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Abstract

In this review, we apply selected imputation strategies to label-free liquid chromatography–mass 

spectrometry (LC–MS) proteomics datasets to evaluate the accuracy with respect to metrics of 

variance and classification. We evaluate several commonly used imputation approaches for 

individual merits and discuss the caveats of each approach with respect to the example LC–MS 

proteomics data. In general, local similarity-based approaches, such as the regularized expectation 

maximization and least-squares adaptive algorithms, yield the best overall performances with 

respect to metrics of accuracy and robustness. However, no single algorithm consistently 

outperforms the remaining approaches, and in some cases, performing classification without 

imputation sometimes yielded the most accurate classification. Thus, because of the complex 

mechanisms of missing data in proteomics, which also vary from peptide to protein, no individual 

method is a single solution for imputation. On the basis of the observations in this review, the goal 

for imputation in the field of computational proteomics should be to develop new approaches that 

work generically for this data type and new strategies to guide users in the selection of the best 

imputation for their dataset and analysis objectives.
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INTRODUCTION

Global proteomics studies that have the potential for comprehensive protein profiling of a 

biological sample are commonly performed using label-free liquid chromatography–mass 

spectrometry (LC–MS).1–7 Unfortunately, a substantial fraction of data at the peptide level 

is missing from proteomic datasets in these discovery-based studies, whereas validation 

studies using targeted methods, but only a few peptides, do not suffer from this issue. This 

missing information prevents the full, complete, and accurate extraction of quantitative 

protein and functional information, especially for the tasks of clustering, supervised 

learning, or protein network inference.8–10 Thus, one of the major challenges of global 

proteomic studies is to deal with this missing data appropriately. Because many statistical 

approaches require complete datasets, there is a large body of statistical literature addressing 

missing data across diverse fields of science.11–21 The options are to ignore the missing data 

and only test observed data, to employ statistical methods that accommodate missing values, 

or to impute the missing values using simple or more sophisticated models based on 

assumptions about the underlying structure of the missing data. It is not unusual for LC–MS 

proteomics datasets to have as much as 50% missing peptide values. The option of ignoring 

missing values would dramatically reduce the size and completeness of the data and limit 

the researchers’ ability to infer information about the peptides and proteins.

Parallels between proteomics and microarray-based gene expression analysis exist: 

proteomics return a matrix of quantitative values for peptides, and microarray-based gene 

expression analysis returns probe-level transcripts.22–24 However, important distinctions 

must be drawn between the two technologies with respect to the missing data. For 

microarray experiments, the missing values may occur because of various effects including 

presence of contaminants, scratches, or mechanical spotting problems. Missing data 

generally comprise less than 5% of the total observed transcript abundances. In contrast, 

global proteomics datasets typically are missing 20–50% of the total possible peptide values. 

Moreover, the missing peptide values result from an unknown and complex combination of 
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random and nonrandom processes.17,25–34 For these reasons, imputation strategies employed 

for microarray data may or may not be appropriate to impute missing proteomic data. For 

example, quantitative accuracy depends on chromatographic and instrumental 

characteristics, such as resolution and scan speed. Biological-based reasons for missing data 

include amino acid sequence differences between a peptide in the sample and the reference 

database (for example, posttranslational modifications (PTMs) and splice variants). For 

example, a PTM in one biological group may result in no identification of data for that 

peptide in that group because the mass has changed. Finally, a peptide would not be 

observed if the parent protein is, in fact, not present in a particular sample. The underlying 

mechanisms by which these data are missing may be independent of the value itself 

(namely, missing at random, or MAR), or mechanism(s) may be dependent on the data 

(namely, not missing at random, or NMAR).

To date, a comprehensive review and discussion has not been published covering the 

impacts of imputation on global LC–MS proteomics. In this review, we first explore the 

relationship between missing data and peptide intensity. We then apply selected imputation 

strategies to three label-free LC–MS datasets to evaluate the accuracy with respect to 

metrics of variance and sample classification. We examine these commonly used imputation 

approaches (available through existing code) for their individual merits and caveats with 

respect to LC–MS proteomics data.

