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relation B satisfies five axioms, one of which is Pasch's Law, and the other 
is a version of Dedekind continuity. 

Chapter 3, Projective transformations "develops an alternative method 
of coordinatising a metric affine plane by embedding it into a projective 
plane, and using the orthogonality relation to define a matrix-representable 
transformation on the line at infinity. The construction will be central to 
the subsequent treatment of metric affine spaces of higher dimension." 

The investigations conducted by the author in Chapters 3 and 4 show 
that there exist only two nonsingular metric affine threefolds (Euclidean 
and Minkowskian spaces) and only three nonsingular metric affine four-
folds (Euclidean, Artian and Minkowskian spaces), if these spaces carry the 
ternary relation "between." Such spaces are called continuously ordered. 

The word "order" occurs in Appendix B "After and the Alexandrov-
Zeeman Theorem" for the second time, where the author shows that the 
notions "between" and "orthogonal" can be defined in terms of the notion 
of "after", i.e. an ordering which is given on affine space. Hence the 
method of axiomatization of spacetime based on the orthogonality relation 
must be considered as part of the program of the construction of causal 
theory of spacetime which was proposed by A. D. Alexandrov [1, 2]. 

This book is read with pleasure, and will be useful for the students who 
are wishing to become geometers. 
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In [19], F. Riesz introduced what has come to be called the Riesz de­
composition property. An ordered (abelian) group is said to have the Riesz 
decomposition property if the sum of two order intervals is again an or­
der interval. Riesz showed, among other things, that the cone of positive 
additive functional on an ordered group with this property is a lattice. 
(In the case that the group has an order unit, this says that the compact 
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convex set of positive additive functional equal to one on the order unit 
is a simplex.) 

In [1], G. Birkhoff showed that the Riesz decomposition property is 
equivalent to what he called the Riesz interpolation property, a property 
which is expressed purely in terms of the order structure of the ordered 
group: if X\,X2 and y\,yi are elements with xt < yj for all i and 7, then 
there exists an element z with Xj < z < yj for all i and j . This property, 
of interest in itself, is often more convenient to verify in an ordered group 
than the Riesz decomposition property. For instance, Riesz proved that 
an ordered group which is a lattice has the decomposition property,—but 
it can be seen immediately that any lattice has the Riesz interpolation 
property. 

As examples of lattice-ordered groups,—besides the span of the positive 
functional on an ordered group with the interpolation property—, Riesz 
pointed out the group of continuous functions on a topological space, and 
the group of harmonic functions in the plane, both with the pointwise 
order. 

As an example of an ordered group with the interpolation property 
which is not a lattice, Riesz mentioned the field of rational functions 
on an interval. His proof of the decomposition property in this case is 
simple, but powerful: it is valid for any ordered field, and consists in ob­
serving that, for every x > 0, [0,x] = x[0,1], where [0,x] denotes the 
order interval {a\0 < a < x}. In any ordered commutative ring in which 
this property holds, the Riesz decomposition property (which says that 
[0, a + b] = [0, a] + [0, b] whenever a, b > 0) follows immediately (by set­
ting x = a + b). Another example (besides a field) of an ordered ring with 
the property [0,x] = x[0,1], x > 0, is the ring of real-analytic functions 
on an open interval, with the pointwise order. 

Inspection of Riesz's proof reveals the following, related, result. If an 
ordered commutative ring has the property that, for every x > 0, [0,x2] = 
x[0,x] and, moreover, the map [0, x] 3«-> xa e [0,x2] is injective, then the 
Riesz decomposition property holds. To see this, note first that the map 
[0,x] 3 a »-• xa e [0,x2] must be an order isomorphism. (If a, b e [0,x] 
and xa > xb, so that x(a - b) e [0, x2], then x(a -b) = xc with c e [0, x], 
and, as a - b and c belong to [-x,x] = [0,2.x] - x, by injectivity of 
[0,2x] 3 y H-> 2xy one has a - b — c, i.e., a > b.) Now, if 0 < a, b and 
c G [0, a + b] then, with w e [0, a + b] such that ac = w(a + b), one verifies 
that w e [0, a] and c - w e [0, b]\ this uses the hypothesis with x = a + b 
(and also with x = 2{a + b) and x = 4(a + b)). The property hypothesized 
above holds in the ring of Cn -functions on a manifold, with the pointwise 
order, exactly when n = 0 or n = 1, or else n = 00 and the dimension of 
the manifold is one. That this ordered ring has the Riesz decomposition 
property in the last two cases appears not to have been noted. Whether it 
does in general is not clear. 

