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ABSTRACT Based on the rapid development of semiconductors, integrated circuits and the Internet. 3C 

products such as computers, tablets, mobile phones and smart TVs have become an indispensable part of 

people's lives. With the prosperity and development of the 3C product market, the demand for the quality of 

display panels and related detection technologies are increasing. As the iconic network of deep learning, has 

been extensively studied in the field of image recognition and defect detection. Based on the development of 

CNN, this article summarizes the defect detection method of 3C products by CNN with different depths. First, 

we reviewed the origin of CNN and its structural components, then introduced the upgrade and improvement 

of important components, and finally introduced and compared the applications of CNN with different depths 

in defect detection. Through the comparison and summary of the effect of defect detection, we analyze the 

opportunities and challenges of different CNN frameworks, and exhibit the strategies for different application 

scenarios. 

INDEX TERMS  3C products, Defect detecting, Neural network, Convolution network

I. INTRODUCTION 
 

A.     BACKGROUND 

Semiconductors, integrated circuits and network have 

developed rapidly in recent years. 3C products such as 

computers, mobile phones and smart TVs have become an 

indispensable part of people's lives. With the expansion of 

the application field of 3C products and the improvement of 

the public's requirements for product performance, mobile 

communication technology has reached a new level of 

development in theory and application [1]. According to 

statistics, as shown in Fig. 1, the global sale of smartphones 

continued to grow from 2012 to 2016, and the trend 

gradually stabilized at around 150 million from 2016 to 2019. 

Also, and it is predicted that the sale of it will continue to 

increase in 2021[2]. The innovation of 5G technology brings 

new market opportunities for consumer electronics products. 

Digital terminal technology with multiple functions, high 

integration and large screen will be the development trend of 

3C products in the future.  

Figure 1.  Smartphone shipments and future development trends from 
2012 to 2020  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116131, IEEE Access

 

VOLUME XX, 2017 2 

 

With the continuous increase of 3C products outputs and the 

improvement of quality requirements, product quality control 

has become a challenging task. In the surface inspection of 3C 

products, it is extremely difficult to inspect the display screen 

and circuit board. The traditional 3C product surface defect 

detection method is mainly manual, that is, the quality of the 

product surface is inspected by the quality inspectors through 

the eyes [3]. However, the method can not meet the 

requirements of modern industry for high-speed and precision 

detection due to its strong subjectivity, large uncertainty, and 

low efficiency. With the development of the Industrial Internet 

of Things and artificial intelligence, the fourth industrial 

revolution, Industry 4.0, is developing rapidly [4, 5]. On the 

basis of advanced digitization of factories, the combination of 

Internet technologies and future-oriented technology in the 

field of smart objects has created a new fundamental paradigm 

shift in production [6]. With the advent of Industry 4.0, the 

production process has been given an intelligent cyber-

physical system that can generate a large amount of streaming 

sensor data [7]. With the introduction and development of 

"Industry 4.0", intelligent manufacturing, and "Made in China 

2025", the production process has been endowed with an 

intelligent cyber-physical system that can generate a large 

amount of streaming sensor data, industrial product defect 

detection has also received more and more attention [8]. 

Machine vision has become more and more widely used in 

production lines with its real-time, high efficiency and 

accuracy. 

But for machine vision, detecting surface defects of 

reflective displays is a challenge. When the camera is placed 

vertically on a transparent part, it may consider the reflected 

light spot to be a defect. The illumination of transparent parts 

is another important issue. Glare will appear when the light is 

high. If the light is very low, there will be a situation where the 

defect cannot be detected. Even if the light source is sufficient, 

the illuminance on the glass surface usually fluctuates [9]. In 

order to ensure production quality, quality inspection must be 

added in many production links of PCB [10]. Common 

surface defects of mobile phone screens, such as scratches, 

debris and dirt, should be identified and removed in real time 

during the production process. Some sizes of the defect are 

significantly small (about 0.05 mm), which complicate the 

defect detection [11]. 

 

B.     RELATED WORKS 

With the development of machine vision technology, 

researchers use image processing to detect screen defects of 

3C products. Liu et al. [12] proposed an algorithm combining 

the line intercept as the threshold and particle swarm 

optimization, which solved the problem of low detection 

accuracy of mobile phone screen defects. Gao et al. [13] 

improved the median filter algorithm and utilized the image 

processing algorithm to preprocess the defective image. In 

addition, they proposed an image difference algorithm based 

on fast image matching for detection. Zhang et al. [14] posed 

an improved differential image detection method for mobile 

phone screen defects to improve detection efficiency and 

accuracy. However, the performance of pure image 

processing technology cannot achieve satisfactory detection 

results [15]. 

Convolutional Neural Networks (CNN), a research 

hotspot in the field of image detection and pattern recognition, 

has received more and more attention from scholars [16]. Ma 

et al. [17] designed the CNN based on the GoogleNet network, 

which greatly reduced the number of parameters without 

affecting the prediction rate. Experimental results showed that 

the defect detection rate of the designed CNN could reach 

99.5%. Wei et al. [18] proposed a multivariable CNN-based 

defect detection method in the production process of cover 

glass, touch screen and mobile phone display under parallel 

light sources. Experiments verified that the method had higher 

accuracy, better stability and faster speed. The CNN 

architecture mainly includes weight parameter sharing and 

pooling operations which is more complicated.  However, 

CNN is easy to train, and the learned features are translation 

invariant [9]. 

The main content of this research is to review the surface 

defect detection methods with different levels of CNN in 3C 

products such as glass display screens, PCBs and TFT-LCD 

screens. Then, the detection methods and the problems of 

various methods are summarized and discussed. First, we 

outline the types of defects in 3C products and the comparison 

of different detection methods in the context of Industry 4.0. 

Subsequently, the improved CNN structures in various 

scenarios are compared, and the technical limitations and 

detection performance of different methods in practical 

applications are shown. This research summarized and 

compared noteworthy research based on CNN in recent years 

to overcome the challenges of surface defect detection in 3C 

products.  

This literature review mainly focuses on the following 

topics: 

1) What are the defect types of parts in 3C products? 

2) What are the main methods of defect detection in the 

production line? 

3) Compared with manual inspection and machine 

inspection, what are the advantages of machine vision? 

4) What are the advantages of CNN's application in 3C 

product defect detection? 

5) Summary of CNN's in-depth development framework 

and its application in 3C product defect detection. 

6) What is the future development trend of CNN in the 3C 

industry? 

 

C.     METHODOLOGY 

In this study, published literatures were selected from 

databases such as Web of Science, Scopus, CNKI, Google 

Scholar and the Engineering Index, as well as publishers' 

databases such as Elsevier, IEEExplore and Springer. These 

literatures cover the problems related to traditional machine 

vision defect detection and deep learning detection methods in 

3C products. Among them, Web of Science, IEEExplore and 
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other academic databases are rich in literature with a wide 

range of research. As a major producer of 3C products, China 

has many researchers studying the testing of 3C products.  

There are also many excellent Chinese journals and 

dissertations in the research results included by CNKI, so we 

also chose a small number of classic Chinese journals. Glass 

screen, TFT-LCD and PCB are the main parts of 3C products, 

which directly affect the quality and use of products. 
Therefore, when searching literature, keywords related to 

traditional machine vision (such as "machine vision", "visual 

algorithm" and "image processing") and keywords related to 

deep learning (such as "deep learning", "CNN" and "GAN") 

are used. Categories and application areas of 3C products (i.e., 

"mobile phone screen", "TFT-LCD", "PCB", "Defect 

detection" and "Defect classification"). 