IMPUTATION METHODS

Over the past decade, a variety of imputation algorithms have been developed and 

subsequently discussed in the literature.12,14–16,20,27,35–38 In general, these algorithms can 

be grouped into three categories: (1) imputation by a single-digit replacement, (2) 

imputation based on local structures in datasets, and (3) imputation based on global 

structures in datasets. In this review, we evaluated 10 distinct imputation methods; brief 

descriptions of these methods are given below. All imputation methods except two were 

available or easily coded with MATLAB (R2012a), from MathWorks, Inc. (Natwick, MA); 

the others were run using Java code available online and R code available from the authors 

of the DAnTE software.39 The source codes were downloaded and run locally. Imputation 

methods used in this review are in Table 1.

Single-Value Approaches (LOD1, LOD2, RTI)

Single-value imputation refers to replacing missing values by a constant or a randomly 

selected value. These simple replacement procedures have been shown in microarray-based 

gene expression analyses to result in low performances when compared with other more 

advanced approaches;20 however, these approaches may perform well in the presence of 

largely left-censored missing values and thus are evaluated here. Left-censoring means the 

values are missing from the low intensity (i.e., left tail) across the full distribution of 

possible measured intensity values. When data is censored in such a way, it is considered to 

be NMAR.

One approach to selecting a replacement value for a dataset is to use some minimal observed 

values estimated as the limit of detection (LOD). Half of the global minimum and half of the 
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peptide minimum are common approaches currently used in the proteomics community to 

fill in missing values.40,41 Half of the global minimum is defined as the minimal observed 

intensity value (not on the log scale) among all peptides (LOD1). The peptide minimum is 

the lowest intensity value observed for an individual peptide, and half of this value is 

referred to as LOD2. Random tail imputation (RTI) is based on the assumption that the 

entire proteomics dataset can be modeled by a single distribution and that the majority of the 

missing data are left-censored and can be drawn from the tail of the distribution.42,43 RTI 

computes the global mean and standard deviation of all observed values within the 

proteomics dataset, μ and σ, respectively. Peptide intensities are plotted as frequency 

histograms, and the missing values are then drawn from a truncated normal distribution to 

obtain values that are within with the left tail of the distribution, N(μ,σ) – k. The parameter k 

is selected as a maximum value that allows the imputed data to merge into the left tail of the 

base distribution N(μ,σ) without yielding a bimodal distribution. The parameter selection of 

k is based on recursive visualization of the imputed data at various values of k using 

histograms until a suitable value is achieved.

Local Similarity Approaches (KNN, LLS, LSA, REM, and MBI)

Local-similarity-based imputation methods estimate missing values based on the expression 

profiles of several other peptides with similar peptide intensity profiles in the same dataset. 

These methods, in general, make the assumption that genes/proteins are regulated 

dependently and that highly correlated expression behaviors are normally observed with 

coregulated genes/proteins.44 These algorithms tend to follow two basic steps. First, a set of 

peptides “closest” to the target peptide is chosen. The closeness is usually determined by a 

measure of similarity (for example, Euclidean distance or correlation). Second, the missing 

value of a target peptide is imputed by a weighted combination of the neighboring peptides 

that were selected by the distance metric.

K nearest neighbors (KNN) is an imputation method that directly accounts for the local 

similarity of the data by identifying similar peptides with similar peak intensity profiles via a 

distance. KNN was implemented in MATLAB with 10 neighbors per peptide based on 

Euclidean distance. In some cases, all 10 neighbors had missing values, in which case the 

algorithm used the next 10 closest neighbors until the missing value could be imputed.

The local least-squares (LLS) imputation is a regression-based estimation method that takes 

into account the local similarity of the data (in other words, between peptide intensity 

profiles). Missing values in a target peptide are estimated as a linear combination of K 

similar peptides, which are determined based on an absolute Pearson correlation coefficient. 

