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Abstract: - Heart rate variability (HRV) is a measure of the balance between sympathetic mediators of heart 

rate that is the effect of epinephrine and norepinephrine released from sympathetic nerve fibres acting on the 

sino-atrial and atrio-ventricular nodes which increase the rate of cardiac contraction and facilitate conduction at 

the atrio-ventricular node and parasympathetic mediators of heart rate that is the influence of acetylcholine 

released by the parasympathetic nerve fibres acting on the sino-atrial and atrio-ventricular nodes leading to a 

decrease in the heart rate and a slowing of conduction at the atrio-ventricular node. Sympathetic mediators 

appear to exert their influence over longer time periods and are reflected in the low frequency power(LFP) of 

the HRV spectrum (between 0.04Hz and 0.15 Hz).Vagal mediators exert their influence more quickly on the 

heart and principally affect the high frequency power (HFP) of the HRV spectrum (between 0.15Hz and 0.4 

Hz). Thus at any point in time the LFP:HFP ratio is a proxy for the sympatho- vagal balance. Thus HRV is a 

valuable tool to investigate the sympathetic and parasympathetic function of the autonomic nervous system. 

Study of HRV enhance our understanding of physiological phenomenon, the actions of medications and disease 

mechanisms but large scale prospective studies are needed to determine the sensitivity, specificity and predictive 

values of heart rate variability regarding death or morbidity in cardiac and non-cardiac patients. This paper 

presents the linear and nonlinear to analysis the HRV. 

Key-Words: -Heart Rate Variability, Physiology of Heart Rate Variability, Nonlinear techniques. 

 

I. INTRODUCTION 
Heart rate variability (HRV) is the temporal variation between sequences of consecutive heart beats. On a 

standard electrocardiogram (ECG), the maximum upwards deflection of a normal QRS complex is at the peak of 

the R-wave, and the duration between two adjacent R-wave peaks is termed as the R-R interval. The ECG signal 

requires editing before HRV analysis can be performed, a process requiring the removal of all non sinus-node 

originating beats. The resulting period between adjacent QRS complexes resulting from sinus node 

depolarizations is termed the N-N (normal-normal) interval. HRV is the measurement of the variability of the N-

N intervals [1].  

One example will be used throughout the following sections to explain morevisually, if possible, what the 

technique does and how it can be calculated onthetachogram. The chosen example is given in (Fig.1),  

 
Figure 1 Thetachogram used as example [2]. 

 

being an RR intervaltime series extracted from an ECG signal monitored during a stress test. Thetachogram has 

a length of 2712 seconds (45 minutes) containing 3984 heart beats.. As indicated in the figure, some irregular or 

faulty RR intervalswere corrected this way, changing the shortest RR interval from 256 ms to 443ms. In other 

words, the impossible instantaneous heart rate of 234 bpm in suchcondition was corrected by the preprocessing 

algorithm to a maximal instantaneousheart rate of 135 bpm which was probably correct.The linear time and 

frequency domain techniques for HRV were standardized ina report of the Task Force of the European Society 
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of Cardiology and the NorthAmerican Society of Pacing ansElectrophysiology [2]. And another example isthe 

normal case of HRV shown in fig. 2. 

 
Figure 2Heart rate variation of a normal subject [3]. 

 

II. Physiology of Heart Rate Variability 
Heart rate variability, that is, the amount of heart rate fluctuations around the mean heart rate [4] is 

produced because of the continuous changes in the sympathetic parasympathetic balance that in turn causes the 

sinus rhythm to exhibit fluctuations around the mean heart rate. Frequent small adjustments in heart rate are 

made by cardiovascular control mechanisms. This results in periodic fluctuations in heart rate. The main 

periodic fluctuations found are respiratory sinus arrhythmia and baroreflex related and thermoregulation related 

heart rate variability [5]. Due to inspiratory inhibition of the vagal tone, the heart rate shows fluctuations with a 

frequency equal to the respiratory rate [6]. The inspiratory inhibition is evoked primarily by central irradiation 

of impulses from the medullary respiratory to the cardiovascular center. In addition peripheral reflexes due to 

hemodynamic changes and thoracic stretch receptors contribute to respiratory sinus arrhythmia. This is 

parasympathetically mediated [7]. Therefore HRV is a measure of the balance between sympathetic mediators 

of the heart rate (HR) i.e. the effect of epinephrine and norepinephrine released from sympathetic nerve fibres, 

acting on the sino-atrial and atrioventricular nodes, which increase the rate of cardiac contraction and facilitate 

conduction at the atrioventricular node and parasympathetic mediators of HR i.e. the influence of acetylcholine 

released by the parasympathetic nerve fibres, acting on the sino-atrial and atrioventricular nodes, leading to a 

decrease in the HR and a slowing of conduction at the atrioventricular node. Sympathetic mediators appears to 

exert their influence over longer time periods and are reflected in the low frequency power (LFP) of the HRV 

spectrum [8]. Vagal mediators exert their influence more quickly on the heart and principally affect the high 

frequency power (HFP) of the HRV spectrum. Thus at any point in time, the LFP:HFP ratio is a proxy for the 

sympatho-vagal balance. 

