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Abstract

Bayesian networks have become a widely used method in the modelling of uncertain knowledge.

Owing to the difficulty domain experts have in specifying them, techniques that learn Bayesian

networks from data have become indispensable. Recently, however, there have been many

important new developments in this field. This work takes a broad look at the literature on

learning Bayesian networks—in particular their structure—from data. Specific topics are not

focused on in detail, but it is hoped that all the major fields in the area are covered. This article is

not intended to be a tutorial—for this, there are many books on the topic, which will be presented.

However, an effort has been made to locate all the relevant publications, so that this paper can be

used as a ready reference to find the works on particular sub-topics.

1 Introduction to Bayesian networks

The article proceeds as follows. First, the theory and definitions behind Bayesian networks are

explained so that the readers are familiar with the myriad terms that appear on the subject and a

brief look at some applications of Bayesian networks is given. Second, a brief overview of infer-

ence in Bayesian networks is presented. While this is not the focus of this work, inference is often

used while learning Bayesian networks and therefore it is important to know the various strategies

for dealing with the area. Third, the task of learning the parameters of Bayesian networks—

normally a subroutine in structure learning—is briefly explored. Fourth, the main section on

learning Bayesian network structures is given. Finally, a comparison between different structure

learning techniques is given.

Before beginning with the main substance of this article, it is useful to note that Bayesian

networks are often known by other names. These include: recursive graphical models (Lauritzen,

1995), Bayesian belief networks (Cheng et al., 1997), belief networks (Darwiche, 2002), causal

probabilistic networks (Jensen et al., 1990b), causal networks (Heckerman, 2007), influence dia-

grams (Shachter, 1986a) and perhaps many more. Compounding this confusion, authors often

mean slightly different things when they use these terms. Nevertheless, the term Bayesian network

seems to have become the prevalent way of describing this particular structure and it is how they

will be described in this article.

Bayesian networks can have many different interpretations. This section hopes to capture their

mathematical background. From this, the relations between Bayesian networks and other

approaches to knowledge modelling can be seen. To start out with, a very short introduction will



be given on probability theory, Bayes’ rule and conditional independence. These ideas are fun-

damental to the theory of Bayesian networks and will enable a better understanding of the context

of the subject.

1.1 Preliminaries

Many people have an intuitive understanding of probability as either the long run limit of a series

of random experiments, or a subjective belief of what is likely to happen in a given situation. To

introduce this topic in a more rigorous manner, a short background will be given here, in order to

introduce terminology and notation. To start with, a sample space V is defined as a set of outcomes,

that is, V5 {v1,v2,y ,vn}. An event E on V is a subset of V, that is, E!V. From this point of

view, outcomes may be seen as elementary events, that is, events that can only take on a true/false

character. Events are things which we might be interested in and tend to be the fundamental unit of

probability theory. A probability distribution P, is a function from the space of events to the space

of real numbers from 0 to 1, that is, P : PðOÞ ! ½0; 1%, where PðOÞ is the power set ofV. So when we

say the probability of an event E is 0.76, we are saying P(E)5 0.76. Since events are sets, we can

perform set operations on them. This allows us to specify the probability of two events, E and F

occurring, by P(E\F). From this we can define another very useful idea, that of conditional

probability.

The conditional probability of an event E occurring, given that an event F has occurred is given by

PðEjFÞ ¼ PðE \ FÞ
PðFÞ

Obviously for this to be defined, P(F) must be strictly positive. As an aside, it should be noted that

PðE \ FÞ ¼ PðEjFÞPðFÞ ¼ PðF jEÞPðEÞ

This implies that

PðEjFÞ ¼ PðF jEÞPðEÞ
PðFÞ

This is the well-known Bayes’ formula and is in itself fundamental to many modern statistical

techniques in machine learning. The term P(E|F) is often known as the posterior probability of

E given F. The term P(F|E) is often referred to as the likelihood of E given F and the term P(E) is the

prior ormarginal probability of E. The term P(F) is a normalizing term that is often expanded out as

PðFÞ ¼
X

Hi2H
PðF \HiÞ ¼

X

Hi2H
PðF jHiÞPðHiÞ;

where H is a set of pairwise disjoint events Hi such that H1[H2[y[Hn5V. The reason for this

expansion is that the terms P(F |Hi) and P(Hi) are often much easier to obtain than P(F).

Given the definition of conditional probability, we can now define what it means for events to

be independent. Two events, E and F are independent if

PðEjFÞ ¼ PðEÞ and PðF jEÞ ¼ PðFÞ

If P(E) and P(F) are both positive, then both equations imply the other. This definition leads

to that of conditional independence, which will involve a third event. Two events, E and F are

conditionally independent, given another event G if

PðEjF \ GÞ ¼ PðEjGÞ and PðF jE \ GÞ ¼ PðF jGÞ

Again, these are equivalent if P(E), P(F) and P(G) are strictly positive. The notion of conditional

independence is central to Bayesian networks and many other models dealing with probabilistic
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relationships. It is often given its own notation as E ' PF|G, which means that event E is con-

ditionally independent of event F given event G, under probability distribution P.

To complete this subsection, the concepts of random variables and joint probability will be

explored. In common parlance, random variables are variables that can take on a value from a

given set, and have a certain probability associated with taking on this value. Technically, a

random variable X is a function from a sample space V to a measurable space M. To illustrate how

they are used in practice, imagine the following scenario. Say we are dealing with temperature and

we have three different measures of it: low, medium and high. We could then state that the random

variable X stands for temperature and our measurable space M is the set {low, medium, high}. So

when we make the statement P(X5 low), the probability that the temperature is low, the

expression X5 low is an event E. Therefore, we are calculating P(E), such that E5 {v|vAV,

X(v)5 low}. Normally, we leave all the details of sample space and probability measure implicit

and never mention them. Instead we deal directly with random variables, but it is beneficial to

know where the notation originates from.

Finally, the joint distribution of a set of random variables is the multidimensional analogue of

the single variable case. For example, P(X,Y) is the joint distribution of two random variables

X and Y. To specify a probability for an event, we assign values to the variables. P(X5 x, Y5 y) is

the probability that X takes on value x and Y takes on value y. We can marginalize across some of

the variables by adding up across all possible values of those variables. For example, given P(X,Y)

we can get the probability distribution P(X) by

PðXÞ ¼
X

y2MðYÞ
PðX ;Y ¼ yÞ

where M(Y) is the domain (or measure space) of Y. It is useful to note that with the notation

P(x, y), where x and y are lower case letters, there are usually implied random variables, so that

X5 x and Y5 y, that is, P(x, y)(P(X5 x, Y5 y).

1.2 Bayesian networks

To see why conditional independence is important, imagine the following scenario. Say we wanted

to define a joint probability distribution across many variables P(X1, X2,y , Xn). If each variable

is binary valued, then we need to store 2n21 values. It should be obvious that with this storage

requirement exponential in the number of variables, things soon become intractable. To get

around this, first note the identity

PðX1;X2; . . . ;XnÞ ¼ PðX1jX2;X3; . . . ;XnÞPðX2; . . . ;XnÞ:

Now, say that X1 ' P{X3,y ,Xn}|X2, that is, X1 is independent of the rest of the variables given X2.

Then,

PðX1;X2; . . . ;XnÞ ¼ PðX1jX2ÞPðX2; . . . ;XnÞ:

Notice how the expression involving X1 has become much shorter and we have a slightly smaller

joint term (minus X1). If we can find conditional independencies for the rest of the variables

such that this factorization can proceed in a chain like fashion, we will be left with a product of

terms, each of which will only contain (hopefully) a small number of random variables. Then, to

construct the joint, we need to only specify a number of conditional probability distributions.

The reasons for doing the factorization this way are twofold. First, if each variable is con-

ditionally independent of most others, then we only need specify a small number of values for

each distribution. Second, humans generally find it easier to specify the values of a conditional

distribution.

There are many statistical models that take advantage of these properties. Examples can be

found in the paper by Lauritzen and Wermuth (1989) and the books by Castillo et al. (1997a),
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Pearl (1988) and Whittaker (1990). The particular model that will be dealt with here is the

Bayesian network. Before defining what they are, some definitions relating to graphs will be given.

A graph G is given as a pair (V, E), where V5 {v1,y,vn} is the set of vertices or nodes

in the graph and E is the set of edges or arcs between the nodes in V. A directed graph is a graph

where all the edges have an associated direction from one node to another. A directed

acyclic graph or DAG, is a directed graph without any cycles, that is, it is not possible to return to

a node in the graph by following the direction of the arcs. For illustration, the graph in Figure 1

is a DAG. The parents of a node vi, Pa (vi), are all the nodes vj such that there is an arrow

from vj to vi (vj- vi). The descendants of vi, D (vi), are all the nodes reachable from vi by following

the arrows repeatedly. The non-descendants of vi, ND (vi), are all the nodes that are not

descendants of vi.

Let there be a graph G ¼ ðV ;EÞ and a joint probability distribution P over the nodes in V. Say

also that the following is true

8v 2 V :v ' PNDðvÞjPaðvÞ

That is, each node is conditionally independent of its non-descendants, given its parents. Then

it is said that G satisfies the Markov condition with P, and that ðG;PÞ is a Bayesian network.

Notice the conditional independencies implied by the Markov condition. They allow the joint

distribution P to be written as the product of conditional distributions; P (v1, v2,y , vn)5
P (v1|Pa (v1))P (v2|Pa (v2)) ) ) )P (vn|Pa (vn)). However, more importantly, the reverse can also be

true. Given a DAG G and either discrete conditional distributions or certain types of continuous

conditional distributions (e.g. Gaussians), of the form P(vi|Pa(vi)) then there exists a joint prob-

ability distribution P (v1, v2,y , vn)5P (v1|Pa (v1))P (v2|Pa (v2)) ) ) )P (vn|Pa (vn)). This means that

if we specify a DAG—known as the structure—and conditional probability distributions for each

node given its parents—known as the parameters—we have a Bayesian network, which is a

representation of a joint probability distribution.

It may be asked whether there are any other conditional independencies that may be obtained

from the Markov condition. It turns out that there are and these can be identified by a property

known as d-separation, which is a purely graphical test, that is, a test that can be implemented

by performing a search on a graph. The notation A ' GBjC means that the nodes in set A are

d-separated from the nodes in set B, given set C. It is also the case that given the Markov

condition, d-separation is a sufficient condition for conditional independencies in P. That is,

A ' GBjC ) A ' PBjC for all mutually disjoint subsets A, B and C of V. If a graph G can be found

such that A ' GBjC ( A ' PBjC, then it is said that G is faithful to P. Coupled with the Markov

condition, this gives A ' GBjC3A ' PBjC and it can be said that G is a perfect-map of P. This is

important because it implies that the arcs in the graph directly model dependencies between

variables, whereas up to now only independencies have been discussed. This brings the structure of

the Bayesian network closer to human intuition, in that an arc between two nodes implies there is

a direct relation between those variables.

Figure 1 A directed acyclic graph
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Finally, if it is assumed that in a Bayesian network, an arc from x to y means that x is a direct

cause of y, then at least one of a number of causal assumptions is being made, such as the causal

Markov assumption or the causal faithfulness assumption. These state that an effect is independent of

its non-effects, given its direct causes and that the conditional independencies in the graph are

equivalent to those in its probability distribution (see Druzdzel & Simon, 1993; Spirtes et al., 2000;

Neapolitan, 2004; Huang & Valtorta, 2006; Valtorta & Huang, 2008 for more on these assumptions).

If this is the case, then this Bayesian network is capturing knowledge in a succinct way that is

immediately obvious to humans, yet also with a well-understood formalism underlying the operations

that can be performed. It is for these reasons that Bayesian networks are so popular and a recent

book by Kjaerulff and Madsen (2008) shows various ways to capture this type of knowledge in

Bayesian network form. As mentioned before, there exist other structures that model conditional

independencies, such as Markov fields, that seem to be less popular because of their opaqueness. For

a more in-depth look at the differences and similarities of these structures, see the paper of Smyth

(1997). In addition, for a look at the explanatory properties of Bayesian networks see the papers of

Druzdzel (1996) and Madigan et al. (1997). The relationship between Bayesian networks and caus-

ality is sometimes fraught, but there are methods as described in Section 4.8, that mean a causal

interpretation can be valid. For more on the intersection of Bayesian networks and causal models see

Section 4.2 and the books of Glymour and Cooper (1999), Spirtes et al. (2000) and Pearl (2000).

1.3 Markov equivalent structures

For the purposes of this article, it is necessary to define some further terms relating to the

structures of Bayesian networks. These terms arise because of the redundancies in the DAG

representation of the structure, which occur when looking at a Bayesian network as a factorization

of a joint probability distribution (as opposed to the causal point of view, where there are no

redundancies in the DAG representation).

It has been known for some time that there are DAGs that are equivalent to one another, in the

sense that they entail the same set of conditional independencies as each other, even though the

structures are different. According to a theorem by Verma and Pearl (1991), two DAGs are equivalent,

if and only if they have the same skeletons and the same v-structures. By skeleton, it is meant that the

undirected graph that results from undirecting all edges in a DAG and by v-structure (sometimes

referred to as a morality), it is meant a head-to-head meeting of two arcs, where the tails of the arcs are

not joined. These concepts are illustrated in Figures 2 and 3. From this notion of equivalence, a class

of DAGs that are equivalent to each other can be defined, notated here as ClassðGÞ.
To represent the members of this equivalence class, a different type of structure is used, known as a

partially directed acyclic graph (PDAG). A PDAG (an example of which is shown in Figure 4) is a

graph that contains both undirected and directed edges and that contains no directed cycles and will be

notated herein as P. The equivalence class of DAGs corresponding to a PDAG is denoted as ClassðPÞ,
with a DAG G 2 ClassðPÞ, if and only if G and P have the same skeleton and same set of v-structures.

Figure 2 The skeleton of the DAG in Figure 1
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Related to this is the idea of a consistent extension. If a DAG G has the same skeleton and the

same set of v-structures as a PDAG P, then it is said that G is a consistent extension of P. Not

all PDAGs have a DAG that is a consistent extension of itself. If a consistent extension exists, then

it is said that the PDAG admits a consistent extension. Only PDAGs that admit a consistent

extension can be used to represent an equivalence class of DAGs and hence a Bayesian network.

An example of a PDAG that does not have a consistent extension is shown in Figure 5. In this

figure, directing the edge x2 y either way will create a v-structure that does not exist in the

PDAG, and hence no consistent extension can exist.

Directed edges in a PDAG can be either:

> compelled, or made to be directed that way; or
> reversible, in that they could be undirected and the PDAG would still represent the same

equivalence class.

From this idea, a completed PDAG (CPDAG) can be defined, where every undirected edge is

reversible in the equivalence class and every directed edge is compelled in the equivalence class.

(X,Y,Z) is a v-structure (X,Y,Z) is not a v-structure

Figure 3 v-structures

Figure 4 A partially directed acyclic graph

Figure 5 A PDAG for which there exists no consistent extension
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Such a CPDAG will be denoted as PC. It can be shown that there is a one-to-one mapping between

a CPDAG PC and ClassðPCÞ. Therefore, by supplying a CPDAG, one can uniquely denote a set of

conditional independencies. This can be useful in defining certain strategies to learn Bayesian

network structures from sets of data, as seen in Section 4.6. Note that a CPDAG is sometimes

referred to as a DAG pattern. For a more in-depth look at this topic, see the papers of Chickering

(1995) and Andersson et al. (1997).