The appropriate number of neighboring peptide intensities are estimated by the algorithm, 

and missing values for a target peptide are imputed by multiple regressions based on 

leastsquares estimation.16

The least-squares adaptive (LSA) method uses the least-squares principle to estimate 

missing values. The imputations for the peptides are the weighted averages of several single 

regression estimates of the same missing values from the most correlated peptides with the 

target peptide. The estimates for the samples are determined by multiple regressions with 

missing values replaced by the estimates for the peptides in the intensity matrix. Missing 
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values are subsequently imputed by the weighted average of imputation estimates for the 

peptides and samples.35

The regularized expectation maximization (REM) algorithm is an iterative process of linear 

regression of variables (peptide intensities) with missing values on peptides without missing 

values. Regression coefficients are estimated by ridge regression. A regularized regression 

parameter in ridge regression is determined by generalized cross-validation by minimizing 

the expected mean-squared error of imputed values.19

Model-based imputation (MBI) is an approach that imputes missing values in the context of 

a protein-specific additive model,26 yijkm = Proti + Pepij + Grpijk + errorijkm, where yijkm is 

the peak intensity of the jth peptide (Pep) associated with the ith protein (Prot) within 

biological group (Grp) k defined by the experimental design for sample m. The parameters 

of the model are estimated from the observed data, and random draws from either a 

truncated normal distribution (if the peptide has high probability of censoring) or from the 

standard normal distribution based on the observed data form the basis of the imputation.

Global-Structure Approaches (PPCA and BPCA)

Global-structure-based imputation methods apply dimension reduction techniques to 

decompose the data matrix and then iteratively reconstruct the missing values. Probabilistic 

principal component analysis (PPCA) is a formulation of PCA with the assumption that the 

latent variables and the noise are normally distributed. In the PPCA framework, the missing 

values, together with the principal components, are viewed as the model parameters, which 

are implemented as the maximum likelihood estimates of the model parameters via an 

expectation-maximization (EM) algorithm.37 The Bayesian principal component analysis 

(BPCA) algorithm uses a Bayesian estimation to fit a PPCA model. BPCA consists of three 

components: principal component regression, Bayesian estimation, and an iterative EM 

algorithm. The posterior distribution of the model parameters and the missing values are 

estimated simultaneously by using a variational Bayes algorithm with automatic relevance 

determination until convergence is reached.37 Missing values are initially imputed by 

peptide average.36 The BPCA algorithm in MATLAB requires a great deal of central 

processing unit time to impute missing values for large datasets, such as the human plasma 

and mouse lung discussed in the next section.

DATASETS

This evaluation was conducted using three LC–MS datasets. The first is a dilution series 

experiment where the same sample was consistently diluted and therefore the ratio between 

dilutions is known and can be evaluated after imputation. The second and third datasets are 

based on real experiments evaluating human plasma and mouse lung tissue. The human 

plasma dataset has high genotypic and phenotypic heterogeneity within and across 

experimental groups, and the mouse lung dataset has high genotypic and phenotypic 

homogeneity within experimental group.
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Dilution Series Dataset

A dilution series experiment was conducted to generate a dataset in which known peptide 

and protein quantitative ratios could be constructed and used to evaluate the level of 

censoring at low dilutions. This dataset has already been described in detail.45 As a 

summary, this dataset consists of 15 mouse plasma samples, which were subjected to four 

dilutions such that the total amount of protein was kept constant by supplementing with 

protein from Shewanella oneidensis. The dilutions consisted of a ratio of (1) 1:0 mouse/S. 

oneidensis, (2) 1:1 mouse/S. oneidensis, (3) 1:3 mouse/S. oneidensis, and (4) 1:7 mouse/S. 

oneidensis peptides. Peptide intensity data were transformed to the log2 scale and filtered 

first by peptides with insufficient data to construct ratios across all dilutions. Data were 

normalized as a function of the expected dilution ratio to the largest concentration, yielding 

expected log2 ratios between the largest dilution to the remaining three of 1, 2, and 3, 

respectively. The dilution series dataset required the imputation of 8939 values of the 91 080 

possible values representing the matrix of 60 samples by 1518 peptides (namely, only 

approximately 10% of total possible values). This fraction is relatively low for a typical 

proteomics dataset because of the requirements of the experiment to retain adequate data for 

each peptide to perform the ratio calculation over all dilutions. This requirement is also the 

reason for the low peptide and protein counts for this dataset. However, because of the small 

size of this dataset, it is the only dataset for which all 10 imputation strategies return results.

