
898 BOOK REVIEWS

linear algebra texts; it would have been well worth taking space to develop
this theme at some length.

To summarize, after its renaissance in the 1950s, GI theory passed through
its infancy in the 1960s and its adolescence in the 1970s. For the 1980s, it is
reasonable to expect a coming-of-age in which abstract algebra, operator
theory, and mathematical logic may begin to play a larger role on the
theoretical side, while presumably also several significant and interesting new
applications remain to be found as GIs become better understood and more
widely known. To this end, [CM] deserves a place, together with [1], [2], and
[3], on the shelf of every GI specialist and potential GI user (since each
source offers much material not treated in the other three), and is also to be
recommended to the interested general reader or student. While only a few
readers will wish to follow every topic to its last details, this book has enough
solid content to make it a valuable reference, and even the beginner should
have little difficulty in selecting those sections most deserving of intensive
study.

REFERENCES

1. A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and applications, Wiley,
New York, 1974.

2. M. Z. Nashed (éd.), Generalized inverses and applications. Academic Press, New York, 1976.
3. C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications, Wiley, New

York, 1971.

MICHAEL P. DRAZIN

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3, Number 2, September 1980
© 1980 American Mathematical Society
0002-9904/80/0000-0415/$02.S0

Computers and intractability: A guide to the theory of NP-completeness, by
Michael R. Garey and David S. Johnson, W. H. Freeman and Company,
San Francisco, 1979, xii + 338 pp., $10.00 (paper).

There is a class of algorithmic problems that is currently receiving a great
deal of attention from computer scientists and applied mathematicians: the
class of "ArP-complete" problems. Examples of problems in this class are the
satisfiability problem for conjunctive normal form statements in the proposi-
tional calculus, the three-colorability problem in graph theory, the travelling
salesman problem, the three-dimensional matching problem (i.e., the generali
zation of the classical marriage problem in the setting of three sexes and
three-way marriages), the bin packing problem, and the integer programming
problem.1 For each such problem an algorithm is known for solving all
instances of the problem; the basis for the monograph reviewed here is the
more refined question of whether the problem is tractable, i.e., whether an
algorithm exists that solves all instances of the problem and that has running
time bounded by a polynomial in the size of the input. (This interpretation of
the notion of tractability is due to Cobham [1] and to Edmunds [2].) It is not

!At this time it is not known whether the linear programming problem is JVP-complete,
irrespective of the statements in The New York Times, November 7, 1979, p. 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

BOOK REVIEWS 899

known whether any problem in this class is tractable, but an important
property of the class is that every problem in the class is tractable if and only
if one such problem is tractable.

It is useful to discuss a specific example.
Let U = { w l 5 . . . , un] be a finite set of Boolean variables. If t* is a variable,

then u and ü are literals. A clause over U is a set of literals over U that are
joined together by the Boolean or. A statement in conjunctive normal form is a
finite collection of clauses joined together by the Boolean and. A truth
assignment for U is a function /: (/-> {7, F}. If t(u) « T, then u is "true"
under that assignment; otherwise, u is "false". A literal u is true (false) under
an assignment if and only if the literal ü is false (true). A statement in
conjunctive normal form is satisfiable if there is a truth assignment that
simultaneously makes each clause true and so makes the entire statement true
under the usual interpretation of Boolean and (A) and or (\J). The satisfia
bility problem is specified as follows: given a set U of variables and a
conjunctive normal form statement over U9 is that statement satisfiable? An
equivalent formulation is to consider the set of all conjunctive normal form
statements that are satisfiable and to ask if a given statement is in that set.

Consider the following examples over the set U = {p, q, r, s}:
(i)(pVqVr)A(PVqVs)A(pVrVs)A(q\/r\/s);
(ii)(pVPVq)A(pVrVn\/^VrVs\/s);
(iii) (p V q) A (P V q) A (P V q) A (p V q)- Example (i) is satisfiable by

means of the truth assignment f(p) = T9f(q) = T, f(s) = F, f(r) = F. Exam
ple (ii) is satisfiable under every truth assignment-it is a tautology. Example
(iii) is not satisfiable under any truth assignment-it is a contradiction.

The problem of determining whether a given conjunctive normal form
statement is or is not satisfiable is a "decision" problem: one must decide
whether the given statement is a member of the set of all satisfiable state
ments.

How can one decide whether a conjunctive normal form statement over a
set U is satisfiable? One method is to systematically construct the table of all
truth assignments for U. As each such truth assignment is generated, check
each clause in turn and determine whether that assignment makes every
clause true; if so, then the truth assignment makes the entire statement true;
if not, then the truth assignment makes the entire statement false. If U is
finite, then there are only finitely many possible truth assignments for U and
so this process eventually terminates.

