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Coding of Visual, Auditory, Rule, and Response
Information in the Brain: 10 Years of

Multivoxel Pattern Analysis

Alexandra Woolgar1,2, Jade Jackson1,2, and John Duncan3,4

Abstract

■ How is the processing of task information organized in the

brain? Many views of brain function emphasize modularity,

with different regions specialized for processing different types

of information. However, recent accounts also highlight flexi-

bility, pointing especially to the highly consistent pattern of

frontoparietal activation across many tasks. Although early

insights from functional imaging were based on overall acti-

vation levels during different cognitive operations, in the last

decade many researchers have used multivoxel pattern analy-

ses to interrogate the representational content of activations,

mapping out the brain regions that make particular stimulus,

rule, or response distinctions. Here, we drew on 100 search-

light decoding analyses from 57 published papers to charac-

terize the information coded in different brain networks. The

outcome was highly structured. Visual, auditory, and motor

networks predominantly (but not exclusively) coded visual,

auditory, and motor information, respectively. By contrast,

the frontoparietal multiple-demand network was characterized

by domain generality, coding visual, auditory, motor, and rule

information. The contribution of the default mode network

and voxels elsewhere was minor. The data suggest a balanced

picture of brain organization in which sensory and motor net-

works are relatively specialized for information in their own

domain, whereas a specific frontoparietal network acts as a

domain-general “core” with the capacity to code many different

aspects of a task. ■

INTRODUCTION

Multivoxel pattern analysis (MVPA) of fMRI data is a

powerful and increasingly popular technique used to

examine information coding in the human brain. In

MVPA, information coding is inferred when the pattern

of activation across voxels can reliably discriminate

between two or more events such as different stimuli,

task rules, or participant responses (e.g., Haynes & Rees,

2006; Haxby et al., 2001). For example, if, in a certain

brain region, the patterns of activation elicited in re-

sponse to viewing red objects are more similar to each

other than to the patterns elicited by green objects

(and vice versa), we conclude that there is information

in the patterns that discriminates between red and green

objects and therefore codes for color. This allows infer-

ence beyond traditional univariate brain mapping (e.g.,

this region is more active for colored objects than black

and white ones) to examine the particular discrimina-

tions that the region is able to make (e.g., the region

carries specific information about what color was pre-

sented). Information coding may be tested by compar-

ing the correlation of patterns within object classes to

correlations between object classes (e.g., Haxby et al.,

2001), or using a machine learning algorithm such as a

pattern classifier. For example, if a classifier can be trained

to discriminate between red and green objects, such that

it can predict object color on an independent set of

data, we conclude that the pattern of activation can be

used reliably to discriminate between red and green

objects. The technique has also been generalized to incor-

porate multiple classes to test more complex representa-

tional models (e.g., representational similarity analysis;

Kriegeskorte, Mur, & Bandettini, 2008). It has been used

to examine neural coding of a wide range of different task

events including aspects of stimuli, task rules, participant

responses, rewards, emotion, and language (e.g., McNamee,

Rangel, & O’Doherty, 2013; Herrmann, Obleser, Kalberlah,

Haynes, & Friederici, 2012; Woolgar, Thompson, Bor, &

Duncan, 2011; Peelen&Vuilleumier, 2010;Haxby et al., 2001).

Using a “searchlight,” MVPA can be used to map out

the brain regions that code for each particular type of

information (Kriegeskorte, Goebel, & Bandettini, 2006).

For each brain voxel in turn, pattern analysis is applied

to the pattern of activation across voxels in the local

neighborhood (e.g., in a sphere of a fixed radius centered

on the current voxel of interest), and the resulting metric,

which summarizes the strength of information coding

in the local neighborhood, is given to the center voxel.

The resulting whole-brain map indicates where in the
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brain a particular distinction is coded. This technique

allows for exploratory analyses that are free from a priori

hypotheses about where local patterns will be discrimi-

native, and opens the door for unpredicted findings.

After several years of searchlight MVPA, we now have an

unprecedented opportunity to summarize our knowledge

of information coding in the brain. This is the aim of the

current paper. In the literature, most cognitive tasks com-

prise visual and/or auditory input, task rules, and motor

output, so we focus our analysis on coding of these task

features. We examine the frequency of information coding

reported in five brain networks: the visual, auditory, and

motor networks; the frontoparietal multiple demand

(MD; Duncan, 2006, 2010) or “task-positive” (Fox et al.,

2005) network; and a “task-negative” (Fox et al., 2005) or

“default mode” (Raichle et al., 2001) network (DMN).

Although traditional accounts of brain organization

emphasized modularity of function, several recent pro-

posals highlight the flexibility of many brain regions (e.g.,

Yeo et al., 2015; Dehaene & Naccache, 2001; Duncan,

2001). For example, one of the most consistent findings

in human neuroimaging is a characteristic pattern of acti-

vation in the frontoparietal MD network across a wide

range of different cognitive tasks (e.g., Yeo et al., 2015;

Fedorenko, Duncan, & Kanwisher, 2013; Niendam et al.,

2012; Dosenbach et al., 2006; Naghavi & Nyberg, 2005;

Owen, McMillan, Laird, & Bullmore, 2005; Duncan &

Owen, 2000). This common activity may reflect the com-

mon need for cognitive control, one aspect of which is

proposed to be the adaptive representation of task-relevant

information (Duncan, 2001, 2010). Accordingly, the sug-

gestion is that single neurons in the MD regions adjust

their pattern of firing to encode the specific information

currently relevant for the task, including stimuli, cues,

rules, responses, etc.