1.4 Special types of Bayesian networks

There exist certain specializations of Bayesian networks that deal with situations that demand

slightly more structure then the general Bayesian network. A brief summary of these types will be

given here.

1.4.1 Causal interaction models

Otherwise known as causal independence models, they imply that the parents of nodes in a

Bayesian network are independent of each other, to some degree. Coming in various flavours, the

best-known type is the noisy-OR model as defined by Kim and Pearl (1983) and showcased in

Pearl (1988). This was later generalized by Srinivas (1993) to multiple causes and arbitrary

combination functions. Heckerman and Breese (1996), Boutilier et al. (1996) and Meek and

Heckerman (1997) also explore the field in the context of inference and learning.

1.4.2 Dynamic Bayesian networks

In order to model temporal processes, special structures are needed. This is because the arcs in a

Bayesian network say nothing about time, only about probabilistic relationships. For these pur-

poses, dynamic Bayesian networks (DBNs) are a useful representation. The key to DBNs is that

they are specified in two parts, a prior Bayesian network that specifies the initial conditions and a

transition Bayesian network that specifies how variables change from time to time. An example

DBN, due to Friedman et al. (1998), is shown in Figure 6. In this, the prior and transition network

are shown. It can be seen that while the prior network is simply a general Bayesian network, the

transition network has slightly more structure to it. In this, there are two layers of nodes, and

arcs from the first layer only go to the second. In addition, no arcs go from the second layer to the

first. For the purposes of performing inference, or simply reasoning about them, DBNs can be

expanded out into a single network. The network in Figure 6(a) has been expanded out in

Figure 6(b) to a network of three layers. More information of DBNs can be found in the papers of

Dean and Kanazawa (1989) and Friedman et al. (1998) and in the work of Murphy and Mian

(1999). In addition, Ghahramani (1998) examines the topic from the perspective of learning and

Flesch and Lucas (2007) consider DBNs where the transition network can change over time.

A Prior and Transition Dynamic Bayesian
Network Structure

A Prior and Transition Dynamic Bayesian
Network Structure

Figure 6 Dynamic Bayesian network structures
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1.4.3 Influence diagrams

By themselves, Bayesian networks do not specify what to do in a particular situation; they only say

what is the probability of certain things happening. If a Bayesian network is augmented with two

other types of nodes, then it is possible for actions to be decided based on given evidence. These

two types of nodes are utility nodes and decision nodes. Utility nodes represent the value of a

particular event, while decision nodes represent the choices that might be made.

Influence diagrams (also known as decision graphs or decision networks) represent a powerful

formalism in helping to make decisions under uncertainty. They can be used in static situations

such as diagnosis or dynamic situations when combined with DBNs, such as controllers. More

information can be found in the articles of Shachter (1986a, 1988).

1.5 Applications

This section aims to look at some typical applications of Bayesian networks. A lot of the original

applications were in the medical field and to some extent, this is the domain where Bayesian

network applications dominate today. However, there are now many uses in diverse domains,

including biology, natural language processing and forecasting. Part of the popularity of Bayesian

networks must stem from their visual appeal, as it makes them amenable to analysis and modification

by experts. However, it is the generality of the formalism that makes them useful across a wide variety

of circumstances. As a Bayesian network is a joint probability distribution, any question that can be

posed in a probabilistic form can be answered correctly and with a level of confidence. Some examples

of these questions are:

> Given some effects, what were the causes?
> How should something be controlled given current readings?
> In the case of causal Bayesian networks, what will happen if an intervention is made on a

system?

Below are examples of applications across many different domains that ask in one form or

another, questions like those noted above. These examples are merely intended to show what is

possible with Bayesian network modelling and the list is therefore intentionally short. For a more

thorough treatment of the area, the recent book of Pourret et al. (2008) show many examples of

Bayesian networks in practice and for a nuts and bolts approach to modelling with Bayesian

networks, the book by Kjaerulff and Madsen (2008) goes into detail about the various subtle

facets that surround this area.

Medicine. As noted previously, there are many applications of Bayesian networks in medicine.

An overview of the field is given by Lucas et al. (2004), but some of the more famous applications

are given here.

An early implementation of a system for diagnosis in internal medicine was the quick medical

reference (QMR). This system was reformulated in a Bayesian network implementation, with three

levels of nodes; background, diseases and symptoms. Known as QMR-DT, it had a very large

number of nodes and arcs (Middleton et al., 1991; Shwe et al., 1991). As a result, algorithms had to

be developed that could perform inference in this dense network Shwe and Cooper (1991). Another

more specific diagnostic system comes from the Pathfinder project (Heckerman et al., 1992), which is

used in the diagnosis of lymph-node diseases. In the same vein, though used for diagnosing neuro-

muscular disorders is the MUNIN network developed by Andreassen et al. (1989).

Within a similar domain, but used for a different purpose is the ALARM network developed by

Beinlich et al. (1989), which was used for the monitoring of patients in intensive care situations. It

is often treated as a gold-standard network, as it is reasonably well connected and has enough

nodes to be a challenging, but still achievable problem for many Bayesian network algorithms.

And from a learning perspective, Acid et al. (2004) give a comparison of learning algorithms on

the emergency medicine domain.
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Forecasting. Bayesian networks can be very useful in predicting the future based on current

knowledge. One of the most well known of these is the HailFinder network of Abramson et al.

(1996), which is used to forecast severe weather. Also in the weather forecasting domain is the sea

breeze prediction system of Kennett et al. (2001), which uses learned structure and probability.

In the market domain, Abramson and Finizza (1991) use a Bayesian network to forecast oil prices,

while Dagum et al. (1992) show a dynamic Bayesian network used for the same task. And to the extent

that classification can be seen as forecasting, Bayesian networks have huge potential. An example of

this is by Friedman et al. (1997) who give a generalization of the high-performance Naı̈ve-Bayes

classifier into the tree-augmented Naı̈ve-Bayes classifier. Other implementations of classification using

Bayesian networks include those by Correa et al. (2007), who use them in the classification stage of an

algorithm that also features attribute selection using a discrete particle-swarm optimization algorithm

and Cheng and Greiner (1999) who compare classifiers of different complexity.

Control. An interesting use of DBNs in the control area is that of Forbes et al. (1995) who

showcase their Bayesian automated taxi (BATmobile) network. This network is in the form of a

dynamic influence diagram, and the system as a whole illustrates all the problems that must be

solved to provide reliable control in a noisy, partially observed domain.

Modelling for human understanding. Friedman et al. (2000) and Friedman (2004) look at modelling

the causal interactions between genes by analysing gene expression data. They use the sparse can-

didate (SC) algorithm Friedman et al. (1999c) as described in Section 4.9.1 to learn the structure of

800 genes using 76 samples. These ideas have been built on by Husmeier (2003) and other researchers

(Aitken et al., 2005) who look at the problem of small sample sizes prevalent with biological data and

examine techniques to characterize the sensitivity and specificity of results.

2 Inference in Bayesian networks

Although performing inference in Bayesian networks is a large topic in its own right, any

treatment of Bayesian network structure learning has to have at least some mention of the subject.

This is because inference is often a subroutine in structure learning problems, especially in the case

of missing data or hidden nodes. Therefore, a short summary will be given of the major methods

of performing inference, in order that a full appreciation can be found of this expansive area.

The summary will contain a short introduction on what inference is, followed by a look at

various techniques used to solve the problem. This starts with the message passing algorithm of

Pearl (Section 2.2), probably the most important base technique and moves on to deal with the

problems created by multiply-connected networks (Section 2.3). The exact techniques covered

include: clustering (Section 2.4), conditioning (Section 2.6), node elimination and arc reversal

(Section 2.5), symbolic probabilistic inference (Section 2.7) and polynomial compilation (Section

2.8). The various approximate methods include: Monte Carlo methods (Section 2.9), search-based

approximation (Section 2.10.1), model simplification (Section 2.10.2) and loopy belief propagation

(Section 2.10.3). Finally, special topics such as inference in dynamic Bayesian networks, causal-

independence networks and robustness of inference will be looked at. For a good survey of the

literature, see the paper by Guo and Hsu (2002).

There are many books that deal with Bayesian network inference. Some of the more popular

ones are the original by Pearl (1988), the knowledge-focused book by Castillo et al. (1997a) and

the recent books by Jensen and Nielsen (2007) and Darwiche (2009). Other books include those by

Cowell et al. (1999), Korb and Nicholson (2004) and Neapolitan (2004).

2.1 Introduction to inference

Inference in Bayesian networks generally refers to:

> finding the probability of a variable being in a certain state, given that other variables are set to

certain values; or
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> finding the values of a given set of variables that best explains (in the sense of the highest MAP

probability) why a set of other variables are set to certain values.

The Bayesian network structure in Figure 7 will be used to illustrate these problems. This is the well-

known ASIA network, as defined by Lauritzen and Spiegelhalter (1988). With the first problem, a

patient might present as a smoker and obtain a positive X-ray. Using this network, a physician might

want to find out the probability that they have lung cancer, that is, P(lung cancer5 true). With the

second problem, a physician might want to find out the most probable explanation that explains

these symptoms, that is, what is the most likely set of conditions (e.g. out of tuberculosis, lung cancer

and bronchitis) that have caused the symptoms. In this article, it is generally the first problem that is

being looked at, though the second will be mentioned as well. A recent article by Butz et al. (2009)

describes a scheme to illustrate inference in Bayesian networks and while most inference algorithms

supply a point value, recent work by Allen et al. (2008) show how it is possible to infer a distribution

when the parameters themselves are seen as random variables.

2.2 Trees and polytrees

The first Bayesian network inference algorithms were developed for trees and polytrees, that is,

Bayesian network structures that contained only a single path between any two nodes. Pearl (1982) was

the first to apply an inference procedure on trees, with Kim and Pearl (1983) extending this to

polytrees. The polytree algorithm was later extended by Peot and Shachter (1991) to visit each node at

most twice. Regardless of any speed-ups, Pearl’s message passing algorithm is important, as it operates

in polynomial time with singly connected networks. An illustration of this scheme is shown in Figure 8.

Here, each node is an autonomous processor that collects evidence from its n parents (px (u1),y ,

px (un)) and m children (l1 (x),y ,lm (x)), performs processing and sends out messages to its parents

(lx (u1),y ,lx (un)) and children (p1 (x),y ,pm (x)). The whole procedure is inherently asynchronous

and is the basis of many of the inference schemes for multiply-connected networks.

2.3 Multiply-connected networks

A problem with Pearl’s algorithm is that it can only be applied to singly connected networks.

Otherwise its messages can loop forever. Pearl (1986b) reported on this problem and mentioned

some techniques that can solve this, which are explained in the next sections. On account of the

large number of possible techniques, the comparison of Dı́ez and Mira (1994) is quite helpful.

The probable explanation for the plethora of inference methods is that Bayesian network

inference is NP-hard in both the exact (Cooper, 1990) and approximate (Dagum & Luby, 1993)

case, where the network is multiply connected. The following techniques seek to cut down the

possibly exponential time needed.

Figure 7 The ASIA Bayesian network structure
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2.4 Clustering

One of the first methods to help apply the message passing algorithm to multiply-connected

networks was by Spiegelhalter (1986). In this he describes a way of ‘pulling loops together’, into

clusters. These clusters are then joined together into a singly connected structure, and a message-

passing algorithm is started. This is built upon by Lauritzen and Spiegelhalter (1988) and then by

Jensen et al. (1990a, 1990b), who describe a variant of the clustering algorithm that builds a so-

called junction tree. They later give an optimal algorithm for junction tree construction given a

triangulated graph (Jensen and Jensen, 1994).

Later authors looked into trying to optimize junction tree inference. Breese and Horvitz (1991)

show how to trade off time spent on decomposition of the Bayesian network against actual

inference. Other authors examine ways to get an optimal decomposition, for example, Kjærulff

(1992b) uses simulated annealing, Gámez and Puerta (2002) use ant colony optimization in

building the tree and Huang and Darwiche (1996) show how best to implement clustering. Some

useful bounds have been found by Becker and Geiger (2001, 1996b), who present an algorithm

that is sufficiently fast for building close to optimal junction trees.

Other authors have looked at the structure of the clique tree; Kjærulff (1997) shows how the

cliques in the tree may themselves be factored into a clique tree, and Darwiche (1998) shows how

to keep clique trees up to date after pruning irrelevant parts of the network.

A clustering architecture that differs slightly from Lauritzen and Spiegelhalter, and Jensen et al.

is that of Shenoy and Shafer (1990) and Shafer and Shenoy (1990). It is worth noting, as it has

been used by various authors, albeit to a lesser degree than the other schemes, for example, by

Shenoy (1997) and Schmidt and Shenoy (1998).

2.5 Variable elimination and arc reversal

A simple method of inference involves reversing arcs in a Bayesian network and removing vari-

ables. Shachter (1986a, 1986b) introduced this in the context of evaluating influence diagrams—

Bayesian networks that have decision and utility nodes that recommend a course of action to

follow. This idea is continued on by Shachter (1988). It is useful to note that the node removal

method of Zhang and Poole (1994b) proceeds from a different angle than Shachter.

2.6 Conditioning

Another one of the original techniques used to perform inference in multiply-connected networks

was that of conditioning. In this procedure, loops in the network are broken by instantiating nodes

Figure 8 Inference by message passing
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and the message passing algorithm is run on the singly connected networks, one for each com-

bination of values that the nodes take on. Pearl (1986a) was the first to use this method, while

Suermondt and Cooper (1988, 1990) show the optimal cutset is NP-hard to find. One issue with

conditioning is that the set of nodes that cut the loops (the cutset) need to have a joint prior

probability assigned to them; Suermondt and Cooper (1991) have a method to handle this.

As conditioning is NP-hard, it is good to know that Becker and Geiger (1994, 1996a) have an

algorithm (MGA) that finds a loop cutset with a guaranteed cardinality of less than twice the

minimum cardinality. Other researchers have designed methods to try to alleviate the problems of

conditioning; for more information see, for example, Dı́ez (1996), Shachter et al. (1994) and

Darwiche (1995, 2001b).

2.7 Symbolic probabilistic inference

Li and D’Ambrosio (1994) have found a method that splits the task of inference into two

parts. First, a symbolic factorization of the joint probability distribution based on the Bayesian

network is found. Then a numeric step is performed where the actual probabilities are calculated.

This style of inference has been built on by Chang and Fung (1995), who look at continuous

variables and by Castillo et al. (1995, 1996) who develop a slightly different system for the

symbolic inference.

2.8 Polynomial compilation

A recent technique by Darwiche (2003) and Park and Darwiche (2004) shows that Bayesian

networks can be represented as a polynomial. Probabilistic queries can be formulated by evalu-

ating and differentiating this polynomial. This is based on the fact that every Bayesian network is a

multi-linear function, which can be encoded in decomposable negation normal form (d-DNNF;

Darwiche, 2001a), a language for representing propositional statements that has useful properties

for evaluation. This can then be implemented as an arithmetic circuit (Darwiche, 2002), which is

easy to evaluate and differentiate.