The current literature review covers sources including 

journal articles, conference papers, dissertations and a small 

number of classical Chinese journals. The publication year is 

2010-2021, because the past decade is a period of rapid 

development of deep learning. During the review process, we 

have summarized and analyzed the classic literatures on 

related topics, because a more detailed literature review will 

help scholars to the research work of this research field. 
However, due to the limitation of space, we reduced the 

description of the literature less related to the research content.  

Therefore, this paper mainly reviews most of the 

representative literatures, analyzes the literatures with 

significant influence in detail, and summarizes the literatures 

with insufficient influence. 

The selection of references for this paper is based on the 

following considerations： 

1) Research published in peer-reviewed academic journals; 

2) Literatures published after 2010; 

3) This paper aims to use machine vision and deep learning 

methods to study the field of 3C product defect detection; 

4) Research on improvement method of 3C product defect 

detection; 

5) Research through experiments, analysis, evaluation and 

modification. 

 
II. DETECTION OBJECTS AND METHODS 
 

A.     OBJECTS 

As an important interactive component of smart mobile 

devices, the display quality directly affects the operating status 

of the device, so the quality of the glass panels and screens of 

3C products is very important. At the same time, as a provider 

of electrical connections for all electronic components, printed 

circuit boards have the advantages of small size and high 

circuit reliability. Therefore, this paper focuses on three 

product parts, glass display screens, TFT-LCD, and PCB, as 

the main object of research. The surface defects of 3C products 

are shown in Figure 2. Figs. 2 (a1) - (a6) are common defects 

of glass display screens. During the glass screen production 

process, production defects such as cracks, floating objects, 

and point defects will appear [11]. These defects affect the 

overall appearance of the product and also affect the normal 

use of users. Therefore, the factory attaches great importance 

to the inspection of the surface quality of smart devices. Figs. 

2 (b1) - (b6) are common defects of PCB. Due to the 

production environment or process problems, there are often 

open circuit, connection [19], wrong hole, miscellaneous 

copper [20] and other problems in the production of PCB. Figs. 

2 (c1) - (c6) show that TFT-LCD often has defects such as 

color difference, uneven ring, uneven gravity, etc. during the 

production process [21].

 

 
Figure 2. Product defect samples :(a1) - (a6) are common defects of glass display screens, including cracks, floaters and point defects [11, 22]; (b1) - 
(b6) are common defects of PCB, including circuit break, connection, projection and crack [19, 23]; (c1) - (c6) are common defects of TFT-LCD, including 
dot color difference, uneven ring and uneven gravity [21, 24]. 
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B.     METHODS COMPARISON 

Traditional 3C product surface defect inspection methods 

are mainly divided into manual inspection and machine 

inspection. Table Ⅰ compared three common defect detection 

methods. Compared with traditional machine vision 

algorithms, CNN feature extraction and classifiers can be 

automatically trained end-to-end from the input image. The 

method overcomes the shortcomings of traditional methods 

[25]. For example, CNN can extract image features more 

accurately for training, and has better robustness than 

traditional machine vision algorithms. However, the 3C 

product defect detection based on CNN is facing several 

important challenges. 

Traditional machine vision has problems such as poor 

detection feature extraction robustness, high time complexity, 

and window redundancy [26]. But detection methods based on 

deep learning can effectively improve these problems. At the 

same time, the neural network is driven by big data, and the 

detection effect can be improved by increasing the data set 

[27]. However, it is difficult to obtain so many defective 

samples on actual industrial production lines. 

 

TABLE I 
COMPARISON OF THREE DEFECT DETECTION METHODS 

 

Detection 

methods 

Types of detectable defects Advantages Disadvantages 

Manual 

inspection 

Cracks, floating objects, point 

defects, open circuits, 

connections, wrong holes, 

miscellaneous copper, etc. 

Many types of defects 

can be detected. 

The detection speed is slow, which 

consumes manpower and material 

resources. 

Traditional 

machine vision 

Scratches, debris, dirt and other 

easy-to-find types. 

Fast detection speed 

and high efficiency. 

Low accuracy, poor robustness, and 

high time complexity. 

Deep learning Cracks, floating objects, point 

defects, open circuits, 

connections, wrong holes, 

miscellaneous copper, etc. 

Fast detection speed, 

good stability and high 

accuracy. 

It needs a lot of data samples. 

 
III.  CNN IMPROVEMENT RESEARCH 

In 1998, LeCun [28] proposed a CNN structure based on 

gradient learning (the modern structure of LeNet-5), which 

was successfully applied to handwritten digit recognition. 

Compared with the traditional multi-layer neural network, 

CNN mainly adds three basic concepts: local acceptance 

domain, shared weights and pooling layers. Compared with a 

fully connected neural network, the widespread use of shared 

weights reduces the number of degrees of freedom parameters 

without loss of expressive power. This allows CNN to be 

trained by simple gradient descent [29]. Therefore, the 

appearance of LeNET-5 laid the foundation for the application 

of CNN in the field of image recognition. 

Since the AlexNet proposed by Krizhevsky et al. [30] in 

2012 won the ImageNet image classification competition, 

CNN has become the core algorithm in the field of image 

classification and opened a new chapter in deep learning. This 

section describes the improvements of CNN key components 

from three aspects: convolutional layer, pooling layer and 

fully connected layer. 

A.     CONVOLUTIONAL LAYER 

Convolutional layers are one of the most important parts 

of CNN. The main function is to extract sample features from 

the input image. It consists of multiple filters and is used to 

calculate different feature maps. As the first layer of CNN, the 

convolutional layer is the core of CNN. Most calculations are 

performed in the convolutional layer. The traditional 

calculation method of convolution can be expressed by 

Equation (1). Convolutional networks are usually stacked 

alternately by convolution and pooling, and finally connected 

to complete the model construction. The convolution is 

multiplied by the linear filter corresponding to the position of 

the feature map and summed, and then nonlinear activation is 

performed to obtain the feature map. Later, the researchers 

conducted a more in-depth study on the convolutional layer. 

Wei et al. [31] found that dilated convolution can effectively 

integrate the surrounding environment by expanding the 

receptive field size of the kernel, providing a promising 

solution. By expanding the expansion ratio of a 3×3 kernel 

from 1 to 3, the discriminating ability of the convolution 

kernel can be enhanced. This proves that dilated convolution 

uses class activation mapping [32] to generate location maps 

at different dilation rates, which can improve the recognition 

ability of low-response target regions. Lin et al. proposed a 

network in network (NIN) model [33]. The idea is to replace 

the traditional convolutional layer with a multilayer perceptual 

layer, which consists of multiple fully connected layers 

containing nonlinear activation functions, which makes it 

more versatile. For the multi-layer perception layer, the 

calculation formula of feature mapping is as follows: 
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 𝑓𝑖,𝑗,𝑘 = max(𝜔𝑘𝑇𝑥𝑖,𝑗 , 0)           (1) 

 

here (i, j) is the pixel index in the feature map, x (i, j) represents 

the input patch centered at (i, j), and k represents the channel 

index of the feature map. 

 𝑓𝑖,𝑗,𝑘11 = max(𝜔𝑘11𝑇𝑥𝑖,𝑗 + 𝑏𝑘1 , 0) 
…                      𝑓𝑖,𝑗,𝑘𝑛𝑛 = max(𝜔𝑘𝑛𝑛 𝑇𝑓𝑖,𝑗𝑛−1 + 𝑏𝑘1 , 0)  (2)                                                                           
 

among them, n is the number of layers of the multilayer 

perceptron, and the activation function is Relu function. 