Another example of an ordered ring with the Riesz decomposition prop­
erty is the polynomials on an interval, with the pointwise order. That the 
polynomials have this property was proved by Fuchs in [11], using the 
Weierstrass approximation theorem. The Riesz property for polynomials 
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on an interval in turn implies the Weierstrass approximation theorem, and 
a remarkable proof of the Riesz property by Renault in [18] (using Pas­
cal's triangle, and obtaining a rather sharper form of the property) yields in 
this way a new proof of the Weierstrass theorem (by means of polynomials 
somewhat resembling the Bernstein polynomials). 

The simplest example of an ordered group with the Riesz interpola­
tion property must be the integers. This example is so elementary that 
it is not surprising that it receives no mention in the early work on the 
subject. Again, Fuchs in [11] obtains such important results concerning 
ideals and quotients (notably, that the order relation in a Riesz group is 
determined by its images in prime quotients), that one is not surprised 
to see no mention of ordinary direct sums. Similarly, it is, a priori, not 
noteworthy that the Riesz interpolation property is preserved under direct 
limits of ordered groups. Nevertheless, this accumulated neglect adds up 
to somewhat of a catastrophe,—for, as it turns out, every ordered group 
with the Riesz interpolation property, together with the minor additional 
property (considered by Fuchs) that if nx > 0 for some n = 2,3, . . . then 
x > 0, can be expressed as a direct limit of finite direct sums of copies 
of the integers. This result was obtained in the totally ordered case by 
the reviewer in [9] (and in certain related cases in [10]), and was obtained 
in the divisible case by Shen in [20]; it was proved in general by Effros, 
Handelman, and Shen in [6]. 

The reviewer's proof in the totally ordered case yields a sharper result 
(in that case),—that the sequence (or net) of finite ordered group direct 
sums of copies of Z can be chosen with injective mappings. This is not 
true in general—as shown by an example in [10]. (But it may be true in the 
divisible case, and Mundici has just proved it in the lattice-ordered case; 
see [15].) The reviewer's proof in the totally ordered case,—to be specific, 
in the case of rank two—, amounts, in essence, to an application of the 
continued fraction algorithm, together with a proof (by induction) that 
this algorithm converges. This coincidence was pointed out by Effros and 
Shen in [7]. It follows that one may actually view this result as a reformu­
lation of the continued fraction expansion of a real number (and use the 
usual convergence proof). This point of view, and, specifically, the unique­
ness of the continued fraction expansion, was used by Cuntz and Krieger 
in [4] to solve an instance of the problem of Williams concerning shift 
equivalence of matrices with positive integral entries. Known properties 
of the continued fraction expansion (and its rate of convergence), inter­
preted from this point of view, were also used by Pimsner and Voiculescu 
in their embedding of the irrational rotation C*-algebra in an AF-algebra, 
in [17]. 

The basis underlying the applications just referred to is the result of the 
reviewer in [8], classifying separable unital AF-algebras by the ordered KQ-
group, together with the A^-class of the unit element. This is also the first 
appearance of the last-mentioned examples of Riesz groups,—namely, Z, 
direct sums of copies of Z, and direct limits of such. These appear because 
AF-algebras are C* -algebra direct limits of finite-dimensional C* -algebras, 
which are direct sums of matrix algebras over the complex numbers, each 
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of which has A ô-group Z. In terms of this classification result, the theorem 
of Effros, Handelman, and Shen may be thought of as giving an intrinsic 
description of what can arise as the invariant. 

The theorem of Effros, Handelman, and Shen is of fundamental im­
portance, both for the theory of ordered structures, and for the theory 
of C*-algebras (and related areas). To choose an illustration cited in the 
book under review (and originating with the author), one obtains from this 
result that any simplex is an inverse limit of finite-dimensional simplices, 
a result due to Lazar and Lindenstrauss (in the metrizable case—[14]). 
As another illustration, one can use this result to construct what may be 
regarded as quantum statistical mechanical systems with arbitrarily speci­
fied thermodynamical equilibrium behaviour (i.e., arbitrary phase diagram 
structure)—see e.g. [2]. 

The ordered groups arising in the classification of AF-algebras, and char­
acterized by Effros, Handelman, and Shen, are often referred to as dimen­
sion groups. It seems to the reviewer that the theory of dimension groups 
has only begun. 

The book under review provides a good introduction to the subject. 
This is to be expected, as the author has made major contributions to 
the field himself. In fact, this book is the first systematic account of the 
subject. Other, briefer, surveys that might be mentioned are those of Effros 
[5], and of Vershik and Kerov, [21]. Recent work, which remains to be 
categorized, but in which dimension groups clearly play a rôle, is that of 
Handelman on the positivity of polynomials and related probabilistic and 
geometric ideas—see e.g. [12]—and that of Jones, [13], Ocneanu, [16], and 
others on the classification of subfactors of the hyperfinite factor of type 
Hi. Finally, one should certainly note the observation of Connes in [3] 
that a dimension group can be associated with the Penrose tiling. 
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