The inference of Bayesian networks as polynomials is interesting, as it can be shown that they

subsume other methods of inference such as clustering. They can also be more efficient than other

methods that have been discussed, such as clustering and conditioning, as the compilation phase of

the method can be performed offline and optimizations performed (Chavira & Darwiche, 2007).

2.9 Monte Carlo methods

As inference in Bayesian networks was found to be NP-hard in general (Cooper, 1990), attention

was paid to heuristic and stochastic techniques to help solve the problem. It was then found that

approximate inference is also NP-hard (Dagum & Luby, 1993). However, in general, approximate

inference techniques have a wider range of applicability on hard networks than exact techniques.

Some of the most prevalent inexact techniques are based on Monte Carlo methods; the paper of

Cousins et al. (1993) has a short tutorial on the subject in relation to Bayesian network inference,

whereas the paper of Dagum and Horvitz (1993) analyses the performance of simulation algo-

rithms using a Bayesian perspective.

2.9.1 Logic sampling

One of the first techniques to use Monte Carlo methods was introduced by Henrion (1988). In this,

nodes are instantiated in topological order. The particular instantiation depends on the prob-

ability distribution of that node. If, on an evidence node, the instantiation does not match, then

that instantiation is discarded. When this procedure is iterated, each node will have been

instantiated to each of its values a certain number of times and from this the probability can be

estimated. However, there is a problem with this, in that if the evidence is unlikely, a large number

of samples may be discarded. This can mean it takes a long time to get a reasonable estimate.
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Various authors have suggested ways to mitigate the problem of unlikely evidence. The first of

these were by Fung and Chang (1990) and Shachter and Peot (1990) who discussed a strategy

called likelihood weighting, that does not discard evidence. This strategy was examined by Shwe

and Cooper (1991) on a dense medical Bayesian network. Likelihood weighting is a very simple

strategy and because of this, can often outperform more complicated strategies such as Gibbs

sampling and other approximation schemes as discussed below.

From this point on, authors examined ways to improve this type of sampling approach.

Examples include those of Bouckaert (1994c), Bouckaert et al. (1996) and Cano et al. (1996) who

look at ways to more evenly sample the space. Following on from this, systems have been

demonstrated by Pradhan and Dagum (1996), Dagum and Luby (1997) and Hernández et al.

(1998). Some of the newest work is by Cheng and Druzdzel (2000, 2001) with their AIS-BN

system, which has good performance characteristics across a wide range of classes, guaranteed

bounds on inferred probabilities and a simple stopping rule. The special case of sampling in DBNs

is examined by Kanazawa et al. (1995) as discussed in Section 2.11.

2.9.2 Markov-Chain Monte Carlo methods

As well as straight forward logic sampling schemes, authors have looked to other methods such as

Gibbs sampling. Examples include early schemes such as that of Pearl (1987) and that of Chavez and

Cooper (1990), whose algorithm has computable bounds. However, the complexity of these methods,

compared to the likelihood weighting inspired approaches, means they are rarely used in practice.

2.10 Other approximate inference

As well as sampling-based approaches, inference in Bayesian networks may be tackled using other,

more heuristic methods. These include search-based methods, model simplification methods and

ones based on the loopy belief propagation idea, which will be explained later. A comparison of

sampling and search-based algorithms in approximate inference can be found in the work of Lin

and Druzdzel (1999).

2.10.1 Search-based approximation

Search-based approximations look for a small fraction of high-probability instantiations and use

them to approximate the distribution. Like sampling methods they have the advantage of being

anytime (i.e. they can be stopped and the best answer returned), but can also keep the approx-

imation in the form of guaranteed bounds, which might be important in certain contexts such as

real-time systems.

An early example of these is by Poole (1993a) who demonstrates an algorithm that computes the

exact answer if run to completion, but can be stopped to obtain a bound. This is extended so that

it works best in distributions that are highly skewed (Poole, 1993b, 1996). Another author who

shows that search can work well with skewed distributions is Druzdzel (1994). For later work on

this style of technique, see the works of Monti and Cooper (1996), Santos et al. (1996, 1997),

Shimony and Santos (1996) and Santos and Shimony (1998).

2.10.2 Model simplification

Another class of approximations works by simplifying the model being queried. For example,

Kjærulff (1993, 1994) shows how to remove edges from the moralized independence graph, while

constructing a clique tree. Wellman and Liu (1994) propose reducing the number of states of a node

to reduce computation time. Draper and Hanks (1994) compute interval bounds by examining a

subset of the nodes. This can get more accurate as the subset increases. Van Engelen (1997) simply

removes arcs from the network and then uses exact techniques. Other authors describe removing

nodes from the network (Jaakkola & Jordan, 1997; Poole, 1997, 1998; Poole & Zhang, 2003). Finally,

authors have recently started to use variational methods to approximate the model and then use exact

inference (Bishop et al., 1998; Jaakkola & Jordan, 1999a, 1999b; Jordan et al., 1999).
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2.10.3 Loopy belief propagation

The final form of approximate inference procedures that will be looked at is based on loopy belief

propagation. This method involves message passing in the multiply-connected graph. In some

cases, it can work well, for example, in the case of a single loop as shown by Weiss (2000).

However in general, it does not always work well (Murphy et al., 1999). From this perspective,

Yedidia et al. (2001) and Pakzad and Anantharam (2002) have created generalized versions that

have better convergence when faced with loops.

2.11 Inference in dynamic Bayesian networks

Inference in DBNs often needs a special approach to deal with their particular structure. Although

a transition DBN can be represented as a finite number of time slices (normally two), inference in

general needs to be computed over the expanded network; that is, inference needs to compute at a

particular time. Apart from the possibly massive number of nodes if the time is far in the future,

the repetitious structure of this expansion is often not amenable to standard exact techniques

for multiply-connected networks; see Boyen and Koller (1998) for a look at this problem and a

possible solution. Kjærulff (1992a) looks at reasoning in dynamic Bayesian networks, based on

Lauritzen and Spiegelhalter’s approach, while Ghahramani and Jordan (1997) use variational

approximations on factorial hidden Markov models (a subtype of DBNs) and Jitnah and

Nicholson (1999) also use approximations by pruning. Meanwhile, Kanazawa et al. (1995) adapt

standard sampling techniques to the ‘special characteristics’ of DBNs.

2.12 Causal-independence networks

Bayesian networks are often specified, where all parents of a node are independent of each other.

This can happen if the network was constructed by hand, or if in the course of structure learning,

prior knowledge specified that this should be the case. Therefore, inference procedures need to be

aware of this possible situation. An advantage is that causal-independence models can reduce

inference complexity (Zhang & Poole, 1994a).

Inference in causal-independence networks has been performed since Kim and Pearl (1983)

specified their extension of Pearl’s message passing scheme. From then on, authors have developed

different methods of representing causal independence and how to perform inference and learning.

For example, Zhang and Poole (1996) examine methods involving an operator acting upon the

effects of a nodes parents, for example, or, sum or max. Jaakkola and Jordan (1996) look at

computing upper and lower bounds on likelihoods in sigmoid and noisy-OR networks. Huang and

Henrion (1996) also investigate noisy-OR inference with their TopEpsilon system. Other inter-

esting papers on the subject include those by Heckerman and Breese (1996), Boutilier et al. (1996)

and Zhang and Yan (1998).

3 Learning Bayesian network parameters

Although learning the parameters in a Bayesian network is an important task in itself, it is

also significant in the context of learning the structure of a Bayesian network. This is because

many structure learning algorithms—particularly those using a scoring paradigm, as illustrated in

Section 4.5—estimate parameters as part of their process. That is not to say that in learning a

structure, parameters need to be explicitly represented and learned. It is that in scoring a network,

an implicit parameterization is given.

The parameters that are learned in a Bayesian network depend on the assumptions that are

made about how the learning is to proceed. For example, in the case of maximum likelihood

learning, the parameters could be the actual probabilities in the conditional probability table

attached to each node. Whereas in a Bayesian setting, the parameters could be used to specify a

conditional density that in turn models the probabilities in a conditional probability table.
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Fitting parameters to a model has mostly been attacked from the point of view of statistical

machine learning. Good background material on the matter can by found in Whittaker (1990), but a

more directed look is given by Spiegelhalter and Lauritzen (1990). For a gentle and broad intro-

duction, the book of Neapolitan (2004) and articles of Buntine (1994, 1996) are quite readable, while

parameter learning in the context of structure learning is seen in the work of Heckerman et al. (1995).

3.1 Multinomial data

A multinomial variable is a variable that can take on one of a finite number of possible values.

Any data corresponding to a multinomial variable is known as multinomial data. When dealing

with multinomial data, there are choices that can be made as to how the learning is to proceed.

Perhaps one of the simplest methods is to estimate the parameters of the model using a maximum

likelihood approach. However, this has a problem with sparse data, in that some probabilities—

perhaps most of them—can be undefined if a case does not come up in the database. This

can cause problems later with inference. To counteract this, some form of prior distribution is

normally placed on the variables, which is then updated from the data. An example of this would

be a distribution that said all values of a particular variable were of an equal prior probability to

begin with, but changed quickly to reflect the observed data. Heckerman and Geiger (1995) and

Buntine (1996) discuss this more. In addition, under certain reasonable assumptions—that the

parameters of the network are independent of each other and the density function characterizing each

parameter is strictly positive—Geiger and Heckerman (1995, 1997) showed that this distribution must

be Dirichlet. The Dirichlet distribution is the multivalued generalization of the Beta distribution and

is a conjugate prior of the multinomial; that is, when updated with new information, the updated

distribution is again Dirichlet. As an example, the form of the Beta density function is given by

f ðx; a;bÞ ¼ xa*1ð1*xÞb*1

R 1
0 u

a*1ð1*uÞb*1 du
;

for parameters a and b and variable x. When a series of Bernoulli trials is performed, with s

successes and t failures and a prior given by f (x; a, b) is specified, the posterior distribution is given

by f (x; a1 s, b1 t). This allows easy extraction of statistics and in the case of complete data, a

simple closed form updating rule. These ideas are expanded upon by Castillo et al. (1997b), while

Burge and Lane (2007) show another way of smoothing the maximum likelihood estimates.

3.2 Continuous variables

Although a lot of the literature on Bayesian networks assumes that the data are multinomial, for

many applications, the data supplied are continuous and therefore ways must be found to handle

this situation. While the simplest method might be to discretize the data as done by Monti and

Cooper (1998), this can cause problems. However, there exist methods for representing continuous

data under different assumptions. One of the first of these assumptions is that the data are

normally distributed. Geiger and Heckerman (1994) use this to learn using continuous data.

Taking away the normal assumption, Hofmann and Tresp (1996) use kernel density estimators to

model the conditional distribution. These two methods are compared by John and Langley (1995),

who show that the non-parametric approach of kernel density estimators can be useful. Another

non-parametric way of estimating the conditional densities is given by Monti and Cooper (1997a),

who use neural networks in this regard. They also look at the situation of hybrid networks, that is,

Bayesian networks with continuous and discrete attributes.

3.3 Missing data/hidden variables

One large problem in learning Bayesian networks, and indeed in running any machine learning

algorithm is dealing with missing data, a problem that occurs in perhaps most real-life data sets.

There are generally three different missing data assumptions that can be applied to missing data.
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Under a missing-completely-at-random (MCAR) assumption, the missing value mechanism

depends neither on the observed data nor on the missing data. This means that the data with

missing values could simply be discarded. This is an extremely easy situation to implement, but is a

bad policy in general, in that some if not most of the data would be unavailable for learning.

Under a missing-at-random (MAR) assumption, the missing value mechanism depends on the

observed data. This means the missing data can be estimated from the observed data. This is more

complicated than the MCAR situation, but all the data get used. Under a missing-not-at-random

(MNAR) assumption, the missing value mechanism depends on both the observed and missing

data. On account of this, a model of the missing data must be supplied. This is the most com-

plicated situation, as a model may not be readily available, or could even be unknown.

3.3.1 Missing at random

One of the most widely used methods of parameter estimation with missing data is the expectation

maximization (EM) method of Dempster et al. (1977). This was first applied to learning in

Bayesian networks by Lauritzen (1995). The popularity of this model probably stems from the fact

that it always converges to a maximum, albeit a local one in multi-modal distributions. Extensions

to this algorithm that can make it faster are given by Thiesson (1995), Bauer et al. (1997) and

Neal and Hinton (1999). Hewawasam and Premaratne (2007) also show how to use EM when

learning from data with other types of uncertainty (i.e. not just missing data).

As well as using EM, the gradient of the learning surface can be computed explicitly and a

gradient descent applied. Russell et al. (1995) and Binder et al. (1997) apply this to the learning of

parameters with possible hidden variables. They also extend this to the case of continuous nodes

and dynamic Bayesian networks. Kwoh and Gillies (1996) apply the same idea, but also describe

the technique of inventing hidden nodes to describe dependencies between variables. Bishop et al.

(1998) discuss learning parameters in a sigmoid network with mixtures and Thiesson (1997) shows

an application of these ideas when prior expert information is available.

The methods given above find a local maximum of the distributions. In case a better estimate

needs to be found, Monte Carlo methods can help, such as the candidate method as used by

Chickering and Heckerman (1997). Other techniques that tend to be used in structure learning

might also be able to help; these are described in more detail in Section 4.12.

3.3.2 Missing not at random

When the mechanism of the missing data cannot be found from the observed data, it must be

specified in some other manner. The Bound and Collapse (BC) method given by Ramoni and

Sebastiani (1997a, 1997b) can be useful in this regard. They compare BC to EM and to the Gibbs

sampling Monte Carlo method and show that BC can be substantially faster Ramoni and Sebastiani

(1999). A method related to BC is the Robust Bayesian Estimator (RBE) of Ramoni and Sebastiani

(2001). Here, an assumption on the type of missing data does not need to be made. Instead,

probability intervals are calculated that can be used in inference and provide a more robust estimate.

3.4 Miscellaneous techniques

This section will show some techniques in learning parameters that look at specific topics.

First, researchers have looked at learning parameters in causal independence models, that is,

models where causes can be assumed to be independent from each other, for example, in noisy-OR

and noisy-MAX nodes. Meek and Heckerman (1997) show how these types of nodes can be

learned using Bayesian methods, while Neal (1992) shows learning noisy-OR and sigmoid models

using Gibbs sampling.

The simplest model of a multinomial conditional probability distribution is probably repre-

senting it as a table of values. However, other representations may be possible, such as trees,

that can model non-interactions between variables at a finer level. For example, Friedman

and Goldszmidt (1996b) demonstrate simple algorithms that can learn conditional probability
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distributions as tables or trees, as part of an overall structure learning algorithm. In the same vein,

Chickering et al. (1997a, 1997b) show an algorithm that learns decision graphs for the CPDs as

well as the network structure and desJardins et al. (2008) also show how to learn tree-structured

parameters and structures together.

In regards to learning dynamic Bayesian networks, Ghahramani and Jordan (1997) discuss

learning the parameters of a factorial hidden Markov model (and hence a specific type of dynamic

Bayesian network). This is generalized to DBNs and an analysis is done over many different

specializations of DBNs (Ghahramani, 1998).

Normally, updating parameters in an online setting is not a hard task, but when coupled with

structure learning, there can be difficulties in knowing what data to remember. An early look at

this problem is given by Buntine (1991), who describes a system of keeping possible parameters for

a node in a lattice structure. Bauer et al. (1997) look at a different problem, with updating

parameters in an online setting, assuming missing data.