In order to extract high-level features in CNN, a common 

method is to perform a deeper convolution, but the problem is 

that the network becomes larger consequently. GoogleNet's 

Inception module draws on the idea of NIN's multilayer 

perceptual layer, reducing parameters and extracting high-

dimensional features under the premise of ensuring the quality 

of the model [34]. The idea of the Inception module is to 

cluster sparse matrices into denser sub-matrices to improve 

computational performance. 

When training a deep neural network, the input of each 

layer will change with training, because the change of the 

parameters of the previous layer will cause the input of this 

layer to change. This phenomenon is called internal covariate 

shift (ICS) [35]. Inception V2 proposes the use of batch 

normalization (BN) to solve this problem, which can alleviate 

ICS and speed up the training speed of deep neural networks. 

After using BN, a higher learning rate can be allowed without 

the risk of divergence. BN also has the effect of a slight 

regularization model. On the other hand, even if the sigmoid 

activation function is used after using BN, the gradient will not 

disappear. 

Inception V3[36] turned 7×7 convolutions in GoogleNet 

into a two-layer concatenation of 1×7 and 7×1. In the same 

way, the 3×3 convolution is changed to 1×3 and 3×1. This 

method not only speeds up the calculation, but also increases 

the nonlinearity of the network and reduces the probability of 

overfitting. The method of Inception V4 [37] was to add 

ResNet's residual module on the basis of the original inception, 

but the residual module of ResNet is not to increase the 

accuracy by increasing the depth, but to increase the 

calculation speed. 

 
B.     POOLING LAYER 

Pooling layer is generally used after convolution layer. It 

can simplify the information output from the convolutional 

layer and reduce the dimensionality of feature mapping [38]. 

There are two kinds of classic pooling operation: average 

pooling and maximum pooling. As shown in Fig. 3, the 

maximum pooling operation is a pooling operation that uses 

the maximum value in the data block as the output and extracts 

the maximum response of the feature plane. The average 

pooling operation is the operation of outputting the arithmetic 

average of the elements in the block as a function and 

extracting the local corresponding average of the feature plane. 

The feature of the maximum pooling operation is to retain the 

image texture features, while the feature of the average 

pooling operation is to retain the overall data features. 

 
(a)  

 

 
(b)  

 
Figure 3. Two kinds of pooling operations; (a) the maximum pooling 

operation; (b) the average pooling operation 
 

In addition to the common average pooling and 

maximum pooling, scholars have also proposed improvements 

in the pooling layer to improve network performance. 

Krizhevsky [30] et al. proposed overlapping pooling in the 

AlexNet network. Compared with the traditional no-

overlapping pooling, the use of overlapping pooling can not 

only improve the prediction accuracy, but also reduce over-

fitting to a certain extent. He [39] et al. proposed a spatial 

pyramid pooling method in their network, which could 

convert the convolutional features of images of any scale into 

the same dimension, which not only allows CNN to process 

images of any scale, but also avoids the problems of cropping, 

warping. The ROI pooling proposed by Girshick et al. [40] in 

Fast R-CNN is an operation widely used in target detection 

tasks using CNN, which greatly improves the processing 

speed. Spatial pyramid pooling (SPP) uses multiple pooling 

operations of different sizes for the same input, and stitches 

the results of different scales as the output. And ROI pooling 

can be regarded as a single-scale SPP, and only one pooling 

operation is performed for an input. 

 
C.    ACTIVATION FUNCTION 

The activation function is a vital part of the neural 

network, it can improve the nonlinear expression ability of the 

model. The activation function is divided into linear and non-

linear activation functions. Different types of activation 

functions such as sigmoid, tanh, ReLu, lReLu, pReLu, etc. can 

be used according to different situations. Among them, the 

mathematical expression of the sigmoid function is: 𝜎(𝑥) = 1/(1 + 𝑒^𝑥 )                    (3) 

 

the range of σ(x) is 0-1. When the ultimate goal of the network 

is to predict probability, it can be applied to the output layer. 

The activation function of tanh is also called the 

hyperbolic function. Similar to sigmoid, tanh also compresses 

a real value. Unlike sigmoid, tanh has zero mean in the output 

range of -1 to 1. The mathematical expression of the tanh 

function is: 
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tanh(𝑥) = sinh(𝑥)cosh(𝑥) = 𝑒𝑥−𝑒−𝑥𝑒𝑥+𝑒−𝑥               (4) 

Both tanh function and sigmoid function have the 

problem of gradient disappearance. In order to solve the 

problem of vanishing gradient, the nonlinear activation 

function of linear rectification function (ReLu) solves this 

problem well. It is better than the two activation functions, and 

it is also the most widely used activation function today. 

The mathematical expression of the ReLu function is: 𝑓(𝑥) = max(0, 𝑥)                                (5) 

the so-called nonlinearity means that the first derivative is not 

a constant. The definition of ReLu is max (0, x), so the 

derivative of ReLu is: 𝑓′(𝑥) = {0     𝑓𝑜𝑟    𝑥 < 01    𝑓𝑜𝑟     𝑥 ≥ 0                       (6) 

Obviously, the derivative of ReLu is not constant, so 

ReLu is nonlinear. ReLu can make the output of some neurons 

zero, by diluting the network and reducing the mutual 

dependence of parameters, to achieve the purpose of reducing 

the occurrence of overfitting. 

However, since ReLu has a gradient of 0 when the neuron 

is inactive, this may cause the initially unactivated unit to 

never activate. For this reason, in 2013 Maas [41] proposed 

leaky ReLu, which compresses the negative part instead of 

mapping it to a constant zero point, so that when the neuron is 

in an inactive state, it allows a small non-zero gradient. The 

mathematical function of leaky ReLu is: 𝑓(𝑥) = max(0.1𝑥, 𝑥)                          (7) 

 

In 2015, He [42] proposed parametric ReLu with 

adaptive learning parameters. Its mathematical function is: 𝑓(𝑥) = max(𝛼𝑥, 𝑥)                            (8) 

where α is a hyperparameter. 

In 2017, inspired by the use of sigmoid function for 

gating in LSTM and highway network, Google researchers 

proposed the swish activation function [43]. Like ReLu, the 

swish function has a lower bound. Unlike ReLu, swish is 

smooth and monotonous, and its mathematical function is: 𝜎(𝑥) = 𝑥1+𝑒−𝑥                                        (9) 

 

D.  IMPROVEMENT OF CNN ARCHITECTURE 

Scholars have begun to study the depth of CNN, and the 

network architecture has also begun to develop in a deeper and 

deeper. If there are more convolutional layers, CNN can easily 

detect complex objects or patterns [44, 45]. By increasing the 

depth of the CNN, the non-linearly increased objective 

function can be better approximated to get better results [46]. 

This section reviews the improved research methods of CNN 

from the aspect of network architecture.