If a statement in the propositional calculus has n variables, then there are
2" possible truth assignments, any one of which might be the only satisfying
assignment. This suggests that, if one wishes to solve this problem determinis-
tically, then an exponential number of steps may be required since it may be
necessary to enumerate the entire set of truth assignments.

For the satisfiability problem, what is desired is a program or algorithm
that will correctly solve all instances of the problem, not just some set of
special cases or instances where the variables are taken from a fixed finite set.
In particular, the set U = {ut\i = 1, 2, 3 , . . . } of variables is taken to be
countably infinite, although any instance of the satisfiability problem con
tains only finitely many occurrences of finitely many variables. Any algo-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

900 BOOK REVIEWS

rithm to decide whether a statement is satisfiable must identify the occur
rences of the propositional variables and must determine whether the state
ment itself is in conjunctive normal form.

It is necessary to develop some further definitions in order to describe the
notion of 'WP-complete set" and the related "P = 1NP" question. Consider
the following informal description of a class of programs that serve as
"acceptors", i.e., only decision problems are solved: with each program a set
of inputs is associated so that an input is "accepted" if the program decides
that the input is in the given set and is "rejected" otherwise. Choose a finite
set of operations on strings of symbols that includes, for control, some type of
conditional branch (which allows looping), START operation, and HALT
AND ACCEPT and HALT AND REJECT operations, where each operation
can be performed in a bounded amount of time on a modern digital
computer. A program is a finite flowchart of instructions from the set with
one occurrence of the START operation and at least one occurrence of each
type of HALT operation. On each input there is exactly one "computation"
of the program on that input; the computation of a program on an input is a
path through the flowchart which begins with the START operation and
either ends with one of the HALT operations or does not end. The length of a
computation of a program is the number of instructions executed, i.e., the
length of the path which is finite or infinite depending on whether or not the
computation halts. Since the input to a program is a string of symbols, we
take the size of the input to be the length of the string. A program operates
within time T(n) if for every input string of length n, the computation on that
input has length at most T(n). A program accepts {rejects) an input if the
computation of the program on that input halts with a HALT AND
ACCEPT (resp., HALT AND REJECT) instruction. The set of inputs
accepted by a program IT is denoted by L{if).

Let us return to the satisfiability problem. A program to solve this might
have the following components:

PHASE 1. Identify the occurrences of the propositional variables and de
termine whether the input string is in conjunctive normal form.

PHASE 2. Generate a truth assignment to the variables that has not been
previously generated. If this can be done successfully, transfer to Phase 3;
otherwise, transfer to Phase 4.

PHASE 3. Determine whether the truth assignment generated in Phase 2
satisfies the input statement, i.e., makes the entire statement true. If so,
transfer to a HALT AND ACCEPT instruction since the conjunctive normal
form statement of the input is satisfiable; otherwise, transfer to Phase 2.

PHASE 4. Since all possible truth assignments to the variables occurring in
the input have been generated and none of these assignments has made the
input statement true, the statement must not be satisfiable. Hence, transfer to
a HALT AND REJECT instruction.

Now consider a modification of the notion of program. Allow a flowchart
to have a finite number of CHOOSE operations, that is, binary branches that
allow the flow of control to go one of two ways depending on which branch is
taken. When a CHOOSE operation is executed, a "guess" is made as to which
branch to take, and if that particular CHOOSE operation is reached at a later

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

BOOK REVIEWS 901

time in the computation, then the guess made at the later time is independent
of the guess made at the earlier time. The result is a nondeterministic program.
Thus on any single input string a nondeterministic program may have many
different computations that can be represented by a binary-branching compu
tation tree with the property that any path from root (labeled START) to a
leaf (labeled HALT) represents a finite computation of that program on that
input and every such finite computation is so represented. The length of a
computation of a nondeterministic program is the length of the path represent
ing that computation in the computation tree. A nondeterministic program
operates within time T(n) if for every input string of length n the computation
tree of the program on that input has height at most T(ri).

A nondeterministic program m accepts an input x if in the computation tree
of IT on x there exists a path from the root to a leaf labeled HALT AND
ACCEPT. Once again, the set of inputs accepted by a program m is denoted
by L(TI).

When considering nondeterministic programs, it is only the accepting
computations of that program on a given input (if any exist) that are
considered. A nondeterministic program rejects an input only if it has no
accepting computations on that input.

Consider a nondeterministic program for the satisfiability problem. Such a
program may have the following components:

PHASE 1. Identify the variables and the correct form of the input just as
before.

PHASE 2. Use a sequence of CHOOSE operations to nondeterministically
"guess" a truth assignment to the propositional variables.

PHASE 3. Determine whether the truth assignment nondeterministically
generated in Phase 2 satisfies the input statement, i.e., makes the entire
statement true. If so, transfer to a HALT AND ACCEPT instruction since
the conjunctive normal form statement of the input is satisfiable; otherwise,
transfer to a HALT AND DO NOTHING instruction.

