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Asymptotic statistical theory is a body of limit or, better yet, approximation 
theorems used by statisticians to elude the intractabiUty of all but the very 
simplest practical statistical problems and to obtain usable results. As such it is 
not a subject with a well-defined scope or natural boundaries. An early 
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contributor to the subject was Laplace. He may have had predecessors, but I 
did not know them personally. At any rate, in his papers published in 
1809-1810, Laplace did present a number of interesting results. He gave a 
fairly general formulation of what is now called the Central Limit Theorem, 
with a proof that is certainly valid for sums of independent bounded lattice 
variables and can be extended further. Laplace also proved that for smoothly 
parametrized families of distributions, as the number of observations tends to 
infinity, posterior distributions tend to Gaussian distributions centered on 
what Fisher was to call the maximum likelihood estimates. Laplace used that 
to prove asymptotic optimality properties of Bayes (or m.l.e.) estimates and to 
give a justification for Legendre's method of least squares. 

The statistical aspects of the subject seem to have remained fairly dormant 
until they were revived by R. A. Fisher in 1922 and 1925. He introduced 
names, such as "maximum likelihood", "efficiency", "consistency" and carried 
out a bit further some of Laplace's arguments. Fisher spurned the use of Bayes' 
theorem and did not recover those of Laplace's results that are connected with 
it. 

There is now a very large body of results about problems that can be 
described roughly as follows. 

Take a a-field j^of subsets of a set SC. Let J^be a family of probability 
measures on stf and let t be a "functional", that is, a function from <^to the 
line, or a Euclidean space, or perhaps some other space. Let Xv X29... 9Xn be 
independent identically distributed observations whose individual distribution 
is some measure P e 3F. A statistic Tn is a function from &

n to the range of /. 
The asymptotic statistician will study the hmiting behavior of the distribution 
of Tn as n tends to infinity. If Tn is intended as an estimate of t, one indicates 
how good or bad Tn is by the use of loss functions and their expectations, just 
as was done by Laplace. Pfanzagl and Wefelmeyer (henceforth abbreviated 
[P.W.]) prefer to use measures of concentration of the distribution of Tn around 
/ (see their comments, p. 151 s.q.q.). If Tn is intended for testing purposes, one 
attempts to obtain approximate values for the power functions of the 
Neyman-Pearson theory. 

A large effort has been spent on functions Tn obtained through the maxi
mum likelihood method, perhaps because Fisher claimed that these were 
always the optimal ones. Other favorites are the von Mises differentiable 
functions, Hoeffding's ^/-statistics, the statistics provided by minimum dis
tance methods, and the statistics "based on ranks". The last have boomed 
particularly in the fifties and sixties after it was shown by E. Lehmann and 
others that they do have rather remarkable properties (see Hâjek-Sidâk (1967) 
and E. Lehmann (1975)). 

Here we have mentioned only i.Ld. observations, for simplicity, and because 
this is the domain that has yielded the largest volume of papers. However there 
is a massive amount of material available on other cases. The Ibragimov-
Has'minskii text (henceforth abbreviated [I.H.]) contains a bit of it for inde
pendent nonidentically distributed observations and for special stochastic 
processes. Pfanzagl limits himself essentially to the i.i.d. case. 
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Another important part of the enterprise is connected with the name 
"robustness". There one investigates what happens to the statistics Tn if the 
true distribution of the Xj is not one of the postulated family &

r
. 

According to [P.W.]'s Introduction, these endeavors are based on thin logic, 
and they lack coherence. This is certainly true and probably all for the best: no 
logically organized theory, conceived in the present, can be expected to cope 
with major future developments that are not yet perceived. 

It is, however, possible to give a good portion of the field a solid foundation 
and some organization if one sticks by the precepts of the Laplace-Neyman-
Pearson-Wald statistical decision theory, or close to them. The main idea is 
simple. It will be described briefly since it is not explicit in [I.H.] or [P.W.]. 

Call any family «f = {P0: 6 e 0} of probability measures Pd in a a-field J / 
an "experiment indexed by a set 0 ". 

