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equations as something "which Cauchy never even wrote" is obviously a 
wrong translation, what was meant being something like "which Cauchy did 
not write here". I have kept a list of dozens of lesser errors, but at least this 
translator does not fall to the depths of rendering Abel's famous statement 
"Cauchy est 'fou' " by "Cauchy is a fool" [3, p. 25]. 

The presentation of the book is scandalously bad, especially for a publisher 
with a great tradition of excellence. Apparently it was reproduced from a 
"camera-ready text," as the saying goes. The result is ugly and hard to read. 
The paper is flimsy and tears easily. 

The foregoing review does not do justice to the book. To those mathemati-
cians who would like to know how classical analysis developed, I can only say, 
Read it! 
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This is an impressive book, the result of a colossal undertaking by two 
people who have witnessed much of, and contributed to, the modern develop-
ment of empirical processes and their applications to statistics. 

In their preface, on the main objectives of their study, the authors write: 

The study of the empirical process and the empirical distribution function is one of 
the major continuing themes in the historical development of mathematical statistics. 
The applications are manifold, especially since many statistical procedures can be 
viewed as functional on the empirical process and the behavior of such procedures 
can be inferred from that of the empirical process itself. We consider the empirical 
process per se, as well as applications of order statistics, rank tests, spacings, 
censored data, and so on. 
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This review, especially the first half of it, is aimed at the broad audience of 
the American Mathematical Society: hence the early history of the subject of 
the book is given much more space than a review addressed to experts would 
normally allow. This approach has almost inevitably led to a somewhat more 
historical presentation of the book under review than would have otherwise 
been warranted. It has certainly resulted in a lengthy essay on the subject. I 
hope very much that the expert readers as well as the authors of the book 
themselves will not feel left out on occasion as a result of my trying to make 
the main subject itself more accessible to a larger audience. 

The mathematical roots of the empirical process reach back to the very 
foundations of modern probability theory [Kolmogorov (1933a)]. Let (fi, s/) 
be a measurable space, and let P ( ) be a nonnegative, normed (P(fi) = 1), 
a-additive set function on J / . Then (fi, sf, P) is called a probability space. A 
real-valued function X(o), co e fi, is called a random variable (rv) if for every 
Borel set B of the real line the co-set {<oefi :X(co)ei?} belongs to s/. Thus 
a rv X(o)) is a real-valued measurable function on (fi, J / ) . The distribution 
function F of a rv X is defined by 

F(x) = Fx(x) = P{co G fi :X(o)) < x}9 -oo < x < oo. 

Let Xv X2,... be independent rv's with distribution function F (i.e., the joint 
distribution of any finite number of XVX2,... is the product measure 
generated by the corresponding product of so many F). The random distribu-
tion function 

n 

F„(*) = n'1 £ V ^ U ) , -oo < x < oo, 
i = i 

which assigns mass \/n to each value of Xt = Xt(o)) (the data value of Xt\ is 
called the empirical distribution function of Xl9 ...,Xn (lA(-) denotes the 
indicator function of the set A). The Glivenko (1933)-Cantelli (1933) theorem 
states that even though F may be unknown, it can be uniformly (in x) 
estimated for almost all o) G fi by ¥n. Namely we have 

sup |Fn(x) - F(x) | -* 0 as n -> oo, 
-oo<x<oo a-s-

i.e., 

p( lim sup | F r t ( x ) - F ( J C ) | = O ) = 1. 

The latter theorem is a much improved and quite sophisticated version of 
Bernoulli's law (1713) of large numbers for independent binomial experiments. 

It has been rightly called " the existence theorem for statistics as a branch of 
applied mathematics" [Pitman (1979)] and also "the fundamental theorem of 
statistics" [Loéve (1955)]. Roughly speaking it guarantees that statistics can 
make sense. It implies that the unknown probabiUstic structure of the sequence 
{ Xn }^= 1 can almost surely (a.s.) be discovered from the data via ¥n. In another 
fundamental work in 1933, Kolmogorov (1933b) describes the asymptotic 
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probabilistic fluctuation of Dn = sup_00<x<00 |Fn(x) - F(x)\ with F continu-
ous, at the rate of nl/1 as follows: 

(1) Urn P{nl/2Dn^y) 
n—> oo 

00 

= £ (-1) exp(-2A:2^2) if ƒ > 0, zero otherwise, 
k = -oo 

= L{y), 

and thus he launches the study of what we call the empirical process today, 
defined by 

n1/2[¥n(x) - F(x)], -oo < x < oo. 