 

III. Nonlinear techniques 
The cardiac system is dynamic, nonlinear, and nonstationary, with performancecontinually fluctuating on a 

beat-to-beat basis as extrinsic and intrinsic simultaneously influence the state of the system [9, 10]. Due to the 

assumptionsand conditioning requirements, linear analyses may not account for all aspectsof cardiac 

performance, particularly the subtle interactions between the controlmechanisms that regulate cardiac function 

[11]. Analysis techniques arisingfrom nonlinear system dynamics theory were therefore developed to ascertain 

themultidimensional processes that control the cardiac system [12]. 

A nonlinear system is mathematically defined as a second- or higher-order powersystem, meaning that the 

independent variable in the mathematical equationcontains an exponent. For example, the equation for a 

parabola, y = x
2
, describesa simple nonlinear system. Whereas in a linear system the variables produce anoutput 

response, in a nonlinear system the variables contribute to the outputresponse. Although a linear system can be 

decomposed into its component parts,in a nonlinear system, the parts interfere, cooperate, or compete with each 

other. Asmall change dramatically alters the nonlinear system because the initial conditionof all variables along 

with the input stimulus influences the output response.Nonlinear system dynamics theory allows for the 

mathematical reconstructionof an entire system from one known variable since the reconstructed dynamicsare 

geometrically similar to the original dynamics [13]. Chaos theory, whichwas popularized by Gleicks best-selling 

book [14], is a specialized subtheoryofnonlinear system dynamics that describes systems that are 

lowdimensional (3to 5 variables), have defined boundaries, and exhibit sensitive dependence oninitial 

conditions. This theory alerted scientists to the value of mathematicalerror and physiological noise when 

describing a systems behavior [15]. Small differences in initial conditions (such as those due to rounding errors 

in numericalcomputation) yield widely diverging outcomes for chaotic systems, rendering longtermprediction 

impossible in general. This happens even though these systemsare deterministic, meaning that their future 
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behavior is fully determined bytheir initial conditions, with no random elements involved. In other words, 

thedeterministic nature of these systems does not make them predictable. Thisbehavior is known as 

deterministic chaos, or simply chaos. Also, with sinusrhythm, deterministic behavior is exhibited during a 

cardiac cycle and stochasticbehavior between cardiac cycles [15]. Consequently, analysis techniquesbased on 

the broader nonlinear system dynamics theory have been used toexplain and account for the nonlinearity of the 

high-dimensional cardiac system.Numerous nonlinear analysis techniques exist. 

Several commonly used nonlinear techniques will be explained now. Some recentreview papers 

discussing nonlinear HRV are Acharya et al [16] and Voss et al [17]. 

 

3.1 
𝟏

𝒇
 slope 

Kobayashi and Musha [18] first reported the frequency dependence of thepower spectrum of RR interval 

fluctuations. The plots had an uneven densitythat might overweight for data in the higher-frequency range. 

Therefore, alogarithmic interpolation is used, resulting in a balanced number of pointsforlinear interpolation. 

The slope of the regression line of the log(power) versuslog(frequency) relation (1/f), usually calculated in the 

10
-4 

–10
-2

Hz frequencyrange, corresponds to the negative scaling exponent ß and provides an index forlong-term 

scaling characteristics [19]. Fig.3 indicates the (1/f)
ß
relationbetween PSD and frequency, reflected on a log–log 

scale approximately as a line.The figure is the result for the example used throughout this chapter, leading toa 

1/f slope of -1.34. 

 
Figure 3 Log(power) versus log(frequency) plot of the tachogram example given in (Fig.1). The thick line 

indicates the 1/f slope or scaling exponent ß and is derived asthe regression line calculated in the 10
-4

–10
-2

Hz 

frequency range. 
 

This broadband spectrum, characterizing mainly slow HR fluctuations indicatesa fractal-like process with a 

long-term dependence [20]. Saul et al [19] foundthat ß is similar to -1 in healthy young men. This linearity of 

the regression lineand the slope of -1 in healthy persons mean that the plots of RR-interval versustime over 2 

minutes (10
-2

Hz), 20 minutes (10
-3

Hz) and 3 hours (10
-4

Hz) mayappear similar. This is called scale-invariance 

or self-similarity in fractal theory. Ithas been suggested that the scale invariance may be a common feature of 

normalphysiological function. The breakdown of normal physiological functioning couldlead to either random 

or periodic behavior, indicated by steeper 1/fslopes, whichcould lead to a more vulnerable state of 

homeostasis.Bigger et al [21] reported an altered regression line (ß ≈ - 1.15) in patients afterMI. A disadvantage 

of this measure is the need for large datasets. Moreover,stationarity is not guaranteed in long datasets and 

artefacts and patient movementinfluence spectral components. 