Let g= {Pe: 6 e 0} and 8' = {Pj: d e 0} be two experiments with the 
same index set 0 but with possibly different underlying spaces (#", s/) and 
($*', s/'). It turns out that we can define a number A = A(<f, <?') that 
measures the "distance" between (f and S' for several different purposes. One 
of them is that for any loss function W such that 0 < W < 1, any risk function 
achievable on one of the experiments can be matched within A by a risk 
function achievable on the other experiment. Another interpretation of A is 
that a randomization operation conducted after carrying out i can reproduce 
the measures of £' within 2 A for the total variation norm, and similarly, (^and 
S' being interchanged. The principle of the operation is then to replace an 
intractable S by a simpler ê' within short distance of ê, treat the problem 
there, and return to ^by the randomization operation. 

An idea very similar to this occurs in Wald's fundamental paper of 1943. 
There Wald looks at experiments r = { P / J e 0 } formed by the distribu
tion PQ of n identically distributed observations. He shows that under suffi
cient regularity assumptions one can replace ê

n by an experiment^ = {ÖÖ,«: 

Ô6 0} , where Qe n is the Gaussian approximation to the distribution of the 
maximum likelihood estimate. 

It was noted some years later that Wald's argument depends mainly on two 
features of his special situation: (a) the existence of sufficiently accurate 
estimates, and (b) the possibility of local approximation of the experiment by a 
Gaussian shift one. This led to the introduction of the locally asymptotically 
normal families (LAN), to the asymptotic minimax theorem sometimes called 
by the names Hâjek and Le Cam, to Hajek's celebrated convolution theorem 
and a number of other "general" statements. For extensions to the "locally 
asymptotically mixed normal" (LAMN) families so prevalent in the study of 
stochastic processes, see the book by Basawa and Prakasa Rao (1980), the 
work of Jeganathan (1980), and the notes by Basawa and Scott (1983). 

The Hajek-Le Cam asymptotic minimax theorem says that if a risk function 
is not achievable on an experiment ê, it is eventually not achievable either 
along a sequence { €n} of experiments that tend to i, even in a weak way. This 
means, for instance, that if the limit is Gaussian one can read off lower bounds 
for limits of risks along the sequence from those already known in the 
Gaussian case. The Hâjek convolution theorem involves statistics Tn with 
values in a group G and with limiting distributions Fe permuted among each 
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other by the action of G. In a variety of cases there are "distinguished" 
sequences {Tn} with the said property and the further property that if {T„} is 
any other sequence with limiting distributions F'e similarly permuted by G then 
Fff is the convolution of Fe by some probability measure \x that depends on 
{ Tn} but not on 6. This was proved by Hajek for LAN families with Euclidean 
parameter sets taken for the group G. Later Moussatat (1976) and Millar 
(1982) extended it to LAN families parametrized by the additive group G of a 
Hilbert space. This reviewer considered some other cases. 

A combination of these relatively simple results with the ideas of C. Stein 
(1956) about the influence of nuisance parameters gives a connecting thread 
through a good part of asymptotic statistical theory. It does not cope with 
everything. Left out is the excellent work of Bahadur. This uses "large 
deviations" with probabilities that are (asymptotically) too small to be of 
importance when one tries to approximate experiments. The use of "large 
deviations" is often connected with a squabble about whether one should 
consider "fixed" instead of "near-by" alternatives. This is due to standard 
presentations where everything is "fixed" except the number n of observations 
which tends to infinity. The silliness of the question is readily apparent if one 
thinks of approximations instead of limits, or, as this reviewer likes to do, 
make everything including the parameter space depend on n. 

Besides results that involve large deviations, there is a very substantial body 
of theory that uses "asymptotic expansions" in the usual mathematical sense 
instead of the mere first order approximations that were sufficient for Laplace 
and some of his successors. (See for instance Akahira and Takeuchi (1981), 
Pfanzagl (1980).) 

The two books under review do not deal with these higher order expansions. 
Pfanzagl intends to devote a second volume to them. 