Important further steps of Smirnov (1939a, 1939b, 1944) followed. Let 
Y1? Y2,... be another sequence of independent random variables with the same 
continuous distribution function F as that of Xl9 X2, Let F* be the 
empirical distribution function of Yv . . . , Ym9 and consider Dm n = 
sup_0 0 < x < 0 0 |Fw(x) - F*(x)\. Then, as m ^ oo, n -> oo, we have [Smirnov 
(1939b)] 

(2) P{N^DH%mKy}^L(y)9 

where N = mn/(m + n). In his 1944 paper Smirnov obtained the exact (fixed 
n > 1) distribution of n1/2s\xp_O0<x<O0(Fn(x) - F(x)) from which he also 
derived the corresponding asymptotic (n -> oo) distribution 1 — exp(-2^2), 
y > 0, by direct calculations. 

At this stage it is enlightening to quote, using our notation here, from Feller 
(1948): 

The original proofs [Kolmogorov (1933b) and Smirnov (1939b)] are very intricate 
and are based on completely different methods. Kolmogorov's proof is based on an 
auxiliary theorem of equal depth proved in a separate paper [Kolmogorov (1933c)]. 
An alternative proof of Kolmogorov's theorem is due to Smirnov (1939a). However, 
Smirnov derives both theorems as corollaries to much deeper (but less useful) results 
concerning the number of intersections of the graphs of F„(JC) and F(x) ± en~1/2 

and of ¥n(x) and F*(x) ± eN~1/2, respectively. It is therefore not surprising that 
Smirnov's proofs require a powerful technique and many auxiliary considerations. It 
is the purpose of the present paper to present unified proofs of the theorems which 
are based on methods of great generality. The new proof is not simple but simpler 
than the original ones. 

Though he described them as "only routine manipulations," Feller's unified 
proofs constitute an impressive tour de force on generating functions and their 
limiting form, the Laplace transforms. As we will now see, however, the route 
of further developments took a different turn. 

The maximum discrepancy between two empirical distributions Dnm shares 
with Dn the property that its distribution does not depend on F if F is 
continuous. For this reason it serves in establishing statistical tests of the 
hypothesis that Xv..., Xn and Yl9..., Ym are random samples from the same 
population. The random variable Dn also served in establishing connection 
with diffusion processes. Gnedenko and Koroljuk (1951) showed that the 
distribution of Dn reduces to a random walk problem with a well-known 
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solution. The limiting procedure leads from random walks to diffusion 
processes, and this way it is also easier to see that the distribution of nl/2Dnn 

tends to the limit in (2). On the other hand, the intricate calculations of 
Kolmogorov (1933b) and Smirnov (1939a, 1939b), as well as those of Feller 
(1948), have given impetus to exciting work on the convergence of stochastic 
processes, invariance principles, and convergence of probability measures. 
Roughly speaking this is also what this book is all about, plus some more in 
terms of applications to statistics. 

Invariance principles have evolved from two major sources: partial sum 
processes and empirical processes. In two papers Kolmogorov (1931, 1933c) 
considers independent rv's Xt with mean zero, variance EX2 = o2 and E | ^ | 3 

< so2. He shows that for e > 0 small, the probability that the trajectory 
G = {£, ̂  ko

2, £, ^ k Xt\ k = 1,2,...} as a graph in the plane lies between two 
smooth curves differs little from a number obtainable from the solution of the 
heat equation that vanishes on the two curves. Today we would call this an 
invariance principle. Though Kolmogorov's result is reproduced in a book by 
Khinchine, it somehow escaped further attention. The first big steps which 
have indeed initiated a new methodology for proving asymptotic laws in 
probability theory were taken by Erdös and Kac (1946) [cf. also Kac (1946)]. 
They established the asymptotic distributions of the rv's 

n n 

n~l/1 max Sk, n~l/2 max \Sk\, n'2 £ ^2 , «~3/2 £ \Sk\, 

where Sk = Ef=1 Xi9 and the Xt (i = 1,2,... ) are independent random varia-
bles with a common distribution function F, and have mean zero and variance 
1 (EXX = 0, EX2 = 1), in two steps. First they calculated their Hmiting 
distribution in terms of assuming convenient forms for F, and then they 
showed that the above functionals of partial sums did not remember the 
initially taken forms of F in the limit (n -» oo). They called this method of 
proof the invariance principle. 