 

3.2 Fractal dimension 

The term ’fractal’ was first introduced by Mandelbrot [22]. A fractal is a set ofpoints that when looked 

at smaller scales, resembles the whole set. An essentialcharacteristic of a fractal is self-similarity. This means 

that its details at a certainscale are similar, but not necessarily identical, to those of the structure seen atlarger or 

smaller scales. A simple mathematical example illustrating the self-similarityproperty is the Koch curve (Fig.4). 

The concept of fractal dimension (FD) that refers to a non-integer or fractionaldimension originates 

from fractal geometry. The FD emerges to provide a measureof how much space an object occupies between 

Euclidean dimensions. The FD of awaveform represents a powerful tool for transient detection. This feature has 

beenused in the analysis of ECG and EEG to identify and distinguish specific statesof physiological function. 

Several algorithms are available to determine the FDof the waveform, amongst others the algorithms proposed 

by Higuchi and Katz.From a practical point of view, one often estimates the FD via the box-countingmethod. 

The higher the FD, the more irregular the signal. 
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3.2.1 Algorithm of Katz 

According to the method of Katz [23] the FD of a curve can be defined as 

𝐷𝐾𝑎𝑡𝑧 =
log (𝐿)

log(𝑑)
     (1) 

where L is the total length of the curve or sum of distances between successivepoints, and d is the diameter 

estimated as the distance between the first point ofthe sequence and the most distal point of the sequence. 

Mathematically, d can beexpressed as: 

𝑑 = max  𝑥 1 − 𝑥 𝑖   ∀𝑖 (2) 

 
Figure 4 An illustration of how fractals look like with the feature of scaleindependence and self-similarity: 

(a) the Koch curve and (b andc) details of the topof the curve. 
 

Considering the distance between each point of the sequence and the first, pointi is the one that maximizes the 

distance with respect to the first point. The FDcompares the actual number of units that compose a curve with 

the minimumnumber of units required to reproduce a pattern of the same spatial extent. FDscomputed in this 

fashion depend upon the measurement units used. If the unitsare different, then so are the FDs. Katz approach 

solves this problem by creating ageneral unit or yardstick: the average step or average distance between 

successivepoints, a. Normalizing the distances, D
katz

is then given by 

𝐹𝐷 =
log (

𝐿

𝑎
)

log (
𝑑

𝑎
)
     (3) 

 

3.2.2 Box-counting method 

What is the relationship between an objects length (or area or volume) and itsdiameter? The answer to this 

question leads to another way to think aboutdimension. Let us consider a few examples (Fig.5). If one tries to 

coverthe unit square with little squares of side length ϵ, one will need 1/ϵ
2
boxes. Tocover a segment of length 1, 

you only need 1/ ϵ little squares. If the little cubes are used to cover a1x1x1 cube,  1/ ϵ
3
 is needed. Note that the 

exponent here is the same asthe dimension. This is no coincidence, but thegeneral rule is: 

𝑁ϵ 𝑆  ~
1

ϵ𝑑
𝑎𝑠ϵ → 0   (4) 
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Figure 5 Principle of box-counting algorithm [25]. 
where o is the length of a box or square, S the full dataset and N o (S) the minimumnumber of n-dimensional 

boxes needed to cover S fully. d is the dimension of S.This way, the FD can be estimated via a box-counting 

algorithm as proposed byBarabasi and Stanley [24] as follows: 

𝐹𝐷 =  lim∈→0
ln 𝑁∈(𝑆)

ln∈
    (5) 

One also refers to the fractal dimension as the box-counting dimension or shortlybox dimension. Given the 

standard RR interval time series as example(Fig. 1), the relation between the number of boxes and the box size 

is shown in (Fig. 6), resulting in a FD equal to 1.6443. 

 
Figure 6Illustration of the box-counting method applied on the tachogram examplegiven in (Fig.1). First a 

2D plane is built based on the dataset S, here consisting ofboth the RR intervals and corresponding time 

points. The number of boxes in that planecontaining points of the dataset is counted and given by Nϵ(S). This 

depends on the sizeof the boxes, namely ϵ. This relation is represented in a ln – ln scale by the 

rhombuses.The line is the best fit through these points and the slope of the line reflects the fractaldimension. 

