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Abstract Aquifers provide water, nutrients and energy with
various patterns for many aquatic and terrestrial ecosystems.
Groundwater-dependent ecosystems (GDEs) are increas-
ingly recognized for their ecological and socio-economic
values. The current knowledge of the processes governing
the ecohydrological functioning of inland GDEs is reviewed,
in order to assess the key drivers constraining their viability.
These processes occur both at the watershed and emergence
scale. Recharge patterns, geomorphology, internal geometry
and geochemistry of aquifers control water availability and
nutritive status of groundwater. The interface structure
between the groundwater system and the biocenoses may
modify the groundwater features by physicochemical or
biological processes, for which biocenoses need to adapt.
Four major types of aquifer-GDE interface have been
described: springs, surface waters, peatlands and terrestrial
ecosystems. The ecological roles of groundwater are con-
ditioned by morphological characteristics for spring GDEs,
by the hyporheic zone structure for surface waters, by the

organic soil structure and volume for peatland GDEs, and by
water-table fluctuation and surface floods in terrestrial
GDEs. Based on these considerations, an ecohydrological
classification system for GDEs is proposed and applied to
Central andWestern-Central Europe, as a basis for modeling
approaches for GDEs and as a tool for groundwater and
landscape management.
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Introduction

Groundwater flow systems are increasingly recognized for
their ecological value as reflected in regulations such as the
Swiss Water Protection Ordinance (GSchV 1998), the
Western Australian Guidance for the Assessment of Environ-
mental Factors (EPA 2003), the Habitats (92/43/EC, 1992),
Water Framework (2000/60/EC) and Groundwater (2006/18/
EC) European directives (European Parliament 1992, 2000,
2006), and the Krakow declaration (IAH 2010). In addition,
ecosystems requiring groundwater are of special interest from
a socio-economic (supply of goods and services) perspective
(see Danielopol et al. 2004; Boulton et al. 2008; Tomlinson
and Boulton 2010). Ecosystem goods (e.g. production of
fishes) and services (e.g. flood controls) are the conditions and
processes throughwhich biotopes and biocenoses help sustain
and fulfill human life (see Brinson 1993; Daily et al. 1997;
Millennium Ecosystem Assessment 2005).

Groundwater has ecological roles within aquifers and in
ecosystems located close to the discharge zone or water table,
referred as groundwater-dependent ecosystems (GDEs).
Dependence can range from obligate to facultative. Obligate
dependence means that species presence requires continuous,
seasonal or episodic groundwater access, whereas facultative
dependence implies that absence does not lead to adverse
impacts to the biocenoses (see Eamus et al. 2006). Some
reviews dealing with the ecological function, structure and
classification of aquifer ecosystems already exist (e.g. Gibert
et al. 2005; Goldscheider et al. 2006; Hahn 2009). In contrast,
there is a lack of a systematic overview covering the high
variability of flow and ecological processes in epigean GDEs
with respect to the structuring of landscapes and the
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integration of knowledge from hydrogeology and ecology
(Humphreys 2006). From a hydrogeological point of view,
groundwater systems are mainly viewed as fluxes of water,
heat and chemical compounds. From an ecological point of
view, groundwater is a milieu (biotope) featured by environ-
mental conditions (e.g. variability of water temperature and
nutrients) in which fauna and flora (biocenoses) adapt and
interact. The combination of these two points of view should
enable clarification on how biodiversity depends on the
extent, source and movement of groundwater and how
variations of quality and quantity affect groundwater-depend-
ent biodiversity (Stanford and Ward 1992; Danielopol et al.
2003, 2004, 2008; Hahn 2009; van der Kamp 1995; SKM
2001; Brown et al. 2007, 2010; Younger 2007; Hahn 2009).

To clarify these points, GDEs first need to be
delineated in the landscape (Table 1). GDEs may belong
to wetlands, which are defined as areas of land saturated
with water long enough to promote wetland or aquatic
processes. They are featured by poorly drained soils,
hydrophytic vegetation or various kinds of biological
activity which are adapted to a wet environment (National
Wetlands Working Group 1997). In addition, some GDEs
may look like terrestrial systems, but groundwater located
close to the surface may ensure their viability (Cowardin
et al. 1979). These definitions cover numerous morpho-
logic, hydrologic and ecologic types of emergences, i.e.
interfaces between aquifers and biocenoses. A given
aquifer may sustain several springs, rivers, or peatlands
which do not present same ecohydrological processes.

Therefore, the purpose of this review is to evaluate the
hydrogeological, morphological and biological factors
controlling the ecological roles of groundwater. In a first
step, the spatio-temporal variability of aquifer and land-
scape scale processes affecting groundwater dependence
of ecosystems will be synthesized. Secondly, the various
kinds of aquifer-biocenosis interfaces, and their function-
ing will be presented on the basis of both hydrogeology
and ecology literature. This permits the development of
hydro-ecological conceptual schemes. Finally, on the basis

on these schemes, a typology for inland GDEs dealing
with relevant aspects of groundwater and ecological
heterogeneity is proposed, aiming to help GDE identi-
fication and management.

Landscape and aquifer scales: flow systems
and ecosystem responses

The location of GDEs within a landscape is influenced by
groundwater flow patterns which control the locations of
the water table and emergences in the landscape. Ground-
water flow patterns are in turn controlled by the top-
ography, the structure of the subsurface, climatic
conditions and land uses. Toth (1963) conceptualized
groundwater movements as hierarchical flow systems
(Fig. 1): local flow systems occur relatively close to the
surface, i.e. from a higher elevation recharge area to a
directly adjacent discharge area such as a stream or spring
(typically at 100 m to 1 km scales). Intermediate (one or
more topographic highs and lows may be located between
recharge and discharge areas) and regional flows (recharge
corresponds to the water divide and the discharge occurs
at the bottom of the basin) reach to a greater depth and
extend over a greater distance. GDE biocenoses not only
depend on the mere emergence of water at a location but
also on the temporal variability of the water supply and
the quality of discharging groundwater, which are both
related to aquifer/landscape processes. In the following,
the controlling factors of these two parameters and their
effects on GDE characteristics are synthethized.

Supply of water
The main ecological attribute of groundwater is the
hydroperiod (Eamus and Froend 2006; Eamus et al.
2006; Hahn 2006), controlled by climate, geology and
land use of the catchment (Alfaro and Wallace 1994).
Perennial discharge is defined by a year-round continuous

Table 1 Criteria to determine the groundwater dependence of an ecosystem

Target Criterion Type of ecosystem Potential indicators

(1) Ecosystem Terrain not affected by high water table
or excess surface water. If affected, it
is only for short periods

Non wetland Hydrophytic, phreatophytic or
aquatic vegetation and
processes do not exist

Terrain affected by high water table at,
near or above the land surface

Wetlands and “deepwater
habitats” → (2)

Terrain is saturated for sufficient
time to promote wetland or
aquatic processes

(2) Wetland and
“deepwater habitats”

Wetland receiving water exclusively
from precipitation and not influenced
by groundwater

Ombrotrophic wetlands Topographically elevatedAcid
pHSphagnum-dominated
vegetation

Wetland receiving water rich in
dissolved elements

Minerotrophic wetlands and
“deepwater habitats” → (3)

Located in topographic
depression.Electrical
conductivity, pH and/or anion/
cation contents

(3) Minerotrophic wetland
and “deepwater
habitats”

Water source provided uniquely by
surface run-off

Surface water dependent
ecosystems

Geological settings of watershed

Water source provided at least partly by
groundwater

Groundwater-dependent
ecosystems

Geological settings of watershed.
Evidence of groundwater
arrival (springs, alluvial
settings, etc.)
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systems. In granular and fissured aquifers, usually only
dissolved nutrients arrive and concentrations are relatively
stable. Sometimes, in some granular aquifers, vegetation
and especially wood may be buried, providing a residual
source of organic matter. In contrast, in karst aquifers,
particulate matter can reach emergence points during high
flow events and concentrations and temperature can
strongly fluctuate (Goldscheider et al. 2010). Similarly,
average temperature and through-year variability are
controlled by the geometry of the flow system. Temper-
ature variations result from either shallow flow near the
spring or from rapid infiltration and flow. In shallow
aquifers, temperature varies close to the mean annual air
temperature of the recharge area. Usually GDEs are
inhabited by stenotherm species i.e. species adapted to
quite narrow ranges of temperature (Van der Kamp 1995).