The result of our review is a balanced and highly struc-

tured picture of brain organization. According to the

MVPA data published in the last decade, auditory, visual,

and motor networks predominantly code information

from their own domain, whereas the frontoparietal MD

network is characterized by domain generality, coding

all four task features (visual, auditory, motor, and rule

information) more frequently than other brain areas.

After correcting for network area and the number of

studies examining each feature, the contribution of the

DMN and cortex elsewhere is minor. Although sensory

and motor networks are relatively specialized for infor-

mation in their own domain, the MD network appears

to act as a domain-general core with the capacity to code

different aspects of a task as needed for behavior.

METHODS

Paper Selection

We identified peer-reviewed papers published up until

the end of December 2014 by searching PubMed, Scopus,

Web of Science, HighWire, JSTOR, Oxford University

Press Journals, and ScienceDirect databases with the

following search terms: “MVPA searchlight,” “multivari-

ate analysis searchlight,” “multivoxel analysis searchlight,”

and “MVPA spotlight” in any field. We additionally re-

trieved all the studies listed by Google scholar as citing

Kriegeskorte et al. (2006) in which the procedure for

searchlight MVPA was first described. This yielded 537

empirical papers (excluding reviews, comments, methods

papers, or conference abstracts). Of these, we included

studies that performed volumetric searchlight analysis

(Kriegeskorte et al., 2006) across the whole brain of

healthy adults and reported a complete list of the coordi-

nates of peak decoding in template (MNI or TAL) space.1

Because most tasks comprise visual or auditory input,

task rules, and motor output, we focused on these task

features. From each of the papers, we identified inde-

pendent analyses that isolated the multivoxel represen-

tation of a single one of these task features. To achieve

this, if a paper reported two or more nonindependent

analyses (e.g., analyzed overlapping aspects of the same

data), only one analysis was included. We excluded any

analyses in which sensory and motor responses were con-

founded (e.g., if the same visual stimulus was associated

with the same motor response). This procedure yielded a

total of 100 independent analyses from 57 papers.

Characterization of Task Features

We categorized each of the 100 analyses according to

what task feature they examined, namely, whether they

examined the multivoxel discrimination between two or

more visual stimuli, two or more auditory stimuli, two

or more task rules, or two or more motor responses

(Table 1). This categorization was done twice, the first

time being as inclusive as possible, and the second time

using stricter criteria (Table 1, second column). For the

strict categorization, we excluded analyses in which the

multivoxel discrimination pertained to both an aspect of

the physical stimulus and a higher-level stimulus attribute

such as emotion or semantic category. Analyses focusing

on linguistic stimuli (e.g., written or spoken words) were

not included, on the basis that representation of these stim-

uli would be likely to load on language-related processing

more than visual and/or auditory information processing.

Analyses pertaining to the discrimination of visual stim-

uli included discrimination of stimulus orientation, posi-

tion, color, and form. Additional analyses pertaining to

the semantic category of the visual stimulus (e.g., animals

vs. tools; Simanova, Hagoort, Oostenveld, & van Gerven,

2014) and stimuli that were consistently associated with

different rewards (e.g., face vs. currency, where a picture

of currency indicated a monetary reward; Clithero, Smith,

Carter, & Huettel, 2011) were included in our lenient

categorization but excluded from the strict categori-

zation. In our strict categorization, we also excluded two

further studies in which there was a possibility that the
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visual stimulus could evoke representation of motor

actions. These were videos of head turns (Carlin, Rowe,

Kriegeskorte, Thompson, & Calder, 2012) and photos

of hands in rock/paper/scissor pose (Vickery, Chun, &

Lee, 2011).

Analyses pertaining to the coding of auditory informa-

tion included discrimination of the direction of auditory

motion, pitch, loudness, and melody. Analyses pertaining

to the semantic category of sound (e.g., animals vs. tools;

Simanova et al., 2014) or emotion of vocal expression

(Kotz, Kalberlah, Bahlmann, Friederici, & Haynes, 2013)

were also included in our lenient categorization and

excluded from the strict categorization.

Analyses pertaining to the discrimination of task rules

included discrimination of different stimulus–response

mappings (e.g., Bode & Haynes, 2009), intended tasks

(e.g., addition vs. subtraction; Haynes et al., 2007) and

task set (e.g., attend to motion vs. color vs. size; Zhang,

Kriegeskorte, Carlin, & Rowe, 2013). Two analyses were

included in our lenient categorization and excluded from

the strict categorization. One was an analysis that dis-

criminated a dual from single task (Gilbert, 2011), which

was excluded from the strict categorization because of

the obvious confound with difficulty (for discussion,

see Woolgar, Golland, & Bode, 2014; Todd, Nystrom, &

Cohen, 2013), and the other pertained to discrimination

of task set where the stimuli were very similar but not

identical between the two tasks (Li & Yang, 2012).