 

3.3 Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) is used to quantify the fractal scalingproperties of short interval 

signals. This technique is a modification of root-meansquareanalysis of random walks applied to nonstationary 

signals [26]. The rootmeansquare fluctuation of an integrated and detrended time series is measuredat different 

observation windows and plotted against the size of the observationwindow on a log- log scale. First, the RR 

interval time series x (of total lengthN) is integrated as follows: 

𝑦 𝑘 =    𝑥 𝑖 − 𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒  
𝑘
𝑖=1   (6) 

where y(k) is the k
th

value of the integrated series, x(i) is the i
th

RRintervaland x average is the mean of the RR 

intervals over the entire series. Then, theintegrated time series is divided into windows of equal length n. In each 

windowof length n, a least-squares line is fitted to the data, representing the trend in thatwindow as shown in 

(Fig.7(a)). The y-coordinate of the straight line segmentsare denoted by yn(k). Next, the integrated time series is 

detrended, yn (k), in eachwindow. The rootmeansquare fluctuation of this integrated and detrendedseriesis 

calculated using the equation: 

𝐹 𝑛 =  
1

𝑁
 [𝑦 𝑘 − 𝑦𝑛(𝑘)]2𝑁

𝑘=1   (7) 
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Figure 7 The principle of detrended fluctuation analysis (DFA). 

 

This computation is repeated over all time scales (window sizes) to obtain therelationship between F(n) and 

the window size n (the number of points, hereRR intervals, in the window of observation). Typically, F(n) will 

increase withwindow size. The scaling exponent DFA a indicates the slope of this line, 

whichrelateslog(fluctuation) to log(window size) as visualized in (Fig.7(b)). Thismethod, based on a modified 

random walk analysis, was introduced and applied tophysiological time series by Peng et al [27]. It quantifies 

the presence or absenceof fractal correlation properties in nonstationary time series data. DFA usuallyinvolves 

the estimation of a short-term fractal scaling exponent 𝛼1over the rangeof 4 ≤ n ≤16 heart beats and a long-term 

scaling exponent𝛼2 over the range of16 ≤ n ≤ 64 heart beats. Figure 7(b) shows the DFA plot for the HR 

example,where DFA 𝛼1 is 1.0461 and DFA 𝛼2 is 0.8418. 

Healthy subjects revealed a scaling exponent of approximately 1, indicating fractallikebehavior. Patients 

with cardiovascular disease showed reduced scalingexponents, suggesting a loss of fractal-like HR dynamics 

(𝛼1< 0.85 [28];𝛼1< 0.75 [26]). From many studies on test signals, one had the following a ranges: 

• 0 < α < 0.5: power-law anti-correlations are present such that large valuesare more likely to be followed by 

small values and vice versa. 

• α = 0.5: indicates white noise. 

• 0.5 < α < 1: power-law correlations are present such that large values aremore likely to be followed by large 

values and vice versa. The correlation isexponential. 

• α = 1: special case corresponding to 1/f noise. 

• α> 1: correlations exist, but cease to be of a power-law form. 

• α = 1.5: indicates Brownian noise. 

The a exponent can also be viewed as an indicator of the ’roughness’ of the originaltime series: the 

larger the value of a, the smoother the time series. In this context,1/fnoise can be interpreted as a compromise or 

’tradeoff’ between the completeunpredictability of white noise (very rough ’landscape’) and the much 

smootherlandscape of Brownian noise.  

It is important to note that DFA can only be applied reliably on time series of atleast 2000 data points. 

DFA as such is a mono-fractal method, but also multi-fractalanalysis exists [29]. This multifractal analysis 

describes signals that are morecomplex than those fully characterized by a mono-fractal model, but it 

requiresmany local and theoretically infinite exponents to fully characterize their scalingproperties. 

 

3.4 Approximate entropy and sample entropy 

Entropy refers to system randomness, regularity, and predictability and allowssystems to be quantified by 

rate of information loss or generation. ApproximateEntropy (ApEn) quantifies the entropy of the system. More 



Review: Nonlinear Techniques for Analysis of Heart Rate Variability 

www.ijres.org                                                                51 | Page 

specifically, itmeasures the likelihood that runs of patterns that are close will remain close forsubsequent 

incremental comparisons. An intuitive presentation is shown in (Fig. 8).It was calculated according to the 

formula of Pincus [30]: 

𝐴𝑝𝐸𝑛 𝑚, 𝑟,𝑁 =
1

𝑁−𝑚+1
 log𝐶𝑖

𝑚  𝑟 −
1

𝑁−𝑚

𝑁−𝑚+1
𝑖=1  log𝐶𝑖

𝑚  𝑟 𝑁−𝑚
𝑖=1  (8) 

where 

𝐶𝑖
𝑚  𝑟 =

1

𝑁−𝑚+1
 𝜃(𝑟 −  𝑥𝑖 − 𝑥𝑗  )𝑁−𝑚+1

𝑗=1     (9) 

is the correlation integral with θtheHeavyside step function. xi and xjarerespectively the i
th

andj
th

RR interval from 

the tachogram of length N. Thevalues of the input variables are chosen fixed, namely m = 2 and r = 0.2 

assuggested by Goldberger et al[31] (m being the length of compared runs and rthe tolerance level). High values 

of ApEn indicate high irregularity and complexityin time-series data. 