TABLE Ⅱ 
THE EVOLUTION OF THE CNN ARCHITECTURE 

Models Year Depth Main findings Input size 

AlexNet [30] 2012 8 Uses Dropout and ReLU 227×227×3 

NIN [33] 2013 3 Add new layer,’mlpconv’ 32×32×3 

ZfNet[47] 2014 8 Visualization idea of middle layers 224×224×3 

VGG [45] 2014 16,19 Increased depth, small flter size 224×224×3 

GoogLeNet [34] 2015 22 Increased depth, different flter size, concatenation 

concept 

224×224×3 

Inception-V3 [36] 2015 48 Utilizes small fltersize, better feature 

representation 

229×229×3 

Highway [48] 2015 19,32 Presented the multipath concept 32×32×3 

Inception-V4 [37] 2016 70 Divided transform and integration concepts 229×229×3 

ResNet [49] 2016 152 Robust against overftting due to symmetry 

mapping-based skip links 

224×224×3 

WideResNet [50] 2016 28 Decreased the depth and increased the width 32×32×3 

Residual attention 

neural network [51] 

2017 452 Presented the attention technique 40×40×3 

DenseNet [52] 2017 201 Blocks of layers 224×224×3 

MobileNet-v2 [53] 2018 53 Inverted residual structure 224×224×3 

HRNetV2[54] 2020 - High-resolution representations 224×224×3 

In 1998, LeCun [28] proposed the LeNet-5 architecture 

and applied it to the recognition of handwritten digits, laying 

the foundation of CNN in the field of image recognition. 

LeNet-5 consists of two convolutional layers, two pooling 

layers and two fully connected layers. Each convolutional 

layer has a different number of 5×5 filters. There are 6 and 16 

filters on the first and second layers respectively. Feature map 

uses the sigmoid function to activate each time it passes 

through the convolutional layer, and then uses the mean 

pooling operation. Since 2012, CNN has begun to rise, and the 

development of CNN architecture is shown in Table Ⅱ. 

In 2012, Krizhevsky [30] proposed AlexNet and used 

ReLu as the activation function in the network. Successfully 

solve the problem of gradient disappearance in the deep 

network, Sigmoid is used as the activation function. As shown 

in Fig. 4, the architecture of AlexNet consists of 5 

convolutional layers and 3 fully connected layers, and the 

output of each fully connected layer is 4096 neurons. The third, 

fourth, and fifth convolutional layers are directly connected, 

and there is no pooling layer and normalization layer in two 

convolutional layers. The third convolutional layer has 384 

cores of size 3×3×256, which are connected to the 
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standardized, merged output of the second convolutional layer. 

The fourth convolutional layer has 384 cores with a size of 

3×3×192, and the fifth convolutional layer has 256 cores with 

a size of 3×3×192. In order to avoid model overfitting, 

AlexNet uses dropout to randomly ignore some neurons 

during training. 

 

 
Figure 4.  Simplified network structure in AlexNet 

 

VGGNet (Visual Geometry Group Net) [45] is a classic 

convolutional neural network in 2014. Except for the addition 

of a convolutional layer, VGGNet is similar to AlexNet. 

VGGNet consists of 10 convolutional layers, 5 pooling layers 

and 3 fully connected layers. Simonyan et al. [45] used a very 

small convolution filter to achieve significant improvements 

to the current technical configuration by increasing the depth 

of the weight layer to 16-19 layers, proving that classification 

tasks can increase the depth of CNN by using a small 

convolution kernel to improve accuracy. The structure of 

VGGNet is very simple, and the entire network uses 3×3 size 

convolution kernels and 2×2 pooling size. Compared with 

AlexNet, the simpler structure of VGGNet has better 

performance. 

In 2015, the Google team used the idea of a small 

network to conduct research on GoogleNet, which replaced 

the traditional convolution operation with a point-by-point 

group convolution operation, thereby improving 

computational efficiency. The parameters of this network are 

12 times less than that of the 2012 championship team, but it 

is more accurate. GoogleNet adopts the method of NIN to 

improve the performance of the network. This method can be 

seen as an additional 1×1 convolutional layer plus a ReLU 

layer. The most important thing about NIN is dimensionality 

reduction, which solves the computational bottleneck and thus 

solves the problem of limited network size. In this way, the 

depth and width of the network can be increased without 

significant performance loss. 

In 2015, ResNet won the first place in the ImageNet 

competition classification task. Deep convolutional networks 

have added more possibilities to the field of image 

classification[55]. Deep networks naturally integrate features 

and classifiers in an end-to-end multi-layer manner, and 

features can be enriched by the depth of stacked layers. 

However, the number of stacked layers is not the better. 

Recent years, scholars have found that too many stacked 

layers will cause the problem of gradient explosion [56]. 

Gradient explosion has hindered convergence from the 

beginning. This problem is because deepening the network 

will make the optimization of the stochastic gradient descent 

algorithm more difficult, and the network parameters cannot 

be updated, which makes the network training effect worse 

[57]. He et al. [49] proposed a deep residual network 

composed of many residual network structures, namely 

ResNet. The network using the residual structure with short 

connection is similar to performing the same mapping, so that 

the deep convolutional neural network can obtaining the front 

layer gradient. Then, the emergence of the deep residual 

network has improved the representation ability and learning 

ability.  

DenseNet [52] is another deeper convolutional neural 

network. As shown in Figure 5, like the GoogLeNet network 

is composed of inception modules, the ResNet network is 

composed of residual blocks, and the DenseNet network is 

composed of dense blocks. Each layer gets additional input 

from all previous layers, and transfers its own feature map to 

all subsequent layers. Using concatenation, each layer is 

receiving "collective knowledge" from the previous layers. It 

has the following advantages: (1) DenseNet has fewer 

parameters than ResNet, so it is easier to calculate. (2) The 

network enhances the reuse of features. (3) This network is 

easier to train than other deep networks and has a certain 

regularity effect. (4) It alleviates the common problems of 

gradient disappearance and model degradation in deep 

networks. 

 
Figure 5. DenseNet network structure 

 

E.  SUMMARY 

Compared with traditional learning techniques, CNN is 

more scalable because it can obtain higher accuracy by 

increasing the number of network layers and changing the size 

of the training dataset. Because the characteristics of natural 

images are very complex, a large number of parameters design 

and deep network models are required. At the same time, 

researchers have also done research to reduce network 

parameters, such as removing the last fully connected layer 

and replacing it with global average pooling. Currently 

commonly used CNN models such as VGG Net, Google Net, 

ResNet, DenseNet, etc. are designed for the Image Net data 

set, and higher performance can be obtained by increasing the 

number of convolutional layers. 

 
IV.  APPLICATION OF CNN 

As a deep neural network model, CNN performs well in 

the ImageNet challenge [29]. Since the emergence of LeNet-

5, the architecture of CNN has basically been established [57]. 

As shown in Fig. 6, it is the detection process of defect 

detection in 3C production. After the first two steps of defect 

feature extraction, the feature information is input to the most 

classic shallow CNN in the last step. The architecture has a 
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data input layer, two convolutional calculation layers, two 

pooling layers, and a fully connected layer. Limited by the 

software and hardware facilities at the time, LeNet-5 did not 

perform well in large-scale data set classification tasks. 

Traditional CNN is also widely used in the field of industrial 

product inspection, but its sensitivity is relatively low, and it 

is difficult to detect small defects in 3C product inspection.  

 

 
Figure 6. 3C product automatic defect detection process 

 

A.   APPLICATION IN MOBILE PHONE GLASS PLATE 

In the quality inspection of 3C products, defect inspection 

is one of the most important links in the manufacturing process 

of touch screens [58]. ùaban et al. [59] proposed a fast and 

effective glass surface defect detection and segmentation 

method BiasFeed CNN through comparison with traditional 

CNN experiments, which solved the problem of the 

transparency and reflection characteristics of the glass surface. 

They converted the single-value bias input of the traditional 

CNN algorithm into a bias template. Adding a bias template 

solves the problem of light fluctuations in the lighting system. 

