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In the past ten years, there have been a good number of developments 
in information-based complexity theory; in addition, the field and related 
issues have gained more attention in the mathematical community. This 
book fills a need for information on recent developments, and it compre­
hensively describes older and better-known results. 
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Beside its many applications in computational sciences and numerical 
analysis, information-based complexity theory has a strong functional ana­
lytic leaning which might profitably be exemplified at this point. Given two 
infinite dimensional normed linear spaces F and G and a map S: F -> G, 
consider the problem of how such a map might be best expressed in terms 
of finite dimensional objects (the relevance of this question to real-world 
computations may be clear, but we will discuss this further later). 

For concreteness, let us given an example. Let F = Hr(Q) be the 
Sobolev space of functions on the bounded, simply connected domain 
Q c Rn with r derivatives which are square integrable. Let A be a uni­
formly elliptic differential operator of order 2m on Q, (we will assume here 
that r > -ra). Given a function f e F and the problem Au = ƒ, the so­
lution is given by u = Sf, where S = A~l. One might imagine that Sf 
could be computed by finding the integral kernel of S and integrating it 
against ƒ. If this map were implemented computationally, it is clear the 
computer would have to be working with finite dimensional objects. The 
procedure followed in the computation would first involve a truncation 
of ƒ to something finite dimensional which can be represented in a com­
puter. For example, ƒ may be represented through its values at a finite 
set of points or through a finite number of coefficients in an eigenfunction 
expansion. Let us denote by TV: F —> Rn the operator which "truncates" ƒ. 
The truncated object Nf must then be operated on in order to calculate 
(or approximate) the effect of the resolvent operator S on ƒ. Let us denote 
this second operation by <f>: Rn -• G = H™(Q). Here H™(Q) denotes those 
functions in Hm(Q) whose first m — 1 normal derivatives vanish on the 
boundary d£l. The essential problem here is (for fixed dimension n) to 
find optimal N and <j> so that the "computed" function </>(N(f)) is a good 
approximation to the solution S ƒ, or equivalently, so that the diagram in 
Figure 1 commutes to the greatest extent possible. 

s 
F > G 

Rn 

FIGURE 1 

It is interesting to note that in this case the so-called finite element 
method used in numerical analysis has been analyzed by Werschulz [W] 
in the context of this formulation. With properly chosen parameters the 
method yields an almost optimal pair (JV*,0*), denoted as "information" 
and "algorithm," respectively, for solving this problem. That is, the max­
imal error (for ƒ in the unit ball of Hr(Q)) of approximating S f by 
N* (</>*(/)) is no more than a constant multiple of that for the best possible 
choice of (N9</>) (using a linear information operator TV). In this case, the 
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information operator of rank n is TV* ƒ = ((ƒ, S\ ), ( ƒ, Si), . . . ,(ƒ, sn)). Here, 
(•, •) denotes inner product, and {sn} are basis functions for the family of 
splines, i.e., functions in Cm~l(Q) which are piecewise polynomials (on a 
pre-defined triangulation of Q) of a fixed degree larger than 2ra - r + 1. 
The algorithm is a linear map </>* : Rn —• ifm which when composed with 
N* has the form </>*(N*(f)) = Y?j=\(f>sj)gj> where the functions gj can 
be pre-computed. Thus, an entirely different method from our initial sug­
gestion (which was finding a kernel and integrating against it) proves to 
be almost optimal. Indeed, the finite element method described above has 
long been used to solve partial differential equations. 

In general, the process of applying N to f abstractly represents the ex­
traction of usable information from ƒ ; hence N is called an information 
operator. The operator (/> represents how the computer uses the informa­
tion Nf in order to approximate the solution S ƒ, and hence is called an 
algorithm. To summarize the above discussion, the most basic paradigm 
of information-based complexity is mathematically a study of the problem 
of filtering infinite dimensional maps through finite dimensional spaces. 

It should be mentioned that above, a numerical "cost" (or complexity) 
can be assigned to the algorithm </>, based on the types and number of 
operations (e.g., addition, multiplication) the computation of </> involves. 
It can be asked what the smallest cost is of a 0 for which 

sup \\Sf-<KN(f))\\<* 

for given e, where || • || denotes norm in the space F or G. In the recent 
work on complexity of root finding for real and complex functions, the 
focus is on the minimization of this cost, based on the assumption of full 
information about the function whose roots are to be computed. Study of 
complexity of root finding was originally investigated extensively by Traub 
[T], and has more recently been initiated by Hirsch, Smale, and Shub (see 
[HS, S]). 

