI models con-
stitute a mixture of a standard probability distribution 
for count data, typically Poisson or negative binomial, 
representing a ‘susceptible’ subpopulation of children 
said to be at risk for a disease or condition (e.g. dental car-
ies), and a subpopulation of ‘nonsusceptible’ children 
with only zero counts who are considered to be not at risk. 
For a single population (i.e. a model with no observed co-
variates),  figure 1 b gives an alternative representation of 
the relative frequencies of counts for a ZIP model with 
parameters  �  = 0.25 and  �  = 1.60. It illustrates that a ran-
domly selected child from the overall population is not at 
risk for caries (has excess zero) with probability 0.25; oth-
erwise, with probability 1 –  �  = 0.75 the child is suscep-
tible to caries and is assumed to have a caries count, a zero 
or otherwise, from a Poisson distribution with a mean  �  
of 1.60. Note that the probability of an excess zero is giv-
en by the length of the grey bar, and the mean caries count 
for the susceptible subgroup is the mean of the distribu-
tion represented by the black bars. The challenges that 
dental researchers face in understanding ZI models are 
related to the fact that the composition of the two respec-
tive subpopulations or groups in  figure 1 b is a theoretical 
and mathematical construct such that the specific group 
membership of any given subject in a study with a zero 
count is unknown; accordingly, these groups are referred 
to in the literature as latent classes.

  In fact,  figure 1 a and b displays identical overall dis-
tributions for  Y . Specifically,  figure 1 a depicts the overall 
frequency distribution resulting from the mixture of the 

two subgroups of  figure 1 b, grey and black, without dis-
tinguishing between them. The only difference in the fig-
ures is that  figure 1 a, by depicting a single overall distri-
bution for  Y , reflects the view of Mwalili et al. [2008] that 
the mixture distribution model representation ( fig. 1 b) is 
only a convenient explanation for a distribution of counts 
with excess zeros.

  Noting that oral health research employing ZI models 
often limits consideration to the model-based latent class 
parameters  �  and  �  via interpretation of regression coef-
ficients that describe their variation, Albert et al. [2011] 
argue that insufficient emphasis has been given to the ef-
fects of caries risk factors on the overall population from 
which the study sample was drawn. From this perspec-
tive,  figure 1 a displays the distribution for  Y  that has 
overall mean caries count, say  �  = E( Y ), and the probabil-
ity of a positive caries count, denoted  �  =  Pr ( Y   1  0), rep-
resented by the fraction of all subjects with counts great-
er than zero. In a cross-sectional study, for example,  �  is 
caries severity or extent and  �  is caries prevalence in the 
sampled population. Accordingly, Albert et al. [2011] de-
fine ‘overall effects’ as the contrasts (i.e. differences or 
ratios) of values taken by  �  (or  � ) as they vary across sub-
groups defined by caries risk factors.

  Although epidemiological investigations of risk factors 
on caries often report on the ZI model parameters  �  and 
 �  and the corresponding subpopulations in  figure 1 b that 
they characterize [Gilthorpe et al., 2009], ZI models can 
be used for investigating overall effects on the caries count 
 Y  because  �  and  � , which we refer to as the population oral 
health parameters, have known relationships to  �  and  �  
[Lambert, 1992; Böhning et al., 1999; Albert et al., 2011]. 
Specifically, caries prevalence  �  and caries severity  �  are 
related to the ZIP (or ZINB) model parameters as follows:

   �  = (1 –  � )[1 – exp(– � )],

  and  �  =  � (1 –  � ). Thus, the ZI model parameters  �  and  �  
provide only indirect information on the population oral 
health parameters  �  and  � . As long as  �   1  0, the preva-
lence  �  is always less than the probability of not being an 
excess zero, 1 –  � . Further,  �   ̂    �  so that caries severity 
in the overall population cannot be greater than the mean 
count of the susceptible population. Applying these 
mathematical relationships to the example in  figure 1 b 
where  �  = 0.25 and  �  = 1.60, prevalence is calculated as 
 �  = 0.60 and severity is  �  = 1.20 (as noted above) for the 
overall population represented by  figure 1 a. Analogous 
arguments can be made when  �  denotes caries incidence 
and  �  is the mean increment in a longitudinal study. 
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 The motivation for reviewing the usage and reporting 
of ZI models in the dental caries literature is the belief 
that drawing well-articulated and valid conclusions from 
ZI models relies on an understanding of the differences 
between the ZI model parameters and the population 
oral health parameters, a distinction made two decades 
ago with an illustration from manufacturing by Lambert 
[1992] and later for dental caries by Böhning et al. [1999] 
and Albert et al. [2011]. This article reviews the caries lit-
erature for details of applications of ZI models to dental 
caries counts and assesses, with respect to stated study 
goals, the quality of interpretations given to the numeri-
cal results of these analyses. Finally, recommendations 
for improved usage and reporting of ZI models are pro-
vided.