Compared with traditional CNN, its specificity and accuracy 

are improved. Zhao et al. [60] proposed an automatic scratch 

detection method (ScratchNet) that combines the LeNet-5 

structure and the VGG network convolutional layer. They 

used the method of connecting two main modules in series to 

optimize CNN for small target defect detection. When using 

the same data for training, the accuracy of LeNet-5 was 

95.97%, and the accuracy of scratchNet was 96.35%.  Jin et al. 

[61] proposed a multi-channel self-encoding convolutional 

network (AECNN) model to deal with the problem of false 

detection due to small difference in feature space in glass 

detection. Generally, in order to make the network achieve 

better information capture ability, it is necessary to increase 

the number of convolution kernels in the network, which also 

makes the training time longer. Therefore, they introduced the 

unsupervised convolutional autoencoder into the 

convolutional neural network to reduce the training time. In 

addition, to prevent the network from overfitting in defect 

recognition, the end classifier was changed to a fuzzy support 

vector machine. The final detection accuracy rate of this model 

is increased from 92.6% to 97%. 

 

TABLE Ⅲ 
COMPARISON BETWEEN DIFFERENT MODELS IN MOBILE PHONE GLASS DEFECTS 

 

Model 

name 

Sample 

object 

Number 

of 

samples 

Accuracy Advantages Disadvantages 

BiasFeed 

CNN  

(8 floors) 

[59] 

Scratch, 

crack 

35 98% Add bias template to improve 

sensitivity. 

Less data sets, reliability needs 

to be improved. 

ScratchNet  

(8 floors) 

[60] 

Small 

scratches  

4600 96.35% Optimize the detection method 

for small objects. 

The method is not end-to-end. 

AECNN  

(8 floors) 

[61] 

Inclusion 

and tumor 

type defects 

600 97% Add unsupervised learning 

methods to reduce training 

time. 

The recognition rate of bubbles 

and tumors is low. 

 

As shown in Table Ⅲ, the detection accuracy of the 

above method for mobile phone glass has been improved, and 

the real-time performance of the experimental results were 

high, but the number of detection samples were small. 

 

B.   APPLICATION IN PCB 

With the improvement of the 3C products quality, the 

surface defect detection of printed circuit boards (PCB) has 

become an important issue. Since PCB defects are usually 

intensively occurring, this detection is a multi-label 

classification problem. In response to this problem, Zhang et 

al. [20] proposed a multi-task CNN model, which has three 

blocks, and each block include a convolutional layer, an 

activation layer and a maximum pooling layer. Finally, six 

types of classification were performed through the fully 

connected layer. The model with 1200 data samples were 

trained according to different types. According to experiments, 

the accuracy of the model reached 92.86%. The model 

proposed by Zhang and Ma et al. [62] was compared in 

multiple categories, and the results are shown in Fig. 7. 
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Among them, Ma uses a defect detection method based on 

machine vision. The overall accuracy of Zhang's model is 

much higher than that of Ma's. Adibhatla et al. [63] used a 

large number of images to train CNN to classify defective or 

intact PCBs. The network has 60 million parameters, 500,000 

neurons, and is composed of 5 convolutional layers. The 

convolutional layer is followed by the largest pooling layer, 

and the last is two fully connected layers. After training, the 

method has a higher accuracy rate. The overall accuracy of 

PCB defect classification has reached 85%. Wang et al. [64] 

proposed a precise PCB defect recognition algorithm based on 

CNN. The model performs a differential operation on the 

reference image to find the defect area, and batches normalize 

the PCB defect images. The model chooses ReLu and 

Maxpooling as the activation function and down-sampling 

methods respectively. Finally, the model used the softmax 

regression classifier for training and optimizing CNN. 

Experiments showed that the correct recognition was 

significantly improved, and the detection accuracy of 10 types 

of PCB defects was as high as 96.67%.  

 

 
Figure 7. Comparison of PCB model detection defects 

 

As shown in Table Ⅳ, the above detection methods can 

realize multi-task classification detection aiming at the 

diversity of PCB defects. Compared with machine vision 

method, CNN method has higher accuracy, and the accuracy 

rate can reach 92%-97%. However, the detection time of the 

above methods is long, the real-time performance and the 

number of detection datasets need to be improved.

 

TABLE Ⅳ 
COMPARISON BETWEEN DIFFERENT MODELS IN PCB DEFECTS 

Model 

name 

Sample object Number of 

samples 

Accuracy Advantages Disadvantages 

LeNet-5  

(9 floors) 

[20] 

Short circuit, 

Open circuit, 

etc. 

1920 92.86% It can handle multiple classification 

tasks, but the number of data sets 

affects accuracy. 

Limited data set affects accuracy. 

LeNet-5 

(9 floors) 

[63] 

Distinguish 

between good 

and damaged 

samples  

1480 85% The detection time of the model is 

shortened, but the accuracy rate needs 

to be improved. 

The accuracy rate is less than 90% and 

needs to be improved. 

LeNet-5 

(9 floors) 

[64] 

Short circuits, 

holes, etc. 

4743 96.67% The real-time performance of the 

model is high.  

The accuracy rate needs to be improved. 

 

C.   APPLICATION IN TFT-LCD 

Traditional image processing algorithms are prone to 

problems such as missed detection and misjudgment in the 

recognition of circuit defects, He et al. [65] compared the use 

of CNN in electronic circuit defect recognition in industrial 

inspection. First, the input image was preprocessed by 

histogram equalization. Second, the image features were 

extracted on the 8-layer CNN structure. Finally, the softmax 

classifier is used to realize the recognition and classification of 

image features. After experimental verification, the model 

algorithm had high accuracy, robustness and generalization 

ability, meeting the needs of industrial testing. They compared 

the method with Faster RCNN, RCNN and Deformable Part 

Mode (DPM), as shown in Fig.8. It can be seen that the 

accuracy of the Depth-2 is higher than that of other models.  

 
Figure 8. Comparison of accuracy and recall of the three algorithms 

mentioned by He[65] 
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D.   SUMMARY 

To sum up, compared with traditional machine vision 

methods, the defect detection model based on CNN improves 

the accuracy, which can reach 92%-98%. Multi-task 

classification can be realized, and the overall accuracy is 

improved, but the detection results of some defect types need 

to be improved. At present, the test object of the experiment is 

relatively simple, and the training dataset of the model is 

limited, which affects the accuracy of the model to a certain 

extent. Data sets similar to the actual production line products 

should be added. They still have great progress to make and a 

long way to do in the detection of small defects. The real-time 

performance of detection needs to be improved. The detection 

model based on shallow CNN can not fully meet the 

requirements of defect detection. In order to improve the 

shortcomings of CNN detection model, scholars constantly 

explore new technologies and methods. 
 
 
V.  APPLICATION OF DEEP CONVOLUTION 

Looking back at the development of deep convolutional 

neural networks in the field of image recognition, we can 

clearly find that the expressive power and feature extraction 

capabilities of DNN increase with the increase of the depth of 

the network increase. Compared with shallow neural networks, 

the performance of DNN is further improved [30]. Since the 

AlexNet proposed by Krizhevsky et al. won the championship 

in the ImageNet competition, scholars have found on the 

exploration of deep convolution, and it has also been widely 

used in the detection of 3C products. As the number of layers 

of the convolutional network increase, its ability to extract 

semantic features is significantly enhanced. However, the 

increase number of layers is also accompanied by the problem 

of the gradient disappearance. After the researchers’ 
exploration, it is observed that the phenomenon of the 

disappearance of the gradient can be solved by the residual 

network and the dense network. With the emergence of 

ResNet and DenseNet, researchers began to conduct more in-

depth research in the field of defect detection. 