Information-based complexity belongs to the field of analytic (or con­
tinuous) complexity theory, as opposed to combinatorial complexity. The 
latter field is epitomized by the solution of problems which ask essentially 
the number of permissible operations required to solve problems such as 
matrix inversion or multiplication. These combinatorial complexity prob­
lems are also obviously important. Any nontrivial reduction in the enor­
mity of the number of steps in solving a problem is generally significant, 
certainly asymptotically as the problem size becomes very large. 

Analytic complexity has crystallized as a distinct field more recently. 
Here numerical bit operations do not play a central role (indeed, such 
calculations are generally assumed to have infinite precision), and basic 
arithmetic operations (e.g., additions or multiplications of real numbers) 
are treated as primitive operations. Into this latter category falls the recent 
work in complexity of root finding for real and complex functions. 

As indicated above, the approach in information-based complexity is 
analytic rather than algebraic or combinatorial. It is motivated by a de­
sire to formalize approaches to the solution of analytic problems involving 
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partial or contaminated information. To the analyst it may initially not 
seem that many problems fall into this category, but it is indeed a fact that 
they do, for the following reason. While the work of the typical analyst 
involves relations of analytic objects such as functions and operators, the 
relation of these objects to what one can get one's hands on can be made in 
only two ways. Sometimes analytic problems have exact analytic solutions, 
and that is the end of it. However, existence of exact analytic solutions in 
such situations is exceedingly rare. It may happen that one wants to get 
one's hands on the solution of a partial differential equation, and thus will 
need to compute the resolvent of an operator applied to a given function. 
It is unlikely that for a given function, the resolvent applied to it will be 
exactly computable. The alternative, as in the above example, is to repre­
sent the function in a computer, and evaluate the resolvent applied to the 
function by integrating against the resolvent kernel. Aside from the details 
involved in such a procedure, it is clear that if one is confident of the accu­
racy of the computer's ability to add and multiply with sufficient precision, 
the essence of interest here should be in how the computer represents the 
function internally, and what it does with that information once it has it. 

Just as in combinatorial complexity theory, a central problem in inform­
ation-based complexity theory is how much work it takes to compute an 
approximation such as the one mentioned in the second paragraph (com­
putational complexity). One can define work however one wishes, and this 
is done typically by assigning numerical cost (or complexity) to the oper­
ations involved in computing the approximation </) o N, and asking what 
choice of N and (/) minimizes cost while producing an error smaller than 
a given tolerance e. The e-complexity of a problem S is the minimal cost 
of computing an approximation </> o N of S. 

Just as in thermodynamics, where there are precise upper bounds on the 
output of work from a thermodynamical system, there are similarly lower 
bounds on the amount of work required to solve a problem; this work is 
the complexity of the problem. An important aspect of this field is related 
to the study of those lower complexity bounds. 

Upper and lower bounds are of interest, and in some cases exact com­
plexities of problems can be obtained. For example, the complexity of 
approximating a function in the unit ball of the Sobolev space of func­
tions in the unit cube of Rn which have r derivatives is (under some mi­
nor assumptions) C(n,r) = 0{\/en/r). This is, in order to identify such a 
function ƒ within e units in L2 norm, it is required that at least C(n, r) 
linear functionals of ƒ be calculated, and C(n,r) linear functional also 
suffice. (It turns out that in this case the costs of the operations involved 
in computing the algorithm <\> do not change the answer.) 

One difference between the two approaches is that a desired accuracy 
of approximation needs to be specified beforehand in analytic complex­
ity theory, while combinatorial complexity problems are generally solved 
exactly. 

A paradigm in information-based complexity is the identification of a 
vector ƒ in large or infinite dimensional space based on partial informa­
tion about that vector. If ƒ is in the unit ball of a space Hr of r-times 
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differentiate functions on R, for example, information about ƒ may be 
available in the form of the vector y = N(f) = (f(x\),f(x2),.. .,ƒ(*&)), 
Xi G R, which is a set of k continuous linear functional evaluated at ƒ. 
Given just the information above, there are of course many functions ƒ 
which that information may correspond to. One important strategy for 
choosing among these corresponds to the constraint that one choose the 
vector ƒ' e N~l(y) which satisfies some other condition, such as mini­
mization of norm in the original Sobolev space Hr. This requirement may 
be invoked as one of simplicity if nothing else, e.g., the requirement that 
we choose our approximation to ƒ to be as smooth as possible within the 
constraints of the information y. 