Human Plasma

The human plasma dataset is associated with an experiment comparing individuals with 

normal glucose tolerance (NGT) from type 2 diabetics (T2D). This dataset has been 

previously described in detail.46 As a summary, this dataset consisted of 71 plasma samples 

evaluated, of which 48 were NGT and 23 were T2D. Retaining only peptides with adequate 

data for either a quantitative or qualitative comparison between NGT and T2D, the total 

dataset consisted of 6729 peptides associated with 815 proteins. This dataset had a moderate 

amount of total missing data in comparison to many proteomics datasets, at approximately 

29%.

Mouse Lung

The mouse lung dataset is associated with an experiment comparing in-bred mice for 

proteome changes in either obesity or exposure to lipopolysaccharide (LPS). This dataset 

has also been described in detail in previous work.47 As a summary, this dataset consisted of 

32 lung samples from male C57BL/6 mice, separated into four groups of 8 mice based on 

two exposures: LPS versus sham control and normal weight versus high-fat-diet-induced 

obese mice. The total dataset after routine filtering that removes any peptides with 

inadequate data for statistics consisted of 6295 peptides associated with 1679 proteins. This 

dataset contained the largest overall global fraction of missing data, approximately 41%.

RESULTS

The algorithms evaluated worked relatively well in general but had several key issues. 

Although run times are reported for PPCA, under specific parameter settings there were 

cases where the algorithms failed and had to be readjusted. In particular, PPCA was 
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sensitive to the number of components used in the optimization, and some parameter values 

yielded an optimization value of infinity and terminated without output. The value of 10 was 

found to work consistently for all of these datasets and therefore was used for all analyses 

with PPCA except for classification when more than 10 scores were required. In addition, 

the MBI R script would not produce the full output (peptides and proteins) of some of the 

test sets because of a filtering step inherent in the code and therefore could not be compared 

directly. Given that the MBI code available has not undergone rigorous testing and 

validation, we evaluated this algorithm only for the dilution series. Lastly, none of our 

example datasets, except for the dilution series, completed within 1 week using the BPCA 

algorithm on a standard desktop machine (Intel Xeon CPU Dual processors at 2.4 GHz 

machine with 12 GB RAM), and BPCA was thus considered to time-out and was also only 

evaluated in the context of the dilution series. All proteins were estimated using a standard 

reference-based averaging approach.46 This approach selects the peptide that has the least 

amount of missing data and greatest average intensity in the situation of a tie, scales the 

peptides to the same mean intensity, and then averages the peptides to a protein-level 

estimate.

First, the missing data structure of our two general experimental datasets (human plasma and 

mouse lung) is evaluated to determine if an assumption of left-censoring is appropriate. 

Second, the dilution series data is used to evaluate the potential of the imputation methods to 

return a known dilution ratio. Lastly, the human plasma and mouse lung datasets are 

evaluated for effects of imputation on the separation of the known phenotypes and 

exposures.

Missing Data Evaluation

Peptide peak intensity and the amount of missing data have been previously shown to be 

negatively correlated.26,27 It has further been conjectured that this is due to left-censoring of 

the data. Under the assumption that missing data are completely left-censored, only low-

abundant peptides should have missing values and the fraction of missing values should 

increase as the peptide intensity decreases. We evaluate this relationship within only our 

control groups of the human plasma and mouse lung datasets: NGT (n = 23) and sham 

control (n = 8), respectively. The negative relationship between missing values and log10 

mean intensity within these control groups is illustrated in Figure 1A,B for the human and 

mouse datasets, respectively. The negative correlation between peptide missing data and 

intensity is computed as −0.51 for Figure 1A and −0.40 for Figure 1B. However, it is clear 

that not all peptides of low intensity have large amounts of missing values and likewise not 

all highly abundant peptides have high coverage.