If the truth assignment "guessed" in Phase 2 does not satisfy the input
statement, then this is simply a "bad guess". If the input is a satisfiable
conjunctive normal form statement, then there will be some computation
which makes a "correct guess" in Phase 2 and this computation will accept
the input string.

Nondeterminism is a mathematical construct that cannot be implemented
by real computers except by making the "guesses" systematically and "back
tracking" in order to eventually search the entire computation tree seeking a
path from the START root to a HALT AND ACCEPT leaf. Also, nonde
terminism does not represent unbounded parallelism, i.e., the idea of evaluat
ing every node at the level at each step. The "guess" made at a CHOOSE
operation is not determined by any probabilistic notion. To say that a
nondeterministic program accepts an input is simply to say that there exists a
sequence of guesses at the various times when CHOOSE operations are
executed that lead to a HALT AND ACCEPT operation.

A program with no occurrence of the CHOOSE operation is a
"degenerate" nondeterministic program and is called deterministic since on

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

902 BOOK REVIEWS

each input there is exactly one computation (and at each step in the
computation there is at most one possible next operation to perform).

Clearly, if mx is a nondeterministic program that operates within time Tx(n),
then from irx one can construct a deterministic program ir2 such that L{IT^) «•
L(JTX) and the function T2(n) = 2Tlin) bounds the running time of IT2: the
program TT2 deterministically generates the entire computation tree of TT, on
the given input by systematically generating the table of guesses; in each
computation irx can execute at most Tx(ri) binary CHOOSE operations and so
the size of Tx

9s computation tree on an input string of length n is at most
2TM9

A deterministic or nondeterministic program operates in polynomial time if
it operates within a time bound that is a constant multiple of AI* for some
integer k > 0. The collection of all sets L(ir) such that m is a deterministic
(resp., nondeterministic) program that operates in polynomial time is called
the class of languages accepted deterministically (resp., nondeterministically) in
polynomial time and is denoted by P (resp., NP).

From the definitions it follows that P is a subclass of NP but it is not
known whether P is equal to NP.

The informal description of programs given here can be replaced with other
formalisms for algorithms (e.g., Turing machines) and precisely the same
classes P and NP result. That is, these classes are invariant under a variety of
changes in the model of computation.

Now that the classes P and NP have been defined, we shall describe the
notion of "ATP-complete set".

A set Lx is polynomial-time reducible to a set L2, Lx oc L^ if there is a
function ƒ such that for all x, x E L, if and only if f(x) E L2 (i.e.,f~\L£ »
Lx)9 and such that there is a program (with output) that operates in poly
nomial time and computes the values of ƒ. This relation is reflexive and
transitive, and preserves tractability: if Lx oc Lj and L2 E P, then L, E P. A
set L0 is NP-complete if L0 E NP and for every L E NP, L oc L0. Thus, an
NP-complete problem is one of "maximal complexity" in NP. Further, there
exists an ATP-complete set that is in P if and only if every MP-complete set is
in P if and only if P = NP.

There exist JVP-complete sets. This fact is due to Stephen Cook, whose 1971
paper [3] marks the "official" beginning of the study of the question P « 1NP
and of JVP-completeness. The first problem shown by Cook to be JVP-com-
plete is the satisfiability problem for conjunctive normal form statements in
the propositional calculus. Clearly, the satisfiability problem is in NP: the
nondeterministic program described above operates in polynomial time. Cook
(using the Turing machine formalism to specify sets in NP) showed that every
set in NP is polynomial-time reducible to the set of all conjunctive normal
form statements that are satisfiable, and therefore the satisfiability problem is
incomplete.

It should be emphasized that what is desired is a program that will
correctly solve all instances of the satisfiability problem. It has been shown
that if one is willing to assume one of several distributions on the set of
problem instances, then there are algorithms for which a polynomial bound
can be obtained on the expected time complexity [4]. It is the worst-case

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

BOOK REVIEWS 903

analysis, not the average-case analysis, of a program that comes into the
notion of AfP-completeness.

In addition to the satisfiability problem, Cook showed that several other
problems are AfP-complete. Further, Cook emphasized the significance of
polynomial time reducibility and focused attention on the class (NP) of
decision problems that can be solved nondeterministically in polynomial
time. With the understanding that a problem is tractable only if it can be
solved in polynomial time, the classification of a decision problem as NP~
complete is evidence for that problem to be considered intractable.

Since Cook's results were announced in 1971, there has been a great deal of
effort expended in studying the P = 1NP question and in identifying NP-
complete problems. In 1972 Richard Karp presented a collection of results
proving that the decision-problem version of many well-known combinatorial
problems, including the travelling salesman problem, are JVP-complete.
Karp's paper [5] caused attention to be drawn to further examples from such
areas as graph theory, number theory, mathematical programming, automa
ton theory, covering and partitioning, and scheduling theory as well as to
many problems of computer science related to compiler design, manipulation
of data structures, operating systems, and data base management. Since that
time certain decision problems have been proven to be intractable by showing
that not only are they not in P but also they are not even in NP.