When talking about the origins of the invariance principle, another land-
mark is the paper of Doob (1949). He considers independent rv's £1? £2 , . . . 
which are uniformly distributed on (0,1) and their empirical distribution 
function 

Gn(t) = \ i W E , ) , O</<I . 
n
 1 - 1 

There is no loss of generality, for if the distribution function F of the 
independent rv's Xl,X2,... is continuous, then F(Xl), F(X2),... are inde-
pendent uniform (0,1) rv's. Since nGn(0) = 0 with probability 1 and nGn(t) -
nGn(s) is the number of successes in n independent trials with probability 
t — s of success in each trial, the random variable nGn(t) - nGn(s) has 
expectation n{t - s) and variance n(t - s)(l - (t - s)). Hence for the uni
form empirical process \Jn(t) = nl/2(Gn(t) - t), 0 < t < 1, we have EU„(0 = 0 
and 

E(U„(r) - U„(5))2 = (t - 5)(1 - ( / - s)), 0 < s < t< 1. 
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This is the same covariance structure as that of a Brownian bridge B(t% 
0 < f < 1, i.e., a Gaussian process with EB(t) = 0 and EB(t)B(s) = s(l - t), 
0 < • $ • < / < 1. Also by the multivariate central limit theorem, the limit of the 
joint distribution of U ^ ) , U„(/2),. . . , U„(**) (0 < tx < t2 < • • • < tk < 1) is 
the corresponding finite-dimensional distribution of a Brownian bridge, i.e., 
that of B(tx\ B(t2\..., B(tk). Arguing along these Unes, Doob (1949) con-
cludes: "We shall assume, until a contradiction frustrates our devotion to 
heuristic reasoning, that in calculating asymptotic U„(0 process distributions 
when n -> oo we may simply replace the Un(t) processes by the B(t) process." 
Since, as we have indicated above, direct evaluation of the limit distribution of 
sup0<r<1Uw(/) (resp. sup0</<1|U / l(/)|) is rather complicated, while the evalua-
tion of the distribution of s\xp0<t<lB(t) (resp. sup0<r<1 |5(^)|) is easier, this 
approach is appealing. Indeed, besides posing his invariance argument, Doob 
(1949) proceeded to evaluate the distribution of the latter functionals of B(t), 
leaving the justification of his heuristic approach open. 

Inspired by the papers of Erdös and Kac (1946), and Doob (1949), the first 
steps towards providing a unifying theory for solving these types of problems 
for partial sum and empirical processes were taken by Donsker (1951, 1952). 
Concerning partial sums {Sn}, n > 0 (S0 = 0), of independent identically 
distributed rv's Xl9 X29... with mean zero and variance 1, Donsker's idea 
(1951) was that from these partial sums one should construct a sequence of 
stochastic processes {Sn(t\ 0 < t < 1} on C[0,1] as follows: Sn(k/n) = 
Sk/n

l/2, and Sn(t) is the linear interpolation of the latter for k/n < t < 
(k + l ) / « . Thus one can study the limiting behavior of Sk/n