In Figure 1A,B, a horizontal line indicates 50% missing data for an individual peptide across 

all samples, and a vertical line identifies the mean log10 intensity across all peptides. We 

observed in the human plasma dataset that, in total, about 27% of the peptides based on 

these thresholds either have large intensity and large amounts of missing data or low 

intensity and low amounts of missing data. The mouse lung dataset is from an experiment 

with much smaller sample sizes, but it has a similar pattern as that of the human plasma 

dataset. Figure 1 demonstrates that although there is a relationship between peptide intensity 
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and missing values possibly associated with mechanisms, such as limit-of-detection issues, 

there are many peptides with high mean log10 intensity and large fractions of missing values 

and conversely low-abundant peptides with very few missing values. Thus, the missing 

values are a combination of NMAR and MAR data.

The fraction of data missing from each group can be tested against the hypothesis that they 

are equally missing across groups using a g-test on the total number of missing values.33 

The g-test is a modified chi-square test of independence that determines if the missing data 

are randomly distributed across experimental groups. For the human plasma dataset, we 

applied a g-test to each peptide with missing values to determine if the missing values are 

randomly distributed across the two groups (NGT versus T2D). Only 43% of the missing 

values could be statistically assigned to a left-censored peptide as defined by a significant g-

test result (p-value < 0.05). The second example dataset (mouse lung) had only 19% of the 

missing values associated with a peptide with a significant g-test result at the same p-value 

threshold across the four unique groups associated with obesity and LPS exposure. Thus, the 

mechanisms of missing data are as complex as the experimental platforms and the biology 

being studied.

Comparison to Expected Ratio (Dilution Experiment)

The dilution series dataset gives us peptides for which an expected ratio is known. For each 

peptide and protein, the coefficient of variation (CV) of the root-mean-square error (RMSE) 

was used as a robust metric of deviation of the observed values from the expected values. It 

is a common approach used in microarray-based gene expression experiments for the 

evaluation of imputation approaches when the true value is known.20 The RMSE is the 

square root of the average deviation between predicted and observed values. The 

CV(RMSE) normalizes the RMSE of each peptide to the observed mean of that peptide to 

equally weight all peptides and proteins to their average measured intensity, whether high-or 

low-abundant

(1)

The dilution series is designed to have expected log2 ratios of 1, 2, and 3 between paired 

samples, where xijkm is the log2 ratio of the base dilution to the jth dilution factor for the ith 

peptide (or protein) of the kth mouse sample for imputation approach m, where k is included 

only if that mouse has a missing value (MV). The RMSE is computed only for peptides with 

missing values (k ∈ MV), and nij is the number of missing values for the ith peptide within 

dilution j.

The distribution of log transformed CV(RMSE) values across peptides and proteins for each 

imputation is given in Figure 2A for peptides and 2B for proteins. The clear increase in 

CV(RMSE) as a result of blanket imputation (LOD1, LOD2) or random models (RTI) is the 

most notable observation of Figure 2. The CV(RMSE) values in Figure 2 were compared 

using a Friedman’s test to account for the blocking factor of peptide or protein. We observed 
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a clear distinction between the imputation approaches, p-value < 2 × 10−10 for both the 

peptide and protein data, implying a statistically significant difference in at least one of the 

imputation methods. Posthoc analysis with a Wilcoxon’s signed-rank test with a Bonferroni 

correction was performed to more clearly evaluate the differences between individual 

imputation strategies. At the peptide level (Figure 2A), there was no difference among 

REM, LSA, and BPCA, but they had significantly lower CV(RMSE) than the other 

approaches. The algorithms PPCA, MBI, KNN, and LLS also were not statistically different 

from one another and had smaller CV(RMSE) than LOD2, RTI, and LOD1; these last three 

were all statistically different from one another. At the protein level (Figure 2B), the 

statistics are based on a smaller sample size since there are many more peptides than 

proteins and the distinction between imputation algorithms is not as clear. The first seven 

imputation approaches in Figure 2B are not statistically different from each other with a 

Bonferroni correction, and LLS is significantly lower than some of the top seven (BPCA, 

REM, LSA, MBI, PPCA, LOD2, and KNN), but not all. Again, RTI and LOD1 have the 

highest CV(RMSE) for predicting the expected ratios. For both the peptide and protein level 

data, the top three imputation approaches are the same, BPCA, REM, and LSA.