Sample Entropy (SampEn) was developed by Richman and Moorman [32] andis very similar to the 

ApEn, but there is a small computational difference. InApEn, the comparison between the template vector and 

the rest of the vectorsalso includes comparison with itself. This guarantees that probabilities 𝐶𝑖
𝑚  𝑟 arenever 

zero.Consequently, it is always possible to take a logarithm of probabilities.Because template comparisons with 

itself lower ApEn values, the signals areinterpreted to be more regular than they actually are. These 

selfmatchesarenot included in SampEn leading to probabilities 𝐶𝑖
′𝑚  𝑟 : 

𝐶𝑖
′𝑚 𝑟 =

1

𝑁−𝑚+1
 𝜃(𝑟 −  𝑥𝑖 − 𝑥𝑗 )𝑁−𝑚+1

𝑗=1 𝑗 ≠ 𝑖(10) 

Finally, sample entropy is defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛 𝑚, 𝑟,𝑁 = − ln[
𝜑 ′𝑚  𝑟 

𝜑 ′𝑚 +1 𝑟 
] (11) 

SampEn measures the complexity of the signal in the same manner as ApEn.However, the dependence on 

the parameters N (number of points) and r is different. SampEn decreases monotonically when r increases. In 

theory, SampEndoes not depend on N where ApEn does. In analyzing time series including <200data points, 

however, the confidence interval of the results is unacceptably large.For entropy measures, stationarity is 

required. In addition, outliers such as missedbeats and artefacts may affect the entropy values.The sample 

entropy of the tachogram example given in (Fig.1) is 4.4837. 

 
Figure 8. Intuitive presentation of the principle of Approximate Entropy (ApEn) andSample Entropy 

(SampEn). For a twodimensional vector AB, the tolerance level r canbe represented by horizontal red and 

violet lines around point A and B respectively, withwidth of 2r · SD. Then all vectors, say CD, whose first and 

second points (respectivelyC and D) are within the tolerance ranges of A and B (±r · SD), are counted to 

measurewithin a tolerance level r the regularity, or frequency, of patterns similarly to a givenpattern of AB. 

In the figure, five CD vectors are close to vector AB. When increasingvector dimension from 2 to 3 (ABE), 

two vectors, namely CDF, remain close while theother three vectors, CDG, show emerging patterns. Thus the 

likelihood of remaining closeis about 2/5. It is clear that such likelihood tends to 1 for regular series, and 

producesApEn = 0 when taking the logarithm, while it tends to 0 for white noise and results ininfiniteApEn 

theoretically. From [33]. 

 

3.5 Correlation dimension 

To describe the complexity of a system, often a transition is needed from the timedomain to the so called 

phase space. In mathematics and physics, a phase space isa space in which all possible states of a system are 

represented, with each possiblestate of the system corresponding to one unique point in the phase space. In 

aphase space, every degree of freedom or parameter of the system is representedas an axis of a multidimensional 



Review: Nonlinear Techniques for Analysis of Heart Rate Variability 

www.ijres.org                                                                52 | Page 

space. For every possible state of the system, orallowed combination of values of the system’s parameters, a 

point is plotted in themultidimensional space. Often this succession of plotted points is analogous to thesystem’s 

state evolving over time. In the end, the phase space represents all thatthe system can be, and its shape can easily 

elucidate qualities of the system thatmight not be obvious otherwise. A phase space may contain many 

dimensions.The correlation dimension (CD) can be considered as a measure for the number ofindependent 

variables needed to define the total system, here the cardiovascularsystem generating the RR interval time 

series, in phase space [34]. 

Before explaining how CD is calculated from a tachogram, the terms attractor,trajectory and attractor 

reconstruction has to be clarified. An attractor is a settowards which a dynamical system evolves over time. That 

is, points that get closeenough to the attractor remain close even if slightly disturbed. Geometrically,an attractor 

can be a point, a curve, a surface (called a manifold), or even acomplicated set with a fractal structure known as 

a strange attractor. Describingthe attractors of chaotic dynamical systems has been one of the achievements 

ofchaos theory. A trajectory of the dynamical system in the attractor does nothave to satisfy any special 

constraints except for remaining on the attractor. Thetrajectory may be periodic or chaotic or of any other type. 

For experimental andnaturally occurring chaotic dynamical systems as the cardiovascular system is,the phase 

space and a mathematical description of the system are often unknown.Attractor reconstruction methods have 

been developed as a means to reconstructthe phase space and develop new predictive models. One or more 

signals from thesystem, here the RR interval time series reflecting heart rate, must be observedas a function of 

time. The time series are then used to build an approach of theobserved states. 