l/1 via that of 
Sn(t) on C[0,1]. Indeed, using a multivariate central limit theorem, one can 
immediately say that the distributions of (Sn(tl),Sn(t2),...,Sn(tk)) converge 
to that of (W{tx\ W(t2),..., W(tk)) for any fixed sequence 0 < tx < t2 < • • • 
< tk < 1 as n -> oo, where (W(0, 0 < / < l } i s a standard Brownian motion 
(Wiener process), i.e., a Gaussian process with EW{t) = 0 and EW(s)W{t) = s, 
0 < s < t < 1. Moreover, the distributional properties of {£„(/); 0 < / < l } 
should coincide with those of {W{t)\ 0 < / < 1} as n -> oo. One possible way 
of saying this precisely is via Donsker's functional central limit theorem (1951), 
which extends the results of Erdös and Kac (1946): h(Sn(t)) -*dh(W(t)) as 
n -> oo for all h: C[0,1] -> R1 that are supremum norm || || continuous almost 
surely with respect to Wiener measure W. Here ->d means convergence in 
distribution, i.e., convergence of the sequence of distribution functions gener-
ated by h(Sn(t)) to that of h(W(t)). Donsker (1952) was first again in proving 
a similar functional central limit theorem for the empirical process, which 
justifies and extends Doob's conjecture (1949). Now if, in general, {Xn(t)}™=0 

is a sequence of stochastic processes (random elements) on a function space M 
endowed with a metric p (e.g. (C[0,1], || ||) is a complete separable metric 
space), and as n -> oo 

(XH(t1),...,X„(tk))-*d(X0(t1),...,X0(tk)) 

for any fixed sequence tx < • • • < tk, then the statement that h(Xn(t)) ->d 

h(X0(t)) for all p-norm continuous real-valued functionals h is not necessarily 
true. A complete methodology for proving the latter and some more, assuming 
convergence in distribution of the finite-dimensional distributions, was worked 
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out in the fundamental papers of Prohorov (1956) and Skorokhod (1956). An 
excellent summary and further developments of these notions and techniques 
can be found in the books of Billingsley (1968) and Parthasarathy (1967). 

Nowadays we have, roughly speaking, three main, frequently interacting 
methods for proving invariance principles: 

(i) Classical weak convergence methods; 
(ii) Vapnik-Chervonenkis type combinatorial methods for indexing class of 

sets or class of functions, or metric entropy notions for counts of sets needed 
to cover a class of functions; 

(iii) Strong and weak approximations of stochastic processes based on 
various forms of the Skorokhod embedding scheme (like, e.g., Strassen's 
invariance principle), or on various forms of the Hungarian construction. 

There are now books available on all these three methods and their apphca-
tions. In addition to the already mentioned books of Billingsley (1968) and 
Parthasarathy (1967) on the first method, the books by Dudley (1984), Gaens-
sler (1983), and Pollard (1984) mainly deal with the second one. The books by 
M. Csörgö and Révész (1981), M. Csörgö (1983), and M. Csörgö, S. Csörgö, 
and Horvâth (1986) are mostly concerned with the Hungarian construction 
and its apphcations. 

The present book is the first one which studies all three of the above 
methods, their interplay, and the vastness of their applications in statistics. The 
authors' remarkable technique with inequalities which they carefully develop 
for empirical processes throughout the text is a strong unifying theme of the 
book. The number of topics they cover in 900 pages is so extensive that it 
compelled them to provide a very helpful one-page short table of contents in 
addition to their 18-page regular table of contents. In their References they cite 
more than 500 papers, plus books on related material. Two basic techniques 
are stressed: reduction to the case of uniform (0,1) random variables on the 
unit interval, and use of Skorokhod versions of weakly convergent processes. 
The Vapnik-Chervonenkis type approach is introduced only in the final 
chapter; nevertheless it succeeds in constituting a good introduction to this 
area. The Hungarian construction is well contrasted with the authors' own 
approach throughout the text. As an illustration of their overall approach we 
again quote from their preface: 

Good inequalities are a key to strong theorems. In Appendix A we review many of 
the classic inequalities of probability theory. Great care has been taken in the 
development of inequalities for the empirical process throughout the text; these are 
regarded as highly interesting in their own right. Exponential bounds and maximal 
inequalities appear at several points. 

Because of strong parallels between the empirical process and the partial sum 
process, many results for partial sums are also included. Chapter 2 contains most of 
these. 

Our main concern is with the empirical process for iid rv's, though we also 
consider the weighted empirical process of independent rv's in some detail. We 
ignore the large literature on mixing rv's, and confine our presentation for 
/c-dimensions and general spaces to an introduction in the final chapter. 