Analyses pertaining to the discrimination of motor re-

sponses included discrimination of different button

presses and the direction of joystick movement during

response preparation and execution. One analysis that

discriminated between left and right finger tapping

(Carp, Park, Hebrank, Park, & Polk, 2011) was also ex-

cluded from the strict categorization, because it was

not clear whether the side to tap was confounded with

a visual cue. Two further studies were excluded from

our stricter analysis, because it was unclear which of

two possible motor responses was modeled (Colas &

Hsieh, 2014; Huang, Soon, Mullette-Gillman, & Hsieh,

2014).

Analyses

Our first analysis quantified the prevalence of visual,

auditory, rule, and motor information coding in different

brain networks. We focused on Visual, Auditory, and

Motor networks (capitalized to distinguish from visual,

auditory, and motor task features), the frontoparietal

MD network (Fedorenko et al., 2013; Fox et al., 2005;

Duncan & Owen, 2000), and the DMN (Fox et al., 2005;

Raichle et al., 2001). Our definition of the MD network

was taken from the average activation map of Fedorenko

et al. (2013), which is freely available online at imaging.

mrc-cbu.cam.ac.uk/imaging/MDsystem. This map indi-

cates the average activation for high relative to low de-

mand versions of seven tasks including arithmetic, spatial

and verbal working memory, flanker, and Stroop tasks.

Thus, the MD network definition is activation based: It

indexes regions that show a demand-related univariate

increase in activity across tasks. The map is symmetrical

about the midline because data from the two hemispheres

were averaged together in the original paper (Fedorenko

et al., 2013). We used the parcellated map provided on-

line in which the original average activation map was

thresholded at t> 1.5 and then split into anatomical sub-

regions (imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem).

This map includes restricted regions of frontal, parietal,

and occipitotemporal cortices as well as a number of small

subcortical regions. We only included frontal and parietal

regions. The resulting 13 MD regions were located in and

around the left and right anterior inferior frontal sulcus

(aIFS; center of mass [COM] +/−35 47 19, 5.0 cm3),

left and right posterior inferior frontal sulcus (pIFS;

COM +/−40 32 27, 5.7 cm3), left and right anterior insula/

frontal operculum (AI/FO; COM +/−34 19 2, 7.9 cm3),

left and right inferior frontal junction (IFJ; COM +/−44

4 32, 10.1 cm3), left and right premotor cortex (PM; COM

+/−28 −2 56, 9.0 cm3), bilateral ACC/pre-SMA (COM 0

15 46, 18.6 cm3), and left and right intraparietal sulcus

(IPS; COM +/−29 −56 46, 34.0 cm3). Visual, Auditory,

Motor, and DMN networks were taken from the whole-

brain map provided by Power et al. (2011), which par-

titions the brain into networks based on resting state

connectivity. The Visual network consisted of a large

cluster of 182.6 cm3 mm covering the inferior, middle,

and superior occipital, calcarine, lingual and fusiform

gyri, and the cuneus (BA 17, 18, 19, 37), with COM at

MNI coordinates 1 −79 6, plus small clusters in left

BA 37 (0.22 cm3, COM −54 −65 −21) and right inferior

parietal lobe (0.17 cm3, COM 26 −55 55, BA 7). The

Auditory network comprised two large clusters in left

and right superior temporal gyrus and rolandic oper-

culum (23.4 cm3 in each hemisphere, with COM at −51

−22 12 and 52 −19 10, BA 22, 42). The Motor network

comprised a large cluster over the precentral and post-

central gyri, paracentral lobule and SMA (107.7 cm3,

COM 1 −25 60, BA 4, 5, 6), and small clusters in the SMA

at the midline (0.04 cm3, COM 3 7 72) and left and right

middle temporal gyrus (0.07 cm3 with COM −48 −64 11

and 0.02 cm3 with COM 55 −60 6). The DMN comprised

six main clusters around the precuneus (extending to

mid cingulate cortex, 43.9 cm3, COM −1 −51 31, BA 7,

23), ventral ACC, and orbital frontal cortex extending

dorsally along the medial part of the superior frontal gyrus

(107.2 cm3, COM −2 42 24, BA 9, 10, 11, 32), left and

right angular gyrus (12.2 cm3, COM −43 −66 34; 10.6 cm3,

COM 47−62 32; BA 39), and left and right middle temporal

lobe (18.7 cm3, COM−58−17−13; 15.0 cm3, COM58−11

−17, BA 21, 20). To ensure that the networks did not over-

lap, the MD network was masked with each of the other

networks. Therefore, our definition of the MD network

pertained to voxels that were not part of the Visual, Audi-

tory, Motor, or DMN networks. To serve as a comparison
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with our five principal networks, all other voxels in the

voxelwise map of Power et al. (2011), which corresponds

to the anatomical labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002) and excludes the cerebellum, ventricles, and

large white matter tracts, were considered as a residual,

Other network. Definitions of the five principal networks

are depicted in Figure 1.