  Materials and Methods 

 Overall Effects in ZI Models 
 The aims of the literature review require consideration of how 

the presence of excess zeros in caries counts should be taken into 
account in statistical analysis, interpretation and reporting when 
interest is in the overall effects of risk factors on caries prevalence 
(or incidence)  �  and severity (or mean increment)  � . ‘Overall ef-
fects’ refer to the effects of risk factors on caries indices in the 
overall population represented by the study participants, and not 
in the effects within a subset of the overall population defined by 
an unobserved variable assumed to define subgroups (latent 
classes) that partition that population [Albert et al., 2011]. For 
simplicity, consider a single dichotomous covariate,  x  i  = 0 or 1, 
appearing in each ZI model component for the  i -th child. The 
probability of an excess zero is typically modeled by a logistic re-
gression, which is expressed in its probability form by 
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0 1

exp
 

1 exp
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i i
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x
x

x

� �
�

� �
                                                            (1)

 and the mean caries counts for at-risk children are modeled via a 
log-linear model (equivalently, a generalized linear model with 
log link function) by 

    �  i ( x  i ) = exp( �  0  +  �  1  x  i ).                                                                   (2)

  The regression coefficient  �  1  in equation 1 represents the log odds 
ratio of having an excess zero or being in the not-at-risk group for 
the effect of  x  i  = 1 relative to  x  i  = 0. The coefficient  �  1  represents 
the log of the incidence rate ratio (IRR) for the effect of  x  i  = 1 rela-
tive to  x  i  = 0 in the at-risk group, i.e. ln[ �  i ( x  i  = 1)/ �  i ( x  i  = 0)]. Often 
 �  1  and  �  1  are not of primary interest [Albert et al., 2011]. Rather, 
their importance lies in their relationship to prevalence and sever-
ity in the overall population. Substitution of equations 1 and 2 into 
 �  i ( x  i ) =  �  i ( x  i )[1 –  �  i  ( x  i )] gives the overall mean severity 
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 Then, the ratio of means,  �  i ( x  i  = 1)/ �  i ( x  i  = 0), or IRR for the over-
all effect of  x  i  on caries severity is: 
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 Thus, a ratio factor on the right-hand-side of equation 3, which 
depends on the excess-zero model parameters from equation 1, 
multiplies the IRR for the at-risk latent class [exp( �  1 )] to produce 
the overall IRR giving the effect of  x  i  on caries severity in the over-
all population. Equation 3 generalizes for a continuous covariate 
(see Appendix).

  The signs of  �  1  and  �  1  impact the direction of the bias when 
the at-risk latent class IRR is used to estimate the IRR for caries 
severity in the overall population. First, if  �  1   !  0 (i.e. negative 
sign), then the ratio factor in equation 3 will be greater than 1.0 
and, thus, exp( �  1 ) will underestimate the IRR for caries severity 
in the overall population. On the other hand, if  �  1   1  0 (i.e. positive 
sign), then the ratio factor in equation 3 will be less than 1.0 and 
exp( �  1 ) will overestimate the IRR for caries severity in the overall 
population.

  Second, whether  �  1  and  �  1  have consistent trends (i.e. opposite 
signs, one positive and the other negative) or inconsistent trends 
(same signs, both positive or both negative) usually determines 
the direction of the bias in relation to the null value of no covari-
ate effect. The scenario of consistent trends is where a covariate 
decreases (increases) the probability of an excess zero and increas-
es (decreases) the at-risk class mean. The less common scenario of 
inconsistent trends is where a covariate decreases (increases) the 
probability of an excess zero and decreases (increases) the at-risk 
class mean. Considering equation 3, and that  �  1   !  0 implies 
exp( �  1 )  !  1 while  �  1   1  0 implies exp( �  1 )  1  1, the impact of con-
sistent trends and inconsistent trends in samples sufficiently large 
for estimates to reflect the relationship of parameters is as follows:

  (1) When a covariate has consistent trends in the two ZI mod-
el parts (opposite signs), the at-risk latent class IRR will in most 
cases be biased towards the null hypothesis of no effect in the 
sense that the IRR (latent) is closer to 1.0 than IRR (severity). 

 (2) When a covariate has inconsistent trends in the two ZI 
model parts (same sign), the at-risk latent class IRR will in most 
cases be biased away from the null hypothesis of no effect in the 
sense that the IRR (latent) is farther from 1.0 (in either direction) 
than IRR (severity). 

 Exceptions to these rules sometimes occur when the IRR
(latent) and IRR (severity) have different directions (one has a 
value  ! 1, while the other has a value  1 1), but violations to these 
laws appear to be rare, and when they occur they are often in-
consequential with both IRRs being close to 1.0; see the online 
sup plementary appendix (for all online suppl. material, see www.
karger.com/doi/10.1159/000338992) for further discussion and 
real-life examples where exception to these rules occurred less 
than 2% of the time.

  To illustrate the first scenario (consistent trends), suppose
 �  0  = –1.099,  �  0  = 0.470,  �  1  = –1.099 and  �  1  = 0.223, corresponding 
to { �  1  = 0.25,  �  1  = 1.60} for the group with  x  i  = 0 ( fig. 1 b), and { �  2  
= 0.10,  �  2  = 2.00} for the group with  x  i  = 1 ( fig. 1 c). Then the IRR 
for the at-risk latent class is exp(0.223) = 1.25 (which also equals 
 �  2 / �  1 ), while the IRR for the overall population calculated from 
equation 3 or by [ �  2 (1 –  �  2 )]/[ �  1 (1 –  �  1 )] equals 1.50. In this case, 
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the IRR (latent) underestimates the IRR (severity) and is biased 
towards the null.