We emphasize the special Skorokhod construction of various processes, as 
opposed to classic weak convergence, wherever possible. We feel this makes for 
simpler and more intuitive proofs. The Hungarian construction is also considered. 
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I found Chapter 1, Introduction and survey of results, very informative, a 
good key to the whole book. There one immediately (p. 3) learns about the 
inverse, or quantile transformation: 

THEOREM 1. (The inverse transformation). Let £ = Uniform (0,1). For a fixed 

distribution function (df) F, define its left continuous inverse by F~1(t) = 

inî{x:F(x)> t) for 0 < t < 1. Then the rvX=F~l(t) has dfF; that is, 

X= F - 1 (£) = F; 

and also that (p. 9): 

The Skorokhod-Wichura-Dudley theorem (Theorem 2.3.4) is basic to much of our 
approach. We now illustrate its simplest special case; in this case a simple 
constructive proof is possible. Let Fx, F2,... and F0 denote dfs such that Fn ->d F0 

as n -» oo. Define rv's X* by X* = F„_1(£) for n > 0 where £ is a fixed Uniform 
(0,1) rv; then X* = Fn(£) by Theorem 1. Moreover, and this is the fundamental 
result: THEOREM 4. (Elementary Skorokhod theorem) X* ->a s X$ as n -> oo. 

The use of this kind of a theorem is immediately well illustrated on p. 10: 

EXERCISE 6. (Mann-Wald theorem). Suppose Xn -»t X0 as n -> oo and ^ is 

continuous except on a measurable set A for which P(X0 e A) = 0. Then ^(Xn) —>d 

*(X0) asn-> oo. HINT. Let X* = F~l(^) for all n > 0 where Xn = F„. Show that 
¥(**)-Vs.*(Xo*). 

This in turn leads to their presentation of the problem of weak convergence on 
p. 14 as follows: 

We now turn to a generalization of the Mann-Wald theorem. Letting ->f d mean 
that the finite-dimensional distributions of the process on the left converge to those 
of the process on the right, it is a minor exercise to show that 

(3) UM->U a s « ^ o o 
v 7

 f.d. 

for a Brownian bridge U (see §2.2 for the definition of U). However, this mode of 
convergence is not strong enough to yield the Mann-Wald theorem: that is, it does 
not follow from (3) that h(Un) -*d h(\J) for || ||-continuous functions h. The concept 
of weak convergence, => , was designed to fill this need (we leave the precise 
definition of => until Chapter 2). In a landmark paper, Doob (1949) suggested 
heuristically that 

(4) U„ => U„ as n -> oo, 

in a sense that carried with it the implication that 

(5) 
h(V„) -» h(V) as n -» oo for all h that 

d 

are II ||-continuousa.s. U. 

A use, other than that in (1), of (4) is presented immediately after, as they write on their Chapter 5: 

Once (4) was established, it was trivial to show results such as 

(8) flv;(t)dt-+(1v2(0dt 
J
0 d

 J
0 
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just note that h(f) = /J f2(t)dt is || |(-continuous. The trick is to determine the 
distribution of h(U); the solution of this problem for the h in (8) leads to some 
particularly fruitful methodology. This is explored in the next few paragraphs (see 
Kac and Siegert, 1947). 

Contrasting the different methodologies, on p. 16 of Chapter 1 they write on 
their Chapters 2, 3 and 12 as follows. 

In many ways the concept of weak convergence => is a rather inconvenient one to 
work with. Technical manipulations became easier to deal with after Skorokhod 
(1956) and Komlós, Major, and Tusnâdy (1975) introduced their constructions. Thus 
Skorokhod effectively constructed a triangular array {£m, 1 < z < K, n > 1} of 
row-independent Uniform (0,1) rv's and a Brownian bridge U, all on a common 
probability space, that satisfy 

(18) || XJ„ — U|| —> 0 for a special construction; 
a.s. 