The purpose of the [I.H.] book is to present certain aspects of asymptotic 
theory of estimation with emphasis on the theoretical mathematical aspects. 
The instances selected for specific study involve mostly parametrized families 
in the independent identically distributed case and signal + noise examples 
from communication theory. There are, however, a substantial section on 
independent nonidentically distributed observations and a chapter on non-
parametric problems. The first chapter contains a variety of results about the 
estimation problem: construction of consistent estimates,Cramér-Rao inequali
ties, Pitman estimates, Bayes estimates, maximum likelihood, method of mo
ments, etc. This first chapter by itself contains more than the usual course or 
textbook contents on the subject. Then [I.H.] proceeds to study the LAN 
assumptions and their consequences. Two further chapters are devoted to 
"irregular" densities where the limit experiments are Poisson instead of Gaus
sian ones. Chapter VII deals with estimation for stochastic processes with 
Gaussian noise. 

Apparently [P.W.]'s purpose was to present a general methodological frame
work illustrated by some results that involve exclusively Gaussian approxima
tions and mostly independent identically distributed observations. The basic 
aim is to deal with estimation of functionals defined on general nonparametric 
families. (This reviewer found Pfanzagl's own description of purpose, pp. 8 and 
9, rather mysterious. Thus the above may be wrong.) The statistical part of the 
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book, beginning with Chapter 8, p. 115, actually contains very few "general" 
results. It does contain lower bounds on the risk of estimates, a form of Hajek's 
convolution theorem, and bounds on risks related to Stein's ideas. The non-
parametric context of [P.W.] makes it more "general" than [I.H.]. For paramet
ric families the LAN context of [I.H.] goes further than the i.i.d. case of [P.W.]. 

A particular feature of [P.W.] is the great emphasis on "tangent spaces" in 
Chapters 1 to 7. Pfanzagl and Wefelmeyer work with a particular probability 
measure P0 and the Hubert space generated by a family & of probability 
densities that are jP0-square integrable. They do have a definition of "weak 
differentiability" that avoids the restriction to square integrable densities 
(p. 23), but that is used only sporadically in the sequel. It was shown by this 
reviewer, with input from Pfanzagl, that the weak differentiability is equivalent 
to the Hellinger differentiability used by Beran, Bickel, Hajek, Koshevnik, 
Levit, Millar and many others, including this reviewer. 

The relevance of tangent spaces obtained from Hellinger distances can be 
seen more clearly as follows. Consider an experiment ^ = { G ^ £ 0 } and a 
particular £ e 0. Call ^ a Gaussian shift experiment if the Ge are mutually 
absolutely continuous and if the stochastic process 

• -.is-wfj. 
with the distributions induced by Gn is a Gaussian process. Such an experi
ment generates a Hilbert spaced, the closed linear span of the process 

0 ~> Xe = X'B - EtX'9. 

If, as we shall assume for simplicity, 0' ¥= 0" implies Ge> # Ge»9 the map 
0 ~> Xe imbeds 0 in^f. Then the statistical properties of the experiment ^are 
entirely determined by the metric structure of 0 as a subset of «Pf. Conversely, 
any subset of a Hilbert space has a standard Gaussian shift experiment 
attached to it. Now note that finite positive measures on a a-field stf can be 
imbedded in a Hilbert space 3^n using the square norm 4nf(y/dp - Jdq)

2
. 

This way a set {pe\ 0 e <dn) of probability measures ons/yields a Gaussian 
shift experiment ^w. It also yields a product experiment in = {pj}; 6 e 0W}, 
where pg is the distribution of n i.i.d. observations from/fy. In the local case, 
that is, for measures pfî that do not separate entirely, it turns out that when 
approximation by a Gaussian shift experiment is possible, then, under mild 
restrictions, it can be achieved through the particular &n described above. 