Bryophytes and macrophytes located at the ground-
water emergence constitute good indicators of the long-
term nutritive role of groundwater (Cantonati et al. 2006).
They are the first to be influenced by the groundwater
chemistry and constitute the basis of the trophic chain.
Moyle (1945), Hutchinson (1970) and Seddon (1972)
exhibited relationships existing between hardness of water
and repartition of given plant species. A higher hardness
ratio ([Ca2+]+[Mg2+]/[Na+]+[K+]) was associated with
higher diversity by Seddon (1972) in rivers. Numerous
studies (e.g. Garbey et al. 2004) grouped species among
dystrophic, oligotrophic, mesotrophic, eutrophic or poly-
trophic categories. Combining hardness ratio, total dis-
solved solids and electrical conductivity, Haslam (1987)
evaluated the favored nutrient level for broadly spread
macrophytes in European rivers. This kind of evaluation is
currently refined for various systems, e.g. for springs
(Strohbach et al. 2009). Thus, the catchment surface use
and the buffering capacity of bedrock and surrounding
soils may be considered as drivers controlling the
repartition and diversity of plant species in GDEs.

In parallel, Tessier et al. (1981), Chambers et al.
(1992), Boar et al. (1995); Schneider and Melzer (2003)
and Schneider (2007) indicated that the role of sediments
such as sapropel or gyttja (Gobat et al. 2004), in which
plant roots settle, is of great importance because they are

Fig. 1 General description of groundwater flow system (adapted from Toth 1963). Not to scale

source, even during low flow periods. In contrast, non-
perennial (intermittent, periodic) outlets dry up, either 
regularly (climatic control), or irregularly (spates; Meinzer 
1923). Variability of groundwater discharge depends on 

groundwater flow scale, climatic conditions and aquifer 
type. Granular and fissured aquifers usually show more 

stable flow conditions than discontinuous (e.g. karst) 
aquifers (Alfaro and Wallace 1994).

Water regimes constrain abundance and diversity of 
biocenoses. Morphological and functional plasticity allow 

some plants to overcome extremes in water regime (e.g. 
Robe and Griffith 1998; Sraj-Krzic and Gaberscik 2005) 
and successfully grow in water or on dry land (Nicol et al. 
2003). In contrast, submerged and emerged macrophytes 
were less abundant as they have a lower tolerance to 

drying out and to prolonged floods, respectively. 
Benthic communities within temporary aquatic systems 
have been found to differ from those within nearby 

perennial systems. Biota with low dispersal abilities 
and long generation times are expected to be more 

common in permanently flowing springs (K-strategists, 
according to Mac Arthur and Wilson 2001), whereas 
strong dispersal ability (r-strategists) are favored in 

non-permanent discharge habitats (Erman and Erman 

1995; Smith and Wood 2002; Smith et al. 2003). The 

identification of taxa preferring ephemeral or perma-
nent flow sites can therefore potentially indicate flow 

permanence (Scarsbrook et al. 2007). However, other 
site specific conditions such as current and stability of 
sediments likely intervene (Lenat 1983).

Supply of nutrients and temperature conditions
Variability of flow is particularly important when asso-
ciated with changes in water quality and temperature (van 

Der Kamp 1995). Dissolved or suspended elements in 

groundwater have to be viewed as potential nutrients 
which impact the productivity in springs (Cantonati et al. 
2006), rivers (Vannote et al. 1980), lentic systems (Cooper 
et al. 1998) or terrestrial GDEs (Sanchez-Perez and 

Tremolières 2003). The flux of nutrients and heat reaching 

GDEs varies as a function of the type of groundwater flow
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species with deep roots and a high root/shoot ratio are
expected to have a higher resistance than species with low
root/shoot ratio. In addition, “phenoplastic species” are able
to adapt their physiology or morphology in response to
variations in environmental conditions (Riis and Biggs 2003;
Garbey et al. 2006) such asMyriophyllum spicatumwhich is
able to adapt to the increase of current by stem elongation
(Strand and Weisner 2001). Through a quantitative
approach, Chambers et al. (1991) showed that stream
velocities>1 m/s would inhibit or prevent macrophyte
growths. However, some species can adapt to higher
velocities. In mountainous areas, mosses seem to dominate
in springs because of their strong attachment on rocks, their
limited height (limiting hydraulic forces), and because they
tolerate desiccation and low temperature (Cantonati et al.
2006 and references therein). Reproduction mechanisms can
also change as a function of flow conditions. Dawson (1976)
and Garbey et al. (2004) observed that Ranunculus sp. (e.g.
Ranunculus peltatus) flowers (sexual reproduction) when
current velocity is lowest. During high flow, vegetative
dispersion through fragmentation dominates.

Spring habitat type also influences the composition of
macrozoobenthic assemblages (Cantonati et al. 2006;
Mori and Brancelj 2006). Discharge dynamics affect the
substrate composition, which influences the diversity and
nature of macrozoobenthic communities (ecologic, phe-
notypic and genotypic adaptations). Von Fumetti et al.
(2006) demonstrated that detritivores dominate in low
current conditions with abundant leaf litter, whereas
mostly grazers are found in high current conditions where
periphyton (algae and microorganisms) may grow on
exposed substrata.

Sediments are the major source of nutrients to aquatic
macrophytes in flowing waters (e.g. Schneider and Melzer
2003). Along the continuum between running (rheocrene)
and low gradient (helocrene, limnocrene) springs, the
decrease in grain size is also associated with an increase of
organic material (Cantonati 1998). Assuming that knowl-
edge about surface water ecosystems can be transferred to
springs, a reasonable hypothesis would be that the
presence of fine sediments (sand, silts) near low-flow
springs favors macrophyte growth because of easier root
settlements and higher nutrients availability of primarily
nitrate and phosphorus. Biocenoses not only depend on
the spring morphology but can also influence it. Vegeta-
tion located near the groundwater outlet may reduce water
velocity, raise the water level in the channel and on the
adjacent land by increase flooding and overland spill and
enhance the deposition of suspended sediments (Pitlo and
Dawson 1993). Metabolism and life cycle of both
producers and consumers are also able to significantly
modify the water chemistry, e.g. by uptake of compounds
or by concentration due to evapotranspiration leading in
some places to the modification of the habitat structure
through precipitation of minerals (Schade et al. 2004).
During periods of high photosynthetic activity, high pH
levels may be reached (Jorga and Weise 1977; Spencer
and Bowes 1993;). The magnitude of the impacts on
chemistry through biological processes will likely depend

an additional source of nutrients. Flow velocity, physical 
stress, nature and texture of a substrate also constrain 

habitat structures of groundwater emergences (Brinson 

1993; Stevens and Springer 2004; Dahl et al. 2007; 
Springer and Stevens 2009). Consequently, while large-
scale groundwater flow patterns and aquifer characteristics 
control the location of GDEs and some of their features, 
their characteristics and functioning also depend on the 

detailed morphology of the aquifer-GDE interface. There-
fore, the effect of emergence morphology on the physical 
and chemical patterns of the interface between the 

groundwater system and biotopes need to be evaluated 

to better understand how biocenoses deal with ground-
water fluxes.