There has not been much discussion on the use of prior knowledge in learning parameters, so

the paper by Feelders and van Straalen (2007) is interesting. It shows how an expert can give an

indication of qualitative influence of parent variables on a child and how this can increase the

accuracy of parameter estimation.

Finally, the papers below represent some interesting ideas in parameter learning, with possible

applications to structure learning. As a prelude to their structure learning method described

in Section 4.16, Tong and Koller (2001a) present an application of using active learning

to estimate parameters in a Bayesian network. Also in the context of structure learning, Greiner

et al. (1997) examine ways of learning CPDs dependant on the queries that will be put to the

network.

4 Learning Bayesian network structures

Learning the structure of a Bayesian network can be considered a specific example of the general

problem of selecting a probabilistic model that explains a given set of data. Although this is a

difficult task, it is generally considered an appealing option, as constructing a structure by hand

might be hard or even impossible if the dependent variables are not known by domain experts.

Because of this problem, a wealth of literature has been produced that seeks to understand and

provide methods of learning structure from data.

A fine example of an overview on the area was given by Buntine (1994, 1996), which although

slightly dated now, is a good reference in dealing with most of the issues that arise in the area.

Heckerman (1995b) gives a more tutorial like introduction to the task, and for a gradual intro-

duction to the area, the recent book by Neapolitan (2004) has a good look at the theory behind a

lot of the techniques used. To begin with, this section will start by examining the theory and

complexity of learning Bayesian network structures and then move on to how the challenges have

been addressed.

4.1 Learning theory and learning complexity

There is a lot of theory behind the learning of Bayesian networks, most of which is rooted in

statistical concepts and graph theory. Geiger et al. (2001) and Geiger (1998) look at different

families of models (of which Bayesian networks are one) in the context of model selection, but a

gentler introduction can be found in the pages of the books of Pearl (1988), Jensen and Nielsen

(2007), Castillo et al. (1997a) and Cowell et al. (1999). From a more recent perspective, Kočka

et al. (2001) and Castelo and Kočka (2003) investigate the important role of inclusion in learning

Bayesian network structure (i.e. whether the conditional independence statements in one structure

are a subset of those in another). And while the theory of learning is important as a basis to why

certain techniques are adopted, to many people, the issue of complexity of learning is the most

immediately obvious challenge.
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4.1.1 Complexity

Learning Bayesian network structures has been proven to be NP-hard by Chickering (1996a) and

Chickering et al. (2004), while Dasgupta (1997) has looked at the situation where latent variables

are and are not allowed. Indeed, a simple look at the number of possible DAGs for a given

number of nodes will indicate the problem is hard; for 10 nodes there are 4.23 1018 possible

DAGs. The properties of the space of DAGs have been explored by Gillispie and Perlman (2001,

2002) who look at equivalence classes of DAGs and Steinsky (2003) who presents an efficient

scheme of coding labelled DAGs.

Luckily, from the theoretical standpoint, it is possible to put bounds on various items of interest.

For example, Friedman and Yakhini (1996) look at the sample complexity of structure learning

and show how many samples are needed to achieve an e-close (in terms of entropy distance)

approximation, with confidence probability d. Zuk et al. (2006) show how to calculate the number

of samples needed to learn the correct structure of a Bayesian network and Ziegler (2008) gives

bounds on scores when the in degree of a node is bounded. A recent paper by Elidan and Gould

(2008) shows how to learn graphs of a bounded treewidth, with computational complexity

polynomial in the size of the graph and treewidth bound.

Despite the complexity results, various techniques have been developed to render the search

tractable. The following sections will show these in the context of the three main methods used:

> A score and search approach through the space of Bayesian network structures (Section 4.5);
> A constraint-based approach that uses conditional independencies identified in the data (Section

4.8); and
> A dynamic programming approach (Section 4.11).

Although the classification into three different methods is useful in differentiating their applic-

ability, the boundaries between them are often not as clear as they may seem. For example, the

score and search approach and the dynamic programming approach are both similar in that they

use scoring functions. Indeed, there is a view by Cowell (2001) that the conditional independence

approach is equivalent to minimizing the Kullback–Leibler (KL) divergence (Kullback & Leibler,

1951) using the score and search approach.

Although these three approaches will be illustrated, other factors that impact the process will

be mentioned. These include: partially observed models, missing data, multi-model techniques,

dynamic Bayesian networks, parallel learning, online learning, incorporating prior knowledge into

learning, large domains, continuous variables, robustness of learning, tricks to make learning

faster and other problems and techniques that could be relevant.

4.2 Causal networks

Bayesian networks can have a number of interpretations depending on the use they will be put to

and the background of the people constructing them. At its most basic, a Bayesian network is a

factorization of a joint probability distribution, with properties that make storage and inference

convenient. In this construction, the arcs between nodes characterize the probabilistic dependencies

between variables and how the associated conditional probability distributions are combined.

Another view is that a Bayesian network represents causal information, with the arcs repre-

senting direct causal influences, such that manipulating a variable at the tail of an arc will cause a

change to occur with the variable at the head of the arc in almost all circumstances. This inter-

pretation is more controversial as it goes against the grain of conventional statistical wisdom that

says that causality can only be found using manipulation. Although causal Bayesian networks are

controversial, they are a tempting objective for a number of reasons. For one, being able to learn a

causal network can provide insight into a domain. And from a computational perspective, a causal

network allows the effect of interventions and not just observations to be computed. It is worth

noting that while Bayesian networks have been seen by many as the best way to represent

uncertain causal knowledge, recent work has put forward generalizations of Bayesian networks as
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being better able to handle the subtle issues of causal reasoning (Richardson & Spirtes, 2002;

Zhang, 2008).

There are many pitfalls to be wary of when learning causal networks. These include (but are

not limited to), hidden common causes, selection bias and feedback loops. Use of machine

learning methods to learn causal Bayesian networks from data means that assumptions are being

made (implicit or explicit), such as the causal Markov condition or faithfulness condition (Spirtes

et al., 2000), though new research has indicated possible weaker assumptions (Zhang & Spirtes,

2008). There has been much confusion over when utilizing causal networks is applicable (Druzdzel

& Simon, 1993). Many studies (probably wrongly) have assumed that Bayesian networks

and causal Bayesian networks are equivalent (Acid & de Campos, 1995; Acid et al., 2001); more

careful studies set out their assumptions clearly beforehand. Most of the work in learning causal

networks has focused on constraint-based algorithms, building on work from Glymour et al.

(1986), Spirtes et al. (1989, 1990) and Spirtes and Glymour (1990a, 1991) and also work from

Geiger et al. (1990), Pearl and Verma (1991) and Verma and Pearl (1991, 1992). However, there

also have been studies on learning causal structures from a score and search perspective, parti-

cularly within a Bayesian framework (Heckerman, 1995a, 2007). There have been many works on

causal Bayesian networks, but the two most relevant are probably those by Spirtes et al. (2000) and

Pearl (2000) who expound their views on the possibilities of the topic. These must be contrasted

against the debates of philosophers on the ability of Bayesian networks to capture causal information.

Prominent papers in this area include those of Cartwright (2001), exchanges between Hausman and

Woodward (1999, 2004) and Cartwright (2002, 2006), and contributions by Williamson (2005) and

Steel (2005, 2006).

4.3 Trees

One of the first pieces of work on learning structure was by Chow and Liu (1968), who described

an algorithm for learning Bayesian networks structured as trees, that is, a structure where each node

has either one or zero parents. These are sometimes known as Chow–Liu trees. Their algorithm

constructs the optimal second-order approximation to a joint distribution, by finding the maximal

spanning tree, where each branch is weighted according to the mutual information between the two

variables. This work was built upon by Ku and Kullback (1969) who demonstrate that it is a special

case of a more general framework to approximating joint probability distributions.

There has continued to be research on trees as a decomposition of a joint distribution, for example,

by Lucas (2002) and Friedman et al. (1997) in the context of classification. Meil and Jaakkola (2006)

show how learning tree structures in a fully Bayesian manner can be achieved in polynomial time.

4.4 Polytrees

More general than trees, polytrees are an important class of Bayesian network structure. A

polytree is a graph in which there are no loops, irrespective of arc direction. They are important

because there exist exact algorithms that can perform inference on the polytree in polynomial time

(Kim & Pearl, 1983; Peot & Shachter, 1991).

One of the earliest examples on learning polytrees from data is given by Pearl (1988), following on

from work by Rebane and Pearl (1987), which uses Chow and Liu’s (1968) system as a subroutine.

Dasgupta (1999) gives a good look at the field and mentions the NP-hardness of the problem, while

showing a good approximation and de Campos (1998) looks at what properties a dependency model

must have in order to be represented by a polytree. Other work on the area includes Geiger et al.

(1990), Acid and de Campos (1995), who show an empirical study into approximating general

Bayesian networks by polytrees and Huete and de Campos (1993) who look at using conditional

independence tests (see Section 4.8) to learn polytrees.

We will now turn our attention to the problem of learning a general Bayesian network struc-

ture, that is, a DAG. This has by far received the most attention from the research community and
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correspondingly there are many more publications. In the sections that follow, there will be a

classification of the various factors involved, but it is worthwhile to bear in mind that some ideas

fall into many different camps.

4.5 Heuristic algorithms

One of the most widely studied ways of learning a Bayesian network structure has been the use of

so-called ‘score-and-search’ techniques. These algorithms comprise of:

> a search space consisting of the various allowable states of the problem, each of which

represents a Bayesian network structure;
> a mechanism to encode each of the states;
> a mechanism to move from state to state in the search space; and
> a scoring function to assign a score to a state in the search space, to see how good a match is

made with the sample data.

Because of the hardness of the problem, heuristic algorithms are generally used to explore the search

space, the most basic of which are greedy searches (GSs). In all these frameworks, it is useful to bear in

mind the work of Xiang et al. (1996), who show that single-link search cannot find all models.

4.5.1 Greedy search with an ordering on the variables

Some of the earliest work that looked at greedy methods to learn Bayesian network structure was

by Herskovits and Cooper (1991) with their Kutató system. However, the seminal paper in this

area is by Cooper and Herskovits (1992), which describes the K2 system.1 This provided a way to

construct a Bayesian network structure given a data sample and an ordering of the various

variables and used a Bayesian scoring criterion, which has come to be known as the K2 score.

Following on from this, Bouckaert (1993, 1994a) developed his K3 system that, like the K2

system, takes an ordering of variables and a set of data and produces a DAG. Instead of using the

K2 score, he uses a scoring criterion based on the minimum description length (MDL) principle

(Section 4.7.2). de Santana et al. (2007a) have a procedure that behaves like K2, in that it needs an

ordering on the variables and decides whether to add an arc from a possible parent by looking at a

regression coefficient. Similar again is the work of Liu et al. (2007b) and Liu and Zhu (2007a,

2007b), which takes an ordering of the variables and treats the problem as a feature selection one.

4.5.2 Greedy search with no ordering on the variables

Other people that used the MDL scoring function were Lam and Bacchus (1993, 1994a) who had a

best first search algorithm and a way to incorporate domain knowledge into the problem. Suzuki

(1999) also used MDL in conjunction with branch and bound. Branch and bound is a technique

that has been used in many AI applications (Miguel & Shen, 2001) and that prunes the search

space of definitely worse solutions, using bounds obtained from the current best solution.

One of the most important works on learning structures was by Heckerman et al. (1995), who

analysed scoring functions from a Bayesian perspective and tested their techniques using a greedy

learning algorithm described by Chickering et al. (1996), that added, removed or reversed an arc

from the current DAG at each step. Following on from this general technique, various researchers

showed methods that seek to make learning faster and more accurate. Chickering et al. (1997a,

1997b) show an algorithm that learns decision graphs for the CPDs at each of the nodes as part of

structure learning. Steck (2000) has a search technique that alternates between the search space of

DAGs and skeletons. Hwang et al. (2002) have a method to reduce the search space, while de

Campos et al. (2002b) introduce a modified neighbourhood in the space of DAGs that changes the

standard reverse operation to help with incorrectly oriented arcs.

1 The name K2 is derived from the Kutató system that preceded it.
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4.5.3 Genetic and evolutionary algorithms

There has been a tremendous amount of interest in using genetic algorithms (GAs) to learn

Bayesian network structures in the recent past. One of the first implementations came from

Larrañaga et al. (1996a, 1996b), who used GAs to search over the space of orderings, while using

K2 as a subroutine to score a particular ordering. A closely related approach comes from Hsu

et al. (2002), who have the same basic idea, but hold back training data to produce a score for an

ordering using importance sampling, while with his K2GA algorithm, Faulkner (2007) again uses

a modified K2 as a subroutine for a GA. Finally, de Campos and Huete (2000a) also look at

searching over orderings with a GA using conditional independence tests (see Section 4.8) as the

basis of the fitness function.

Following on from the work of Larrañaga et al., Wong et al. (1999) introduced their MDL and

evolutionary programming (MDLEP) system, which searches over the space of DAGs, mainly by

mutating individuals. An interesting hybrid technique that combines a mixed approach of score-

and-search with conditional independence testing and evolutionary programming is given by

Wong et al. (2002), with their hybrid evolutionary programming (HEP) system. Following on

from their previous work they introduce another system, hybrid evolutionary algorithm (HEA),

again based on a hybrid approach (Wong & Leung, 2004). This is extended to deal with missing

data in the HEAm system (Guo et al., 2006; Wong & Guo, 2006, 2008).

Myers et al. (1999a, 1999b) compare using an evolutionary algorithm against a Markov-chain

Monte Carlo (MCMC) algorithm and also combine them to form the evolutionary MCMC

(EMCMC) algorithm. Although this approach is focused on model selection, Wang et al. (2006)

look at the problem from the perspective of model averaging with their DBN-EMC system and

Kim and Cho (2006) examine using an evolutionary algorithm to simplify an aggregation of

Bayesian networks.

Compared to normal Bayesian networks, DBNs normally do not receive as much attention.

Tucker and Liu’s (1999) and Tucker et al. (2001) EP-Seeded-GA algorithm fills this gap with an

evolutionary programming approach to learning DBNs with large time lags. A more recent

example of this is the genetic algorithm based on greedy search (GA–GS) algorithm of Gao et al.

(2007).

Hybrid techniques. Many researchers have investigated combining GAs with other techniques

from the machine learning library. For example, following on from the online algorithm of

Friedman and Goldszmidt (1997), Tian et al. (2001) have a procedure (IEMA) that combines an

evolutionary algorithm and the expectation-maximization procedure to learn structure in the

context of hidden variables. Blanco et al. (2003) use techniques based on EDAs (estimation of

distribution algorithms), which are similar to GAs and compare them to straight GAs. Morales

et al. (2004) use a fuzzy system that combines the values of different scoring criteria, while

performing a GA search. Finally, Delaplace et al. (2006) showcase a refined GA, which includes

tabu search and a dynamic mutation rate.

Representation of solutions. The effective representation of population members and by

extension the search space, is a difficult problem that has borne much scrutiny. Most authors

define their own representation and concentrate on other matters, but Novobilski (2003) is con-

cerned with the encoding of DAGs. These issues also arise in the works of Cotta and Muruzábal

(2002, 2004) and Muruzábal and Cotta (2004), who look at searching through both the space of

DAGs and the space of equivalence classes of DAGs. Finally, van Dijk and Thierens (2004) and

van Dijk et al. (2003a) look at the encoding of solutions so as to eliminate redundancy in the

search space.