 

A.  APPLICATIONS ON THE PHONE SCREEN  

Based on the detection of glass cover defects of smart 

device, Park et al. [25] proposed a multi-channel defect 

detection structure 4-DarkNet, which was based on the model 

superposition in the machine learning integration method. It 

combined a variety of classification or regression models. 

They used DarkNet-19 as a defect classifier, with a total of 19 

convolutional layers and 5 pooling layers. They also applied 

the weighted average method of the stack model to enable the 

independent classifiers in the detection structure to perform 

best. Although the structure is relatively large, it has the 

advantages of fast speed and high precision, and is suitable for 

defect detection on the production line. In view of the multiple 

types of problems on mobile phone screens, Li et al. [22] 

proposed a detection model based on a region of interest 

algorithm. The model structure added a multi-layer perceptron 

(MLP) and deep learning to the ROI and deep learning 

algorithm. Using different deep learning models such as 

VGG-16, ResNet and GoogLeNet to detect with 400 sample, 

the results reached an accuracy rate of more than 97%. Chen 

et al. [23] designed a defect detection method based on CNN 

to solve the problem of the difficult appearance detection of 

smartphone protective screens in the production process. The 

method first divided the sample image into 256×256 pixel 

sample images, and then used 22 layers GoogleNet was 

trained and fine-tuned. In order to make the network model 

less space and time consumption, the hidden layer with more 

parameters was deleted through multiple adjustments of 

parameters, and the 1000-dimensional vector of softmax was 

adjusted to a three-class three-dimensional vector. Finally, 

through five experiments of fine-tuning, the model has 

obtained good detection results. Ma et al. [17] proposed a 

mobile phone surface defect detection method. An industrial 

line scan camera was used to obtain the original surface image 

of the mobile phone. Through the preprocessing steps 

proposed in this article, the obtained image is automatically 

divided into specified sizes. The trained CNN can be 

combined with sliding window technology. Experiments 

showed that the defect detection rate can reach 99.5%. 

Among various glass defects, the detection of dent 

defects is one of the most difficult because of its small depth 

changes and smooth edges. In the defect detection system 

based on machine vision, the dent image has the problems of 

uneven gray scale and low contrast. Wang et al. [66] proposed 

a dent defect detection method based on deep convolutional 

neural network for such problems. By improving the 

DenseNet-121 [67] model, they designed a compact model 

that can be meet the requirement in real-time production. 

However, as the number of network layers increases, there is 

a problem on gradient disappearance, which allows shallow 

features to be discarded, resulting in unfavorable detection of 

small dent defects. The fusion strategy proposed by DenseNet 

can solve this type of problem well. Wang chose DenseNet as 

the infrastructure, which can overcome the data dependence 

problem of the DCNN model and significantly improve the 

recognition accuracy. Experimental results showed that this 

method can further improve the recognition accuracy of the 

dent detection task with 85.42% on 70 test images. In future 

work, this method can be applied to the formula against 

network (GAN) to further improve the robustness. In order to 

quickly and effectively detect and identify touch screen glass 

defects, Zhang et al. [26] proposed a detection and recognition 

method based on Mask R-CNN technology. This method used 

Mask R-CNN as the basic model and used the multi-picture 

stack method to obtain sample data, and then process, label, 

and sample amplification. Since the dataset of this experiment 

is relatively small, they tested three different networks 

(VGG16Net, ResNet50+FPN, ResNet101+FPN) in the 

feature extraction stage. The experimental comparison 

showed that the backbone network detection effect of 

ResNet50+FPN is better, and the accuracy rate was high and 

it had good robustness compared with traditional methods.  
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TABLE Ⅴ 
COMPARISON BETWEEN DIFFERENT MODELS IN MOBILE PHONE GLASS DEFECTS 

Model name Sample 

object 

Number 

of 

samples 

Accuracy Advantages Disadvantages 

4-DarkNet 

(27 floors) 

[25] 

Scratch, 
dent, chips 

4220 99% Effective use of multiple channels 

to measure data. 

Accuracy has improved, but real-

time performance needs to be 

improved. 

ROI+MLP 

(16 floors) 

[22] 

Scratches 4600 97% Optimize the detection method for 

small objects. 

Real-time performance needs to be 

improved. 

GoogleNet  

(21 floors) 

[23] 

Scratches, 

scuffings, 

punctures, 

etc. 

9640 98% The model is more lightweight and 

the training speed is faster. 

There is a difference between the 

detection target and the product 

defect. 

GoogLeNet  

(21 floors) 

[17] 

Point 

defects and 

line defects 

7632 99.5% Greatly reduced the number of 

parameters. 

Fewer types of detectable defects. 

DenseNet  

(15 floors) 

[66] 

Scratch, 
dent, etc. 

210 99.90% Simplified model, real-time 

detection. 

Small sample size, single type of 

detectable defect. 

Mask R-

CNN 

(50 floors) 

[26] 

 

Touch 

screen glass 

defects 

1035 96.7% Has good robustness. Failed to obtain information such 

as defect area, coordinates, etc. 

 

In summary, as shown in Table Ⅴ, these detection models 

based on DCNN have higher accuracy than shallow CNN 

models, ranging from 96% to 99%. These models have high 

real-time performance, and the ability of processing datasets 

has been improved, which is also an important factor affecting 

the accuracy. 

 
B.  APPLICATION IN PCB 

Zhang et al. [68] proposed an improved defect detection 

method for bare PCBs, using VGG-16 as the basic network for 

feature extraction, which is achieved by learning deep 

identification features. It reduced the high requirements for 

deep learning methods for large datasets. This method first 

used artificial defect data samples and expanded datasets, then 

adopted a deep pre-trained CNN to learn defect features, and 

finally utilized a sliding window to further locate defects. This 

algorithm is helpful to establish a robust model for multi-class 

recognition tasks. Cheong et al. [69] introduced a PCB 

automatic component recognition system based on CNN. In 

addition, the defects of PCB components were also localized. 

A simple component recognition classifier based on CNN was 

developed, and the pre-trained model was used for transfer 

learning. Pre-trained models, such as VGG-16, Inception V3 

and DenseNet-169, are used to study which model is best for 

component recognition. The test results showed that using 

transfer learning in VGG16, the best result obtained was 99% 

accuracy, and the main accuracy of the system could reach 

96.54%. Volkau [70] proposed a variant of transfer learning, 

which includes a combination of unsupervised learning used 

on VGG16 and pre-trained on ImageNet weight coefficients. 

The goal is to extract significant semantic features from 

normal samples without supervision. To demonstrate defect 

detection, they utilized a set of PCBs with different defects 

scratches, missing gaskets, extra holes, frayed, and damaged 

PCB edges. The trained model can cluster the normal internal 

representation of PCB features in the high-dimensional feature 

space, and locate the defect blocks in the PCB image 

according to the distance from the normal cluster. Preliminary 

results showed that more than 90% of defects can be detected. 