Role of the aquifer-GDE interfaces

Several types of aquifer-GDE interfaces can be distinguished: 
groundwater–atmosphere (springs), groundwater–surface 

water, groundwater–organic soils (peatlands) and ground-
water–terrestrial (mineral) interfaces in alluvial systems 
(Fig. 1). In the following, the main processes shaping the 

biocenoses of these systems at the local scale are discussed as 
a basis for classification of GDEs.

Spring ecosystems
The spring habitat structure affects current velocity and 

substrate texture in the crenon zone, where physicochemical 
parameters are mainly inherited from the spring (Erman and 

Erman 1995). Steinmann (1915) and Thienemann (1922) 
defined limnocrene springs as depressions filled by water, 
rheocrene springs as rapid current discharge zones and 

helocrene springs as diffuse discharge zones, often associated 

with a peaty zone (Cantonati et al. 2006). These interfaces 
have specific ecological features, similar to those of peatland 

systems. Springer and Stevens (2009) recently enlarged this 
typology by including “hillslope springs” and “hanging 

gardens” where groundwater emerges from hillslopes (30–
60° slope) or vertical cliffs.

The variability of spring forms affects physical features 
such as velocity, turbulence and turn-over time of 
emerging water, but little information is available about 
the effect of flow in crenon zones (Janauer and Jolankai 
2008). Most available studies were carried out at rivers 
and assumed that ecological features vary gradually along 

a continuum between high velocity and low current 
streams. As the literature on physical conditions in springs 
is relatively scarce, some terms, concepts and observations 
provided by such environments can partly be applied to 

spring ecosystems.
Bornette et al. (2008) hypothesized that species able to 

survive in high-flow conditions harbor specific phenotypes 
and/or reproduction ways and provide examples of the effect 
of physical conditions on biocenoses patterns. Thus, the 

plant size, form and stand structure, together with the 

strength of its stems and method of anchoring, constrains 
its presence to a specific physical environment. For 
example,
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Reactions are facilitated by bacteria and geochemically
active sediment coatings (see Williams and Hynes 1976;
Boulton et al. 2010). Aerobic species may completely use
up oxygen at some distance into the streambed, and then
may be replaced by organisms adapted to or specialized
for hypoxic conditions. These processes affect the move-
ment of nutrients and contaminants between groundwater
and surface water. The rate at which organic contaminants
biodegrade in the HZ can exceed rates in stream water or
groundwater away from the stream (Boulton et al. 1998;
Storey et al. 2004; Soulsby et al. 2009). The flux dynamic
depends considerably on the porosity and permeability of
the sediments (Youngson et al. 2004; Environment
Agency 2009) and can be influenced by clogging.
Clogging potentially also reduces living space for large
invertebrates. Colmation is caused by intensive erosion,
linked with landuse at the catchment scale. Even if water
quality is good, those waters will never reach the ‘good’
ecological conditions required by the European Water
Framework Directive (2000/60/EC; European Parliament
2000). Consequently, hyporheic processes likely change at
the seasonal and inter-annual scale due to hydrologic
variability (current conditions, suspended matter content;
Malcolm et al. 2004; Steube et al. 2009).

The ecological value of the HZ has been recognized for
several decades (e.g. Pollard 1955; Hynes 1983), but the
key drivers controlling HZ biodiversity are still being
discussed (e.g. Ward et al. 1998; Hayashi and Rosenberry
2002; Datry et al. 2007; Boulton et al. 2010). It seems that
these drivers vary in function of implied taxa. The HZ is
mainly inhabited by invertebrates (mainly crustaceans and
insect larvae), including stygobites (hypogean ground-
water specialized), stygophiles (epigean animals preadap-
ted for subsurface life) or stygoxene (accidentally present
in the subsurface). Stygobites are readily distinguishable
through traits such as reduction of eyes, lack of pigment,
small size, elongated shape and reductions of setae in
comparison to epigean species (Ward et al. 1998). Some
studies (Ward et al. 1998; Storey et al. 2004) indicate that
sediment size and morphology of the river bed mainly
impact hyporheic assemblages because exchange pro-
cesses differ strongly when comparing fine- and coarse-
sediment stream areas. Accordingly, on the vertical axis,
the fauna consists largely of oxyphilous (needing O2)
species (mainly epigean) in superficial sediments, whereas
deeper sediments harbor more hypoxic tolerant species.
On the horizontal axis, the effect of river-bed morphology
is important. An example would be the zones behind
dams, where groundwater seepage is favored (see Fig. 2),
and where biocenoses should be preferentially dominated
by hypoxia tolerant species, particularly stygobites. This
results in mosaics of hydrological and ecological patches,
each having a particular faunal composition. This was the
basis for the qualitative model of Plénet et al. (Plénet et al.
1995) which identifies the areas of groundwater depend-
ence: in downwelling zones, the HZ is dominated by an
epigean community, and in upwelling zones (GDEs),
hypogean and peculiarly stygobites should dominate.
Since the alternation of downwelling and upwelling zones

on water renewal. Turbulence effects may also favor 
degassing which impacts the chemical conditions (e.g. 
pH) of the crenon zone. Cantonati (1998) found that while 

pCO2 and [SiO2] were higher in helocrenes (soil respira-
tion and alteration), pO2 was lower than in rheocrenes. 
Investigations on chemical patterns induced by the 

balance between roots respiration, photosynthesis and 

water turn-over still need to be carried out in order to be 

precise about the ranges in which these processes affect 
spring biodiversity.

Surface water GDEs
Groundwater is important to lotic (flowing waters) or lentic 

(e.g. lakes) systems if it has a significant contribution during 

low-flow periods (Brown et al. 2007). Groundwater reaches 
rivers or lakes through hyporheic or hypolentic zones (HZ), 
i.e. the space below the surface-water bed and adjacent banks 
that contain some proportion of channel water (White 1993; 
Winter 2001). Hyporheic and hypolentic processes are 

sensitive from hydrological, biochemical and biological 
points of view (Gibert et al. [1990] used the term of 
“elasticity”).