  To illustrate the second scenario (inconsistent trends), suppose 
 �  0  = –1.099,  �  0  = 0.470,  �  1  = 0.693, and  �  1  = 0.223, corresponding 
to { �  1  = 0.25,  �  1  = 1.60} for the group with  x  i  = 0 ( fig. 1 b), and
{ �  2  = 0.40,  �  2  = 2.00} for the group with  x  i  = 1 ( fig. 1 d). Then the 
IRR for the at-risk latent class shown in  figure 1 b is  �  3 / �  1  = 1.25 
while the IRR for the overall population is [ �  3 (1 –  �  3 )]/[ �  1  (1 –  �  1 )] 
= 1.0. In this case, the IRR (latent) overestimates the IRR (sever-
ity) and is biased away from the null. The general point is that 
some bias generally occurs when exponentiated  � -coefficients, 
which are IRRs for the at-risk latent class, are falsely interpreted 
as IRRs for the overall population.

  The at-risk latent class IRR is equivalent to the IRR (severity) 
for the overall population when  �  1  = 0 in equation 1 in which case 
the ratio term on the right-hand-side of equation 3 cancels out. 
Thus, when the probability of an ‘excess zero’ does not depend on 
 x  i , exp( �  1 ) is the IRR for the overall population and its interpreta-
tion is the same as in Poisson regression and negative binomial 
regression. Generally, however, estimates of IRRs based on equa-
tion 3 that appropriately adjust for the zero inflation parameters 
(e.g.  �  0  and  �  1 ) provide valid inference for the overall effect of the 
risk factor on the population oral health parameters.

 The general results for the relationship between trends and 
bias for ZI models (points 1 and 2 above) also apply to ZI models 
with multiple covariates. However, we wish to caution the reader 
that for models having multiple covariates appearing in both 
model parts (for  �  i  and  �  i ) the IRR (severity) for a covariate will 
depend upon the values of other covariates. Specifically, in a ZI 
model with 3 covariates, the IRR (severity) for a dichotomous fac-
tor  x  i  3  is:

(4)
0 1 1 2 2

1 2 3
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1 2 3

0 1 1 2 2 3

1 exp
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exp .             

, , 0

1 exp
i i
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 If  x  i  1  and  x  i  2  are also dichotomous (in this example), there will be 
4 different values for IRR (severity), one for each combination of 
 x  i  1  and  x  i  2 . A single covariate-adjusted IRR (severity) for the effect 
of  x  i  3  may be obtained by inserting mean values for  x  i  1  and  x  i  2  
(whether they are dichotomous or continuous) into equation 4. 
Simplification of equation 4 occurs only if some of the covariates 
are omitted from the excess-zero part of the model, or otherwise 
have their  �  - coefficients equal to zero. For example, if  x  i  3  does not 
appear in the excess-zero model (equivalently,  �  3  = 0), then 
exp( �  3 ) from a ZI model with 3 covariates is the IRR for both the 
at-risk latent class and the overall population relating the risk fac-
tor to caries severity, all other covariates being held fixed. See the 
online supplementary material which contains a detailed illustra-
tion with real-life data involving 2 dichotomous covariates and
1 categorical factor. 

 In addition to the bias arising from misinterpreting an expo-
nentiated  � -term as a population IRR (severity) for caries incre-
ment, a second concern is that a variance estimate for an at-risk 
latent class IRR is likely to underestimate the corresponding vari-
ance estimate for the IRR in the overall population since an esti-
mate of the variance for the latter should additionally account for 

uncertainty associated with estimating  �  0  and  �  1  in equation 3. 
The delta method for a scalar function of a random vector may be 
used to compute the large sample variances of the IRR estimates 
corresponding to equation 3 or equation 4 conditioning on means 
or specific covariate values [Albert et al., 2011].

  Hurdle Models 
 Hurdle models [Mullahy, 1986; Cameron and Trivedi, 1998] 

are briefly mentioned, as they are occasionally used or cited in 
epidemiological studies of dental caries. The hurdle model ap-
proach, like the ZI model approach, is a 2-part count regression 
method that deals with the phenomenon of excess zeros in the 
data. However, hurdle models are distinct from ZI models. The 
first component of a hurdle model, typically logistic regression, 
addresses the probability of a zero count (as opposed to an ‘excess 
zero’) so that it pertains to prevalence (or incidence) in the overall 
population, as it targets all zero counts. The second part of a hur-
dle model is for the mean count among subjects with any caries, 
i.e. E( Y  i  �  Y  i   1  0). It exceeds the unconditional mean E( Y  i ) that is the 
increment for the overall population, and it is distinct from the 
mean  �  i  for the at-risk latent class in a ZI model. As shown in  fig-
ure 1 b–d, zeros can occur in either part of a ZI model, whereas in 
hurdle models they are only modeled in the first part. Thus, in-
terpretations for ZI model results are incorrect when they are 
based on language pertaining to hurdle models.