For each of our task features, we counted the number

of decoding peaks that were reported in each of our six

networks, including Other (any decoding peaks reported

using TAL coordinates were converted to MNI152 space

using tal2mni; imaging.mrc-cbu.cam.ac.uk/downloads/

MNI2tal/tal2mni.m). To visualize these data, for each task

feature and network, we divided the relevant tally by the

number of reported analyses for that task feature and the

volume of the network and plotted them on a stacked

bar chart. We visualized the data from the lenient and

strict categorization separately. Using data from the strict

categorization, we then carried out a series of chi-square

analyses to test for statistical differences in the distri-

bution of information coding across the networks. First,

we carried out a one-way chi-square analysis on the total

number of decoding peaks in each network. For this, the

observed values were the raw numbers of decoding

peaks (across all task features) reported in each network,

and the expected values were set proportional to the

volume of each network. This analysis tests whether

the distribution of information coding between the

networks is predicted by network volume. Second, we

carried out a chi-square test of independence to assess

whether the distribution of information about each task

feature (visual, auditory, motor, and rule decoding

points) was independent of network (MD, Visual, Audi-

tory, Motor, DMN, and Other). Finally, where significant

effects were found in these first two analyses, we carried

out a series of post hoc analyses considering each task

feature and region separately to clarify the basis for the

effect. For each task feature separately, we compared

the distribution of observed coding (tally of decoding

points in each network) to that predicted by the relative

volumes of the six networks. This was done using chi-

square (visual and rule information) or the equivalent

exact goodness of fit multinomial test for situations where

>20% of expected values were <5 (motor and auditory

information; implemented in R version 3.2.2 (Team,

2015) using the XNomial package (Engels, 2014)). Finally

we asked whether the tally of observed coding in each

of the five principal networks separately was greater

than that in Other, using a one-way chi-square test or a

one-tailed exact binomial test where any expected value

was <5.

Our second analysis concerned subdivisions within

the MD network. Although the observation of the MD

activation pattern in response to many kinds of demand

emphasizes the similarity of their response, we do expect

that there will be some functional differences between

the different regions (e.g., Fedorenko et al., 2013). To

explore this, we first carried out a one-way chi-square

comparing the total number of decoding peaks reported

in the seven different MD regions (aIFS, pIFS, AI/FO, IFJ,

PM, ACC/pre-SMA, IPS; data pooled over hemispheres).

Next, we divided the MD regions into two subnetworks:

a frontoparietal (FP) subnetwork, comprising the IPS,

IFJ, and pIFS MD regions, and a cingulo-opercular (CO)

Figure 1. Number of significant decoding points reported in each network, after correcting for the number of analyses examining coding of each

task feature and network volume. Asterisks indicate significance of chi-square or exact binomial goodness of fit tests examining whether there

was more coding in each principal network compared with Other for all points (above bars) or for each task feature separately (asterisks on colored

bar segments). Statistical testing was carried out for the strict categorization data only. *p < .05, **p < .01, ***p < .00001.
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subnetwork comprising ACC/pre-SMA, AI/FO, and aIFS

MD regions (Power & Petersen, 2013; Power et al.,

2011; Dosenbach et al., 2007). We carried out one-way

chi-square test comparing the total number of decoding

peaks reported in the two subnetworks to each other and

to coding in Other. We again used chi-square or the

equivalent exact test (Freeman & Halton, 1951) to test

for independence between subnetwork and task feature

and to compare coding of each feature between the two

subnetworks. Statistical testing was again carried out for

the “strict” categorization data only.

RESULTS

We summarized 100 independent decoding analyses,

reported in 57 published papers, that isolated the multi-

voxel representation of a single one of the following task

features: visual or auditory stimuli, task rules, or motor

output. First, we compared information coding in each

of our five a priori networks of interest, with Other in-

cluded as a baseline. The data, shown in Figure 1, suggest

a highly structured distribution. For data from the strict

categorization (Figure 1B), we used a series of chi-square

analyses and exact tests to examine the statistical differ-

ences between networks. First we asked whether there

was more decoding in some networks compared with

others, over and above the differences expected due to

variation in network volume (see Methods). Indeed, the

total number of decoding peaks varied significantly be-

tween the six networks even after network volume was

accounted for (χ2 (5, n = 365) = 157.16, p < .00001).

Second, we asked whether there was a relationship be-

tween the distribution of coding of the different task fea-

tures and the different brain networks. This chi-square

test of independence was also highly significant (χ2 (15,

n = 365) = 172.34, p < .00001), indicating a significant

relationship between task feature and brain network.