here U„ is the empirical process of £wl , . . . ,£MW. Since it is trivial from (18) that 
/i (Skorokhod's U„) -»a s h(U) for any || | (-continuous functional h, and since 
h (Skorokhod's U„) = h (any U„), one obtains immediately from (18) the result (5) 
that h (any Un) ->d h(\J). So far, (18) has only provided an alternative proof of (5). 
In what ways is it really superior to (4)? First, it can be understood and taught more 
easily than (4). Secondly, it is often possible to show that h (Skorokhod's U„), or 
even hn (Skorokhod's UM), ->a s h(\J) and to thereby establish the necessary 
|| |(-continuity of h in a fashion difficult or impossible to discover from (4). 
(Examples will be seen in the chapters on linear combinations of order statistics and 
rank statistics.) Given that Skorokhod's construction is based on a triangular array 
we know absolutely nothing about the joint distribution of Skorokhod's (Uj, U2 , . . . ). 
Thus his construction can be used to infer ->d or -> of h (any U„), but it is 
helpless and worthless for showing ->a s The Hungarian construction (begun in 
Csörgö and Révész, 1975a and fundamentally strengthened by Komlós et al. 1975), 
improves Skorokhod's construction in that it only uses a single sequence of Uniform 
(0,1) rv's and a Kiefer process K (see §2.2 for the definition of the Kiefer process) on 
a common probability space that satisfy 

(19) 1W — ^ - j i m - m ^ o o a.s. 
n -» oo ( l o g n ) 

for the Hungarian construction; here U„ is the empirical process of £x , . . . , £„ and 

(20) B„ = K( n, • )/yfn is a Brownian bridge 

as in (2.2.11). Since h(Bn) = /i(U), this construction also yields (5). It is also capable 
of yielding -»a s for the original sequence, though the subscript n on BM may make 
the problem difficult. Its real value is in the rate it establishes. 

We should note here that one of the most important works which is cited by 
name throughout the book, Skorokhod (1961), is missing from the References. 
Skorokhod's theorem (1961) states that for any rv X with first moment 0 and 
finite second moment, one can define a probability space with a Brownian 
motion (Wiener process) and a stopping time r such that W(r) = X and 
ET = EX2 (cf. Proposition 3, p. 38 of the book under review). This is the basic 
building block of the Skorokhod embedding scheme, which has also led to the 
first strong invariance principle, namely that of Strassen (1964) for partial 
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sums of rv's. This, and also related works of Breiman (1968) and Brillinger 
(1969) for the empirical process U„ have played important roles and are rightly 
emphasized throughout the book. The above mentioned Kiefer process K is a 
Gaussian process with mean 0 and covariance function 

EK(^ , / x )K(^ , / 2 ) = (Sl A s2)[(tl A t2) - tfa]. 

The cited Hungarian construction was inspired by Strassen (1964, 1967), 
Kiefer (1969), and especially by Kiefer (1972), where he proved the first strong 
invariance principle for the empirical process Un in terms of what nowadays we 
call a Kiefer process. Indeed, Kiefer (1972) established the result in (19) above 
with n1/6/(\ogn)2/3, instead of n1/2/(\ogn)2, via generalizing Skorokhod's 
embedding scheme to vector-valued rv's. While Kiefer's work in general is 
given well-deserved attention throughout this book, Kiefer (1972) is missed in 
the References, and looks like it was also missed in the text. Nevertheless, the 
above quotations are given here to convey the author's well-balanced view and 
mastery of their subject as manifested throughout their book. 

The first three chapters (150 pages) provide the mathematical probabilistic 
background, a setting for further developments in the remaining 750 pages. 
The whole book is written at a rather advanced mathematical level. There is an 
interdependence table to help readers find their way around. The advanced 
mathematical level should not, however, deter anyone from trying, for this 
book is well motivated throughout, filled with clear illustrations and tables, 
and it can be read at several levels. It provides a remarkably accessible 
summary of the asymptotic theory that is currently available for empirical 
processes and their applications to statistics. As to these applications, the book 
creates a unified theory and treatment for a vast array of topics in nonpara-
metric statistics which otherwise can only be found in several books, not 
necessarily relating to each other. Thus we can, for example, learn about 
contiguity, convergence of empirical and rank processes under contiguous 
location, scale and regression alternatives, as well as empirical and rank 
processes of residuals in one setting. The book gives an excellent treatment of 
orthogonal decomposition of processes, and of various statistics. Martingale 
methods, censored data and the product-limit estimators, Poisson and ex-
ponential representations as well as exact distributions are highlighted in a 
sequence of chapters. In further impressive chapters we see the authors' 
approach to linear and nearly linear bounds on the empirical distribution 
function Gn, to exponential inequalities, and then their treatment of || -/q\\-
metric convergence of empirical processes. Recent developments in the 
Hungarian construction as well are highlighted here. The interplay of their 
approach with the Hungarian construction is also well illustrated when writing 
about laws of the iterated logarithm and oscillations of the empirical process. 
The uniform quantile process 