4.5.4 Simulated annealing

Although implementing a search using simulated annealing (Kirkpatrick et al., 1983) should throw

up no conceptual problems as it uses the framework already specified for heuristic search in

Section 4.5, there does not seem to be much literature on the effectiveness of this approach. This is
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surprising, as it is very similar to a GS that does not always select the best neighbouring state.

Instead, it picks one at random and moves to it, with probability given by the scoring function of

that state and how long many iterations have passed. One such work that does look at this

technique is by de Campos and Huete (2000a), who compare genetic algorithms and simulated

annealing on a search over orderings.

4.5.5 Particle swarm optimization

Quite recently there has been work on applying discrete particle swarm optimization (Kennedy &

Eberhart, 1995, 1997) to learning Bayesian network structures. Xing-Chen et al. (2007a) and Heng

et al. (2006) have applied this in the case of normal Bayesian networks and also in the case of

DBNs Xing-Chen et al. (2007b). Other approaches include those by Li et al. (2006), who use a

memory binary particle swarm optimization technique and by Sahin and Devasia (2007) who use a

distributed particle swarm optimization approach.

4.5.6 Other heuristics

There remain many other methods that have been and could be used in learning the structure of a

Bayesian network. A selection of these are given here in order to complete this look at the use of

heuristics.

Peng and Ding (2003) have an extension of the K2 algorithm, called K21, that works locally on

each node, eliminating any cycles obtained and repairing damage due to cycle elimination.

Recognizing stochasticism as a method to avoid local maxima, de Campos and Puerta (2001)

describe a randomized local search called variable neighbourhood search. In addition, de Campos

et al. (2002a) apply the ant colony optimization metaheuristic to searching in the space of DAGs

and of orderings of nodes de Campos et al. (2002c). This work has been advanced on by Daly and

Shen (2009), who describe an ant colony optimization in the space of equivalence classes of DAGs

(as explained in Section 4.6). Burge and Lane (2006) describe a method based on aggregation

hierarchies, that performs an initial search on composite random variables. This constrains later

searches that use atomic random variables.

4.6 Searching through the space of equivalence classes

As the structure of a Bayesian network is a DAG, it is natural to use this representation as a state

while searching through the space of possible structures. However, it has been noted that certain

DAGs are similar in that they capture the same conditional independencies in their structure

(Andersson et al., 1997). These Markov equivalent structures have been discussed in Section 1.3.

Since the CPDAG structure discussed in that section can represent an equivalence class of DAG

structures, it is very useful in representing states of searches. The space of these searches can be

known as E-space, as opposed to the B-space of DAG-based search (Chickering, 2002a). More

information on these topics can be found in Lauritzen and Wermuth (1989) and Whittaker (1990).

4.6.1 Search procedures

Although the properties of PDAGs have been known for some time before, algorithms that would

learn them from data, in a manner similar to score-and-search procedures to find DAGs, would

not appear until later. One of the first was by Spirtes and Meek (1995) who describe a two-phase

greedy Bayesian pattern search (GBPS) algorithm and then combine it with the independence-

based PC algorithm (Spirtes & Glymour, 1990a). This work relies on a procedure to turn a PDAG

P into a DAG in the equivalence class represented by P (known as extending P). Such procedures

are described by Meek (1995), Verma and Pearl (1992) and Dor and Tarsi (1992).

Another early work is by Chickering (1996b), who describes a method that uses certain

operators to modify a CPDAG PC and then extends PC to G to check if the move is valid and to

score it. It then turns G back into a CPDAG and repeats, using a method such as those by Meek

(1995) or Chickering (1995).
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A problem with these procedures was that they were often very inefficient, with numerous

extensions and multiple scores being required at each move. These problems were addressed by

Munteanu and Cau (2000) and Munteanu and Bendou (2001) with their EQ framework, who

showed how to locally check if a particular move was valid and if so, what score that would

provide. However, the various operators given were shown to be incorrect. Kočka and Castelo

(2001) tried to limit the problem inherent with searching in the space of DAGs, by including a

procedure that would move between DAGs in the same equivalence class. However, it was the

paper by Chickering (2002a) that put a firm foundation on using equivalence classes as states in a

search-based procedure. Although similar to the procedure of Munteanu and Bendou (2001), he

proved the correctness of the various operators introduced and enabled search in E-space (as

explained in Section 4.6) to be competitive with that in B-space. Note that Perlman (2001) and

Castelo and Perlman (2002) also did work on this problem.

After this, Chickering (2002b) described another algorithm (designed by Meek (1997)) that

searches in E-space. This one, called greedy equivalent search (GES), is a two-phase algorithm

that, in the limit of a large sample size, identifies a perfect map of the generative distribution. That

is, if the probability distribution implied by the data admits a DAG representation of it, then GES

will find the equivalence class of this representation in the limit of a large sample size. This work

was expanded on by Chickering and Meek (2002), who provide different optimality guarantees for

more realistic assumptions. Nielsen et al. (2003) also built on GES by introducing an algorithm

called k-greedy equivalence search (KES), which is essentially a randomized version of GES, to

help escape local optima in the search space. Quite recently, Borchani et al. (2006, 2007, 2008)

developed the GES-EM algorithm for utilizing GES with missing data, using the expectation

maximization procedure.

Following on from this work, Castelo and Kočka (2003) show a more general way of looking at

the search problem and illustrate certain conditions that operators on the search space should

obey, to avoid local maxima. They then introduce the hill-climber Monte Carlo algorithm

(HCMC) that uses the ideas developed in this paper.

To conclude this section on search algorithms, various hybrid and other methodologies will

be mentioned. Acid and de Campos (2003) develop a representation that borders the repre-

sentational ability of DAGs and CPDAGs. They named these restricted PDAGs (RPDAGs) and

present various operators that can be used to manipulate them. Cotta and Muruzábal (2004) and

Muruzábal and Cotta (2004) present an evolutionary programming approach called EPQ, that

uses equivalence classes of structures as its population members. Finally, Jia et al. (2007) show a

hybrid algorithm that uses both a conditional independence approach and score-and-search to

learn an equivalence class.

4.7 Scoring functions

When performing a score-and-search procedure a scoring criterion must be specified that some-

how gives a good score when a structure matches the data ‘well’—the better the match, the higher

the score. Of course, given this ambiguous problem, diverse scoring criteria have been invented

that involve various assumptions and different definitions of a better match. Perhaps one of the

simplest criterion—the maximum likelihood estimator—will in general return the complete graph,

as this is the one with the most parameters. Therefore, most scoring criteria consist of two parts—

one that rewards a better match of the data to the structure and one that rewards a simpler

structure. Examples of these are the Bayesian Dirichlet (BD) criterion, Bayesian information

criterion (BIC), Akaike information criterion (AIC), MDL and minimum message length (MML).

These and various other criteria will be discussed below.

One of the more desirable properties of a scoring criterion is decomposability, whereby

the score of a particular structure can be obtained by the score for each node given its parents.

Most of the scoring functions known have this property. Malvestuto (1991) has some early

work on this.
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A comparison of MDL, BDeu (BD with N 0
ijk ¼ N 0=riqi) and K2 (BD with N 0

ijk ¼ 1) is given in

Shaughnessy and Livingston (2005). Note that in this paper, they confuse BDeu with K2 and

the WEKA Bayesian method with BDeu. Another thorough comparison between the BIC,

Cheeseman–Stutz approximation (Cheeseman & Stutz, 1996), Laplace approximation and Gibbs

sampling approach was conducted by Chickering and Heckerman (1997). Finally a comparison

between the MML and BGE metrics is given by Neil and Korb (1999).

4.7.1 Bayesian Dirichlet scoring functions

One of the first expositions of a Bayesian scoring criterion in learning Bayesian network structure

was given by Cooper and Herskovits (1992) as part of their K2 algorithm. As presented by them,

the function for a given structure Bs and data set D were

PðBs;DÞ ¼ PðBsÞ
Yn

i¼ 1

Yqi

j¼ 1

ri * 1ð Þ!
Nij þ ri * 1
! "

!

Yri

k¼ 1

Nijk!;

where there are n variables, qi parent configurations of variable i, ri is the number of values

variable i can take, Nijk is the number of times variable, i took on value k with parent config-

uration j and Nij ¼
Pri

k¼1 Nijk. Looking at this equation it can be seen that P(Bs) is the prior

probability of structure Bs and the rest of the expression is the likelihood of the structure, given

the data.

In their paper, Heckerman et al. (1995) generalize the above equation and place it on a sound

theoretical footing. In their form,

P Bs;Dð Þ ¼ P Bsð Þ
Yn

i¼ 1

Yqi

j¼ 1

G N 0
ij

# $

G N 0
ij þNij

# $
Yri

k¼ 1

G N 0
ijk þNijk

# $

G N 0
ijk

# $ ;

where variables have the same meaning as before and N 0
ijk are exponents that specify the users

prior knowledge about configuration ijk; the higher the N 0
ijk, the more the user thinks that con-

figuration is likely. Meanwhile, N 0
ij ¼

Pri
k¼1 N

0
ijk. They called this equation the Bayesian Dirichlet

or BD metric. It can be noted that G(x)5 (x21)! for natural numbers, which immediately shows

the similarity to the equation of Cooper and Herskovits (1992). Indeed, with N 0
ijk ¼ 1, the formula

is exactly the same as the K2 formula. Using an assumption known as likelihood equivalence,

which says that equivalent structures receive the same score, they constrain the values that N 0
ijk can

take on and provide a method to calculate them. With this method, the user provides a prior

Bayesian network and an equivalent sample size N0 that says how confident they are in it. With

these constraints, the scoring criterion is named BDe (Bayesian Dirichlet with likelihood

equivalence). With a further constraint, such that all configurations are as likely as each other,

N 0
ijk ¼ N 0=riqi and the criterion is named BDeu (Bayesian Dirichlet with likelihood equivalence

and a uniform joint distribution). It would be well to note that the learned network can be quite

sensitive to the N0 parameter (Steck & Jaakkola, 2003a; Silander et al., 2007), so recent work on

optimizing it is welcome (Steck, 2008).

4.7.2 Minimum description length

MDL is a statistical principle, which says that the best hypothesis that describes data, is the one

that leads to the largest compression of that data, including the hypothesis (Rissanen, 1978). One

of the first people to use the MDL principle in constructing Bayesian networks was Bouckaert

(1993, 1994a). Here he provides an explanation and justification of using this measure and shows

how it behaves like the K2 criterion for large sample sizes. A more in-depth comparison of the

MDL and K2 criterion is given in Bouckaert (1994b).

At around the same time, Suzuki (1993) and Lam and Bacchus (1994a) also made use of the

MDL principle and presented a way to incorporate domain knowledge into their algorithm (Lam

& Bacchus, 1993). This domain knowledge can come in the form of direct causation information

(X is a direct cause of Y) and a partial ordering of the variables. Suzuki (1999) looks into previous
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work using MDL and presents a branch-and-bound algorithm. Finally, Cruz-Ramı́rez et al. (2006)

give a comparison of MDL and BIC. In this work BIC is defined as

BICðBs;DÞ ¼ * logPðDjŶ;BsÞ þ d=2 log n;

where Ŷ are the maximum likelihood parameters for Bs, d is the number of free parameters in the

model and n is the sample size. Following this, MDL is defined as

MDLðBs;DÞ ¼ * logPðDjŶ;BsÞ þ d=2 log nþ Ck;

where k is the number of variables, Ck ¼
Pk

i¼1ð1þ Paxij jÞ log k and Paxij j is the size of the parent
set of variable xi. Hence, according to Cruz-Ramı́rez et al., MDL is BIC with an extra penalty for

model complexity. Note that some authors use the term MDL to mean the formula indicated by

BIC above, so care must be taken to see exactly what is being used.

4.7.3 Minimum message length

A newer scoring criterion for Bayesian networks, based on the work of Wallace and Boulton (1968), is

one that computes the MML of a structure, its parameters and data (Wallace et al., 1996). This

criterion is similar to the MDL one in that it penalizes overly complex models (which will produce a

longer message) and rewards goodness of data fit (which will produce a shorter message). However,

instead of looking at the problem from a compression point of view, it sees it as the problem of sending

the smallest possible message between a transmitter and receiver. It has been used to learn causal

models by Neil et al. (1999) and by Wallace and Korb (1999) using their causal minimum message

length (CaMML) method, and more recently by Li et al. (2002). An up-to-date look at this method is

given by Korb and Nicholson (2004). O’Donnell et al. (2006a) builds on the work of Wallace and

Korb (1999) by learning Bayesian networks with many types of local interactions at each node.

4.7.4 Other

Although the scoring criteria given above are the most widely used in the field, researchers have

been examining other methods of ranking a structure given some data. For example, Kayaalp and

Cooper (2002) introduce a scoring metric called Global Uniform (GU) that is based on a parti-

cular form of default parameter prior. They then compare it against the BDeu and K2 scoring

criteria. de Campos (2006) presents a scoring method called mutual information tests that has an

information theoretic basis and performs well compared to K2, BDeu, BIC and the PC algorithm

of Spirtes and Glymour (1990a). Also based on information theory, the work of Herskovits and

Cooper (1991) uses a scoring function that calculates the entropy of a particular network, with the

network of minimum entropy being the best fit to the data. Their decomposable function is

Xn

i¼ 1

Xqi

j¼ 1

PðPaðxÞÞ
Xri

k¼ 1

PðxjPaðxÞÞ lnPðxjPaðxÞÞ

Based upon this they show a method to calculate the best arc to add to the network being

generated. Recently, Riggelsen (2008) describes a new Bayesian scoring function that does not

make the Dirichlet assumption and attempts to learn both the structure and parameters together.

An interesting approach with similarities to boosting, etc. is that by Elidan et al. (2002) who

reweighted data, so that the scoring function can change. This can help escape local maxima.

Castelo and Perlman (2002) demonstrate a scoring criterion that can be applied directly to

equivalence classes of Bayesian network structures, without extending it to DAG form.

4.8 Finding structure using conditional independencies

In learning the structure of a Bayesian network from data, there are often said to be two main

methods—search through the space of possible structures and using conditional independencies

(CIs) obtained from statistical tests on the data. In this section, the latter will be focused on.
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However, it is worth noting that Cowell (2001) has drawn parallels between the two techniques, so

they might not be as different as they seem at first glance. Perhaps the book for learning using CIs

is the one by Spirtes et al. (1993, 2000), which contains most of the early theory and results, and

looks at the problem from a causal perspective.

Some of the first work on using CIs to obtain structure came from around the early 1990s.

Geiger et al. (1990) developed an algorithm to recover polytrees from an oracle, which can say

whether two variables are independent given another. At the same time Fung and Crawford (1990)

developed the Constructor system that learned Markov networks, that is, undirected graphical

models, that encode CIs in a manner similar to Bayesian networks. In this work, they mention

using the x2 statistical test to obtain the needed CIs.