Correlation dimension analysis of HRV signals is based on the method ofGrassberger and Procaccia [35]. 

As always, we start with a tachogram or RRinterval time series x(t) of data points xi = x(ti) and i = 1 . . . N (the 

numberof heart beats in the signal)(Fig.1). Next, an attractor reconstruction takesplace. The reconstructed 

trajectory, X, can be expressed as a matrix where eachrow is a phase space vector, X = (x1 x2 . . . xM )
T
. For a 

time series of length N,{x1 , x2 , . . . , xN }, each xi is given by xi = (xi , xi+τ , xi+2τ , . . . , xi+(m-1)τ ). 

The parameters m and τ are respectively called the embedding dimension and thetime delay. The time delay 

for the CD is the value of the first zero crossing ofthe normalized (mean = 0 and standard deviation = 1) 

autocorrelation functionof the time series and the time axis. The embedding dimension is usually 

variedincreasingly between the values 2 and 30. The distances between the reconstructedtrajectories xi and xj (i, 

j = 1 . . . N and i< j) are calculated and the total rangeof these distances is divided into discrete intervals, 

presented by r. Based on thesedistances, the correlation integral 𝐶𝑚  𝑟 , as already defined in equation (9), 

iscalculated as a function of r and this for successive values of m. As for a chaoticsignal the relation 

𝐶𝑚  𝑟  ~ 𝑟𝐶𝐷holds, CD can derived by plotting 𝐶𝑚  𝑟  versusr in a ln – ln scale. This is visualized in (Fig.9(a)) 

for different values ofthe embedding dimension m. Next, calculating the slope of such a curve 

resultstheoretically in the CD, but as can be seen in the figure, this slope depends on thechoice of m. In fact, the 

slope becomes steeper as m increases but will saturate ata certain level of the embedding dimension. Therefore, 

the slope can be plottedas a function of this embedding dimension m which makes it possible to see fromwhich 

m on the slope is saturated. As shown in (Fig.9(b)), the point on they and xaxis where this curve (slope versus 

m) saturates is called respectively thecorrelation dimension CD and the embedding dimension of the time series. 

Although the algorithm of Grassberger and Procaccia [35] is often used, it hasseveral limitations such as the 

sensitivity to the length of the data, the unclearrange of embedding dimensions to consider and the lack of 

having a confidenceinterval. To solve these problems, Judd [36] developed another algorithm toestimate the CD 

in a more robust way, which was used in this thesis. The CD for the (fig. 2) is 3.61 and for the tachogram 

example given in (Fig.1) is 3.7025. 

When a finite value is found for the CD of a time series, correlations are presentin the signal. To conclude 

whether these correlations are linear or nonlinear, asurrogate time series needs to be calculated. A significant 

difference between theCD of the surrogate and the original time series indicates that there are 

nonlinearcorrelations present in the signal. The significance level is calculated as: 𝑆 =  𝐶𝐷𝑠𝑢𝑟𝑟 − 𝐶𝐷𝑑𝑎𝑡𝑎   /
 𝑆𝐷𝑠𝑢𝑟𝑟 . A value of S > 2 indicates that the measure reflectsnonlinear correlations within the time series. In case 

of S > 2 the signal canbe chaotic, but this is not absolutely sure unless other nonlinear parameters likee.g. 

Lyapunov exponents are available and positive values found. With S < 2 nosignificant difference is found 

between the two time series, the signal is not chaotic. 

 

3.6 Lyapunov exponent 

Lyapunov exponent (Λ) is a quantitative measure ofthe sensitive dependence (SED) on the initial 

conditions. Itdefines the average rate of divergence of two neighboringtrajectories. An exponential divergence 

ofinitially nearby trajectories in phase space coupledwith folding of trajectories, ensure that the solutionswill 

remain finite, is the general mechanism for generatingdeterministic randomness and unpredictability.Therefore, 

the existence of a positive Λ for almost allinitial conditions in a bounded dynamical system iswidely used. To 

discriminate between chaotic dynamicsand periodic signals Lyapunov exponent (Λ) are oftenused. It is a 

measure of the rate at which the trajectoriesseparate one from other. The trajectories ofchaotic signals in phase 
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space follow typical patterns.Closely spaced trajectories converge and divergeexponentially, relative to each 

other. For dynamicalsystems, sensitivity to initial conditions is quantified bytheLyapunov exponent (Λ). They 

characterize theaverage rate of divergence of these neighboring trajectories.A negative exponent implies that the 

orbitsapproach a common fixed point. A zero exponentmeans the orbits maintain their relative positions; theyare 

on a stable attractor. Finally, a positive exponentimplies the orbits are on a chaotic attractor [37]. 