Classification on Real Experiments (Human Plasma and Mouse Lung Data)

The human plasma and mouse lung datasets were used to provide a LC–MS datasets with 

peptide variability as would be observed from a typical experiment. Because these two 

datasets are collected on real samples, we do not have any estimates of the actual values of 

the missing data. Therefore, they are evaluated by the effect of the imputation on 

classification of the distinct phenotypes and/or exposures. In particular, for the human 

diabetes set, we are comparing the NGT to the T2D phenotype, and for the mouse lung 

dataset, we are comparing the phenotypes of obesity and LPS exposure. A common 

approach to classification of high-dimensional data is to attain a small number of latent 

variables, such as those obtained from PCA, and perform classification using a standard 

algorithm, such as linear discriminant analysis (LDA). A problem in proteomics is that due 

to missing data conventional PCA cannot be performed with standard methods supplied by 

statistical computing software because PCA requires complete data, which would require 

either reducing the dataset to only peptides with complete data or imputation. PCA can be 

solved using alternate approaches, such as PPCA previously described (under Global 

Structure Approaches) or using an algorithm called sequential projection pursuit (SPP) via 

optimization of the objective function defined as variance (sppPCA).32,37 Thus, two 

evaluation strategies are employed. First, seven imputation methods were applied to the 

dataset, and based on the imputed complete data, traditional PCA was completed. The 

number of latent variables that explained 75% of the variance on average were retained for 

each of the imputation methods. The second strategy infers the principal component score 

matrix using optimization routines via PPCA and sppPCA. From these score matrices, the 

same number of latent variables was extracted as for the imputation methods.

For the two test datasets, a 5-fold cross-validation was performed and applied to the nine 

methods being evaluated: seven imputation algorithms (KNN, LLS, LOD1, LOD2, LSA, 

REM, and RTI) followed by the subsequent PCA-LDA and the two direct methods (PPCA 

and sppPCA) to infer latent variables followed by LDA. The classification accuracy was the 
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number of samples predicted correctly divided by the total number of samples. To evaluate 

differences between the classification methods, the 5-fold cross-validation procedure was 

repeated 1000 times to obtain a metric of variance in the classification accuracy.

For the mouse lung dataset, 83 495 (46%) of the values across the 201 440 observations 

associated with the 32 samples and 6295 peptides had to be imputed. The evaluation of the 

classification accuracy using [Imputation/PCA]-LDA, PPCA-LDA, and SPP-LDA was 

based on 15 principal components at the peptide level and 14 principal components at the 

protein level. In particular, each imputation approach yielded classification accuracy for 

each of the 1000 iterations of 5-fold CV. Using the iterations as a paired blocking factor 

across imputation algorithms, results from Friedman’s nonparametric statistical test resulted 

in a significant difference in the imputation methods (p-value < 1 × 10−50). A Wilcoxon 

signed-rank test with a Bonferroni multiple test correction was used to analyze all pairwise 

comparisons and significant differences. Figure 3 shows the confidence intervals of the 

posthoc test of the imputation algorithms sorted by the peptide-level classification accuracy, 

where larger ranks correspond to larger classification accuracies. The method sppPCA-LDA 

performed the best (namely, no imputation and inference of the principal components using 

SPP optimization prior to classification) at both the peptide (Figure 3A) and protein (Figure 

3B) levels.