This explains in part the relevance of the local Hilbert structure of 0W for the 
Hellinger distance h(P9 Q) defined by h

2
(P, Q) = \f(]fdP - ]fdQ)

2
. Another 

main reason for the use of h is that it is easily computable on direct products 
from its values on components: 

(nrj),(nQj)]-n[i-*(Pj,Qj)]. 
v
 J '

 v
 j

 ; J j 

Instead of the Hellinger distance, [P.W.] uses, locally, square distances of the 
chi-square type: 

\2 

*<**«>-ƒ i * ^ 
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(The corresponding inner products were also used by Hellinger.) This can be 
done under some restrictions. In particular, note that the square distance 

K2(P o)-
 1

 f(
dp

~
d
Q)

2 

satisfies h
2
 ^ k

2
 ^ 2h

2
, and, under some regularity restrictions, k

2 behaves 
like 2h

2 for h small. However, such distances do not propagate well when one 
takes direct products. [P.W.] used such distances to introduce the material in a 
simpler manner. Unfortunately, this means quite a bit of additional complexity 
in Chapters 6 and 7, for instance. 

It should be clear from this that the tangent spaces of [P.W.] are relevant in 
that they allow at least some description of a very relevant local Hilbertian 
structure. Note, however, that this is a special feature of the i.i.d. case. It is not 
adequate in a "general asymptotic statistical theory" that should be able to 
cope with regression problems, time series or the signal + noise schemes of 
[I.HJ. 

The LAN assumptions of Le Cam (1960) involve two main features. One of 
them is local approximability by Gaussian shift experiments %. The other 
assumes that the parameter spaces are subsets of a Euclidean space R* and that 
the Hilbert spaces of the <

Sn can be represented linearly in R*. In such a system 
the tangent spaces introduced in statistics by H. Chernoff (1954) are exactly 
what is needed to allow local replacement of a set by a tangent space. In this 
respect note that [P.W.] introduces two concepts: one called "tangent cone" 
(p. 23), and a modification (p. 24). This latter is the "contingent" used by 
Bouligand (1932). See also Saks (1937). 

There are cases where the "tangent cone" is reduced to the origin, but where 
the contingent is the entire space. There are also cases where neither of these 
objects satisfy Chernoff s requirements. Thus they should be used with caution, 
even in the i.i.d. case and even if they are taken for Hellinger distances. 

There are other surprises in [P.W.]. For instance Chapters 10 and 11 have 
titles that begin "Existence of Asymptotically Efficient Estimates", but they do 
not actually provide conditions under which the estimates exist or proof of 
existence except in particular examples. [P.W.] derides the use of minimum 
distance methods, but does not tell us how to obtain the estimators that he 
improves in Chapter 11. 

In spite of all of this, [P.W.] is well worth reading, would it be only for its 
wealth of good examples. At places it is also enlivened by diatribes about some 
common practices. Some of them are in Chapter 0 but see also p. 120 s.q.q. 
and 151 s.q.q. One does not have to agree with the sentiments expressed there 
to enjoy reading them. 

The [I.H.] book is also enjoyable reading except perhaps for one feature: 
there are many proofs of convergence of distributions of stochastic processes. 
Such proofs tend to be complex, because such is the nature of the beast. The 
results are not really needed for the main statistical implications, although they 
are needed for the treatment of particular estimates, such as maximum 
likelihood. 
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There are some minor matters that left this reader feeling like finding 
blemishes on a well-polished apple. I did not find any mention of the fact that 
Bayes estimates can be disastrously inconsistent (see Freedman (1963)) or any 
warning of that nature. Another item is the choice of formulation for the LAN 
assumptions (p. 120). They involve a particular point t &R

k and nearby points 
of the form t + <p(e)w, where <p is a matrix and u is an element of R*. In the 
[I.H.] formulation, the convergence to zero of the remainder term ^e(w, 0 is 
assumed to take place pointwise in u. This is indeed the version used by Hajek 
in (1970) and (1972). The original version of Le Cam (1960) required that 
t//e(w£, 0 tend to zero as long as ue remains bounded. Hajek's version is 
sufficient to obtain convolution theorems and a minimax lower bound. It is not 
sufficient to insure attainability of the lower bound. 

It is true that [I.H.] gives another definition (p. 123). This one requires 
uniformity of the convergence in w, but also in t, an uncomfortable mixture. 