One of the first systems that recovered a DAG from independence data was the SGS algorithm

by Spirtes et al. (2000). However, this was quite inefficient, as each pair of variables required tests

involving every subset of the remaining variables, which is an exponential operation. Therefore,

numerous variations on the theme sprung up. Perhaps the best known of these is the PC algorithm

by Spirtes and Glymour (1990a), which is faster than SGS, but can produce errors in removing

arcs. These arise because PC only tests for d-separation between nodes X and Y in a DAG, using

subsets of neighbours of X and Y. A modification of the PC algorithm that decreases the amount

of Causal Inference (CI) tests needed is called PC* (Spirtes et al., 2000), and recently, applicability

of PC to high-dimensional data is shown by Kalisch and Bühlmann (2007). Also recently, Li and

Wang (2009) show how to control the false positive rate while using the PC algorithm.

A variant of the SGS algorithm, proposed by Pearl and Verma (1991) and Verma and Pearl

(1991), differs from previous approaches in that it first generates an undirected graph that models

dependencies between variables, as opposed to using the complete undirected graph in the SGS

and PC manner. This algorithm, called Inductive Causation (IC), also takes into account latent

variables, and returns a graph with undirected, unidirected and bidirected arcs. Taking inspiration

from the approach of IC in starting with the undirected independence graph, Spirtes et al. (2000)

proposed changing the PC algorithm to start in the same way. They called this modified algorithm

Independence Graph (IG). Again, with an approach based on IC, Verma and Pearl (1992) looked

at an algorithm that took a more global view and constructed a DAG, as opposed to the local

view of IC.

Following on from the work of Verma and Pearl, Spirtes et al. (2000) described two algorithms

that took on the idea of identifying latent variables. These were known as the CI and Fast Causal

Inference (FCI) algorithms and Spirtes et al. (1995) show how they can also work in the presence

of, and identify, selection bias.

After the large body of work produced by Spirtes, Glymour and Scheines, and Verma and

Pearl, various other authors examined ways to learn causal explanations of data in the context of

DAGs. These are refinements of the more general approaches discussed above and were often

developed for simplified situations. Cooper (1997) described an algorithm called Local Causal

Discovery (LCD) based on PC and FCI, that while less general in its applicability, runs in polynomial

time in the worst case. de Campos (1998) looked at representing CI statements using polytrees and

developed algorithms for this purpose. de Campos and Huete (1997) also make a simplifying

assumption with their CH1 and CH2 algorithms that can efficiently find simple graphs; that is,

DAGs where every pair of nodes with a child are not connected, nor have a common ancestor.

Various authors also advanced systems that allow background knowledge to be given. For example,

Meek (1995) showed a method for learning a CPDAG using methods inspired by Spirtes et al. This

was done in the context of background knowledge in the form of mandatory and disallowed causal

effects. This paper also has early work on finding DAGs from CPDAGs. Cheng et al. (1997) have a

system that takes an ordering of the variables as background knowledge, as do de Campos and Huete

(2000b), who describe a method that avoids making many high-order CI tests.

An interesting modification to the standard CI type algorithm is given by Margaritis and Thrun

(2000) with their GS algorithm, which shows how to limit the number of CI tests between two

nodes by only using nodes in their Markov boundaries, which are calculated beforehand. Another
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interesting approach is that of Cheng et al. (2002) and their three-phase dependency analysis

(TPDA), who describe how an n variable DAG can be learned in O(n4) CI tests. This was also

implemented in parallel by Gou et al. (2007). However, TPDA relies on an assumption known as

monotone DAG-faithfulness, and it has been shown by Chickering and Meek (2006) to be

incompatible with the faithfulness assumption. They show that the optimality guarantee provided

by Cheng et al. only applies in very specific situations, where there are already faster algorithms.

Some recent work on reducing computation time and errors in reconstructing networks is given

by Yehezkel and Lerner (2006). They propose an algorithm known as recursive autonomy iden-

tification (RAI), that recursively performs CI tests, edge directions and structure decomposition,

with higher order CI tests for smaller structures. Another recursive system is that of Xie and Geng

(2008) that splits the variables into two sets recursively, builds a DAG when a set cannot be split

anymore and combines these DAGs on returning from a split. More recent work by Bromberg and

Margaritis (2009) describes how to use a logical process known as argumentation to resolve

inconsistencies that can occur when a small sample size is used.

With all the algorithms given above, access to fast CI tests is crucial. The normal tests used are

the x2 and G tests (Spirtes et al., 2000, pp. 93–95), but work has been done on a new test by Dash

and Druzdzel (2003). Other results concerning d-separations are given by Acid and de Campos

(1996a, 1996b), who use them in their hybrid BENEDICT system (Acid & de Campos, 1996c).

Finally, authors have used CI testing in ways that differ from the approach given above (using

the conditional independencies to construct a dependency structure that is necessary in a candidate

DAG). Examples of these are de Campos (2006) who uses CI tests in the construction of a scoring

function and Schulte et al. (2007) who provide a look at learning BN structures using CI tests in a

paradigm that approaches the task using Gold’s learning paradigm (Gold, 1967).

4.9 Hybrid search strategies

Both the score-and-search and conditional independence testing methods have their advantages.

Score-and-search typically works better with less data than CI testing and with probability dis-

tributions that admit dense graphs. They also allow probability distributions over models to be

easily represented and have better mechanisms for dealing with missing data. However, CI testing

methods work well with sparse graphs, are generally quick and have good ways of finding hidden

common causes and selection bias.

As both methods have advantages inherit in them, researchers have tried to find ways to use the

good points of both in hybrid methods. Below are some of the ideas that researchers have been

looking at.

4.9.1 Hybrid algorithms

One of the first hybrid algorithms in the area was by Singh and Valtorta (1993, 1995). Here, they

construct a total ordering of the variables using CI tests and then use this ordering as input to the

K2 algorithm to learn the structure. This approach is followed by Provan and Singh (1996), with

their CB system. Although similar to the first work, the later approach employs an initial feature

selection phase. Acid and de Campos (1996c, 2001) take a different route, by measuring the

difference in independencies between a candidate graph and the data, using the Kullback–Leibler

cross-entropy. They named this algorithm BENEDICT, a refinement of which is found in their

BENEDICT-dsep system (Acid & De Campos, 2000).

An approach that combines the main features of both techniques is given by the EGS algorithm

of Dash and Druzdzel (1999), who use PC to obtain an initial guess of a PDAG, extend it to a

DAG and then perform a GS. De Campos et al. (2003) do the opposite with their IMAPR

algorithm; they perform an initial GS with random restart and then use CI tests to add and delete

arcs from the obtained DAG. Although the work of Friedman et al. (1999c) is slightly similar, it

stops short of providing a full structure in the initial phase. Instead, it uses CI to find good

candidate parents and hence limit the size of the search in later stages. This algorithm, called SC is
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very useful in increasing the speed of search procedures, without unduly damaging the score. It has

also been built upon by later authors. Brown et al. (2004) and Tsamardinos et al. (2006) describe

the Max-Min Hill-Climbing (MMHC) algorithm that mainly differs from the SC algorithm in

the way its candidate parent sets are generated, that is, by the MMPC algorithm (Aliferis &

Tsamardinos, 2002).

Insofar as their first phase builds a conceptual skeleton upon which arcs are directed, the work

of van Dijk et al. (2003b) is quite similar. A polynomial version of the initial phase of MMHC is

given by Brown et al. (2005), known as Polynomial Max-Min Skeleton (PMMS), it is compared to

TPDA. Like the latter, it relies on assumptions that restrict the structure of networks that can be

found. Another algorithm relying on the monotone-DAG-faithfulness assumption and CI testing

to generate an initial skeleton is given by Wang et al. (2007). They tested their approach in the

regulatory gene domain.

Lately, MMHC has been extended to cope with very large domains (in the order of thousands of

variables) by Nägele et al. (2007). Their approach focuses on learning substructures around each

variable. An extension that focuses on equivalence classes of structures is given by Jia et al. (2007),

who first learn a skeleton of a graph using CI tests and then try to identify all the v-structures.

Other hybrid algorithms can use CI tests to lesser extent. For example, in HEP, discussed in

Section 4.5.3, CI tests are used to disallow certain arcs in generated structures (Wong et al., 2002).

In HEA (Wong & Leung, 2004), CI tests are used to reduce the size of the search space. Perrier

et al. (2008) describe a dynamic programming algorithm (as described in Section 4.11) that con-

strains possible edges using CI tests. And finally, in the work of Huang et al. (2005), part of the

algorithm presented uses CI tests to remove edges from an undirected graph. This graph will later

be changed to a directed graph.

4.10 Searching over orderings

Score-and-search algorithms for finding Bayesian network structures generally search over the

space of DAGs and in some cases, the space of equivalence classes of DAGs. However in some

cases, other spaces can be used. One that has received some attention is searching in the space of

orderings.

Early papers on this subject were given by Larrañaga et al. (1996a) as seen in Section 4.5.3 and

by Wallace and Korb (1999) who use an MCMC sampling procedure. Acid et al. (2001) use an

approach similar to Singh and Valtorta (1995) as seen in Section 4.9.1, by using CI tests. However,

instead of learning a definite ordering, a search is performed to preserve as many of the CIs as

possible. Other people who use CI tests to find an ordering are de Campos and Huete (2000a), de

Campos et al. (2002c) and Chen et al. (2008). Teyssier and Koller (2005) reported results using a

true local search algorithm that proceeded by swapping the position of two adjacent variables in

an ordering and performing a GS. To score an ordering they used the work of Friedman and

Koller (2000, 2003) who showed how to efficiently score an ordering in closed form, where each

node has a bounded number of parents. This paper also showed how to compute the probability of

a structural feature given data, and as such is important by itself.

4.11 Dynamic programming

Aside from the two major techniques of structure learning that have been discussed, there is a third

method that is similar to the score-and-search approach, but does not have the search aspect.

These methods use dynamic programming to compute optimal models for a small set of variables

and in some cases combine these models. Note that small in this context is in the region of 25–30,

whereas with an exhaustive enumeration, it would be impossible to score all models with numbers

of variables greater than 6 or 7.

One of the first uses of dynamic programming in this way was by Ott et al. (2004). In this, an

algorithm for finding the optimal model is given and its correctness proved. Later, Ott and
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Miyano (2003) show the technique can be used for arbitrary sized Bayesian networks by limiting

the number of possible parents and by clustering, with possible input by an expert. At around the

same time, Koivisto and Sood (2004) came up with a very similar procedure, but with a somewhat

more in-depth analysis of the problem. They approached this from the perspective of trying to

compute the posterior probability of a subnetwork in the spirit of Friedman and Koller (2000,

2003). Koivisto (2006) expanded on this with a faster method to compute the posterior probability

of all edges in O(n2n). Building on the earlier work of Koivisto and Sood (2004), Singh and Moore

(2005) introduce a similar method that optimizes a different form of equation, with some

advantages and disadvantages. These are, that their algorithm has a simpler structure and less of a

memory requirement, but can be slower if there are constraints on the number of allowed

incoming arcs to a node. This procedure is again approached in a different manner by Silander

and Myllymäki (2006) who present a less complicated algorithm that is feasible for structures of

up to 32 variables. As opposed to the methods of Koivisto and Sood, their algorithm is con-

ceptually simpler and scales better. Perrier et al. (2008) describe a hybrid method that constrains

the possible arcs allowed by using conditional independence tests to procduce a so-called super

structure. Dojer (2006) has a variation that works on single variables and requires prior infor-

mation so that the acyclicity of a graph does not have to be checked. Finally, Eaton and Murphy

(2007b) apply the Koivisto and Sood technique to experimental data with possibly uncertain

interventions and also combine the technique with MCMC to solve certain problems with the

exact DP method (Eaton & Murphy, 2007a).

4.12 Latent variables and partially observed data

Like the parameter learning case, learning Bayesian network structures with missing data

significantly complicates matters. This section will investigate methods to learn in these circum-

stances and also in the circumstance that the data may be partially observed, that is, there may be

variables that can help to explain the distribution of observed data, but there is no data for those

variables. This can be seen as missing data where all the data are missing for certain variables, that

is, that these variables are latent or hidden.

Early work on infering network structure in the presence of latent variables was done by

Spirtes, Glymour and Scheines in the context of learning causal networks (Glymour et al., 1986;

Spirtes & Glymour, 1990b; Scheines et al., 1991; Spirtes, 1991). One of the earliest papers on

handling missing data while learning the structure of Bayesian networks is the work of Cooper

and Herskovits (1992), where they also present their K2 algorithm and scoring function. They

show how to use the law of total probability to sum over all possible combinations of missing

data. However, this is exponential in the number of missing items. This can also be used in the

case of hidden variables, where all the data of a variable are assumed missing, but this is of

course exponential in the number of data items. There is also the problem of knowing how many

hidden variables there might be and what number of values they can take on. Cooper (1995)

solves some of these problems by showing a hidden variable method that is polynomial (though

perhaps to a high degree) in the number of data cases. He also provides a method of handling

multiple hidden variables, though identifying them is still difficult. CI testing methods can play a

useful role in this task. An example of this in action is shown in the work of Kwoh and Gillies

(1996) who develop a method to add a common hidden parent to two dependent nodes and

Sanscartier and Neufeld (2007) who also have a way to identify latent variables from context-

specific independencies.

Though the methods given above are quite general, they are still computationally intensive.

Geiger et al. (1996) showed how the BIC scoring function could be used to score structures with

missing data and hidden variables. In this, the maximum likelihood parameters can be estimated

by using one of the approaches used in parameter learning with missing data, for example, EM or

a gradient-based approach. Also showing how the BIC can be used is the work by Chickering and

Heckerman (1997) who compare BIC, a Laplace approximation, a Cheeseman–Stutz approximation
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and Gibbs sampling in computing the marginal likelihood. Ramoni and Sebastiani (1997a, 1997b)

applied the BC method as shown in Section 3.3.2 to learning a structure with data that are missing

not at random.

One of the best known algorithms to learn Bayesian network structures in the presence of

missing data or hidden variables is the structural EM (SEM) algorithm Friedman (1998). Starting

with early work defining the MS-EM and AMS-EM systems, Friedman (1997) then went on to

introduce the SEM system Friedman (1998). This interleaved model selection and the EM algo-

rithm, to estimate parameters and was proven to converge to a local maximum. A generalization

of this approach was presented by Beal and Ghahramani (2003) who used a variational Bayesian

EM algorithm. Proofs on the effectiveness of this procedure have been given by Watanabe et al.

(2009). The EM method has also been specialized by Friedman et al. (1998) and by Boyen et al.

(1999) who use it to learn DBNs and by Leray and François (2005), who use it in the space of trees

with their MWST-EM algorithm, either as a good enough solution or a starting point for a more

complex approach. Tian et al. (2001) demonstrate the IEMA system, which uses the SEM frame-

work and evolutionary computation in the context of incremental learning, while Guo et al. (2006)

also use SEM and an evolutionary computation search instead of a GS. Finally, Borchani et al.

(2006) introduce GES-EM, which extends GES (Chickering, 2002b) as shown in Section 4.6.1 to

deal with missing data.

Stochastic algorithms. A problem with EM-based methods is that in most cases the maximum

found is local. One way around this is to use stochastic procedures, such as hill-climbing with

random restarts. A Monte Carlo approach is shown by Chickering and Heckerman (1997). This

important paper also shows the effectiveness of large sample approximations, that is, scoring

functions that are approximations to the Bayesian score and that converge to it in the limit of a

large number of samples. In the context of model averaging, Riggelsen and Feelders (2005) show

the eMC4 system that can learn with missing data, while Myers et al. (1999a, 1999b) show using

MCMC and an evolutionary algorithm to avoid the local maxima. An approach that is based on

the TPDA algorithm of Cheng et al. (2002) as shown in Section 4.8, is given by Tian et al. (2003)

and their EMI system. This is basically the TPDA algorithm augmented to use incomplete data.