 
Figure 9. Example of how to calculate the correlation dimension (CD). (a)Correlation integral 𝑪𝒎 𝒓 as 

function of the tolerance level r for different choices ofthe embedding dimension m. As 𝑪𝒎 𝒓  ~ 𝒓𝑪𝑫, the 

slope of such curve in a ln – ln scaleresults theoretically in the correlation dimension CD, but depends on m. 

(b) Plot of theslopes of ln 𝑪𝒎 𝒓 / 𝐥𝐧(𝒓) as function of m. 
 

3.6.1 Wolf’s Algorithm 

Wolf’s algorithm is straightforward and uses the formulas defining the system. It calculates two trajectories 

in thesystem, each initially separated by a very small interval R0 . The first trajectory is taken as a reference, or 

’fiducial’trajectory, while the second is considered ’perturbed’. Both are iterated together until their separation 

abs(R1 - R0)is large enough, at which point an estimate of the Largest Lyapunov Exponent LLE can be 

calculated asΛ𝐿 =
1

Δ𝑡
log2 𝑎𝑏𝑠 (

𝑅1

𝑅0
). The perturbedtrajectory is then moved back to a separation of sign(R1)R0 

towards the fiducial, and the process repeated. Over time,a running average of ΛL will converge towards the 

actual LLE [38]. The normal HR signal shown in (Fig. 2) has LLE equal 0.505Hz. 

 

3.6.2 Rosenstein algorithm 

The first step of this approach involves reconstructing the attractor dynamicsfrom the RR interval time 

series. The method of delays is used which is alreadydescribed in detail when explaining the correlation 

dimension. After reconstructingthe dynamics, the algorithm locates the nearest neighbor of each point on 

thetrajectory. The nearest neighbor, x'j , is found by searching for the point thatminimizes the distance to the 

particular reference point, xj . This is expressed as: 

𝑑𝑗  0 = min||𝑥𝑗 − 𝑥𝑗 /||                      ∀𝑥𝑗 /(12) 

where𝑑𝑗  0  is the initial distance from the 𝑗𝑡ℎ  point to its nearest neighbor and || ... || denotes the Euclidean 

norm. An additional constraint is imposed, namely that nearest neighbors have a temporal separation greater 

than the mean period of the RR interval time series. Therefore, one can consider each pair of neighbors as the 

nearby SD initial conditions for different trajectories. The LLE is then estimated as the mean rate of the SD 

separation of the nearest neighbors. More concrete, it is assumed that the 𝑗𝑡ℎ  pair of nearest neighbors diverge 

approximately at a rate given by the LLE ΛL: 

𝑑𝑗 (𝑗) ≈ 𝑑𝑗 (0)𝑒Λ(𝑖 .∆𝑡)   (13) 

By taking the ln of both sides of this equation: 

ln𝑑𝑗  𝑗 ≈ ln𝑑𝑗  0 + Λ𝐿(𝑖.∆𝑡)  (14) 
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which represents a set of approximately parallel lines (for j = 1, 2, . . . ,J), each with a slope roughly proportional 

to the ΛL. 

The natural logarithm of the divergence of the nearest neighbor to the j
th

point in the phase space is 

presented as a function of time. The LLE is then calculated as the slope of the least squares fit to the ’average’ 

line defined by: 

Λ𝐿 𝑡 =
1

∆𝑡
 ln𝑑𝑗 (𝑡)    (15) 

where ln𝑑𝑗 (𝑡)  represents the mean logarithmic divergence over all values of j for all pairs of nearest neighbors 

over time. This process of averaging is the key to calculating accurate values for the LLEusing smaller and 

noisy data sets compared to other algorithms [39]. The LLE computed using the Rosenstein algorithm is 0.7586 

Hz for the HR signal shown in (Fig. 2). 

 

3.6.3. The Mazhar-Eslam Algorithm 
The Mazhar-Eslam [3, 40] algorithm uses Discrete Wavelet Transform (DWT) considering the merits of 

DWT over that of FFT. Although the FFT has been studied extensively, there are still some desired properties 

that are not provided by FFT. There are some points are lead to choose DWT instead of FFT. The first point is 

hardness of FFT algorithm pruning. When the number of input points or output points are small comparing to 

the length of the DWT, a special technique called pruning is often used [41]. However, it is often required that 

those non-zero input data are grouped together. FFT pruning algorithms does not work well when the few non-

zero inputs are randomly located. In other words, sparse signal does not give rise to faster algorithm. 

The other disadvantages of FFT are its speed and accuracy. All parts of FFT structure are one unit and they 

are in an equal importance. Thus, it is hard to decide which part of the FFT structure to omit when error 

occurring and the speed is crucial. In other words, the FFT is a single speed and single accuracy algorithm, 

which is not suitable for SED cases. 