  Methodology for Review of Published Articles 
 The authors sought to identify and review all published re-

search articles in the dental literature that used ZIP or ZINB mod-
els to analyze caries experience, using ISI Web of Knowledge V5.4 
and Pubmed as search engines. The authors were the review-
ers – a biostatistician (J.P.), an oral health researcher (J.S.) and two 
biostatistics students (D.L. and M.K. working jointly) both hold-
ing graduate research assistantships in oral health. Each reviewer 
evaluated all the identified papers according to 5 criteria labeled 
‘A’–‘E’ in  table  1 , each of which involved categorical classifica-
tions. First (‘A’), did the article present caries applications using 
ZIP models, ZINB models, or both? Second (‘B’), did the article 
assess model goodness of fit or otherwise provide some rationale 
for model choice? Assigned ratings were (i) ‘test’ if a statistical test 
of goodness of fit, likelihood ratio statistics or information crite-
rion statistics (e.g. AIC, BIC) were presented, (ii) ‘graph’ if a graph 
displaying model fitted values with observed frequencies was pro-
vided, (iii) ‘not shown’ if authors claimed to have examined good-
ness of fit but did not report results of their evaluation and (iv) 
‘none’ if the article did not mention an assessment of goodness of 
fit for the study data. Third (‘C’), did the reported ZI model(s) in-
clude covariates in both excess zeros and at-risk model parts: yes, 
no or indeterminable?

  The fourth and fifth assessments aimed to determine wheth-
er the interpretations of results from ZI models provided in the 
article were appropriate for the reported numerical results. The 
fourth criterion ‘D’ was whether the article presented numerical 
results for overall exposure effects (‘overall’) pertaining to the 
overall population from which the data were selected, e.g. equa-
tion 3, or whether results presented were based on estimated 
regression coefficients  �  1  and  �  1  (or their exponentiated forms) 
corresponding to the two latent classes (‘LC’) of the ZI model. 
The fifth and final criterion ‘E’ assessed the quality of interpre-
tations of reported numerical results from fitting ZI models; in 
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particular, was language used to describe overall exposure ef-
fects or latent class-specific effects? Additionally, we noted 
where articles inappropriately used language pertaining to hur-
dle models [Mullahy, 1986]. The reviewers discussed their initial 
evaluations as a group to reconcile differences and reach con-
sensus.

  Finally, examples of problematic interpretations in the re-
viewed articles were listed. Specifically, for articles with ZI mod-
els that included covariates in the excess-zero part, we assigned to 
interpretations the following classifications: (i) incorrect – when 
regression coefficients or effects for the probability of an excess 
zero were falsely attributed to be effects on prevalence; (ii) mis-
leading – when risk factor effects on mean caries counts in the 
at-risk group were misattributed (or could easily be misinterpret-
ed) as overall effects on severity; for example, when ‘severity’ is 
used without an appropriate qualifying phrase alluding to the 
‘susceptible’ or at-risk subgroup for which the inference actually 
applies; (iii) imprecise – when results of estimated latent class ef-
fects were used directly as the basis for making unsubstantiated 
claims, or statements of a speculative nature, regarding overall 
effects on prevalence  �  or severity  � .

  Results 

 We identified 15 refereed papers published through 
2011 that used ZIP or ZINB models to analyze dental car-
ies in children or adults, either in cross-sectional or lon-
gitudinal observational studies ( table 1 ). As in the cross-
sectional studies that analyzed caries indices, statistical 
models for independent observations were applied in the 
longitudinal studies for caries increments. One exception 
is the article by Broadbent et al. [2008] that employs lon-
gitudinal data models for repeated measures of DMFS 
counts from a life trajectory perspective. Some of the 14 
articles that used statistical methods for independent ob-
servations adjusted variance estimation for clustering in 
the study design.

  Among the 15 papers, 6 applied ZINB (but not ZIP) 
models to caries outcomes, 3 applied ZIP (but not ZINB) 
models, and 6 applied both ZIP and ZINB models. Most 

Table 1.  Articles employing ZIP or ZINB models for childhood dental caries and assessment of reporting of model selection (goodness-
of-fit) and whether the interpretations made in the article match the reported analysis results

Authors and year Caries indices analyzed ZI models 
used (A)

Goodness of fit 
(B)a

Covariates in excess-
zero part? (C)b

Analysis results 
presented (D)b

Interpretations 
given to results (E)c

Lewsey and Thomson, 2004 dmfs, DMFS, DFS increm. ZIP and ZINB graph yes LC LC and overall
Hashim et al., 2006 dmfs ZINB none yes LC overall
Arora et al., 2008 dfs, DMFS ZINB not shown yes LC overall and hurdle
Broadbent et al., 2008 modified DMFS ZIP test indeterminable overall overall
Lim et al., 2008 d1s, d2s, d2mfs, d1d2mfs ZINB none no overall overall
Maserejian et al., 2008a number of carious teethd ZIP and ZINB not shown yes LC overall and hurdle
Sanders et al., 2008 noncavitated lesionse ZIP not shown indeterminable indeterminable overall
Campus et al., 2009 dmfs ZINB test yes LC LC and overall
Ismail et al., 2009 d3–6mfs, d1–6mfs ZINB none indeterminable indeterminable overall
Solinas et al., 2009 dmfs ZIP and ZINB test and graph yes LC LC and overall
Tramini et al., 2009 D34MFT ZIP and ZINB graph yes LC overall
Javali and Pandit, 2010 DMFT ZIP and ZINB test and graphf indeterminable indeterminable overall
Nelson et al., 2010 DMFT-I,M; DMFT ZIP and ZINB not shown indeterminable indeterminable overall
Broadbent et al., 2011 DMFT, MT ZINB none indeterminable indeterminable overall
Campus et al., 2011 DS ZIP test yes LCg LC and overall