We carried out a series of post hoc analyses to clarify

the basis for these effects. For this, we considered each

task feature separately and compared the number of re-

ported points to the number that would be expected

based on the relative volumes of the six networks. For

all four task features separately, coding differed signifi-

cantly between networks (visual information: χ2 (5, n =

153) = 188.37, p < .00001; auditory information: exact

test p < .00001; rule information: χ2 (5, n = 151) =

29.47, p = .00002; motor information: exact test p <

.00001). For visual information, compared with expec-

tations based on network volume, coding in the Visual

(χ2 (1, n = 84) = 140.71, p < .00001), Motor (exact test,

p= .015), and MD (χ2 (1, n= 77) = 119.65, p< .00001)

networks was significantly more frequent than coding in

Other. No such difference was seen for visual informa-

tion coding in the DMN and Auditory networks ( ps >

.13). Auditory information coding was reported more

frequently in the Auditory (exact test, p < .00001) and

MD (exact test, p = .043) networks compared with

Other (for DMN, Motor, and Visual networks compared

with Other, ps > .68). Rule information coding was re-

ported more frequently in the MD (χ2 (1, n = 99) =

21.06, p < .00001) and Visual (χ2 (1, n = 89) = 5.02,

p = .03) networks compared with Other (equivalent

tests for DMN, Auditory and Motor networks, ps >

.09). Motor information was coded more frequently in

the Motor (exact test, p < .00001), MD (exact test, p =

.008), and DMN (exact test, p = .019) networks com-

pared with Other (equivalent tests for Visual and Audi-

tory networks, ps > .61). Therefore, relative to Other,

the MD network showed more coding of all four task

features (visual, auditory, rule, and motor), the DMN

showed more coding of motor information, the Motor

network showed more coding of motor and visual infor-

mation, the Visual network showed more coding of visual

and rule information, and the Auditory network showed

more coding of auditory information.

Our second series of analyses concerned subdivisions

within the MD network, again using data from the strict

categorization. First, we examined the total number of

decoding peaks in each region, combining across task

feature (visual, auditory, motor, rule). There was no evi-

dence for a difference between the seven MD regions

compared with expectations based on region volume (data

collapsed over hemisphere, χ2 (6, n = 93) = 5.77, p =

.45). Second, we asked whether there were differences

in the reported representational content of two putative

subnetworks, an FP subnetwork (IPS, IFJ, and pIFS), pro-

posed to support transient control processes, and a CO

network (ACC/pre-SMA, AI/FO, and aIFS), proposed to

support sustained control processes (Dosenbach et al.,

2007). The data are shown in Figure 2. There was no

evidence for a difference in the frequency of information

coding in these two subnetworks (χ2 (1, n = 84) = 2.62,

p = .11), with encoding in both subnetworks more fre-

quent than encoding in Other (FP: χ2 (1, n = 178) =

124.28, p < .00001; CO: χ2 (1, n = 132) = 23.99, p <

.00001). Interestingly, however, there was a significant

relationship between subnetwork and information type

(Freeman–Halton extension of Fisher’s exact test, p =

.002), suggesting that the two networks had different

representational profiles. The dissociation was driven by

more coding of visual information in FP than CO (χ2 (1,

n = 41) = 6.65, p = .010) and more coding of motor

information in CO than in FP (two-tailed binomial exact

test, 0% of motor points in FP was less than the 69.2%

predicted based on the two subnetwork volumes, p =

.009). Visual points were reported in all FP regions as

well as in ACC–pre-SMA and AI/FO, whereas motor points

were only reported in ACC/pre-SMA and aIFS. There was

no difference in coding between the subnetworks for

rule or auditory information, ps > .48. The pattern of

results did not change if ROIs were restricted to gray matter

or if coordinates reported in TAL were converted to MNI

using the tal2icbm_spm routine provided with GingerALE

(www.brainmap.org/icbm2tal/ ) instead of tal2mni.
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To aid the reader in visualizing the data, we generated

a whole-brain decoding map from the lenient categori-

zation. For this, the peak decoding coordinates reported

in each analysis were projected onto a single template

brain, smoothed (15 FWHM Guassian kernel) and thresh-

olded (≥3 times the height of a single peak). The result-

ing map indicates regions most commonly identified as

making task-relevant distinctions in the literature. As can

be seen in Figure 3, regions of maximum reported de-

coding corresponded well with our a priori networks.

Information coding was frequently reported in the MD

network (bilateral ACC/pre-SMA, right AI/FO, left IFJ, left

and right aIFS, right pIFS, left PM, and left and right IPS),

Visual network (BA 18/19) extending to inferior temporal

cortex, Auditory network (left and right superior temporal

gyrus), and the Motor network (left and right precentral

and postcentral gyri). Additional small regions of frequent

decoding were found in the dorsal part of the right middle

frontal gyrus (BA 9/8), the ventral part of the right inferior

frontal gyrus (BA 45/47), a ventral part of the left pre-

cuneus (BA 30), and the right temporal parietal junction

(BA 21). We similarly generated whole-brain decoding

Figure 2. Number of significant

decoding points reported in

each MD subnetwork after

correcting for the number

of analyses examining coding

of each task feature and

subnetwork volume. Asterisks

indicate significance of

chi-square or exact binomial

goodness of fit tests examining

whether there was more

coding in each subnetwork

compared with Other for all

points (above bars) or for

each task feature separately

(asterisks on colored bar

segments) and comparing

coding of each task feature

between the two subnetworks

(asterisks above colored

horizontal lines). Statistical

testing was carried out for

the strict categorization data

only. *p < .05, **p < .01,

***p < .00001.

Figure 3. Brain regions where significant decoding of visual, auditory, rule, and motor information was most frequently reported in the literature.