In HZs, groundwater mixes with surface water in 

various proportions depending on the hydraulic conditions 
of the bed material and on the hydrologic situation 

(loosing, gaining or flow-through water body). Hydraulic 

conditions are inherited from hydromorphological pro-
cesses (aggradation, degradation) which shape the bottom 

and reaches of surface waters into highly complex systems 
(see Bravard and Gilvear 1996; Huggenberger et al. 
1998). High permeability channels may cross low perme-
ability zones favoring high fluxes or allowing more 

diffuse groundwater discharge (Dahl et al. 2007). In 

rivers, at the reach scale, up and downwelling of ground-
water may be governed by discontinuities such as 
obstacles which protrude from the river bed (e.g. log 

jam), changes in the direction of flow, pool-and-riffle 

sequences, and meanders (Fig. 2) (Brunke and Gonser 
1997; Huggenberger et al. 1998; Malard et al. 2002), 
allowing groundwater discharge even when the channel 
tends to lose water. In lakes, hypolentic exchanges are 

usually less favored due to the presence of fine-grained 

and highly decomposed organic sediment on the bottom. 
However, groundwater/surface-water interactions may be 

favored around the lake perimeter where waves can 

remove fine-grained sediments (USGS 1999).
Groundwater and surface-water mixes provoke sharp 

changes of chemical concentrations in HZs (Hancock et 
al. 2005). Surface water is often rich in oxygen and 

organic matter but contains lower concentrations of 
inorganic compounds than groundwater. Consequently, 
the HZ can be considered as a chemical reactor where two 

reactants meet (Fig. 2) and as a sink for organic nutrients 
derived from the catchment and the floodplain, as well as 
a source of nutrients (organic and inorganic) for the river. 
Much of the subsurface water in a floodplain is repeatedly 

interacting with the stream and thus is not pure ground-
water, but hyporheic water.
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Nilsson et al. 2002 and Jansson et al. 2007 indicate that
surface water reaches with a strong groundwater discharge
favor an enhanced plant biodiversity. These trends could
be explained by (1) a lower drought stress along the
hydrological year; (2) higher nitrate concentration in
groundwater (e.g. Pinay et al. 1990) due to anthropogenic
impacts and aerobic microbiological degradation of
organic matter in soils (Sanchez-Perez and Tremolières
2003) or aquifers (Goldscheider et al. 2006). Moreover,
even if groundwater has low nitrate concentration, high
discharge may imply greater nutrient fluxes due to high
fluxes of water. This process may provide a steady source
of nutrients for plants (e.g. Jansson et al. 2007). Therefore,
considering that the HZ can be viewed as a chemical
reactor promoting transformations, rich vegetation should
be considered as an indicator of upwelling hyporheic

Fig. 2 Conceptual scheme of hyporheic zone (HZ) functioning (adapted from Environment Agency 2009 and Boulton et al. 2010). a
Lateral view: effect of streambed topography, distribution and size of sediments which influence hydraulic conductivity and extent of
vertical hydraulic gradients. Light blue, grey and dark blue arrows respectively indicate water flows coming from surface, hyporheic or
groundwater compartments. b Viewed from above: effect of channel form. Dashed arrows represents groundwater flow lines. These
patterns impact fluxes of groundwater and chemicals to the HZ

promotes the ecological richness of the whole surface-
water systems (Ward et al. 1998), Kasahara et al. (2009) 
recently provided a practical extension of these consid-
erations by proposing solutions that take account of 
groundwater/surface-water connectivity, mainly aiming to 

increase the effect of variability of river-bed morphology 

(e.g. meanders, dams) and sediment texture.
The HZ is also a preferential location for spawning 

fish, e.g. salmonids that lay their eggs within gravel. Ova 

survival is dependent on complex surface-groundwater-
metabolism interactions (Environment Agency 2009; 
Malcolm et al. 2009). It seems that equilibrium between 

surface water (providing oxygen) and groundwater con-
tributions (providing thermal stability) needs to be 

reached. In some cases, such thermal stability may be 

ensured by shading riparian vegetation.
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water rather than pure groundwater, i.e. water that has
been enriched by nutrients coming from biotransformation
of organic material and promoting plant fertilization.

In addition, as mentioned previously, upwelling of
groundwater may be enhanced by the increase of
current velocity in the HZ through flushing or piston
effects (especially behind dams or in meanders). Note
that a higher flow velocity becomes a limiting factor
due to mechanical stress for anchoring (e.g. Chambers
et al. 1991). Hence, surface flow partly controls the
nutritive role of groundwater and the availability of
habitats (Fig. 3). Moreover, as plants may provide
refuge and food for macroinverterbrates, further con-
sumed by fishes, the current velocity impacts the
whole trophic web of surface water including areas
near groundwater discharges.

The impact of these processes is currently being
investigated in detail (Mulholland and Webster 2010;
Boulton et al. 2010). The recent technological innovations
such as continuous logging sensors for oxygen (Malcolm
et al. 2009) and temperature (Hoehn and Cirpka 2006;
Vogt et al. 2010) during in situ monitoring of HZs over
prolonged periods, and their representation in three
dimensions in numerical models (Poole 2010), will
probably permit a better understanding of these systems.

Peatland GDEs
Peatlands form where soil-water saturation retards the
decomposition of organic matter, allowing it to accumu-
late. Peatlands may be supplied by rainwater, surface
water and groundwater whose proportions depend on their
position in the landscape, surrounding geology (terrains
permeability) and maturity of the ecosystems (Mitsch and
Gosselink 1993; National Wetlands Groups 1997; Euliss

et al. 2004). Minerotrophic peatlands (usually referred as
fens/marshes, swamps) are mainly fed by surface water or
groundwater. Ombrotrophic (rain fed) peatlands (called
bogs) are located closer to recharge areas and/or are
featured by a sufficient peat accumulation (mature
systems), which prevents some groundwater or surface
water uses. In the following, hydrologic and chemical
variability and the influence of the peaty interface on the
ecological roles of groundwater are discussed.

Peatlands biocenoses survival depends on the constant
humidity that is strongly related to specific hydraulic
features of peat. Firstly, organic soils in peatland ecosys-
tems have lower bulk densities and higher water-holding
capacities than mineral soils (Price 1992; Mitsch and
Gosselink 1993). Secondly, hydraulic conductivities typ-
ically decrease with depth from the least decomposed
upper layer (acrotelm) to the more decomposed lower
zone (catotelm)—Boelter (1965); Fraser et al. (2001);
Price et al. (2003); Ronkanen and Klove (2005). Varia-
tions in hydraulic structure with depth are due to the
progressive decomposition and homogenization of peat
through centuries and millennia. Resulting preferential
flow is through or over the relatively permeable upper
layer of the acrotelm during high flows. The high specific
yield in the near-surface layers allows efflux with a
relatively small drop in the water table (Mitsch and
Gosselink 1993). When low flow occurs, water is retained
longer and remains accessible for plants (Fig. 4). This
inertia is a key factor for maintaining wet conditions close
to surface in case of temporal water level decrease.
Therefore, in peatland GDEs, the water availability period
may diverge from the supplying groundwater system
hydroperiod. It has to be noted that the acrotelm and
catotelm can merge because of homogenization of
humidity conditions if groundwater frequently saturates
all the peat (Gobat et al. 2004).

From a nutritive point of view, the long-term calcium
content of water may largely explain the ecology of
peatlands (Tahvanainen 2004; Hajek et al. 2006). Focus-
ing on groundwater dependent peatlands, poor to moder-
ately rich systems should be significantly fed by
crystalline (igneous, metamorphic) aquifers or may use
rainwater. In contrast, extremely rich and calcareous fens
are usually fed by calcareous aquifers. These latter are
delineated by the fact that Sphagnum mosses cannot grow
and that carbonate saturation is reached. Beyond the effect
of aquifer lithology, calcium richness depends also on
aquifer-scale features (recharge, scale of the groundwater
system; internal geometry, land use) which influence the
degree of groundwater mineralization.

However, intra-annual hydrologic variability of aqui-
fers in addition to high cation exchange capacity and
redox processes occurring in the peaty interface may
provoke secondary temporal/seasonal changes on the peat-
water nutritive status (De Jong 1976; Whigham and
Simpson 1976; Verhoeven et al. 1983; Shotyk and
Steinmann 1994; Gogo et al. 2010). When the water table
is low, precipitation, which is naturally acid (e.g.
Bertrand et al. 2008), can saturate exchange sites with

Fig. 3 Conceptual scheme of the impact of current velocity on 

plant richness in surface-water bodies fed by groundwater (After 
Chambers et al. 1991; Nilsson et al. 2002; Jansson et al. 2007; 
Franklin et al. 2008)
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hydrogen ions. When the water table rises, the cationic
exchanges between groundwater and peat should be
significant. After saturation, no more significant
exchanges occurs, and the peat water chemistry is
likely similar to the groundwater input (Fig. 5a). The
effect of cation exchange on peat water chemistry is
therefore dependent on the arriving groundwater salinity
(Fraser et al. 2001). It could be of primary importance
in highlands where arriving groundwater cation concen-
trations are low, due to short flowpaths. These patterns

should also be modified by drying and evaporation as
this influences the peatlands’ water budget and hence
the amount of groundwater influence compared to other
sources (e.g. meteoric waters).