As shown in Fig. 9, Xia et al. [71] combined SSIM and 

MobileNet-V3 to propose a new PCB defect detector 

structural similarity index (SSIM-NET). Compared with 

YOLO-V3, Faster-RCNN, and tiny defect detection network 

(TDD-NET), SSIM-NET has higher accuracy and speed. The 

method has two stages: the first step is to adopt SSIM to detect 

suspicious areas; the second step is to use the latest lightweight 

backbone Mobilenet-V3 to classify the suspicious areas. After 

testing, the accuracy of the model reached 97.06% and the 

speed of 60fps, achieving real-time detection and high 

precision in the test set. Ding et al. [72] proposed TDD-NET 

in which online hard case mining was used throughout the 

training phase to improve the quality of recommendations 

from the region of interest and thus make more effective use 

of data information. In order to reduce redundancy, non-

maximum suppression was adopted in the proposed regions 

according to the classification score. TDD-NET integrated the 

javascript:;
javascript:;


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116131, IEEE Access

 

VOLUME XX, 2017 12 

multi-scale feature fusion strategy to obtain strong features in 

structure and enhance the ability to detect minor defects, with 

an average accuracy of 98.90%. To sum up, as shown in Table 

Ⅵ, these models not only improve the accuracy, but also 

reduce the requirements for large data sets, because the feature 

extraction ability of the models has been improved. 

 

 
(a)                                                                                                              (b) 

 
Figure 9.  Accuracy and speed comparison of YOLO-V3, Faster-RCNN, TDD-NET and SSIM-NET [106] 

 

 

 

TABLE Ⅵ 
COMPARISON BETWEEN DIFFERENT MODELS IN PCB DEFECTS 

Model name Sample 

object 

Number 

of 

samples 

Accuracy Advantages Disadvantages 

VGG-16 

(16 floors) 

[68] 

Short circuit, 

Open circuit, 

etc. 

1920 92.86% Reduced the high requirements for 

deep learning methods in large 

datasets. 

Accuracy needs to be improved. 

VGG-16 

(16 floors) 

[69] 

 

25 kinds of 

defects such 

as short 

circuit and 

open circuit 

1480 99% Localize the defects of PCB 

components. 

Fewer types of defects detected and 

small data set. 

VGG16 

(16 floors) 

[70] 

 

Scratches, 

abrasions, 

breakages, 

etc. 

4743 96.67% Can be positioned according to defect 

characteristics 

Not suitable for defects with subtle 

changes in texture. 

SSIM-net 

(22 floors) 

[71] 

 

Short circuit, 

Open circuit, 

etc. 

9640 98% The model is more lightweight with 

fast speed. 

Need to add more defect types. 

TDD-Net 

(101 floors) 

[72] 

Tiny defect 

detection 

2508 98.9% Adapt to the detection of small defects. Post-processing methods need to be 

improved. 

 

 
C.  APPLICATION IN TFT-LCD 

Aiming at the defectiis of TFT-LCD circuit, He et al. [73] 

proposed an improved Faster R-CNN algorithm to detect 

defects. They adopted different convolution kernel sizes and 

network layer depths to test the detection performance of the 

model. After testing, the 16-layer neural network structure had 

achieved good detection results, further improving the 

accuracy and practicality of the neural network in the field of 

automatic detection. Kim et al. [74] used VGGnet to detect 

TFT-LCD defects and set the first convolutional layer of 

VGGnet into two spaces. In addition, instead of using a 2×2 

maximum pooling layer on the last pooling layer, a global 

average pooling layer is used, that is, the elements of each 

channel are averaged. After they slightly adjusted VGGnet, 

the model reduced the number of parameters and learning time. 

As shown in Table Ⅶ, these models have improved data 

processing capabilities, real-time performance has been 
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improved, and can be adapted to the detection of production 

line defects. 

 

TABLE Ⅶ 
COMPARISON OF DIFFERENT MODELS IN TFT-LCD DEFECTS 

 

Model name Sample object Number 

of 

samples 

Accuracy Advantages Disadvantages 

Depth-2 

16 floors 

[70] 

Breakpoints, 

breakages, 

foreign objects, 

scratches 

169800 94.6% High real-time. Accuracy should be 

improved. 

Depth-3 

24 floors 

[70] 

Breakpoints, 

breakages, 

foreign objects, 

scratches 

169800 93.7% High real-time. Accuracy should be 

improved. 

VGG net 

16 floors 

[74] 

Breakpoints, 

breakages, 

foreign objects, 

scratches 

2880 86.13% Reduced learning 

parameters and learning 

time. 

The data set is too small, the 

accuracy should be 

improved. 

 

D.   SUMMARY 

To sum up, the aforementioned deep convolutional 

network model is widely used in industrial manufacturing and 

image classification and can achieve good performance. At 

present, the commonly used CNN architectures for defect 

detection are GoogleNet and VGGNet. According to 

researchers' studies, the nonlinearity of the network increases 

as the depth increase, and at the same time it is closer to the 

objective function to obtain a better feature representation. 

However, as the depth increases, the system structure becomes 

complicated and cumbersome, and the real-time performance 

is also weakened. Therefore, how to solve the problem of the 

cumbersome system structure is also worthy of attention. 

Scholars use the residual structure of the residual network to 

establish models and conduct experiments, which proves that 

the residual network is also feasible for defect detection in the 

3C industry [49]. Compared with the ordinary network, the 

residual network introduces one or more jump connections, 

which can make the information of the previous residual block 

flow into the next residual block unimpeded. This improves 

the information flow and avoids the problem of gradient 

disappearance and degradation caused by excessive network 

depth. 

 

Ⅵ.  THE APPLICATION OF GAN IN 3C INDUSTRY 

The idea of confronting network comes from the two-

person zero-sum game in game theory, which is equivalent to 

the two-party game of minimization and maximization [75]. 

The deep learning model is driven by big data, and the training 

effect depends on the sample size, and the training effect is 

proportional to the sample size [76]. However, it is not easy to 

obtain a large number of defective samples from an industrial 

production line [77]. As shown in Fig. 10, scholars can 

generate random defect samples through GAN. Li et al. [78] 

introduced another CNN called deep convolutional generative 

adversarial networks (DCGAN). Through training on various 

image data sets, they proved that it was powerful candidate for 

unsupervised learning. DCGAN is an extension of GAN, with 

convolutional network as discriminator and deconvolution as 

generator. It can automatically extract and fuse defect features, 

expand defect samples. Therefore, scholars began to use GAN 

to generate data sets to expand the number of samples. 

Based on the method of Yuan [79], Lv et al. [80] 

designed a display glass defect detection model suitable for 

small sample learning. They designed DCGAN, which 

introduced residual module to improve the extraction 

capability of feature extraction network. The system 

automatically extracts and merges the defect features from the 

sample images, and expands and generates the defect samples. 

Then, based on the expanded defect sample data set, the 

detection model of FAST R-CNN is improved and trained. 

After the comparison between the original model and the 

model experiment with DCGAN added, in order to evaluate 

the test results, "over-detection rate" (ODR), "missed 

detection rate" (MDR) and "Accuracy" of the data samples 

were compared and evaluated, as shown in Fig. 11. Finally, 

the improved detection model obtained better detection results, 

and solved the problem that the number of defective samples 

in the industry was small and deep learning required a large 

number of samples. The experimental results proved the 

effectiveness and feasibility of combining DCGAN and Fast 

R-CNN for display defect detection. Lu [57] proposed a 

mobile phone display TFT-LCD surface defect detection 

model based on small sample learning. In response to the 

shortage of negative samples on the actual automated 

production line, Lu used the collected small samples and the 

DCGAN network model to generate new negative sample data. 

The algorithm uses DCGAN to target a large amount of newly 

generated data, which makes up for the lack of training data 

and makes the distribution of training data more reasonable. 
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By sending the generated samples into the model trained by 

migration learning, the secondary intensive training is 

performed to obtain better image defect characteristics. 