Areas of maximal decoding are shown rendered on left and right hemisphere and on the medial surface (x = −4). To create this visualization,

all the decoding peaks were projected onto a single template brain, smoothed, and summed, and the resulting image was thresholded at 3 times

the maximum height of a single smoothed peak.
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maps for each task feature separately (using a lower

threshold of 1.2 * single peak height to account for the

smaller number of data points in this visualization). As

can be seen in Figure 4, the result was a reassuring pic-

ture in which visual information was predominantly

found to be encoded in the visual cortex, with some

additional contribution from frontal and parietal lobes,

auditory information was predominantly reported in

the auditory cortex, and motor information was primarily

coded in motor cortices. Rule was the most diffusely

coded task feature, represented in frontal, parietal, and

occipitotemporal cortices. These maps did not change

markedly if the strict categorization data were used

instead.

DISCUSSION

The human brain is a massively parallel complex system.

In the past three decades, PET and fMRI technologies

have allowed us to probe the function of different parts

of this system by assessing what regions are active in dif-

ferent tasks. In the last decade, MVPA has taken this en-

deavor to a new level, enabling us to study what aspects

of stimuli, rules, and responses are discriminated in the

local pattern of multivoxel activation in different brain

regions. In this paper, we summarized the current state

of the literature, drawing on 100 independent analyses,

reported in 57 published papers, to describe the distribu-

tion of visual, auditory, rule, and motor information pro-

cessing in the brain. The result is a balanced view of brain

modularity and flexibility. Sensory and motor networks

predominantly coded information from their own do-

main, whereas the frontoparietal MD network coded all

the different task features we examined. The contribution

of the DMN and voxels elsewhere was minor.

The observation that the MD network codes informa-

tion from multiple domains fits well with an adaptive

view of this system. Consistent with the observation of

similar frontoparietal activity across many tasks (e.g.,

Yeo et al., 2015; Fedorenko et al., 2013; Duncan & Owen,

2000; Dosenbach et al., 2006), the proposal is that these

regions adapt their function as needed for the task in

hand (Duncan, 2001, 2010). To support goal-directed be-

havior in different circumstances, they are proposed to

be capable of encoding a range of different types of infor-

mation, including the details of auditory and visual stim-

uli that are relevant to the current cognitive operation

(Duncan, 2010). Support comes from single unit record-

ings, in which the firing rates of prefrontal and parietal

cells have been shown to code task rules (e.g., Sigala,

Kusunoki, Nimmo-Smith, Gaffan, & Duncan, 2008; Wallis,

Anderson, & Miller, 2001; White & Wise, 1999), behav-

ioral responses (e.g., Asaad, Rainer, & Miller, 1998; Niki &

Watanabe, 1976), auditory stimuli (e.g., Romanski, 2007;

Azumo & Suzuki, 1984), and visual stimuli (e.g., Freedman &

Assad, 2006; Freedman, Riesenhuber, Poggio, & Miller, 2001;

Hoshi, Shima, & Tanji, 1998; Rao, Rainer, & Miller, 1997).

Further support for an adaptive view of this system comes

Figure 4. Brain regions

where significant decoding

of (A) visual, (B) auditory,

(C) rule, and (D) motor

information was most

frequently reported in the

literature. To create this

visualization, the decoding

peaks for each task feature

(lenient categorization)

were projected onto a single

template brain, smoothed,

and summed, and the

resulting image was

thresholded at 1.2 times

the maximum height of a

single smoothed peak.

(E) Maps from A to D

flattened and overlaid at

50% transparency.
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from the observation that the responses of single units

in prefrontal and parietal regions adjust to code different

information over the course of single trials (Kadohisa

et al., 2013; Stokes et al., 2013; Rao et al., 1997) and make

different stimulus distinctions in different task contexts

(Freedman & Assad, 2006; Freedman et al., 2001). Accord-

ingly, in human functional imaging, the strength of multi-

voxel codes in the MD system has been found to adjust

according to task requirements, with perceptual discrimi-

nation increasing under conditions of high perceptual

demand (Woolgar, Williams, & Rich, 2015; Woolgar,

Hampshire, Thompson, & Duncan, 2011), rule discrimi-

nation increasing when rules are more complex (Woolgar,

Afshar, Williams, & Rich, 2015), and a greater represen-

tation of visual objects that are at the focus of attention

(Woolgar, Williams, et al., 2015). These regions are also

thought to make qualitatively different distinctions be-

tween visual stimuli in different task contexts (Harel,

Kravitz, & Baker, 2014). The data presented here empha-

size the extent of flexibility in these regions, suggesting

that they are capable of representing task relevant infor-

mation from visual, auditory, rule, and motor domains.