In parallel, the prolonged inundations of soil result
in anaerobic conditions, which lead to the modification
of nutrient bioavailability, especially Fe2+, NO3

−, SO4
2−

and PO4
3− (Fig. 5b). Peatlands can be described as a

coupling of redox reactors. An oxidized (aerobic) layer
is present near the surface and there is a deeper

Fig. 4 Conceptual schemes of the hydrologic patterns in the peat-interface fed by groundwater. a High flow period for a homogenous
groundwater-fed peatland. b High flow period for a system locally fed by groundwater; water-table level will vary as a function of
hydrological conditions but also as a function of peat material hydrodynamic properties. These heterogeneities may lead to a cohabitation of
ombrotrophic and minerotrophic species (see the text). c Baseflow period. The high specific yield of peat mat layers may sustain wet
conditions and water availability near the surface

Fig. 5 a Conceptual scheme of the effect of cation-exchange capacity of peat on groundwater chemistry during the hydrological year.
Character font sizes are related to the concentrations of chemical elements. b Effect of redox conditions on the groundwater chemistry and
the nutrient bioavailability (adapted from Mitsch and Gosselink 1993 and Jacks and Norrström 2004)
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from several centimeters to meters and are mainly found
on alluvial systems. Upstream, the root depth tends to be
significantly higher than mean groundwater level and in
this case riverine forests should be independent from the
functioning of river-alluvial aquifer complexes. However,
depending on the geology and hydrological regime, the
lateral rocky aquifers beside the valley may provide
groundwater to riparian forest. Downgradient, with the
mean river slope diminishing, the surface is closer to the
water table and reaches are periodically flooded. The
extent of alluvial plains increases. The periodicity of
floods (controlling aggradation and degradation pro-
cesses), the nature of the alluvium (which depends on
erosion process at the catchment scale), the occurrence
and form of meanders, dams and cut-off channels, and the
groundwater depth, constrain the repartition of vegetation
(Vannote et al. 1980; Pinay et al. 1990; Ward et al. 2002;
Bornette et al. 2008). Therefore, characterization and
conceptualization of terrestrial GDEs should take into
account longitudinal, lateral (related to particle-size
distribution and geochemistry of the terraces and flood
frequency) and vertical dimensions (related to granulom-
etry profile and groundwater level fluctuations) of the
fluvial hydrosystem (Amoros and Petts 1993; Ward 1998;
Lyon and Gross 2005; Derx et al. 2010).

From a spatial point of view, the combination of
general groundwater depth, granulometry and flood
frequency gradients leads to a general gradient of
humidity and water dependency by riparian vegetation.
The combination of the humidity gradient with plant
physiology is the basis of a geomorphic-floristic contin-
uum model from riverbeds to floodplains (Kovalchik and
Chitwood 1990; Fig. 6). The hydroriparian zone includes
the low-flow channel and the main channel where hydro-
phytes grow. The mesoriparian zone comprises frequently
flooded, moist to wet fluvial surfaces (such as stream
banks), active floodplains and overflow channels where
helophytes (plants whose roots are located in saturated
media), including softwood trees (e.g. Salix sp.), are
located. The xeroriparian zone is located where hardwood
trees (e.g. Fraxinus sp.) are able to uptake water from
deeper within the aquifer. This general and idealized
lateral gradient at the floodplain scale is more
complicated in the field because depressions, high
levees and abandoned channels (oxbows) produce an
undulating surface across the floodplain (Lyon and
Gross 2005). Lentic systems can occur periodically or
perennially, as a function of the groundwater level.
From an ecological point of view, along temperate
European rivers, depressions are colonized by species
adapted to long hydroperiods, whereas the levees and
ridges may contain species that also occur in upland
areas, even in xeric (i.e. arid) ones. Consequently,
woody alluvial species may occupy a broad range of
humidity (Reed 1988; Schnitzler 1997).

Flood processes, groundwater level and soil hydro-
dynamics beneath the alluvial forest influence the vegeta-
tion types and nutrient cycles. The lateral and vertical
heterogeneity of hydraulic conductivities of the soil

anaerobic layer. After O2 reduction, further reductions 
lead to nitrate conversion and then Fe2+ forms from Fe3+. As  

Fe3+ is one of the main binding elements for phosphate, this 
leads to enhanced availability of phosphate ions for plants 
(Mitsch and Gosselink 1993; van Loon et al. 2009). At the
same time, ammonification provokes an increase of NH4

+

which can reach the surface by upward diffusion, due to 

concentration gradients between reduced and oxidized
layers. NH4

+ will be further mineralized to nitrate. These 

patterns are influenced by the aquifer-scale processes 
constraining groundwater chemistry (in particular initial 
Eh, pH and ionic contents) prior to peat seepage. The 

localization of groundwater discharges may also modify the 

aforementioned abiotic patterns (van Loon et al. 2009) and
the uses by adapted plants (Malmer et al. 2003). Peatland 

forms (in depressions, on slopes) may favor or reduce 

groundwater circulation (Novitzki 1979; Mitsch and  

Gosselink 1993; Brinson 1993; National Wetland 

Working Group 1997) or modify the balance between 

precipitation and groundwater. These patterns may be 

modified by anthropogenic activities, e.g. lowering of 
the water table leads to the oxidation and mineraliza-
tion of organic soils, which strongly affects vegetation.

Peatland GDEs harbor flora which are adapted to specific 

redox conditions and which vary along a Ca-poor to Ca-rich 

gradient. Even if some peatbog specialists (e.g. Sphagnum 

mosses) can be found in moderately rich systems, calcium 

becomes probably toxic for them over a certain threshold 

(Andrus 1986; Hajek et al. 2006). Thus Sphagnum, where it  

is dominant, can be used as an indicator of ombrotrophic 

conditions (Table 1). In contrast, species tolerating higher 
concentrations (considered in the following section Proposed 

classification of GDEs) do not show higher calcium 

bioaccumulation and are able to keep superfluous calcium 

out (Malmer 1986). In a given peatland, competitive 

strategies and growth performances may also modify 

ecological and hydrological features in complex ways 
(Fig. 4). Malmer et al. (2003) found that by expanding, 
Sphagnum moss structures the plant community by depleting 

the rhizosphere of nutrients, which tends to increase the peat 
accumulation. If vascular plants, in obtaining a sufficient 
supply of mineral nutrients through groundwater, are able to 

maintain a level of productivity, they may be able to prevent 
an increase in peat by limiting the growth of Sphagnum. This  

sustains the groundwater-dependence of the system.
These elements show that the term ‘ecohydrology’ is 

peculiarly adapted with respect to peatlands. Peat is 
produced by living parts of ecosystems while its produc-
tion depends on hydrology which in turn is modified by 

the ecological conditions at the emergence scale. Gobat et 
al. (2004) pointed out this particularity by using the term 

“biogeocenose” to describe peatlands. These specificities 
should be taken into account for classifications and long-
term management programs.