Another item is the form of the statement of the asymptotic minimax 
theorems. [I.H.] take the supremum of the risk over neighborhoods \6 - t\ < 8. 
This is indeed the way the theorem is stated in Hajek (1972), p. 186. However, 
it is proved there for shrinking neighborhoods, as stated in that same paper, 
p. 189, Remark 1. For the special case considered at that time, Le Cam (1953) 
also used shrinking neighborhoods. The use of the neighborhoods \d - t\ < 8 
was roundly criticized in Fabian and Hannan (1982). It is perhaps not a point 
of major importance except that most applications to nonparametric situations 
seem to need the shrinking neighborhood version. See for instance [I.H.], p. 
238, where [I.H.] reproduces a result of Roger Farrell (mistransliterated 
throughout as Farrel). 

In connection with this result, it would have been nice to point out that the 
technique of proof does not apply to situations where one estimates the entire 
density with a loss function such as the Hellinger distance (see Remark 5.5, 
p. 140). The [I.H.] proof of Farrell's result relies on the fact that one can 
modify a density at a point very materially and still keep very close for the 
Hellinger distance. For other problems one needs to make a stronger use of the 
dimensionality of the parameter space. There are results of that nature. They 
rely either on Fano's lemma ([I.H.], p. 323) or on P. Assouad's lemmas (1983); 
see also Birgé (1983). 

Chapters V and VI could have been made more transparent by a systematic 
use of the fact that it is enough to prove the desired convergences for 
experiments where the number of observations is a random number N9 

independent of everything else, with a Poisson distribution such that EN = n. 
The discussion of the properties of estimates in VI, §6 could have included 

remarks to the effect that the estimates do often depend materially on the 
choice of loss functions, contrary to what happens in the LAN situation, for 
instance. 

Since this is a translation, one would have expected a scarcity of typographi
cal errors. Unfortunately the translation has provided a few that were not in 
the original. This reviewer did not attempt to search for them, but, for 
instance, the Legendre duplication formula for gamma functions on p. 306 is 
missing two of the gammas present in the original. There are also some 
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peculiar translations. For instance, p. 128:... "Indeed Lindeberg's theorem as 
well as the theorem concerning the relative stability of some random variables 
remain valid when applied to the sequences of the series". Presumably this 
means that Lindeberg's theorem (and something else that is difficult to 
identify) remains valid for triangular arrays. Another example occurs in Fano's 
lemma (p. 323): "Let ^(X) be a decision rule (an estimator) which corre
sponds to each 'observation' X of the values 0V 02 , . . . 90n" I think they mean 
"assigns to each X one of the 6t ". There are many more. 

The [I.H.] book would serve well as a graduate level introduction to the 
subject. It is also a good reference for the territory it covers. For serious 
readers it should be supplemented since it gives only a view of a small part of a 
very large domain. 

Some related works are the Basawa-Prakasa Rao book already mentioned, 
R. Serfling's book on Approximation theorems, U. Grenander's Abstract in

ference and the Martingale limit theory of Hall and Heyde. 
The [P.W.] book appears in a series that advertises itself by saying that "The 

timeliness of a manuscript is more important than its form which may be 
unfinished or tentative". A caution to this effect is also given on p. 20 of 
[P.W.]. If "form" includes typography, one can indeed hope that a more 
polished version will become available. The typography even bothered some of 
my younger colleagues who do not have the excuse of weak eyesight. 

There is room for improvement and much " unfinished business", especially 
in Chapters 10 and 11—this is due to the present state of the art. One of the 
main impacts of [P.W.] is that it has already prodded several authors to 
improve the state of the art. It will certainly continue to inspire many more. 
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In differential geometry, as in many branches of mathematics, the practi
tioners can be classified roughly into two groups, the structuralists and the 
problem solvers. Flourishing in the time of Hubert and reaching a peak 
sometime after the appearance of the Bourbaki series, the structuralists gained 
the upper hand. However, the titles of books recently published, such as 
Comparison theorems in Riemannian geometry by J. Cheeger and D. Ebin, 
North-Holland, 1975, and the book at hand seem to indicate that the rococo in 
mathematics, especially differential geometry, has come back in force. 

If we probe a little deeper, we find that the relation between the two schools 
is more cooperative than competitive. Some of the problems discussed in this 