To see this better, one might imagine how any system which infers 
shape from visual cues would extrapolate the shape of a surface from the 
partial distance information it were provided with. It is known that one 
appropriate method to do this is to infer the smoothest possible surface 
consistent with the data; this should be compared with the process of find­
ing a function of smallest possible Sobolev norm still consistent with the 
data, as described above. This example not only encompasses the problem 
of finding the shape of a surface with partial information, but also with 
contaminated information, i.e., information with error in it. Such prob­
lems come up in areas like signal processing, prediction and estimation, 
remote sensing, and ill posed problems. 

Providing a general format for modeling such problems is the central 
theme in information-based complexity. The problem of evaluating A~[ f 
(discussed above) even as an integration against the kernel K(x,y) of S = 
A~x also involves partial information. That is, even though K can be 
known with arbitrary accuracy in principle, it is in practice known only 
by its values at a finite number of points. This limits the calculation of 
the integral (Sf)(x) = ƒ K(x,y)f(y)dy, unless K and ƒ happen to have 
analytic forms which make the integral calculable analytically. It may seem 
here that the former situation does not come up in practice; however, if this 
is so it is an artifact of the reader's experience. In practice, for example, 
in the solution of a differential equation, such an integral is calculated 
either with the full knowledge of the analytic form of K(x,y), or with 
partial knowledge of K, say, at a finite number of points (in case an exact 
analytic form of K is not available). 

What is the criterion used to decide whether an approximation algo­
rithm is good or not? One such criterion is called the worst case criterion, 
wherein one picks the problem element ƒ of norm less than or equal to 
1 for which the norm error e(</>,N9f) = \\Sf- </>(N(f))\\ is largest, and 
chooses N and </> so that this worst case error is smallest. 

A second criterion which is used has to do with so-called average case 
complexity. Here there is assumed to be a probability measure ju on the 
space F which somehow corresponds to the frequency with which elements 
of the F will be selected in the process of approximating Sf = A~lf. In 
applications so far, this measure has been assumed to be an infinite dimen­
sional Gaussian or a combination of Gaussians, partly because there is a 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

file:////Sf-


BOOK REVIEWS 337 

limited collection of interesting and usable measures on infinite dimen­
sional spaces. The quantity which one wants to minimize in this setting is 
the so-called average case error, given by eavg((/>, N) = E(\\Sf - c/)(N(f))\\), 
where the expectation is taken with respect to the probability measure 
ju. This situation is important because in some approximation schemes 
worst case error may be quite large, but the elements ƒ G F for which 
the worst possible error is actually attained may have small likelihood of 
being selected. In these cases the averaged error over all possible prob­
lem elements ƒ is a more accurate measurement of the usefulness of the 
information operator TV and the algorithm operator 0. 

It has become well known that for the solution of some problems it is 
useful to use random information rather than deterministic information. 
To illustrate this, consider the Monte Carlo method of evaluating an inte­
gral of a continuous function ƒ over a Borel subset B of a topological space 
M, with Borel measure ju. Points Xi G B are chosen at random according 
to a scheme wherein essentially the density of points in a subset is pro­
portional to the measure of the subset, and the sum (j^(B)/n)jyi=\ f(xt) 
is used to approximate the integral S f = fBf(x)dju(x). Thus, whereas 
the above deterministic methods of operator approximation would dic­
tate that S f be evaluated, for example, using the information Nf = 
(/C*i)>•• •>ƒ(*/!)) where x\,...,xn are predetermined via some approxi­
mation scheme (say "uniformly" distributed over the set B in the case 
ju = Lebesgue measure), here we are choosing our information at random 
in that the xt are random. Clearly notions of error in this setting must 
be probabilistic; information-based complexity is the right formalism for 
studying Monte Carlo procedures such as this. The setting has added rel­
evance given recent highly effective "quantum Monte Carlo" methods for 
solving problems in quantum mechanics involving finding eigenfunctions 
of operators using methods involving analogues of simulated annealing 
[CA]. 

A second related issue is that of contaminated information. This can 
be modeled as above, with error smaller than or equal to e added to the 
information N(f) above. In this case, one often tries to minimize the 
worst case error, given by sup\\f\\<i,\\ei\\<e(\\Sf - <f>(N(f) + Ci)||). This is 
studied in [MR]. 