Numerical results (e.g., estimates of regression coefficients, odds ratio, incident rate ratios or percent mean change) presented by the articles and the 
interpretations made for them correspond to either overall exposure effects, hurdle model effects, or ZI model latent class (LC) effects.

a Goodness-of-fit classifications are: ‘test’ if statistical test(s) or information criterion (AIC, BIC, etc.) is reported; ‘graph’ if graphical display(s) of fit-
ted values with observed frequencies is provided; ‘not shown’ if article was claimed to have assessed goodness-of-fit but did not show results; ‘none’ if 
article did not report assessment of model fit for the data.

b The table entry is ‘indeterminable’ if covariate effect estimates for excess zeros are not reported, and there is no explicit indication as to whether 
covariates are included in the zero-inflation part of the model.

c Italicized entries indicate inappropriate interpretations for the analysis results presented. The question of appropriateness of interpretation cannot 
be ascertained for models with indeterminate specification. When the excess zeros model part does not contain covariates, interpretations of coefficients 
in the Poisson or negative binomial process as overall effects (i.e., Lambert [1992] and Albert et al. [2011]) are appropriate.

d Primary and permanent teeth. The number of carious surfaces was also analyzed.
e Incidence of noncavitated carious tooth surfaces in primary dentition.
f Figures 1 and 2 in Javali and Pandit [2010] did not include the contributions of excess zeros to the ZIP and ZINB fitted distributions.
g Coefficient estimates for the extra zeros part of the ZIP model are not given in Campus et al. [2011].
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articles analyzed multiple outcomes. Seven articles as-
sessed goodness of fit of the chosen model(s) by reporting 
results from either statistical tests, information criteria or 
graphs; 4 papers made the claim to have inspected their 
data for model selection without showing the results of 
their assessment, and the remaining 4 did not report any 
assessment of fit for ZI models applied to their caries out-
comes. However, in this latter group, each article made a 
general statement that the ZI model was chosen to ad-
dress excess zeros in caries data.

  Eight articles reported analysis results from ZIP or 
ZINB models that included covariates in the zero infla-
tion part of the model in addition to the model for the 
mean count for the at-risk population. Each of these pa-
pers summarized latent class-specific covariate effects 
with estimated regression coefficients or exponentiated 
regression coefficients corresponding to a model specifi-
cation for the probability of an excess zero,  � , and the 
mean  �  caries index for the susceptible class. Three of the 
8 articles gave appropriate interpretations for these latent 
class effects in most instances. For example, in their ab-
stract, Lewsey and Thomson [2004] state: ‘Being in the 
high-SES group during childhood was associated with a 
greater probability of being caries-free by age 18 years, 
over and above that which would be expected from the 
negative binomial process. Low childhood SES also had 
the largest coefficient in the modelling of the negative bi-
nomial process …’. Next, Solinas et al. [2009] give inter-
pretations that are appropriate for the results of the two 
ZI model parts presented from an analysis of Italian 
4-year-olds in the National Pathfinder Survey. Consider 
the sentence in the abstract: ‘The father’s educational lev-
el was significant in both parts of the ZINB regression 
model (p  !  0.05), implying that the degree of caries expe-
rience increases in children whose fathers have a low lev-
el of education, while the excess of caries-free children 
decreases.’ Similarly, Campus et al. [2009] who analyze 
data from the same study as Solinas et al. [2009] use ap-
propriate language in their abstract such as ‘the probabil-
ity of being an extra zero’ and ‘caries experience’ when 
describing results from the zero inflation and negative 
binomial parts of the ZINB model, respectively. Note that 
‘caries experience’, as used in these quotations, has a gen-
eral meaning that must be understood in the specific 
modeling context as applying to the at-risk population 
and not to the overall population.

  The difficulty of interpreting results from ZI models 
often resulted in imprecise, misleading or incorrect infer-
ences. The difficulty arises because interpretations for ZI 
models involving ‘excess zeros’ and ‘caries experience’ 

may be cumbersome and quite often at odds with inter-
pretations dental researchers wish to make regarding 
overall effects relating to prevalence (or incidence) and 
severity (or increment). The last column of  table 1  shows 
the types of interpretations made in the reviewed articles, 
which can be contrasted with the column next to it that 
shows the types of numerical results presented. Discrep-
ancies, which are italicized in the last column, indicate 
errors of interpretation, of which a selection is listed in 
 table 2 . For example, Lewsey and Thomson [2004] make 
a statement where latent class effects are incorrectly in-
terpreted as overall effects for caries severity and preva-
lence ( table 2 ). To investigate the resulting bias of their 
estimates, we examined detailed comparisons of IRR es-
timates for effects in the at-risk latent class versus the IRR 
estimates for effects in the overall population for the co-
variates reported in  table  1  of Lewsey and Thomson 
[2004]. As anticipated, the latent class estimates tended to 
underestimate the ‘overall’ IRR estimates in the sense of 
having values closer to 1.0. Therefore it is suggested that 
the latent class estimates not be considered as substitutes 
or proxies for properly computed ‘overall’ estimates of 
severity. Additional computations and accompanying 
text are provided in the online supplementary material to 
this article.