Terrestrial GDEs
Terrestrial GDEs are located where groundwater is 
shallow (root system in contact with the water table),
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accompanied by the hydraulic lift (Caldwell et al. 1998;
Fig. 7b). Hydraulic lift occurs in two steps: during the day,
transpiration provokes a decrease of root water potentials
in comparison to saturated and unsaturated parts of the
ground, and the water passes from soil to roots; during the
night, reduced transpiration allows xylem water potential
to rise above soil water potential in drier soil layers, which
leads to a reverse flow from roots to soil. Its effect on
groundwater flowpaths has been demonstrated, including
in temperate climate areas (Caldwell et al. 1998; Chen
2007). There are many implications of groundwater
physical and biotic uplifts, including chemical modifica-
tion (mixing, change of redox conditions) of the surface
water input, nutrient acquisition, facilitation of neighbor-
ing plants with shallow roots systems (Dawson 1993) or
prolongation of activity (growth and solute uptake) during
drought conditions. This means that even when the water
table is deep, groundwater may indirectly be used by
terrestrial ecosystems if pedological (alluvium capillary
potential) and ecological (presence of trees with deep root
systems) conditions are favorable.

These long and short-term adaptations have implica-
tions at community and ecosystem scales and also from a
hydrologic perspective by contributing to water (evapo-
transpiration) and chemical (uptake) cycling. Groundwater
use by terrestrial ecosystems is constrained by (1)
dynamics of the adjacent river compartment, (2) stream
order, in particular in mountains because riparian ecosys-
tems are not inevitably on alluvium but may be on rocky
edges of the river, (3) river style (e.g. braided, anasto-

Fig. 6 Lateral and vertical zones of riparian ecosystems. Some characteristic vegetation genera are indicated according to some general
phytosociological studies carried out in Europe (e.g. Delarze and Gonseth 2008)

interface should contribute to a patchiness of nutritive 

conditions (Ward 1998). Conceptually, alluvial floodplains 
can be considered as pulsed systems (Junk et al. 1989; 
Tockner et al. 2000; Steiger et al. 2005; Krause et al. 
2007; Schnitzer-Lenoble 2007) (Fig. 7a). The main 

nutrient sources are the litter or the allochthonous organic 

material brought by surface water during floods (pulse) 
which then infiltrates vertically. These elements could also 

be provided through bank filtration during high-flow 

periods but the trend of groundwater to be reduced tends 
to limit this phenomenon in its lateral extension 

(Sophocleous 2002; Sanchez-Perez and Tremolières 

2003). The soil texture impacts the rate of water and 

nutrient transfer from the surface to the groundwater. 
Nitrification, denitrification, cation and phosphate reten-
tion on colloids and calcium phosphate precipitation 

influence bioavailability (Sanchez-Perez and Tremolières 
1997, 2003; Schade et al.  2004; Lyon and Gross 2005). 
Pinay et al. (2000) showed that below a threshold of 65%
content of silt and clay, riparian and floodplain soils do 

not present significant denitrification rates. This could be 

related to the oxygen availability during the water’s 
vertical transfer. Long wet periods favor nitrate reduction 

and limit nitrification. Consequently, as for groundwater-
fed peatland, groundwater abstraction may have nutritive 

impact altering spatio-temporal patterns of reduction and 

oxidation processes.
The soil structure may favor capillary rise of ground-

water and could be a key driver for water usage by plants 
(Chimner and Cooper 2004). This phenomenon may be
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settings (type of emergence, position in the watershed), in
combination with the hydrological regime and water
movement, may help to distinguish a wetland’s type and
function. The Canadian National Wetlands Working
Group (1997) focused on the source of water and on the
form of the wetlands (e.g. basin, slope, etc.). Hajek et al.
(2006) proposed a typology of fens by using acid-alkaline
and fertility gradients determined through indicative
species. The proposed classification aims to be a useful
complement to the existing typologies.

In this proposed classification, pedological, morpho-
logical, hydrological and nutritive factors are combined.
The general scheme of the typology is shown in Fig. 8.
Water chemistry is simplified to the pH range as it is
sensitive to total mineralization, hardness and alkalinity
and has been used in the classification of other ecosystems
(Moore and Bellamy 1974; Wheeler and Proctor 2000;
Tahvanainen 2004; Naqinezhad et al. 2008). At the
emergence scale, morphology and/or pedology are gen-
erally described, because they give information about the
physical environments of GDEs, both on short and long-
term scales and may also constrain nutrients availabilities.
These distinctions lead to several GDE denominations.
Ecosociologies (mainly plant associations) that can be
found in European GDEs are presented, including indica-
tive species. It has been argued that lists of “charismatic”
species are very useful for answering questions about

Fig. 7 a Conceptual scheme of multiscale water movements in the alluvial plain. At the flood plain scale, the surface water supplies the
flood plain with organic matter, water and oxygen, which permit the mineralization of nutrients and the further uptake by plants during the
growing season. b Patterns of water flow through the root system may lead to a hydraulic lift at the plant scale: during the day, water is
absorbed from all depths in which soil moisture is available; at night, when transpiration is reduced and plant water potential rises, water
moves from moist soil through the root system to drier soil layers. This hydraulic lift may sustain water supply of neighbor plants (adapted
from Schnitzler-Lenoble 2007 and Caldwell et al. 1998)

mosed, meandering; Steiger et al. 2005) and (4) the plant 
water-use spatio-temporal variability (Krause et al. 2007), 
depending on the forest stage (pioneer, mature) and type 

(mesoriparian, xeroriparian).
The knowledge of these processes is useful in assessing 

the potential groundwater use by other terrestrial ecosys-
tems that are still poorly investigated such as epikarst 
areas. The epikarst can constitute a perched aquifer which 

is storing substantial quantities of shallow groundwater 
(e.g. Perrin et al. 2003; Pronk et al. 2009), sensitive to 

land use (e.g. Zhao et al. 2010) and harboring rich and 

diverse subterranean life (Pipan 2005). The ecological role 

of epikarst water for terrestrial and aquatic ecosystems still 
needs to be studied in detail.

Proposed classification of GDEs

GDE functioning depends on the dynamics and chemistry 

of groundwater and the morphology of outlets. These 

parameters have been proven to be useful in providing a 

classification scheme for wetlands, of which some 

examples (although the list is not exhaustive) are 

summarized in Table 2. Cowardin et al. (1979) focused 

on salinity regimes, water permanency, pH, and soil 
material. Brinson (1993), Euliss et al. (2004) and Davies 
and Anderson (2001) highlighted that the geomorphic
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function and hydrogeological processes (Brinson 1993;
Hajek et al. 2006; Pellerin et al. 2009; van Loon et al.
2009) and to assess the effects of hydrochemical changes
in ecosystems (Rhode et al. 2004; Brewer and Menzel
2009). Previous ecological studies (Aeschimann et al.
2004; Cantonati et al. 2006; Hajek et al. 2006; Delarze
and Gonseth 2008) or databases (Corinne Biotope 1991)
were used. Finally, considering the climatic requirements of
biocenoses (based on mean temperature and continentality,

e.g. Dierkman 1997), the main biogeographic areas
(described in the Habitats Directive 92/43/EC, European
Parliament 1992) inhabited by ecosociologies are mentioned
according to the EUNIS database (European Environment
Agency 2010). This mainly considers Western-Central
Europe and excludes the Steppic, Black Sea, Anatolian and
Arctic biogeographic areas.