The human plasma dataset consisted of approximately 29% missing data: 138 540 missing 

values from the 71 samples and 6729 peptides. The imputation of this test dataset was 

evaluated in a similar manner to the mouse lung data via either [Imputation/PCA]-LDA, 

PPCA-LDA, and sppPCA-LDA, retaining the top 15 principal components for the peptide 

data and 17 principal components for the protein data. The same analysis as for the mouse 

lung dataset was performed, but the classification task was to compare NGT to T2D groups 

for classification accuracy. The best classification accuracy was returned by REM/PCA-

LDA at the peptide level (Figure 3C) and sppPCA-LDA at the protein level (Figure 3D). A 

Friedman test (blocked on the repeated sampling) followed by a Wilcoxon rank sum posthoc 

test showed that the classification accuracies were again significantly different across the 

approaches. In this case, the protein-level results show some similarity in trend to the 

peptide level, however; REM/PCA-LDA becomes the second most accurate approach, and 

sppPCA-LDA is the most accurate.

DISCUSSION

Several imputation methods perform relatively well for the evaluation metrics, such as 

classification accuracy and CV-(RMSE) with the test datasets. Each dataset was imputed at 

the peptide level and then evaluated for classification accuracy at both the peptide and 

protein levels. No single imputation algorithm consistently outperformed the others. Each 

dataset had slightly different algorithms that performed optimally at the peptide and/or 

protein levels (Figures 2 and 3). Moreover, it is difficult to generalize the performance of the 

three imputation strategies (naïve, local, global) because of the range of performance. 

However, in general, the imputation approaches that gave the most accurate classification of 

the dilution and complete datasets used local similarity, such as REM and LSA. The RTI-, 

KNN-, and LOD-based algorithms generally produced poor classification accuracy at both 
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the peptide and protein levels, similar to results in microarray. Without in-depth knowledge 

of the dataset, the best a priori choices for imputation may be REM or LSA.

The sppPCA approach is valid only for classification, but given the excellent performance at 

the peptide and protein levels, further exploration into the value of peptide versus protein 

level imputation is needed. A valid strategy to proteomic data analysis may be to impute 

only under necessity and build data mining and analysis tools that do not require imputation. 

To evaluate these imputation algorithms further, each algorithm was given a rank from 1 to 

8 (all imputations except BPCA and MBI), where 1 is the best and 8 is the worst for the 

CV(RMSE) evaluation for the peptide and protein level evaluation. Likewise, the four 

classification accuracy evaluations in Figure 3 were also used to rank the algorithms from 1 

to 9 (seven imputations and two latent variable prediction methods) and averaged. Figure 4 

shows a scatter plot comparing the average ranks based on these two metrics, which are 

relatively well-correlated (Pearson correlation; R = 0.82). The sppPCA method is 

represented only as a green line since it does not perform imputation and thus its scale on the 

y axis is unknown.

Prior work imputing global transcriptomics data (microarray) found that success of 

imputation approaches at the probe level with respect to RMSE does not necessarily 

translate to clustering accuracy at the gene level.21 Figure 4 does show some correlation 

based on ranking between variance metrics and correlation, but we also observed dataset-

dependent correlation between accuracy at the peptide and protein levels in Figure 5. The 

dilution dataset peptide imputation results are highly correlated with the protein results 

(Figure 5A, R = 0.98). In contrast, the mouse lung peptide imputations have low correlation 

with the protein results (Figure 5B, R = 0.42), and the human plasma imputation results are 

moderately correlated (Figure 5C, R = 0.60). The dilution series’ high correlation at the 

peptide and protein levels is likely because of the simplicity of the experiment. That is, the 

only changes in expression between groups are based on a dilution and therefore do not 

reflect the same level of proteoform complexity as that in the mouse lung and human plasma 

datasets. These later two datasets have diverse proteoforms, such as PTMs and splice 

variants, for which current global protein quantification methods do not readily account.46,48

CONCLUSIONS

Imputation of missing proteomic data must be performed with caution. Imputation is 

advantageous for many downstream analyses (e.g., PCA, hierarchical clustering) because 

imputation enables inclusion of the full dataset. Our evaluation exercises demonstrate that it 

is not always evident when one imputation strategy would be advantageous versus another. 