The book under review is a comprehensive treatment of the work done 
in this area to date. It begins with a simple example which elucidates the 
issues involved in this type of complexity theory (namely those of problem 
formulation, information, and model of computation). This example is the 
binary search (twenty questions game), wherein the player has the goal of 
identifying an unknown element x of the interval (0,1), with the possibility 
of asking and getting the answer to a fixed finite number of questions with 
only a yes or a no. Elementary notions are identified in this setting. 

In the worst case setting, one tries to use an algorithm which minimizes 
worst case error. In the average case setting, one is provided with a prob­
ability measure on the set of problem elements (in this case on (0,1)), and 
one tries to adopt a strategy which minimizes the average error, i.e., error 
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averaged over the set of all possible solutions x e (0,1). In the probabilis­
tic setting, one is again equipped with a probability measure on (0,1), and 
tries to adopt an algorithm so that the probability that the final guess is in 
error by more that e is smaller than S, for given e and S. These are natural 
settings, in view of the fact that sometimes we need strategies which are 
guaranteed to bring us within e units of x, and sometimes we are satisfied 
with strategies which do this on the average. In addition, strategies which 
seem to fail utterly in the worst case setting are sometimes quite useful 
ones when viewed from the standpoint of the average-case setting. 

Other settings are also considered in the context of the binary search, 
including one in which information is contaminated (i.e., answers may be 
erroneous sometimes). 

The next chapter considers the general setting, as described earlier, in 
which a map between normed linear spaces is to be approximated by a 
composition of an operator of finite rank with another operator (in the 
above example of binary search, this map S is the identity). 

The following five chapters deal with theory and applications of the 
worst case setting, average case setting, and the probabilistic setting. Also 
covered in the following chapter is a comparison of these settings. 

The next chapter considers the asymptotic setting, in which errors are 
studied as functions of the rank of the information operator (cardinality of 
information), and one seeks algorithms for which this error has the greatest 
asymptotic decrease as rank becomes infinite. The final two chapters deal 
with random information (as exemplified in Monte Carlo methods) and 
noisy (contaminated) information. 

For further concise information on the topics discussed here, the reader 
is directed to two recent reviews of this area by Packel and Wozniakowski 
[PW], and Packel and Traub [PT]. 

This book being meant for nonanalysts as well as analysts, there is at the 
end an expository utilitarian section on the functional analysis necessary, 
including elements of Banach and Hubert space theory, theory of linear 
operators, elementary spectral theory and measure theory, and Gaussian 
measures on Banach spaces. 

The book is a compilation and synthesis of a large body of work, done 
over several decades (although a large part of it is more recent). To its 
credit, it has simple proofs, and gives a clear and lucid exposition of the 
span of the field. There are problems at the ends of sections, which vary 
in difficulty. Referencing in the book is thorough, and it has an exten­
sive bibliography (about 500 references) and subject and author indices. 
One useful feature which the reviewer looks for in a book is an index of 
symbols; this book does not have one. However, its organized exposition 
should outweigh this difficulty. 

Overall, the book is an excellent introduction to an area making ad­
mirable use of functional analytic techniques to frame and analyze basic 
issues in the computational sciences and theoretical numerical analysis. 
It is recommended to anyone interested in more mathematical aspects of 
these subjects. 
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The homology of Hopf spaces, by R. M. Kane, North-Holland, Amster­
dam, New York, Oxford and Tokyo, 1988, xv + 479 pp., $105.25. ISBN 
0-444-70464-7 

In 1988 Richard Kane published his book, The homology of Hopf spaces. 
I remember at the 1986 Areata Topology Conference (before the Interna­
tional Congress of Mathematicians) when Alex Zabrodsky, John Harper, 
Clarence Wilkerson and I received mimeographed preprints of Richard's 
book, we were all pleasantly surprised that someone had taken the time 
to amass many of the details of this growing field into a coherent book. 
More recently, Frank Williams commented that Kane's book will probably 
be the only book on finite //-spaces published in the 1980s. For myself 
and others who have Ph.D. students working in the area, Kane's book is 
an excellent first reference for many of the ideas currently used by the 
experts. 

An //-space (or Hopf space) is simply a pointed space X, * together 
with a binary pairing X x X —> X such that the two inclusions 

X x * - > X x X ^ X 
* x X - + X x X - > X 

are homotopic to the identity. 
Mathematicians are interested in these spaces because all topological 

groups are //-spaces, and further, if one takes an arbitrary topological 
space, its loop space is an //-space. The interplay between space and loop 
space has been an important area of study. For example, the homotopy 
and homology of space and loop space are intimately related by suspension 
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