Spring habitats (Table 3) are usually colonized by
specialized species preferring permanent humidity and

References cited in the
text

Parameter used Example Equivalent in this paper for GDEs

Cowardin et al. (1979) Type of system Marine, estuarine, riverine Included as the interface type in Fig. 8
Type of flooding Permanent, intertidal Hydrological conditions or hydroperiod

in all tables
Type of substrate Unconsolidated bottom Pedological characteristics (Tables 4

and 6)
Modifiers pH, salinity

Brinson (1993) Geomorphic settings Slope, domes Geomorphological characteristics
(Tables 3 and 4)

Origin of water Precipitation, surface waters,
groundwater

Hydrodynamics Vertical fluctuations,
unidirectional flow

Canadian National
Wetlands
Working Group (1997)

Type of soil Mineral/peat Included as the interface type in Fig. 8
and at a lower scale as pedological
characteristics (Tables 4 and 6)

Origin of water Ombrotrophic, minerogenous i.e.
surface or groundwater sources

Form Slope, basin Geomorphological characteristics
(Tables 3 and 4)

Type of vegetation Graminoids, trees Biotic characteristics (Table 5)
Davies and Anderson
(2001)

Geomorphic-hydrologic conditions Depression, channeled water
flow

Included as the interface type in the
Fig. 8 and at a lower scale in the
Table 4 for HZ

Origin of water Ombrotrophic, minerogenous
Gross form and topography Flat, Concave Geomorphological characteristics

(Tables 3 and 4)
Microtopographic features Presence of pools

Euliss et al. (2004) Hydrologic relation to atmospheric
water

Drought, deluge

Hydrologic relation to groundwater Recharge area, discharge area
Hajek et al. (2006) Fertility gradient Bryophytes, nutrient-requiring

forbs and grasses
pH tolerance gradient Acid tolerant species, calcicole

species
Included in all tables in ecology
columns

Fig. 8 Conceptual scheme of the proposed classification of GDEs (GW groundwater)

Table 2 Parameters used in some published wetland classification schemes and equivalent parameters used in this paper
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time and space, although some trends can be predicted
according to the patchiness model discussed previously. In
upwelling conditions, stygobites (e.g. crustaceans such as
Microcharon reginae, Salentinella juberthiae, Niphargus
kochianus) would tend to dominate epigean species (e.g.
Gammarus sp., Candona sp.; Ward et al. 1998). Accord-
ingly, stygobites tend to dominate in the less flooded part
of flood plains. These general trends however have to be
viewed with caution, as the mobility (e.g. active vs.
passive) of hyporheic fauna is still being researched.

On reaches, the following classification system mainly
deals with aquatic and hydrophytic vegetal biocenoses that
have settled on mineral interfaces, namely fluvisols, where
redoximorphic features are common, or gleysols where
influences of groundwater are evident (reddish, brownish
and yellowish colours; Baize et al. 2009). These systems
are extremely sensitive to hydrological modifications. For
lentic ecosystems, a distinction between the circumneutral
and alkaline environment is proposed because of the
specialization of some plants (e.g. Chara sp.) to high
water-calcium content. Aquatic plants can be immersed
(in Charion, Potamion) or floating (Nymphaeion, Pota-
mion). Large lakes have a moderate biodiversity, except
on their shorelines where Littorellion or Phragmition
alliances are found in the littoral zone.

Peatland GDEs (Table 5) may be described in a
different way in comparison to other systems. The
groundwater level is dependent on hydrodynamics in the
aquifer and peaty interface (histosols; Baize et al. 2009),
which also modifies groundwater chemistry. Therefore,
aquifer-scale processes and peaty interface roles are not
distinguished. The ecological role of groundwater is
probably dependent on volumes, hydrodynamics, chem-
ical processes (featuring both aquifer and peat compart-
ments), and the contribution of the meteoric water. The
water level and fluctuation are key factors because they
directly influence the existence and spatio-temporal extent
of anaerobic and aerobic layers. Similarly to some
wetlands typologies (e.g. National Wetlands Working
Group 1997), ecomorphology is also considered, i.e. the
domination by trees (or shrubs) or by graminoids (plant
formations). Caricion fuscae is mainly characteristic of
more or less anoxic systems and rather acid pore water
(anoxic acidic groundwater dependent marshes) in con-
trast to Salicion cinereae, Alnion glutinosae (anoxic
groundwater dependent swamps) and Caricion davallia-
nae where pore water tends to be alkaline (anoxic alkaline
groundwater dependent marshes). The redox condition
factor is more useful where water-table variation is
important because it overlies pH effects (oxygenated
circumneutral groundwater-dependent marshes). Phalar-
idion is generally positioned on the edge of lentic systems
and can be considered as a transitional system between
Phragmition and Magnocaricion. The latter is inundated
during several weeks or months and can support water-
table variation of almost 1 m. For higher water-table
variations, the typical biocenoses are Calthion, Molinion
and Filipendulion. These systems are similar in their
floristic composition, but Calthion is more characteristic

stable temperature. Interfaces are defined as helocrene, 
rheocrene, limnocrene, cliffs and hillslopes. Mosses are 

often dominant and more useful than higher plants for the 

ecological classification of spring sites (Cantonati et al. 
2006). If the average temperature is sufficient, some 

specialized ferns may occur. Angiosperms are represented 

by stenotherm families. The second factor is the calca-
reous content of water which also constrains pH of water 
and which is a determinant for plant settlement in springs. 
The phytosociology of calcareous springs (permanent and 

non-permanent alkaline spring ecosystems) is featured by 

Cratoneuron alliances. Along the elevation gradient, the 

mountain association Cratoneuretum commutati is 

replaced by the Cratoneurion decipiens alliance (several 
associations) in the subalpine zone and then the Crato-
neuretum falcati alliance in the alpine vegetation zone. 
Plant communities on siliceous substrate (hardwater or 
acid spring ecosystems) are more variable, and the typical 
alliance is Cardamino-Montion. On cliffs, only humid 

calcareous rocks (cliff spring ecosystems) with gentle 

groundwater seepage may be colonized by Adiantion 

alliance. No specific ecosystem has been recognized for 
siliceous cliffs. Petasition paradoxi is often found near the 

foot of rockslides (colluviosols) or fans (fluvisols; Baize et 
al. 2009) that can be supplied during glacier or snow melts 
(Periodic spring ecosystems). These phytosociologies are 

typical of groundwater emergences. However, one should 

keep in mind that numerous springs may be inhabited by 

species also occurring in rivers or lakes. Ecologists 
usually classify these systems as river, lake or humid 

meadow ecosystems, because they are adapted to similar 
conditions (e.g. temperature, presence of water). This 
situation may occur in karst environments where surface 

morphology is diverse. In this case, hydrogeologists have 

to identify the existence of groundwater emergence to rate 

these systems as GDEs. Phytosociologies possibly asso-
ciated with these situations are indicated in Table 3.

GDEs of surface water ecosystems (Table 4) are  

located on the bottom (HZ) or on reaches of rivers and 

lakes. Accordingly, hyporheic GDEs are everywhere a 

groundwater seepage occurs, as it is suggested in Fig. 1. 
This scheme implies that groundwater flow is fairly 

uniform over a large area. However, on a local scale, 
flow between groundwater and surface water is often 

highly variable, as indicated on Fig. 2, because of the 

textural changes of the riverbeds. The proposal in this 
paper is to delineate the various kinds of hyporheic GDEs 
mainly according to the morphology of upwelling zones. 
Groundwater arrivals are favored by specific reach 

morphologies. Upwelling GDEs are located where high 

bed permeability (e.g. paleochannel in lattice-like allu-
vium) allows a great discharge of groundwater (like a 

spring). Dam GDEs are located where groundwater is 
flushed due to a difference in pressure between the 

upstream and downstream of a dam. Meander GDEs are 

situated at the end of river elbows, where groundwater 
seeps preferentially and follows the general hydraulic 

gradient. No so-called ecosociology GDEs have been 

defined yet for such areas because HZ fauna is variable in
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classification could be used in other climatic areas, upon
condition that it takes into account the regional ecological
specificities.