Clearly, selection of the appropriate imputation strategy(ies) will depend upon the data and 

the goals of the analysis. Progress in development, application, and evaluation of strategies 

for imputation would be enabled by better understanding of the role and variability of the 

analytical and data processing processes (e.g., analytical replicates, inference of protein 

abundances, etc.) responsible for underlying missing data. On the basis of the results here, 

REM or LSA approaches work the best in general for proteomics. However, it is clear that 

the field of computational proteomics needs new approaches that work generically for this 

type of data and new strategies to guide users in the selection of the best imputation for their 
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dataset and analysis objectives. Alternatively, the sppPCA approach is valid only for 

classification, but given the excellent performance at the peptide and protein levels, further 

exploration into the value of peptide versus protein level imputation is needed. A valid 

strategy to proteomic data analysis may be to impute only under necessity and build data 

mining and analysis tools that do not require imputation.
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Figure 1. 
Average log10 intensity as measured by peptide peak area in the control group versus 

fraction of missing values and peptide counts associated with bins corresponding to the 

fraction of missing data comparing phenotypes and exposures for datasets from (A) human 

plasma and (B) mouse lung. The control group for the human plasma is the normal glucose 

tolerant (NGT) samples, and the sham group for the mouse lung is the regular weight mice 

with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average 

intensity, and the horizontal red line represents the point that 50% of the values are missing. 
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The red numbers are the fraction of peptides that fall into the four boxes separated by the red 

lines.
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Figure 2. 
Boxplot of the average log10 CV(RMSE) for the imputed dilution series datasets (Table 1) at 

the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the 

upper line of the box represents the 75th percentile, and the inner line corresponds to the 

median log10 CV(RMSE).
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Figure 3. 
95% confidence intervals of the ranks to compare all imputation algorithms based on 

classification accuracy for the mouse lung and human plasma data at the peptide level (A, C) 

and at the protein level (B, D), respectively. Single-value imputation algorithms are colored 

black, local imputation algorithms are red, and methods that estimate the principal 

components directly from the data without imputation are blue. Imputation algorithms with 

no overlap in their confidence intervals are statistically different at α of 0.05, and larger rank 

is equivalent to larger classification accuracy (shown as percent).
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Figure 4. 
Comparison of each imputation algorithm based on the average rank of imputation 

algorithms achieved via CV(RMSE) versus the average rank achieved via classification 

accuracy at the peptide and protein levels. The green line represents the ranking of sppPCA 

based on classification accuracy since its improvement in variance is unknown given that it 

does not impute data.
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Figure 5. 
Comparison of the peptide and protein accuracy metrics for (A) dilution, (B) mouse lung, 

and (c) human plasma datasets.
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Table 1

Statistical Approaches To Impute Missing Values in Peptide Peak Intensity Datasets

method
name method description availability ref

LOD1 Half of the global minimal 
intensity among peptides

LOD2 Half of the minimal intensity of 
individual peptide

RTI Random draw from a truncated 
normal distribution

Deeb et al.42

KNN Weighted average intensity of 
K most similar peptides

Troyanskaya et al.20

LLS Least-squares estimation of 
multiple regression based on K 
most similar peptides

MatLab script http://www.cc.gatech.edu/~hpark/othersoftware_data.php Kim et al.16

LSA Weighted average of 
peptidewise and samplewise 
estimation with the most 
correlated peptides

Java http://www.ii.uib.no/~trondb/imputation/ Bo et al.35

MBI Random selection based on 
censoring probability from 
ANOVA model parameters

Code supplied by authors of DanteRhttp://omics.pnl.gov/software/
DanteR.php

Karpievitch et al.27

PPCA The principle components and 
the missing values are estimated 
as the model parameters by EM

MatLab script http://lear.inrialpes.fr/~verbeek/software.php. Tipping et al.37

BPCA The posterior distribution of the 
model parameters and the 
missing values are estimated 
using a variational Bayes 
algorithm

MatLab script http://ishiilab.jp/member/oba/tools/BPCAFill.html Oba et al.36

REM An iterative process of linear 
regressions via ridge regression

MatLab script http://www.clidyn.ethz.ch/imputation/index.html Schneider19
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