The EMI method is combined with a score-and-search approach by Tian et al. (2007).

These methods often work well for missing data and are normally easily applicable for hidden

variables. However, a hard problem is knowing how many hidden variables to use and their

cardinality. One solution to the first problem, already discussed, is to use a CI testing algorithm to

suggest likely variables and locations. Another simple solution is to add hidden variables one by

one. Elidan et al. (2001) has a more sophisticated approach that looks at cliques in the structure. A

solution to the second problem, that of finding the cardinality of hidden variables is looked at by

Elidan and Friedman (2001).

4.13 Model averaging

Learning Bayesian network structures normally means the selection of a single structure. In itself, this

can be a useful procedure, for example, by presenting the DAG to a domain expert to suggest new

relationships. Otherwise, parameters can be learned and inference performed. However, a problem

with this approach is seen when there is not much data. In this case, no one model rises high above the

rest and the selection can be somewhat arbitrary, with a corresponding lack of confidence in the

structure. One way around this is to have the learning procedure return multiple models instead of a

single one. This could range from a small collection of the most likely to the complete space. These

models can then be weighted by their probability when inference is being performed. A good intro-

duction to these ideas, that looks at model averaging in general, can be found in Hoeting et al. (1999).

One of the earliest algorithms used to find Bayesian network structures to average over, was

provided by Madigan and Raftery (1994) with their Occam’s window principle. This provides a

small number of models that are not too similar but have good predictive power. However, the
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main interest in early algorithms focused on a stochastic method devised by Madigan et al. (1993),

Madigan et al. (1995) to average across models using MCMC model composition (MC3). This

method defines a Markov chain across the space of models and proceeds from model to model,

computing the quantity of interest at each step and averaging over the results. These ideas are

extended to equivalence classes of DAGs by Madigan et al. (1996). Giudici et al. (1999) provide a

more efficient procedure to sample the chain, while Giudici and Castelo (2003) extend MC3 by

using different moves in the state space and provide an analysis of the distribution of various

domains. A further improvement on this general scheme is given by the system of Grzegorczyk and

Husmeier (2008) that improves the convergence of the classical approach and that of Liang and

Zhang (2009) who use a stochastic approximation Monte Carlo (SAMC) method. Riggelsen and

Feelders (2005) extend MC3 to incomplete data with their eMC4 algorithm and Wang et al. (2006)

combine the system with evolutionary computation to average over dynamic Bayesian networks.

As well as MC3-based approaches, other systems have been developed to perform the same

task. Thiesson et al. (1998a, 1998b) describe an approach to learning what they call mixtures of

Bayesian networks and mixtures of DAGs. Although seemingly oblivious to the work of Madigan

et al., their model appears quite similar.

A related approach to Monte Carlo algorithms across the space of DAGs is one of Friedman

and Koller (2003). The difference with their work is that they average across the space of orderings

of variables. This is possible due to a fast closed form expression for the likelihood of an order that

they provide. More recently, Eaton and Murphy (2007a) demonstrate a method that utilizes

MCMC and dynamic programming (as in Section 4.11) in model averaging.

In a related task, Dash and Cooper (2004) show a method to average over models quickly and a

procedure to find a single network that is equivalent to averaging. In fact this last idea has been

implemented by various authors. Kim and Cho (2006) have a method to merge multiple Bayesian

networks into a single model using an evolutionary algorithm. Gou et al. (2007) also have a

method called parallel TPDA (P-TPDA) that uses TPDA as seen in Section 4.8 in parallel on

different data sets and combines the resulting DAGs. Finally, Liu et al. (2007a) learn structures

using a CI testing method and then combine the resulting DAGs into a single DAG.

4.14 Dynamic Bayesian networks

The first authors to look at structure learning of DBNs were Friedman et al. (1998) who broke the

problem down into learning a prior network which provided initial conditions and a transition

network which specified how variables behave from state to state. This problem was analysed from

the point of view of both complete and incomplete data. A quite in-depth look at various types of

DBNs was given by Ghahramani (1998) who look at specializations such as state-space models,

hidden Markov models and generalizations such as switching state-space models and factorial

hidden Markov models (Ghahramani & Jordan, 1997). Boyen et al. (1999) looked at a way of

using SEM in learning DBNs and in particular found a novel approach to detecting hidden

variables in dynamic systems. This is done by detecting non-Markovian correlations, that is,

correlations between variables that are separated by one or more time steps. Murphy and Mian

(1999) show how DBNs subsume many other dynamic models into a general framework and look

at the various tasks that need to be done to learn a DBN. And while DBNs are generally constant

over time, it is possible to learn DBNs that change as time progresses (Flesch & Lucas, 2007;

Robinson & Hartemink, 2009) and indeed learn DBNs from non-temporal data (Lähdesmäki &

Shmulevich, 2008).

Although much of the work on static BNs can be applied to DBNs (as when expanded they are

static BNs), sometimes there are techniques that can take advantage of DBNs unique structure.

Such is the case with Tucker and Liu (1999) and Tucker et al. (2001) who show an evolutionary

programming approach to learning DBN structure. They also propose using hidden variables to

model the change in dependencies over time (Tucker & Liu, 2004). Wang et al. (2006) also look at

using evolutionary computation in learning DBNs, in this case by incorporating it into an MCMC
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framework to average over models. Other authors have proposed using different metaheuristics

in learning DBN structure; for example, Xing-Chen et al. (2007b) show an implementation of

particle swarm optimization for this task and Gao et al. (2007) also use a genetic algorithm. And

finally Jonsson and Barto (2007) use active learning, as might be used by agents in a reinforcement

learning setting.

4.15 Parallel learning

Since learning Bayesian network structures is a computationally hard task, many attempts have

been made to speed it up. Most of these have been algorithmically based, but there have been

efforts to parallelize the problem so it can be tackled by multiple computing resources. To a large

extent, algorithms based on the score-and-search paradigm have, as a bottleneck, finding the

sufficient statistics needed. In general, when evaluating different neighbouring states, each of them

could be evaluated in parallel, which at a low level means scoring functions can be evaluated in

parallel, thereby giving an opportunity for the bottleneck to be alleviated.

Aside from this, there have been some algorithms that have been structured such that paral-

lelism takes a large part in their operation. Xiang and Chu (1999) showcase an algorithm that

looks ahead multiple steps, and hence is quite computationally intensive. However, they show how

it can be decomposed into separate chunks. Certain computational paradigms such as particle

swarm optimization are quite amenable to parallelization as is demonstrated by Sahin and

Devasia (2007). Mondragón-Becerra et al. (2006) show a fairly simple implementation of the

above ideas, but a more interesting application is that by Yu et al. (2007), who show a method to

parallelize SEM inside the EM part of the algorithm. It does this by performing the E (expecta-

tion) step on each sample in parallel. Finally, an application using the CI testing paradigm is given

by Gou et al. (2007) who perform TPDA in parallel and combine the results.

4.16 Online learning

Generally, learning a Bayesian network operates as a batch process—a block of data are given to

an algorithm which learns a structure and the parameters for that structure. However, sometimes

data are continuously being supplied to a system, and it could be useful to be able to learn from

that. It is normally a fairly easy job to update the parameters of a system, given a single datum.

However, in the case of learning structures, it is not as simple. An early paper on refining both

structure and parameters was given by Buntine (1991), who assumed an ordering on variables and

stored counts on a parent lattice at each node. Lam and Bacchus (1994b) and Lam (1998) have a

method to refine the structure of a BN given new data, that can incorporate a trade off between

the old network and the new data. It does this by learning a partial network from the new data and

uses this to improve the old network. Friedman and Goldszmidt (1997) provide a method that

trades off between accuracy and storage, by only storing a certain number of past observations

with which to refine the structure. This idea is expanded upon by Tian et al. (2001) in their IEMA

system, who examine it in the context of hidden variables and introduce an evolutionary algorithm

and EM into the procedure. Tong and Koller (2001b) look at the problem from the perspective of

active learning, that is, where a learning system is allowed to intervene in its environment. Lastly,

Nielsen and Nielsen (2008) show situations where the distribution to be learned can be assumed to

be non-stationary.

4.17 Active learning

The theory on learning Bayesian networks is in general founded on the assumption that the

data given are observational, that is, that none of the variables have been directly manipulated to

be the state that they are in. However, after the work of Cooper and Yoo (1999), it has been

possible to integrate experimental data into the learning process. With experimental data it is
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possible to have some of the data explicitly set to a certain value. When learning with purely

observational data, it is only possible to learn the Markov equivalence class of an underlying

model—all Bayesian networks in this class represent the same set of conditional independencies,

and hence are indistinguisable from each other with respect to the data (see Section 1.3). When

experimental data are included, it is possible to distinguish among the various structures in an

equivalence class.

This idea has been used to facilitate the active learning of Bayesian networks. In the active

learning framework, the learner is able to intervene and ask for data where particular variables

have been manipulated to certain values. Active learning often turns out to be learning the causal

structure, with all the controversy this entails. However, this controversy comes from the use of

observational data and Korb and Nyberg (2006) show that experimental data can properly select

the correct causal model. The earliest work on the subject is by Tong and Koller (2001b) and

Murphy (2001), who also give procedures to find the optimal intervention. Following this,

Meganck et al. (2006) provide some theoretical work on orienting the edges of a CPDAG learned

from observational data, while Steck and Jaakkola (2002) look at active learning in domains with

a large number of variables. Borchani et al. (2007) extend their GES-EM algorithm to allow

interventional data to be incorporated and He and Geng (2008) also use the same strategy of

learning an equivalence class of structures and using experiments to orient the undirected edges.

Jonsson and Barto (2007) examine active learning for dynamic Bayesian networks, which is related

to active learning for hidden Markov models (Anderson & Moore, 2005). And while theoretical

limits on Bayesian network learning algorithms are normally thin on the ground, Eberhardt et al.

(2005) give results for the number of experiments necessary and sufficient to learn a structure

(which should be compared to the observational results of Zuk et al., 2006).

4.18 Incorporating prior knowledge

Allowing an expert to specify knowledge that can be used in a learning system is a fundamental

task that can be extremely useful in situations with a low amount of data. However, the learning

data and expert knowledge are often in quite different forms and it can be difficult in bringing

both together. With Bayesian networks, many types of background knowledge an expert can

provide have already been seen in this article. These include an ordering of variables (total or

partial), a prior network, prior equivalent sample size, etc. Being able to use these is normally

dependent on the algorithm in question, though score-and-search methods that are Bayesian

normally require being somehow able to specify a prior distribution as showcased by Heckerman

et al. (1995). These can be the forms already seen, or others which will be discussed in the papers

looked at below.

One of these forms to specify a prior distribution uses ‘imaginary data’, elicited from a domain

expert as shown by Madigan et al. (1994). This makes the expert come up with typical cases and

uses this database to update uniform priors to become the priors for the start of learning.

Although specifying variable ordering as the prior knowledge in their system, Sarkar and Murthy

(1996) also look at other knowledge that can be specified, for example, by declaring variables to be

cause or evidence nodes or by explicitly declaring conditional independencies across variables.

Declaring a causal ordering on the variables has always been a popular method of constraining the

search space and has been used in sucessful systems such as K2 (Cooper & Herskovits, 1992) and

that of Cheng et al. (1997). Another prior elicitation method that takes an ordering of variables is

that of Castelo and Siebes (2000). However, they also take a subjective probability that consists of

the probability of a variable being another variable’s parent, for all pairs consistent with the

ordering. A discussion of the different types of prior knowledge that may be supplied is given by

O’Donnell et al. (2006b), from specifying a full structure to indicating a correlation between nodes.

And while most learning incorporating prior knowledge is based on score and search techniques,

the papers of de Campos and Huete (2000b) and Meek (1995) examine the task of bringing prior

knowledge into conditional independence learning of structures.
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However, some of these techniques can be hard or impossible for an expert to specify,

for example, a structure over a domain that the expert simply does not know. Mascherini and

Stefanini (2007) study this problem and specify a means to extract weak information from an

expert, that is, information about parts of the domain, for example, local features, ordering of

some variables, degree of connectivity, etc. Lam and Bacchus (1994a) also look at using partial

domain knowledge such as direct causal effects and a partial ordering of the variables. Another

author who looks to impose local expert knowledge on a model is Thiesson (1997). In this case, the

prior information is defined in terms of a much more general class of models than Bayesian

networks, recursive exponential models. These can be seen as regular Bayesian networks, where

the local distributions are parametrized by members of the exponential family and experts can give

information in the form of imprecise probabilities.

It can be difficult to find out the effect the prior information has on learning, so the study by

Neil and Korb (1999) is useful in comparing two types of prior knowledge—a uniform prior over

all orderings and a uniform prior over all structures with the same arc density. Another study

based on three different types of prior information is given by de Campos and Castellano (2007).

These types are the existence of edges, absence of edges and ordering of variables. Mansinghka

et al. (2006) also look at non-expert supplied priors. With their system, variables are separated into

different types or classes and prior probabilities given between the different classes.

4.19 Large domains

Traditionally, structure learning algorithms for Bayesian networks had size limits in the hundreds

of variables. However, applications such as genomics often have data sets with thousands or more

features. Therefore, recent research has looked at ways to handle these very wide sets. It is worth

bearing in mind that techniques for parallelization (as seen in Section 4.15) will often help with

learning in large domains.

Early systems include the MMPC and MMBN algorithms by Aliferis and Tsamardinos (2002)

and Tsamardinos et al. (2003c), that later developed into the MMHC system (Brown et al., 2004;

Tsamardinos et al., 2006). This has been tested on domains with tens of thousands of variables.

Indeed learning in large domains often boils down to learning of the structure local to a variable

and then combining the results (Hwang et al., 2002). Another approach by Goldenberg and Moore

(2004) is the SBNS algorithm, that proposes using Frequent Sets and exploiting the local structure

of cached sufficient statistics. Nägele et al. (2007) have a method similar to MMHC that first

learns a skeleton and then the substructures around each variable, with a final combination into

a DAG. Finally, large-scale learning in a conditional independence setting has been examined by

Kalisch and Bühlmann (2007) who look at the behaviour of the PC algorithm for very high

numbers of variables.

4.20 Continuous variables

Most Bayesian network theory is developed for the multinomial case, that is, discrete variables

with a bounded cardinality. However, in many applications, data are supplied in continuous form.

One way to handle this is discretization, or turning the continuous data into multinomial data.

However, the process of discretization can lead to errors, depending on how it was achieved.

Therefore, researchers have tried to find ways to learn with continuous variables directly.