Although each of the individual MD regions are known

to respond to a wide range of cognitive demands (e.g.,

Fedorenko et al., 2013), it nonetheless seems likely that

the different regions will support somewhat different

cognitive functions. Several organizational schemes have

been proposed for the pFC, including a rostrocaudal axis

along which different regions support progressively more

abstract control processes (Badre & D’Esposito, 2007;

Koechlin & Summerfield, 2007), ventral and dorsal seg-

regation based on the modality of the information being

processed (Goldman-Rakic, 1998), different types of

attentional orienting (Corbetta & Shulman, 2002) or what

the information will be used for (O’Reilly, 2010), and a

medial/ lateral segregation based on conflict monitoring

and task set implementation (Botvinick, 2008), although

some of these accounts have been challenged experi-

mentally (Crittenden & Duncan, 2014; Grinband et al.,

2011). One prominent subdivision of the MD system

draws a distinction between an FP subnetwork compris-

ing the MD regions on the dorsal lateral prefrontal surface

and the IPS, and a CO subnetwork comprising cortex

around ACC/pre-SMA, AI/FO, and aIFS. This distinction

is born out in analysis of resting state connectivity (Power

& Petersen, 2013; Power et al., 2011), and the two sub-

networks have been ascribed various different functions,

for example, supporting transient versus sustained con-

trol processes (Power & Petersen, 2013; Dosenbach

et al., 2007), “executive” versus “salience” systems (Seeley

et al., 2007), and transformation versus maintenance of

information (Hampshire, Highfield, Parkin, & Owen,

2012). In our data, there was no evidence for differences

in the frequency with which information coding was

reported in the seven (bilateral) MD regions separately.

Subdividing the MD system into FP and CO subnetworks

also resulted in comparable levels of coding overall in

each subnetwork. However, there was a significant dif-

ference in the profile of task features coded by these

two subnetworks, with more coding of visual information

in FP than in CO and more coding of motor information

in CO than in FP. In CO, motor points were reported both

in the ACC/pre-SMA region known to support motor func-

tion and also in the aIFS. Clarification of the basis of the

subnetwork coding difference, and how we should inter-

pret it, will require further work.

Visual, auditory, and motor regions principally coded

information from their own domain. However, the visual

and motor networks also showed some domain general-

ity, with coding of other task features. Particularly salient

was the overlap between the maps for visual and rule in-

formation in the visual cortex (Figure 4E). In our review,

it was difficult to completely rule out confounds between

domains. For example, task rules were usually cued visu-

ally, meaning that the visual properties of the cues, as

much as representation of the abstract rules per se, could

drive discrimination between rules. However, there are

some cases of rule coding in the visual cortex where this

explanation is not sufficient. For example, we previously

reported that discrimination between two stimulus–

response mapping rules in the visual cortex generalizes

over the two visual stimuli used to cue each rule (Woolgar,

Thompson, et al., 2011). Similarly, Zhang et al. (2013)

found that rule discrimination in the calcarine sulcus

generalized over externally cued and internally chosen

rules, and Soon, Namburi, and Chee (2013) reported rule

discrimination in the visual cortex when rules were cued

with an auditory cue. In some cases, rule discrimination

in the visual cortex may reflect different preparatory

signals, for example, if the two rules direct attention to

different visual features (e.g., Zhang et al., 2013) or object

categories (e.g., Soon et al., 2013), but this is not always

the case: the two rules of Woolgar, Thompson, et al.

(2011) required attention to the same features of identi-

cal visual stimuli. Intriguingly, both rule and response

coding has previously been reported in the firing rates of

single units in V4 of the macaque visual cortex (Mirabella

et al., 2007).

In the motor cortex, the majority of reported coding

was for discrimination between motor movements, but

this region also showed appreciable coding of visual

stimuli. Interestingly, population level responses in the

primary motor cortex of the macaque have been reported

to encode visual stimuli and stimulus–response mapping

rules (e.g., Riehle, Kornblum, & Requin, 1994, 1997;

Zhang, Riehle, Requin, & Kornblum, 1997). In the MVPA

papers we studied, it was often difficult to say precisely

what aspects of a stimulus underpinned a given multi-

voxel discrimination. For example, visual presentation of

a familiar object might evoke representation of its asso-

ciated properties in other sensory domains (e.g., implied

somatosensory properties when watching manual explo-

ration of objects; Kaplan &Meyer, 2012). We excluded any

papers in which there were obvious associations between
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our task features, and in our stricter analysis, we also

excluded any studies in which higher-level features such

as semantic category differed between decoded items, or

cases where items might evoke representations of asso-

ciated motor actions. The remaining points of visual dis-

crimination in the motor cortex were for discrimination

between Gabor patches differing in color and spatial fre-

quency (Pollmann, Zinke, Baumgartner, Geringswald, &

Hanke, 2014), the spatial location of a target (Kalberlah,

Chen, Heinzle, & Haynes, 2011), radial versus concentric

glass patterns (Mayhew & Kourtzi, 2013; Mayhew, Li,

Storrar, Tsvetanov, & Kourtzi, 2010), and between two

abstract shapes cuing the same rule (Reverberi, Gorgen,

& Haynes, 2012a). In one study, radial and concentric

patterns had been associated with differential button

presses during training, although during scanning, par-

ticipants performed an unrelated task (Mayhew et al.,

2010). In all other cases, any button press responses

given by participants were orthogonal (Mayhew & Kourtzi,

2013) or unrelated (Pollmann et al., 2014; Reverberi et al.,

2012a; Kalberlah et al., 2011; Mayhew et al., 2010) to the

visual discrimination.