  Furthermore, while Solinas et al. [2009] do not report 
overall exposure effects, a sentence in the article’s abstract 
could be interpreted by readers that inferences are made 
for prevalence and severity ( table 2 ). Similarly, a statement 
in Campus et al. [2009] linking reported results of a ZINB 
model for dmfs to caries severity (i.e.  � ) is not substanti-
ated by the authors, nor is it qualified by restricting inter-
pretation to the at-risk population. The 5 other articles 
that include covariates in both parts of the ZI model have 
multiple instances of interpreting results for the latent 
classes of the two model components as overall exposure 
effects using language of ‘prevalence’ or ‘severity’ that is 
imprecise, misleading or incorrect ( table 2 ).

  The remaining 7 articles do not report model results for 
the excess zero part of the ZI model ( table 1 ). In the first of 
3 papers to analyze dental caries in children participating 
in the Detroit Dental Health Project, Lim et al. [2008] 
modeled caries count indices using ZINB models where 
the model for the excess zeros, as indicated in a footnote 
to their table 6, contained only an intercept term. The in-
terpretations applied to the results are appropriate since, 
as discussed in the methods section, the exclusion of co-
variates from the excess-zero part of the model permits 
direct inference for the prevalence and caries increment in 
the sampled overall population. Ismail et al. [2009] and 
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Table 2.  Selected examples of incorrect use of the language of prevalence (�) when interpreting results from the ZI part of a ZI model 
and misleading use of the language of severity (�) when interpreting results from the Poisson or negative binomial process of a ZI 
model

Authors and year Evaluation of 
quotation

Quotation

Lewsey and Thomson, 
2004

misleading ‘Thus, 5-year-old children from low-SES groups had, on average, nearly four more surfaces 
affected than their high-SES counterparts, and medium-SES children fell between those two 
groups’ (p. 187)

incorrect ‘The models reveal some interesting differences in the way in which SES was associated with 
caries severity and prevalence in the cohort’ (p. 188)

Hashim et al., 2006 incorrect ZINB … ‘allows the simultaneous modelling of both the prevalence and severity of caries’
(p. 259)

incorrect ‘Children from low-income families had substantially lower probability of being caries-free’ 
(p. 259)

misleading ‘Males had higher dmfs scores on average …’ (p. 259, referring to table 4)

Arora et al., 2008 incorrect ‘The relative odds of having no decayed or filled surfaces’ (p. 824, table 2)
incorrect1 ‘Among children with low ETS exposure, an IQR increment in urine cadmium (0.21 �g/g 

creatinine) is associated with 17% more affected surfaces in children with any decayed or filled 
surfaces’ (p. 824, table 2)

Maserejian et al., 
2008a

incorrect ‘Despite the greater odds of having any permanent dentition caries among Boston children, 
there was no statistically significant linear association between caries rate and rural/urban set-
ting’ (p. 10)

incorrect ‘p values were obtained from the logistic portion of the zero-inflated model that represents 
the probability of having no carious permanent teeth or surfaces’ (p. 11, table 3)

incorrect1 ‘p values were obtained from the linear portion of the zero-inflated model that represents the 
probability of having an additional carious tooth or surface, given that there were any perma-
nent dentition caries’ (p. 11, table 3)

Campus et al., 2009 imprecise ‘The sociodemographic pattern in the probability of being an extra zero was highly influenced 
by a high education level of the father, suggesting that this parameter should affect caries se-
verity, as previously reported’ (p. 160)

Solinas et al., 2009 misleading2 ‘The aim of this paper was to predict the probability of ‘‘caries-free’’ subjects and the depen-
dence of dmfs index on the influence of childhood sociodemographic factors, through the 
application of regression models’ (p. 539, abstract)

Tramini et al., 2009 incorrect ‘The probability of a DMFT equal to zero was associated with a lower sugar consumption’
(p. 471)

misleading ‘Except for the logistic model, where the outcome variable was dichotomized, the other mod-
els [Poisson, ZIP, ZINB] assessed the association of independent variables with disease sever-
ity’ (pp. 469–470)

Campus et al., 2011 misleading ‘The zero-inflated regression model showed that caries severity was significantly associated 
with smoking …’ (p. 40, abstract)

misleading ‘Caries severity was significantly associated with smoking >3 years (p = 0.02), dental check-up 
…’ (p. 43)

imprecise ‘Smoking habit pattern (heavy smokers), self-satisfaction with teeth and gums, frequency of 
dental check-up and gingival status were statistically significant, in the probability to being an 
extra zero. This feature shows a reflection of the higher caries prevalence in subjects with heavy 
smoking habits’ (p. 45)