Early work on learning with continuous variables was done by Glymour et al. (1987) and Spirtes

et al. (1993) in the context of the TETRAD project, using conditional independence tests on partial

correlations. Work in the score-and-search paradigm was done by Geiger and Heckerman (1994),

who assume the data are drawn from a multinomial Gaussian and develop a scoring criteria for the

case of networks with all continuous (known as BGe) and a mixture of continuous and discrete

nodes (known as BcGe). Similar work was done by Wallace et al. (1996) who define an MML score

on linear Gaussian models and de Santana et al. (2007b) who use a multiple regression framework

132 R . DALY , Q . SHEN AND S . A I TKEN



for scoring structures. John and Langley (1995) drop the assumption of normality and instead use

non-parametric density estimators, specifically Gaussian kernels. The same approach is followed by

Hofmann and Tresp (1996). Bach and Jordan (2003) also use kernels, of the Mercer variety. Slightly

different is the work of Monti and Cooper (1997a, 1997b), who use neural networks to represent the

density function. A different approach, based on the CI testing paradigm is used by Margaritis

(2004). In the discrete case, the x2 test is normally used, but this cannot be used for the continuous

case. Margaritis develops a non-parametric CI test that does not rely on the variables being dis-

tributed according to a given model. This test can be used as input to any of the CI-based algorithms

of Section 4.8.1.

4.20.1 Discretization

Some authors have proposed a different way of learning with continuous variables, that involves a

discretization stage as part of a learning algorithm. Friedman and Goldszmidt (1996a) are one of

the first to do this with a modified MDL score that chooses the discretization thresholds. Monti

and Cooper (1998) also have a discretization strategy that changes as the learning algorithm

progresses. This strategy is based on the Bayesian scoring principle, that depends on the data and

the network structure. Steck and Jaakkola (2003b) show that the discretization policy can affect

the structure of the graph learned and present a scoring function that efficiently discretizes data, in

sequence with learning the structure.

4.20.2 Other topics

It is not just model selection that researchers have concentrated on. Giudici and Green (1999) look

at using MCMC across the space of structures. Imoto et al. (2002) also include an MCMC

simulation of their method, based on non-parametric regression. Finally, Bøttcher (2004) looks at

learning conditional Gaussian networks and also DBNs with mixed variables.

4.21 Robustness

When the size of the sample is small, small changes to the data can produce large changes to the

learned structure. If the Bayesian network is to be used in a production environment, or to provide

evidence of a dependency between variables, it is very useful if an idea of the robustness can

be found. This can help decide how much confidence to place in the network. Early confidence

measuring research by Friedman et al. (1999a, 1999b) used the Bootstrap in order to find a degree of

reliability of certain features in the learned DAG, for example, the existence of an edge, the Markov

blanket of a node or the ordering of variables. As part of their paper, Peng and Ding (2003) look at

structure perturbation as a means of assessing network stability. Holness (2007) also examines the

confidence in learning structural features, in this case causal associations between variables. Steck

and Jaakkola (2003a) look at robustness from a different angle and investigate the sensitivity of the

‘equivalent sample size’ as used in Bayesian scoring criteria. They show that a small equivalent

sample size can surprisingly lead to a strong regularization of the graph structure, that is, the graph

structure will be sparse. The work of Silander et al. (2007) is very similar in this regard; they

investigate the sensitivity of the learned structure to the value of the ‘equivalent sample size’.

4.22 Acceleration techniques

Since learning Bayesian network structures is in general a hard problem, various techniques to

speed up the computation can help immensely. With the score-and-search paradigm, one of the

most valuable techniques is caching the results of scoring criterion applications. Scoring a

structure is normally in O(nmrk), where n is the number of variables, m is the number of samples,

r is the maximum number of values per variable and k is the maximum number of possible parents.

With caching, this can turn into an operation in O(n). Beyond this very simple yet effective

technique, there lies some other tricks that can help. Below are just a few examples of these.
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One of the fundamental operations of learning with the score-and-search paradigm is extracting

counts of data from the data set, that is, finding a contingency table for a certain set of variables.

With many variables and a large sample, this can easily become a bottleneck. The AD tree data

structure described by Moore and Lee (1998) can help in cases where there are a large number of

records. It achieves this by not storing zero counts and other redundant information. Another

technique by Friedman and Getoor (1999) helps to constrain the number of sufficient statistics (i.e.

counts) that need to be collected by using constraints imposed by the statistics already gathered to

guide the learning algorithm. The work of Chickering and Heckerman (1999) shows a method to

quickly extract one and two way counts from data that can be either real of expected. They also

show an algorithm that quickly performs the E step of the EM algorithm. Another technique to

speed up EM using a generalized conjugate gradient method is given by Thiesson (1995). Zhang

(1996) shows another modified EM algorithm that works on the principle that some parameters

are irrelevant to the probability of seeing a certain datum. Daly et al. (2006) discuss some of the

computation issues in searching through the space of equivalence classes and propose methods to

alleviate them. And finally, Elidan et al. (2007) describe a method that speeds up the learning of

continuous variable networks, while also suggesting possible hidden variables.

4.23 Local feature learning

Local features in a Bayesian network are those parts of a graph that are associated with

small numbers of variables. With local learning, local features are learned directly from the data.

These can be given as the output or combined in an ad hoc manner to produce a structure. This

can be useful when there exist a large number of variables. Indeed score-and-search based algo-

rithms could be seen to be based on local learning techniques in that decomposable scoring

functions are used to measure changes in parent sets for a particular variable. These local changes

are constrained so that valid results of a particular change of parent set are DAGs (Lam &

Bacchus, 1993).

Aliferis and Tsamardinos (2002) and Tsamardinos et al. (2003a, 2003b) focus on learning local

features of a Bayesian network. In their case, they focus on direct edges to and from a certain

variable and the Markov blanket of a certain variable. These are often very useful structures in the

learning of complete Bayesian networks. Based on this work is that of Nägele et al. (2007), which

also learns an undirected structure and then local structures around each variable before combining

them together into a single network. A somewhat indirect technique to learning structure is given by

Goldenberg and Moore (2004), who show how to use frequent sets learned from data to construct a

DAG structure. A common technique with local learning is to learn the parent sets of variables

separate from other variables and then combine them together. The structure obtained is almost

invariably cyclic and therefore ad hoc methods are used to break the cycles that remain. An example

of this is, for example, breaking the shortest cycle first (Peng & Ding, 2003). Hwang et al. (2006)

showcase a method that learns ‘hierarchical Bayesian networks’. With their terminology, a hier-

archical Bayesian network is one where the observed nodes are connected via a hierarchy

of hidden nodes. Although technically a Bayesian network, it represents knowledge in a very dif-

ferent way than usual. In a sense, there are different levels of connectivity between nodes, with higher

levels indicating connections between groups of variables. These type of networks can be learned by

first connecting pairs of variables by hidden nodes and connecting these hidden nodes in turn.

Learning local features in Bayesian networks is undoubtably an important technique in large-

scale learning. Indeed interest in local learning has recently increased to the extent that there have

been competitions designed to find the best local causal learners (Guyon et al., 2008).

4.24 Causal interaction models and causal independence models

In causal interaction and causal independence models, the requirement of a completely specified

conditional probability distribution is relaxed. Instead other representations of the distribution

134 R . DALY , Q . SHEN AND S . A I TKEN



are allowed. And while learning the structure of a Bayesian network is a different problem, the

section on learning Bayesian network parameters (3.4) has much in common with the following

discussion.

Meek and Heckerman (1997) discuss structure and parameter learning of causal independence

models, that is, Bayesian network models where causes of an effect are assumed to be independent

from each other. These can be important in modelling situations where the assumption is war-

ranted and also because inference can be cheaper. The dominant assumption in the continuous

domain are linear models with independent causes (Geiger & Heckerman, 1994; Wallace & Korb,

1999; Li et al., 2002 Wallace & Korb, 1999 Li et al., 2002), though this is gradually changing.

Jurgelenaite and Heskes (2008) have done more research on this topic.

A step up from causal independence and a step down from a full multinomial distribution are

causal interaction models, where the interactions between the various parents of a variable are

modelled by a structured function. Very often these functions are decision trees or decision graphs

Chickering et al. (1997a, 1997b), but other representations such as logit models can be used

(O’Donnell et al., 2006a).

4.25 Miscellaneous techniques

Below are some results by researchers that do not fit neatly into other categories. These are

normally ideas that focus on a very particular aspect of the the learning problem.

Operators. Moore and Wong (2003) introduce a new operator, optimal reinsertion that allows

sufficient statistics to be calculated quickly.

Hierarchical Bayesian networks. Gyftodimos and Flach (2004) look at learning hierarchical

Bayesian networks, that is, Bayesian networks, where each node is itself an aggregation of other

nodes. In addition, Burge and Lane (2006) examine learning structure where initial search is

performed using aggregations of random variables.

5 Comparison of techniques and summary

Given the amount of different techniques that can be used to learn the structure of a Bayesian

network, it can be hard to decide which is the best to use in a particular situation. This is not

helped by authors failing to give guidelines as to what situations their particular algorithms might

be useful in. This section seeks to give a round-up of the various techniques discussed in Section 4

and the circumstances in which they might be used.

The most important piece of information when deciding what method to use in constructing a

Bayesian network structure, is probably the use the network will be put to. The main uses of a

Bayesian network structure are:

> provide a DAG that a human can use as a model of the (possibly causal) interactions among

variables; and
> coupled with parameter learning, provide a model that can be used to perform inference.

Although methods such as scoring structures and using conditional independence tests can both be

used for both of these tasks, there seems to be a slight bias in the literature for using the latter in

detecting causal relations. This is because CI methods use explicit tests to find these relations; in

the case of the scoring methodology, causal semantics are dependent on extra assumptions

(Heckerman, 1995a). In addition, the CI methods can help in finding hidden variables and

selection bias (Spirtes et al., 1995).

With performing inference, there also seems to be a slight bias towards methods that score

structures. The reason for this is that they are based on the prequential prediction principle and

naturally fall into a good match for the inference task.
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5.1 Tree and polytrees

Although they cannot represent the full range of conditional independencies as a DAG can, trees and

polytrees might be good enough for a particular task. For example, if there is not enough data to

support the high-order conditional independencies that can be represented in a graph, then a tree or

polytree could be a suitable choice and indeed might not affect the accuracy of the model generated

too much (Acid & de Campos, 1995). An advantage of trees is that they can be exactly learned in

polynomial time (Chow & Liu, 1968); polytrees are still NP-hard to learn, but good approximations

are easily found (Dasgupta, 1999). Perhaps the major advantage of trees and polytrees is that exact

inference can be performed in polynomial time (Kim & Pearl, 1983). This can be a large advantage if

the time needed for inference to be performed is bounded.

5.2 Heuristic search

Some of the most successful strategies for learning Bayesian networks employ heuristic search

while scoring network structures. Even simple techniques such as GS can produce network

structures that are ‘good enough’. And as opposed to methods that use conditional independence

testing, they can work better with smaller data sets. Perhaps the main reason to use this technique

is that it has received the most attention in the literature and hence is more developed.

The main issues when using heuristic search are the search algorithm, the scoring function and

the search space. Obviously, greedy algorithms tend to get trapped in local maxima; global search

strategies such as genetic algorithms, simulated annealing, etc. can produce better solutions at the

cost of longer running times. Comparisons of Bayesian network learning algorithms have been

somewhat lacking, but there have been works by Acid et al. (2004), Brown et al. (2005), Fu (2005)

and Tsamardinos et al. (2006) that focus on evaluation of different learning algorithms, or have a

large component on the comparison of a proposed algorithm against other techniques.

Deciding on the scoring function to use can be problematic. Bayesian scoring functions such as

BDeu produce the best score from the probabilistic sense of anticipating the next datum, but require

the specification of priors. However, large sample approximations such as BIC do not require a

prior, but can be slightly inaccurate at small sample sizes. Measures such as the Cheeseman–Stutz

approximation can help in these situations (Cheeseman & Stutz, 1996), and Shaughnessy and

Livingston (2005) provide a comparison of different functions.

There are also tradeoffs on deciding on the search space to use. It can be easier and faster to

move through the states in the space of DAGs, but there can be plateau effects on the score

function, which can make it hard to get to all possible states. Searching through, for example, the

space of equivalence classes of DAGs can avoid this problem, but at the expense of a more

complicated implementation and possibly slower running times.

5.3 Conditional independencies

As stated at the start of this section, using conditional independency testing as the basis for

structure search is often used when trying to detect causal relations between variables. However,

there are problems with small sample sizes, missing data and the fact that a single level of

significance must be chosen for the statistical testing of conditional independence. A more

interesting use of CI testing may be in mixing it with score and search techniques to produce a

hybrid solution to learning structures as mentioned in Section 4.9.1. Here, the testing can be used

to massively cut down the search space needing to be searched. This can be very useful when faced

with a large number of variables.

5.4 Dynamic programming

A recent addition to the Bayesian network structure-learning toolbox, dynamic programming has

enabled feasible exact learning for moderate numbers of variables (up to about 30). With smaller
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numbers of variables this can be predicted to become the method of choice in applications and a

means to generate a standard structure to enable comparisons of new techniques. There also exist

techniques to scale above 30 variables, by learning parts of the network in clusters—however in

this case, the exactness guarantees do not exist.

Perhaps the main problem with these methods is that they require an exponential amount of

space for the memoization part of the dynamic programming algorithm.

5.5 Summary

In this article, a broad overview of the literature on learning Bayesian network structures has been

presented. As a lead up to this, the foundations of Bayesian network theory, along with brief

summaries of Bayesian network inference and learning Bayesian network parameters were dis-

cussed. In addition, a look at some applications of Bayesian networks and a high level comparison

of the different methods of learning Bayesian network structures were noted.

By now, the field of Bayesian networks has reached some maturity, with techniques that can be

used in production systems. However, there remain challenges to the field, such as the NP-

hardness of exact inference and structure learning, and questions as to the suitability of Bayesian

networks for causal representation and reasoning. These problems and others will mean that

research into Bayesian networks will likely continue for some time.
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Kočka, T., Bouckaert, R.R. & Studený, M. 2001. On the Inclusion Problem. Research report 2010, Institute of
Information Theory and Automation, Prague.

Koivisto, M. 2006. Advances in exact Bayesian structure discovery in Bayesian networks. In Proceedings of
the Twenty-second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), Dechter, R. &
Richardson, T. (eds). AUAI Press, 241–248.

Koivisto, M. & Sood, K. 2004. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine
Learning Research 5, 549–573.

Korb, K. B. & Nicholson, A. E. 2004. Bayesian Artificial Intelligence. Series in Computer Science and Data
Analysis, Chapman & Hall/CRC.

Korb, K. B. & Nyberg, E. 2006. The power of intervention. Minds and Machines 16(3), 289–302.
Ku, H. H. & Kullback, S. 1969. Approximating discrete probability distributions. IEEE Transactions on

Information Theory 15(4), 444–447.
Kullback, S. & Leibler, R. A. 1951. On information and sufficiency. The Annals of Mathematical Statistics

22(1), 79–86.
Kwoh, C. K. & Gillies, D. F. 1996. Using hidden nodes in Bayesian networks. Artificial Intelligence 88(1–2),

1–38.
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Meilǎ, M. & Jaakkola, T. 2006. Tractable Bayesian learning of tree belief networks. Statistics and Computing
16(1), 77–92.

Middleton, B., Shwe, M., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H. & Cooper, G. 1991.
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: II. Evaluation
of diagnostic performance. Methods of Information in Medicine 30(4), 256–267.

Miguel, I. & Shen, Q. 2001. Solution techniques for constraint satisfaction problems: advanced approaches.
Artificial Intelligence Review 15(4), 269–293.

Mondragón-Becerra, R., Cruz-Ramı́rez, N., Garcia-López, D.A., Gutiérrez-Fragoso, K., Luna-Ramrez,
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