yn{t) = nl/2{G;\t)~t), 0 < r < 1, 

the uniform empirical difference process 

D„ = U„ + V„ on [0,1] 
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of Bahadur (1966) and Kiefer (1967,1970) and their extensions, the normalized 
uniform empirical process 

z„(0 = u„(0/(;(i - 0)
1/2

> o < t < l, 

and the standardized quantile process 

Q » ( 0 =f{F-\t))n^{¥-\t) - F-\t% Q<t<\, 

where ƒ = F' is assumed to be positive on the open support of i7, have played 
an important role in developing the theory as well as the applications of 
empirical processes. Three chapters are devoted to these processes, which in 
turn lead to a unified treatment of L-statistics, rank statistics, and spacings in 
another three chapters. Further considerations result in the introduction of 
symmetry processes and their statistical applications, bootstrapping of the 
empirical process, convergence of {/-statistic empirical processes, and reliabil-
ity theory and econometric functions. There is also a chapter devoted to large 
deviations, discussing topics like Bahadur efficiency, the Kullback-Leibler 
information number, and the Sanov problem. The treatment of the empirical 
process of independent but not identically distributed rv's is highlighted by 
Bretagnolle's inequality and exponential bound (1980). Appendix A was 
already mentioned above. There is also an Appendix B on martingales and 
counting processes. A Hst of special symbols, an author index, and a subject 
index (17 pp. combined), greatly facilitate the process of getting familiar with 
the book. 

Naturally, in a huge book like this there are bound to be misprints. Given its 
size, I have not noticed too many. Here I will only mention two of them, for 
these may actually be somewhat misleading if one sees the formulae in 
question the first time around. Namely, in formula (10) of p. 12, and also in (7) 
of p. 14, the factor (-1)*+1 multiplying exp(-2A:2X) is missing. The thus-cor-
rected formula is equivalent to the distribution function L(y) of (1) above. 

In summary, this book is an important addition to the literature in probabil-
ity and statistics in general, and to the theory and applications of empirical 
processes in particular. It will certainly be one of the basic references on 
asymptotic theory for empirical processes for some time to come. It is intended 
for graduate students and research workers in statistics and probability. The 
prerequisite is a standard graduate course in probability and some exposure to 
nonparametric statistics. A reasonable number of exercises are included. 
Frequently these are results from themes the authors have not pursued in their 
book. 

As mentioned already, there are also other recent books available, emphasiz-
ing other methods for proving invariance principles. For someone who is not 
familiar with any, or some of these methods, and would like to learn about 
them in one setting, the present book is best, I believe, to start with. Should 
one end up liking any one of the methods in particular, then naturally, one 
should have a look at the other books too. On the other hand, those who have 
already seen them should definitely keep also this one in mind. At $59.95 it is a 
steal. 
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Enigmas of chance. An autobiography, by Mark Kac, Harper and Row, New 
York, 1985, xxvii + 163 pp., $18.95. ISBN 0-06-015433-0 

This wonderfully lively and colorful autobiography tells the story of a man 
who as a teen-ager fell under the spell of mathematics, never gave it up, and 
grew to become a brilliant, creative mathematician. 

Born in 1914, literally with the opening gunfire of World War I, in 
Krzemieniec, a town in czarist Russia, as a son of a middle-class Jewish family, 
Mark Kac was raised in an intellectual tradition. His father held a Ph.D. 
degree in philosophy from Leipzig and an advanced degree from the Univer-
sity of Moscow, and when needed earned an income by tutoring in mathe-
matics, classical languages, and history. 

In 1925, Mark was admitted to the Lycée of Krzemieniec, a school with a 
long tradition and ambitious standards. In 1930, at the age of sixteen, he 
achieved his first success in mathematics: he found a new derivation of 
Cardano's solution of cubic equations and showed it to his mathematics 
teacher, who sent it on to a journal. By a chain of circumstances the paper 