1 Incorrect hurdle model interpretation. 
2 This statement is technically correct if the reader understands that ‘caries-free’ (with quotations) means excess zero and NOT be-

ing without caries.
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San ders et al. [2008] interpret IRRs as overall effects for the 
population of children in the Detroit study, which would 
be appropriate assuming that covariates were not included 
in the excess-zero part of the model; however, like Javali 
and Pandit [2010], Nelson et al. [2010] and Broadbent et al. 
[2008, 2011], they do not explicitly state that the intercept-
only model was used for excess zeros. In particular, Javali 
and Pandit [2010] only present estimated regression coef-
ficients for the mean caries process of the at-risk latent 
class. Nelson et al. [2010] do not report any regression co-
efficient estimates from their ZIP and ZINB models. Rath-
er, they report the ‘percent increase in mean’ for the out-
comes when comparing two groups, using language appli-
cable to overall exposure effects. They do not fully describe 
the maximum likelihood estimation procedures they em-
ployed, and it is not clear whether statistical methodology 
for estimating overall effects when both model parts con-
tain covariates [Albert et al., 2011] was used.

  Conclusions and Recommendations 

 With the emergence of ZI count regression models in 
caries research, authors have made imprecise, misleading 
and incorrect interpretations of results based on them. 
Eight of 15 (53%) caries articles reviewed reported ZI 
models that included covariates in the excess-zero model 
part, which led to problems in interpretations. In 5 of 
these 8 (63%) articles, authors gave multiple misleading 
or incorrect interpretations for regression coefficients 
corresponding to the ZI model’s latent class parameters 
 �  and  �  by interpreting them as overall effects for caries 
prevalence  �  and severity  � . The other 3 articles in this 
group did not consistently use the terminology of ‘sus-
ceptible’ and ‘nonsusceptible’ for the at-risk and not-at-
risk subgroups, and contained instances of imprecise or 
misleading interpretations for overall effects given to an-
alytic results for them. While the remaining 7 articles did 
not have any similar concerns with interpretations, only 
1 of them [Lim et al., 2008] clearly specified the ZI mod-
el being used by stating that it included only an intercept 
term for the excess-zero part. In total, these results sup-
port the premise underlying this review that the effects 
corresponding to the regression coefficients in the two 
model parts are not typically the parameters of interest, 
but rather caries researchers usually aim, sometimes un-
successfully, to study overall effects [Albert et al., 2011].

  A research goal of studying overall effects of risk fac-
tors on caries indices leads to several recommendations 
regarding model choice for caries counts exhibiting extra-

Poisson dispersion and/or excess zeros: (1) for some popu-
lations with high caries rates (e.g. children in developing 
countries), a negative binomial regression model [Hilbe, 
2008] may provide a reasonable approach; (2) otherwise, 
in the presence of excess zeros, one could consider use of 
a ZI model with only an intercept in the zero inflation part 
of the model; (3) else one could omit the subset of covari-
ates that are of primary interest from the zero inflation 
part of the model as this will simplify calculations and 
interpretations of their effects. However, the researcher 
should be aware that omitting covariates from the excess-
zero part of the model without proper justification could 
result in bias. When model reduction in the excess-zero 
part is not warranted such that the primary exposure vari-
ables of interest are in both model parts, a fourth approach 
is to estimate prevalence (or incidence) and severity (or 
increment) for the overall population as discussed in this 
article and elsewhere [Lambert, 1992; Albert et al., 2011]. 
Model choice should always be justified with a statistical 
assessment or, at least, with a graphical display of differ-
ences between observed and fitted counts.

  For completeness we point out that where count dis-
tributions present with small maximum counts, alterna-
tives to employing ZIP or ZINB models may be more ap-
propriate. These alternative procedures are based on 
mixtures of distributions involving the binomial distri-
bution, including the beta-binomial model (for overdis-
persion), ZI binomial model (for excess zeros) and the ZI 
beta-binomial model (for both overdispersion and excess 
zeros) [Cheung, 2006; Albert et al., 2011]. Gilthorpe et al. 
[2009] discuss that a model based on the Poisson or neg-
ative binomial distributions could inappropriately use 
long tails to describe the bounded distribution of counts, 
resulting in a poor fit for counts at the upper limit. A poor 
fit of the ZIP or ZINB model is less likely when the mean 
count is small relative to the maximum count. We did not 
find any applications of ZI binomial or ZI beta-binomial 
models in the caries literature, nor did we identify any 
caries indices analyzed in the papers reviewed in  table 1  
where the maximum count was sufficiently small to ques-
tion the use of ZIP or ZINB models.

  The results of this review lead to several recommenda-
tions regarding the implementation, interpretation and 
reporting of results based on ZIP and ZINB models in 
caries research: (1) select a model, such as one described 
in the previous paragraph, based on model fit and in con-
sideration of whether interpretation of its parameters fa-
cilitates addressing the research questions of interest (e.g. 
inferences for overall effects vs. latent classes vs. hurdle 
model interpretations); (2) clearly and completely de-
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scribe the statistical models used, following Lim et al. 
[2008] for example, by stating for ZI models whether and 
which covariates were included in the zero inflation part 
of the model; (3) report parameter estimates more com-
pletely such as intercept terms when regression coeffi-
cients are reported and overdispersion parameter esti-
mates in the case of negative binomial and ZINB models, 
stating the software and version used for model estima-
tion, and (4) use precise, consistent, and clear language 
for interpreting results.