A few of the studies we included reported multivoxel

coding in the DMN. In some cases, the reported discrim-

ination in the DMN reflected participant intentions, such

as coding of internally selected task choices (Momennejad

& Haynes, 2012; Vickery et al., 2011; Haynes et al., 2007)

or externally instructed task rules (Soon et al., 2013; Nee

& Brown, 2012) during preparatory periods, the time

delay after which participants will self-initiate a switch

(Momennejad & Haynes, 2012), and the button which

the participant intends to press (Soon, Brass, Heinze, &

Haynes, 2008). In other cases, it reflected aspects of active

tasks including current rule (Zhang et al., 2013; Reverberi

et al., 2012a; Reverberi, Gorgen, & Haynes, 2012b) and

stimulus (e.g., orientation of a Gabor [Kahnt, Grueschow,

Speck, & Haynes, 2011], concentric versus radial glass

patterns [Mayhew & Kourtzi, 2013], and harmonicity of

a sound [Giordano, McAdams, Zatorre, Kriegeskorte, &

Belin, 2013]). Interestingly, this network has recently been

reported to show activation during task switching and

multivoxel discrimination between the tasks being

switched to (Crittenden, Mitchell, & Duncan, 2015). Addi-

tionally, we recently reported multivoxel discrimination

between stimulus–response mapping rules in the pre-

cuneus, overlapping a major node of the DMN, during an

active stimulus–response task (Woolgar, Afshar, et al.,

2015). Those data suggest a role for DMN that is qualita-

tively different from the internally driven activities such

as mind wandering and introspection with which this

network is more typically associated (e.g., Buckner,

Andrews-Hanna, & Schacter, 2008).

There was more coding of motor information in the

DMN than in Other, but all five DMN motor coding

points came from a single study (Soon et al., 2008). Four

of these points corresponded to discriminatory activa-

tion in preparation of a left versus right button press at

a time point before the participant had indicated their

conscious intention to press a button, and the remaining

point was for response preparation when participants

were cued to make a choice. There were no motor cod-

ing points in the DMN during button press execution.

An important challenge for MVPA is to account for var-

iables that differ between conditions on an individual par-

ticipant basis, such as differences in RT (Woolgar et al.,

2014; Todd et al., 2013). Because MVPA is usually carried

out at the level of individual participants, with a direction-

less summary statistic (e.g., classification accuracy) taken

to the second level, any effect of difficulty, effort, atten-

tion, time on task, trial order (etc.) will not average out at

the group level. This may be a particular concern in re-

gions such as the MD and DMN networks, which are

known to show different overall activity levels according

to task demand. It is difficult to estimate the extent to

which these factors have contributed to the data analyzed

here. Some of the included studies matched their condi-

tions for difficulty (e.g., Zhang et al., 2013), explicitly ac-

counted for differences in RT in their analysis (e.g.,

Woolgar, Thompson, et al., 2011), or used designs in

which difficulty was unlikely to artifactually drive coding

(e.g., passive viewing, Kaplan & Meyer, 2012), but many

did not. Other studies sought to account for univariate

effects of difficulty that could drive multivariate results,

for example, by normalizing the multivoxel patterns to re-

move overall activation differences between conditions at

the level of individual participants (e.g., Gilbert, 2011).

However, because the effect of difficulty would not nec-

essarily manifest as an overall activation difference, this

could still fail to remove the effect of difficulty on decod-

ing. In our stricter analysis, we excluded analyses in

which there was an obvious difference in difficulty be-

tween discriminated conditions, but most studies did

not report whether there were any differences between

conditions on an individual participant basis. Note,

though, that we have previously examined the extent to

which trial by trial differences in RT contribute to decod-

ing in empirical data and found the contribution to be

minor (Crittenden et al., 2015; Erez & Duncan, 2015;

Woolgar et al., 2014).

We summarized 100 independent analyses, reported in

57 published papers, that isolated the multivoxel repre-

sentation of visual and auditory sensory input, task rules,

or motor output. The results confirm the power of the

MVPA method, with predominant coding of visual, audi-

tory, and response distinctions in the expected sensory

and motor regions. Outside sensory and motor areas,

the results were also structured, with a specific network

of frontal and parietal regions involved in coding several

different types of information. Consistent with the obser-

vation of similar frontoparietal activity across many tasks

and the suggestion that neurons in these regions adapt

their function as needed for current behavior (Duncan

2001), frontoparietal cortex codes information from across

sensory and task domains.
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