 

 
Figure 10. Principle and detection process of generating display defect samples through GAN  

 

 
Figure 11. Comparison of Lv's model and Faster-RCNN-based detection model 

 

In summary, unsupervised learning can extract patterns 

and structures from raw data without additional information. 

The introduction of GAN, a defect detection species, solves 

the problem of lack of actual defect samples. There has also 

been a major breakthrough in detection accuracy, which can 

reach 99.23%. But while introducing GAN, the real-time 

performance of the model is not very ideal, therefore the real-

time performance of the model needs to be improved. 

Ⅶ. DISCUSSION 

With the rapid development of information technology, 

smart 3C products have become necessities in people's lives. 

In the automated production of 3C products, the quality of 

each component of the product must be ensured. At present, 

defect detection based on machine vision is the mainstream 

method. Based on the introduction of the development history 

of CNN, this article combines several representative algorithm 
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improvement models to provide an overview of multiple 

defect detection methods using CNN. Neural network can 

solve almost all detection and classification problems, and it is 

a commonly used image processing technology. CNN's ability 

to use spatial patterns is particularly conducive to the value of 

very high spatial resolution data. More and more visualization 

techniques will not only help explain, but also help learn from 

these models to improve the efficiency of defect detection in 

industrial production. In these researches, VGG16 and 

GoogleNet are the two most commonly used architectures. 
However, most of them have specific limitations and rely 

heavily on the size of the data set, image processing and 

texture. Solving the problem of lack of data sets is still a 

difficult problem for many researchers. Moreover, the large-

scale neural network used for deep learning requires a lot of 

computing resources, which also leads to the inevitable large 

computing cost. For the application of different types of CNN 

frameworks, the summary is shown in Table Ⅷ:

 

TABLE Ⅷ 
COMPARISON OF THE ADVANTAGES AND DISADVANTAGES OF DIFFERENT DETECTION METHODS 

 

Detection subject Typical methods Avantages Disadvantages 

Manual inspection Manual visual inspection - Consuming human resources, 

human eyes are easy to fatigue. 

Traditional machine 

vision 

Simple image processing 

technology 

Fast detection speed. Robustness is poor, accuracy rate is 

not enough. 

Shallow CNN LeNet-5 etc. Simple structure, low 

hardware requirements. 

Insufficient accuracy and limited 

ability to obtain data. 

Deep CNN AlexNet, ResNet, etc. Strong ability to extract data 

and high accuracy. 

High hardware requirements, and 

there is a risk of disappearing 

gradient. 

Combine GAN DCGAN Reduce the difficulty of 

obtaining training samples. 

GAN model is easy to collapse. 

 

(1) Many studies have shown that CNN is superior to 

simple machine learning methods [61, 63, 64]. The traditional 

shallow CNN has the advantages of less time consumption, 

light and simple network structure, and low hardware 

requirements. The classic LeNet-5 is often used as the 

representative architecture of the shallow CNN. Although the 

LeNet-5 network has been rarely used in research, it has laid a 

foundation for the development of subsequent convolutional 

networks. In short, in terms of 3C defect detection, shallow 

CNN is more robust than traditional machine vision. The 

convolutional layer can accurately extract image features and 

improve the accuracy of detection. The small space 

complexity enables shallow CNN to adapt to the real-time 

requirements of the production line. However, the ability of 

shallow CNN to obtain data in the network training process is 

limited, which directly affects the accuracy of the training 

model. In future research, scholars should focus on improving 

the detection capabilities of some small defects. 

(2) In the development of depth and adaptability of 

different structures, the learning ability of CNN has been 

significantly improved [23, 25, 71]. Deep CNN benefited 

from the increase in network depth, and its accuracy and 

precision have been improved. According to the summary of 

this article, in the study of 3C defect detection, the most 

commonly used architectures are VGGNet, GoogleNet and 

ResNet. As the network depth increases, the system structure 

becomes complicated and cumbersome, and the requirements 

for hardware are also higher. It also requires a large number of 

data samples to improve the precision and accuracy of the 

system. However, the residual network is composed of 

multiple shallow networks. It does not fundamentally solve the 

problem of vanishing gradients, but avoids vanishing 

gradients. Because shallow networks do not have the problem 

of vanishing gradients during training, ResNet uses this point 

to avoid vanishing gradients. In summary, the detection effect 

of deep CNN is higher than that of shallow CNN, but as the 

depth increases, the data parameters that need to be processed 

increase, and the real-time performance required by the 

production line is not easy to achieve. 

(3) GAN has many advantages in defect detection, for 

example, it can generate real images or videos; its addition can 

reduce the direct data required. At the same time, GAN also 

has many limitations. For example, GAN makes the system 

need more time to train the data; different types of data are 

required to continuously check the results and training data 

(whether it is used correctly), and the model is prone to 

collapse. Therefore, the future research direction of DCGAN 

must be to solve model collapse, non-convergence and 

training difficulties. DCGAN replaces the multilayer 

perceptron in the original GAN with a convolutional neural 

network in the generator and discriminator feature extraction 

layer. When the sample data is limited, DCGAN can improve 

the detection accuracy by extracting and fusing features. It 

effectively solves the limitation of low detection accuracy of 

the detection system when the sample is insufficient. At 

present, GAN is a strong competitor in unsupervised learning 

technology, and DCGAN will become the trend and main 

technology in the field of detection in the future.  

Ⅷ. OUTLOOK 

The proposal of Industrial Manufacturing 4.0 indicates 

that information technology and intelligent manufacturing will 

be the core development direction. Research shows that, in the 

continuous development and improvement, the application of 

CNN in the detection field has achieved good development, 

showing the superiority of feature extraction and classification 

detection. For example, the shortcomings of manual 

inspection of products have been greatly improved, and the 
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manual inspection of products has been improved. The 

product qualification rate is high and the production quality is 

guaranteed. As an algorithm that has attracted attention from 

scholars since its emergence, CNN has solved to certain extent 

problems that could not be solved or solved difficult problems 

before, and greatly improved the efficiency and accuracy in 

the detection field.  

(1) In the research of scholars, various improvement 

strategies have improved the performance of CNN to a certain 

extent, but there are still shortcomings. For example, the 

problem of gradient explosion has not been solved. For the 

problem of complex multi-level network structure, there are 

also problems such as difficulty in obtaining training samples 

and long training time. 

(2) In addition to methods based on increasing the depth 

of convolution, CNN's block-based architecture also 

encourages learning in a modular manner, thereby making the 

architecture simpler and easier to understand. The concept of 

a block as a structural unit will continue to exist and further 

improve the performance of CNN. So, the specific and 

localization of 3C detection objects is expected to be better 

developed.  

(3) Deep learning requires a large number of training 

samples. However, the samples generated by DCGAN 

summarized in this article still need to be manually labeled, 

which is time-consuming and labor-intensive. In recent years, 

supervised learning algorithms have developed rapidly, but it 

is still unsupervised learning algorithms that really determine 

the degree of intelligent development. Future research should 

focus on how to enable machines to automatically learn defect 

features under unsupervised learning. 

(4) Finally, existing defect detection methods are 

generally carried out on two-dimensional picture samples.  

Future research can be improved and upgraded on the original 

basis to realize detection on three-dimensional model, which 

will enrich and improve the theory and application of CNN. 

After the application of 3C product testing, the system can 

directly perform testing on the basis of product parts, which 

will reduce more inspection time. 
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