The question of whether P = 1NP and thus whether the iVP-complete
problems are tractable is considered to be one of the foremost open problems
of computer science and of modern applied mathematics. If P is equal to NP,
then current methods for solving a wide range of computational problems will
drastically change-many exponential search or unbounded backtracking pro
cedures would be eliminated in favor of deterministic polynomial-time
processes. Already the theory of JVP-completeness has had significant impact
on fields such as operations research.

The monograph reviewed here is appropriately subtitled: it is a guide to the
theory of iVP-completeness. Several basic iVP-complete problems are dis
cussed and techniques useful for establishing JVP-completeness are studied as
are subproblems of NP-complete problems and variations of JVP-complete-
ness. Of particular interest are the discussion of optimization problems and
their interpretations as decision problems, approximation algorithms, and the
application of JVP-completeness to approximation problems. The extremely
useful Appendix contains descriptions of over 300 problems (plus spinoffs of
these problems) most of which are ATP-complete or JVTMiard.

This monograph is of value for those interested in the design and analysis
of algorithms and in computational complexity. It can serve as a vehicle for
anyone who wishes to learn about the subject of MP-completeness. Overall it
is quite a good book, with only Chapter 7 (whose topics are several steps
away from the authors' areas of expertise) being weak. Computer science
needs more books like this one.

REFERENCES

1. A Cobham, The intrinsic computational difficulty of Junctions, Y. Bar-Hillel (éd.), (Proc. 1964
Internat. Congr.), Logic, Methodology and Philos. Sci, North-Holland, Amsterdam, 1965, pp.
24-30.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

904 BOOK REVIEWS

2. J. Edmunds, Paths, trees and flowers, Canad. J. Math. 17 (1965), 449-467.
3. S. Cook, The complexity of theorem-proving procedures, Proc. 3rd ACM Sympos. on Thcoiy

of Computing, J. Assoc. Comput. Mach. (1971), 151-158.
4. A. Goldberg, On the complexity of the satisfiability problem, Ph.D. dissertation, Courant

Institute of Mathematical Sciences, 1979.
5. R. Karp, Reducibility among combinatorial problems, R. Miller and J. Thatcher (eds.),

Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85-103.

RONALD V. BOOK

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3, Number 2, September 1980
© 1980 American Mathematical Society
0002-9904/80/0000-0416/$01.7 5

The theory of'Lie superalgebras•; an introduction, by M. Scheunert, Lecture
Notes in Math., vol. 716, Springer-Verlag, Berlin-Heidelberg-New York,
vi + 271 pp.

A Lie superalgebra, or (Z2-) graded Lie algebra, is a vector space © = ©0

© ©, with a bilinear multiplication, < , >, satisfying the graded versions of
the axioms for Lie algebras: if X G @a, Y EL ®fi9 and Z G ©y (a, /?, y G
{0, 1}), then

(1) (X, Y) = (-l)a*[r, X] ("graded antisymmetry");
(2) (-ir<*> <r, z » + (-i)*a<r, <z, x)} + (-i)Y/*<z, <*, y » - o

(the "graded Jacobi identity").
Note that ©0 is a Lie algebra (in the ordinary sense). In what follows, it will

always be tacitly assumed that © is finite dimensional and is defined over a
field of characteristic 0.

The standard example of an ordinary Lie algebra is gt(n), the space of all
n X n matrices, with [X, Y] = XY — YX. (For instance, a representation of a
Lie algebra is a homomorphism into gl(n).) There is a corresponding standard
example of a Lie superalgebra; it, too, is used to define representations. Let
V = V0® Vx be a ^-graded vector space. We define pl(V) =pl(V)0®

pl(V)i, where

PKV)O ={V-»V, T(VJ) C VJJ = 0, 1};

pl{V)x - {S: V^ V: S(Vj) Q V^J - 0, l } ;

thus pl(V)0 consists of the linear maps on V taking each distinguished
subspace to itself, and/>/(K)j consists of the linear maps on V taking each to
the other. The multiplication is given as follows: if X, Y are each inpl(V)0 or
pl(V)v where

<*, Y> - XY - YX if either X or Y G pl(V)0;

(X, Y> = XY+ YXiiX, Y G/?/(K),.

Thus the multiplication in pl(V) consists of both commutators and anticom-
mutators. It is this fact which explains the sudden interest in Lie superalge-
bras among physicists; they offer a mathematical framework for combining
various symmetry theories. (It seems to be somewhere between unclear and
dubious, however, whether the resulting supersymmetry theories do jibe with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