Conclusion

This review highlights that the ecological roles of ground-
water are strongly conditioned by both aquifer-scale and
GDE-scale processes. The morphological characteristics
of spring GDEs, the hyporheic zone (HZ) structure and
dynamics for surface waters, organic soil structure and
volume for peatland GDEs, and the water-table fluctuation
and flood patterns for the terrestrial GDEs influence the
groundwater uses by biocenoses.

Biocenoses may adapt to these conditions and some-
times alter the physical and nutritive roles of groundwater,
but adaptations are often limited to a certain range (e.g.
stenothermy, current conditions adaptability). The use of
numerical or statistical tools is currently discussed
(Batelaan et al. 2003; Hahn 2009; Steube et al. 2009) to
constrain drivers leading the abiotic-biotic interactions in
GDEs, but as ecosystems are complex multivariate
ensembles exposed to a multitude of influences, the
mechanisms and cumulative effects need to be further
investigated. Consequently, the underlining key factors
shaping biodiversity and the proposed conceptual schemes

Determined by aquifer
scale attributes

Determined by
emergence scale
attributes

GDE’s denomination Ecology

Hydroperiod Chemical type Geomorphological
characteristics

Phytosociology Characteristic species Biogeographic area

Permanent Alkaline pH Helocrene, rheocrene Permanent alkaline
spring ecosystems

Cratoneurion Cratoneuron filicinum,

Saxifraga aizoides

Atlantic, Continental, Alpine,
Mediterranean, Boreal

Neutral to
alkaline pH

Rheocrene Permanent rheocrene
springs

Ranunculion fluitantisa Ranunculus fluitans

Potamogeton nodosus,

Mediterranean, Atlantic,
Continental

Fontinalidion
antipyreticaea

Fontanilis antipyretica,
Potamogeton nodosus

Atlantic, Continental,
Mediterranean, Boreal

Scarpanion undulataea Brachythecium plumosum,
Fontanilis antipyretica

Atlantic, Continental,
Mediterranean, Boreal

Dermatocarpion

rivuloruma
Dermatocarpon rivolurum,

Hydrogrimnia mollis

Atlantic, Continental, Boreal,
Alpine

Helocrene,
(limnocrene)

Permanent helocrene
springs

Calthiona Caltha palustris,

Ranunculus aconitifolius

Atlantic, Continental, Alpine,
Mediterranean, Boreal

Limnocrene Permanent limnocrene
springs

Chariona Chara fragilis, Chara
vulgaris, Nitella

batrachosperma

Atlantic, Continental, Alpine,
Mediterranean, Boreal

Potamiona Potamogeton crispus,
Elodea canadensis

Atlantic, Continental,
Mediterranean, Boreal

Lemniona Lemna minor Atlantic, Continental,
Mediterranean, Boreal

Nymphaeiona Nuphar lutea, Callitriche

palustris

Atlantic, Continental,
Mediterranean, Boreal

On cliffs and hillslopes
(colluviosols)

Cliff spring
ecosystems

Adiantion Adiantum capillus-veneris,

Eucladium verticillatum

Mainly Mediterranean

Acid pH Helocrene, rheocrene,
limnocrene

Acid spring
ecosystems

Cardamino montion Cardamine amara, Montia
montana, Sedum villosum

Atlantic, Continental, Boreal

Periodic Alkaline pH Rheocrene Non permanent alkaline
rheocrene springs

Cratoneurion Cratoneuron filicinum,
Saxifraga aizoides

Atlantic, Continental, Alpine,
Mediterranean, Boreal

Neutral to
alkaline pH

Helocrene Non permanent
helocrene springs

Petasition paradoxia Petasites paradoxus,

Adenostyles glabra

Mainly Alpine

Calthiona Caltha palustris,

Ranunculus aconitifolius

Atlantic, Continental,
Mediterranean, Alpine

a Indicates phytosiociologies that are not necessarily typical of groundwater outflows but are, however, common near springs

Table 3 Classification key of spring ecosystems

of terrains inundated during snow melt and supports larger 
ranges of temperature.

Terrestrial GDEs (Table 6) are classified as a function 

of longitudinal and lateral hydrological gradients, related 

to the upstream-downstream alluvial structure evolution. 
Salicenion waldsteinianae, Alnion incanae (Circumneutral 
mesoriparian GDEs) and Salicion elaeagni (Alkaline 

mesoriparian GDEs) colonize areas frequently inundated 

and featured by coarse material (brut and/or juvenile 

fluvisols, Baize et al. 2009) or rocky substrata if 
degradation processes did not occur extensively, and a 

shallow water table. Salicion albae is the equivalent for 
lower elevation of the above-mentioned alliances. Con-
sidering the gentler topography, this system is generally 

characterized by more frequent and longer floods. Frax-
inion is mainly located on the edge of the largest valleys 
on brown fluvisols, but can be found on rocky hillslides 
bordering streams, especially uspstream, if this biocenosis 
is not inundated for most of the year (Xeroriparian GDEs). 
This alliance represents the intermediate between terres-
trial GDEs and upland ecosystems.

These typologies highlight that groundwater discharge 

zones support a wide biodiversity and long-term groundwater 
conditions may be evaluated by knowing representative 

ecosociology. For management purposes, this inexpensive 

approach may complement classical hydrological measure-
ments and complete surveys. Therefore, the basis of this
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could be used as a basis for the modeling of GDEs under
various hydrological conditions.

The proposed classification aims at considering these
multiscale processes and covers broad ranges of hydro-
logical and physico-chemical conditions as well as
biocenoses types to obtain an overview of epigean GDEs
found in European landscapes. This typology harbours a
similar philosophy to previous classification schemes,
which are discussed comprehensively by Cowardin et al.
(1979). To be applicable to large areas, the used
parameters are mainly qualitative, which could be viewed
as the main limitation of this classification scheme.
However, such an approach could be sufficient for
European or national mapping of GDEs, for example,
because it permits the inclusion of a wide range of
ecohydrological situations. From the identification of
some typical species, long-term hydrological situations
could be clarified. Reciprocally, the knowledge of ground-
water patterns should allow characterization of potential
ecological conditions close to the emergences. For local or
specific applications aiming to take into account regional
specificities or to focus on one GDE type (e.g. only
peatlands), the proposed classification should be consid-
ered as a framework in which the parameters could be
used once subdivided (e.g. by increasing the number of
pH classes or by indicating the elevation ranges in
mountainous areas). This should improve the increasing
amount of field work dealing with both biological and
hydrogeological approaches (e.g. Goldscheider et al. 2006
and references therein) and tracers (e.g. stable isotopes) in
the study of short-term relationships between different
compartments (including biocenoses) of the water cycle.

Finally, one should keep in mind that most of the
presented ecohydrological concepts in both the review and
the classification deal with the relationship between
abiotic conditions and primary producers or sometimes
primary consumers or detritivores. One challenge for the
future should be to integrate the higher trophic chain
members. Since humans are the last link in many of these
trophic chains, these approaches should further connect
hydrogeologic and hydroeconomic models in order to
adapt/improve groundwater and landscape management
policies from the international to ecosystem levels.
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