  In particular, the importance of discriminating be-
tween inference for the overall population versus that for 
the latent class of susceptible children has been empha-
sized. As in the case of a single dichotomous covariate 
appearing to both ZI model parts, it was shown that the 
estimated latent class effect contrasting the two groups 
 � ̂  2 / � ̂  1 , or equivalently exp( � ̂  1 ), is a biased estimator of the 
overall effect  �  2 / �  1 , which in terms of the ZI model pa-
rameters was given in equation 3. It is also the case that 
the large sample variance estimator of exp( � ̂  1 ) is not 
equivalent to the variance estimator corresponding to 
equation 3. The implication is that caries researchers may 
have underestimated the variance of the overall effect by 
essentially removing contributions of the excess zeros 
from its variability in making exp( �  1 ), and not equation 
3, the basis of inference.

  Our review of caries research articles using ZI models 
had limited scope. We were not able to determine wheth-
er the substantive conclusions reached in the dental caries 
articles were valid because standard errors of IRR (sever-
ity) estimates cannot be determined from published data. 
In order to compute these, estimates of variances and co-
variances of regression coefficients are needed. However, 
misinterpreting effects for the at-risk latent class as over-
all effects could lead to erroneous conclusions, and, as 
shown in the example in the online supplementary ap-
pendix, will usually result in bias towards the null hy-
pothesis of no covariate effects. A second limitation is 
that the review did not address all statistical and method-
ological issues in the caries articles, but only those di-
rectly relating to the use and reporting of results from ZI 
models. Finally, the evaluation of assessment criteria in-
volved subjectivity as well as objectivity. Nonetheless, 
this article concludes that the increasing use of ZI count 
regression models in dental caries research, along with 
frequent misinterpretations of their results as document-
ed in our review, calls for greater collaboration among 
statistical scientists and oral health researchers to ad-
vance the quality of caries research utilizing these highly 
versatile and useful methods.

    Appendix 

 The appendix provides further statistical detail. ZI models de-
fine a Bernoulli process where  s  = 1 selects a class of subjects to be 
considered not at risk for caries (i.e. conditional on being a mem-
ber in this class, they have an observed zero with probability 1), 
with probability  �  =  p ( s  = 1); this is the probability of an ‘excess 
zero’. Otherwise s = 0 indicates the child is susceptible for having 
caries with probability 1 –  � . Additionally, the child’s caries count 
is generated from a Poisson (or negative binomial) distribution 
with mean  � . The overall (or marginal) distribution of a child’s 
caries counts,  Y , is: 

0 with probability if 1

, 0 with probability 1 if 0

s
y

g y| s s

�

� �–

 where  g ( y  �  � ,  s  = 0) is the probability function, for example,  g ( y  �  � , 
 s  = 0) = exp(– � ) �  y / y ! in the Poisson case. Let  g ( y  �  � ) =  g ( y  �  � ,  s  = 
0), and the marginal probability function for  P ( Y  =  y ) is: 

  P ( Y  = 0) =  �  + (1 –  � ) g (0 �  � )
   P ( Y  =  y ) = (1 –  � ) g ( y  �  � ),  y   1  0.                                                    (5)

  The expression for  P ( Y  = 0) shows that a zero count can be gen-
erated in either the excess-zero part or the at-risk part of a
ZI model. The mixture distribution in equation 5 has mean
E( Y ) =  � (1 –  � ), for ZIP or ZINB. The population prevalence is
 �  = 1 –  P ( Y  = 0), where for the Poisson component of the ZIP dis-
tribution  g (0 �  � ) = exp(–   � ), and for the negative binomial part (i.e. 
equation 5.9 of Hilbe [2008]) of the ZINB distribution  g (0 �  � ,  	 ) = 
(1 +  	  � )  –  	    – 1 , where  	  is its overdispersion parameter. For the ZIP 
distribution, the variance is var( Y ) =  E ( Y )(1 +  �  � ), from which it 
is clear that the variance exceeds the mean (when  �   1  0) as in all 
the figures. For ZINB, var( Y ) = E( Y )[1 +  � ( �  +  	 )].

  Equations 1 and 2 specified the ZIP (or ZINB) model for a 
single covariate, and equation 3 gave its IRR for caries severity in 
the overall population. The IRR in the overall population for a 
dichotomous covariate in a model with multiple covariates but 
with no covariates besides itself in the excess zero part of the mod-
el is also given by equation 3. In the specific case of a model with 
a single continuous covariate  x  i , the ratio of means  �  i ( x  i  + 1)/ v  i ( x  i ), 
i.e. the IRR for a 1-unit increase in  x  i  on mean caries increment, 
is: 

0 1
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0 1
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1 exp 1

ii i

i i i

xE Y |x

E Y |x x
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� �

                 (6)

 Note that if  x  i  = 0, giving a dichotomous covariate, equation 6 
reduces to equation 3.
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