The other reason for not selecting FFT is that there is no built-in noise reduction capacity. Therefore, it is 

not useful to be used. According to the previous ,the DWT is better than FFT especially in the SED calculations 

used in HRV, because each small variant in HRV indicates the important data and information. Thus, all 

variants in HRV should be calculated. 

The Mazhar-Eslam algorithm depends to some extend on Rosenstein algorithm’s strategies to estimate lag 

and mean period, and uses the Wolf algorithm for calculating the MVF (Ω𝑀) except the first two steps, whereas 

the final steps are taken from Rosenstein’s method. Since the MVF (Ω𝑀) measures the degree of the SED 

separation between infinitesimally close trajectories in phase space, as discussed before, the MVF (Ω𝑀) allows 

determining additional invariants. Consequently, the Mazhar-Eslam algorithm allows to calculate a mean value 

for the MVF (Ω𝑀), that is given by 

Ω𝑀
     =  

Ω𝑀𝑖

𝑗

𝑗
𝑖=1     (16) 

Note that the Ω𝑀𝑖
s contain the largest Ω𝑀𝐿  and variants Ω𝑀s that indicate to the helpful and important data. 

Therefore, the Mazhar-Eslam algorithm is a more SED prediction quantitative measure. Therefore, it is robust 

quantitative predictor for real time, in addition to its sensitivity for all time whatever the period.  

Apply the Mazhar-Eslam algorithm to the HRV of the normal case given in        (Fig. 2), it is found that the 

mean MVF (Ω𝑀
      ) as 0.4986 Hz, which is more accurate than Wolf (0.505 Hz) and Rosenstein (0.7586 

Hz).Figure10.shows the flowchart for calculating the Mazhar-Eslam MVF algorithm.  

Figure10.shows the flowchart steps for calculating the Mazhar-Eslam MVFM algorithm. First Start to select 

an initial condition. An embedded point in the attractor was randomly selected, which was a delay vector with 

dE elements. A delay vector generates the reference trajectory (nearest neighbor vector). Then another trajectory 

is selected by searching for the point that minimizes the distance to the particular reference point. After thatthe 

divergence between the two vectors is computed. A new neighbour vector was consideredas the evolution time 

was higher than three sample intervals. The new vector was selected to minimize the length and angular 

separation with the evolved vector on the reference trajectory.The steps are repeated until the reference 

trajectory has gone over the entire data sample. The divergence and Ω𝐿𝑖𝑠  are calculated. Consequently,theΩ𝑀  is 

calculated by using equation (16). 
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Figure 10The flowchart of the Mazhar-Eslam algorithm. 

 

Table (1) shows the different results of the normal case among Mazhar-Eslam, Wolf, and Rosenstein 

algorithms. From this table it is seen that, the Rosenstein algorithm has the lowest SED because of its quite high 

error (D = 51.72 % ) comparing to the optimum, while the Wolf algorithm takes a computational place for SED 

(D = 1 % ). However, the Mazhar-Eslam algorithm shows more sensitivity (D = 0.28 %) than Wolf algorithm as 

shown in (Fig. 11).  The patient case deviation D for normal HRV case is calculated as: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝐷 = |Ω𝑀𝑛𝑜𝑟𝑚𝑎𝑙
− Ω𝑀𝑐𝑎𝑠𝑒

|(17) 

the cases percentage deviation is to be calculated as: 

𝐷% =
𝐷

𝑛𝑜𝑟𝑚𝑎𝑙
× 100%   (18) 
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and, the variance for algorithms should be calculated as  

𝑣𝑎𝑟 = (Ω𝑀𝑛𝑜𝑟𝑚𝑎𝑙
− 𝐷)2 (19) 

 

 
Figure 11 The three algorithms deviation for the normal case in (Fig.2). 

 

The bar diagram in (Fig. 12) shows the percentage deviation of the three algorithms. From this figure it is 

seen that the Mazhar-Eslam algorithm gives the best result as it has the lowest percentage deviation (D = 14). At 

the same time, when calculating the variance to determine the accurate and best method, Mazhar-Eslam 

algorithm gives the best value. Figure 13.shows the bar diagram of the variance for normal control case using 

the HRV for Wolf, and Mazhar-Eslam algorithms. It is clear that the Mazhar-Eslam algorithm is more powerful 

and accurate than Wolf, because its variance better than Wolf by 0.0036. This result comes because the Mazhar-

Eslam considers all the variability mean frequencies Ω𝑀
     s unlike the Wolf method as it takes only the largest. 

Each interval of the HRV needs to be well monitored and taken into account because the variant in HRV is 

indication of cases. 

 

Table 1The results of the three algorithms for the normal case shown in (Fig. 2) 

   Method 

parameter 

 Optimum Rosenstei

n  

Wolf  Mazhar-

Eslam 

ΩM 0.500000 0.758600 0.505000 0.498600 

D 0.00000 0.258600 0.005000 0.001400 

D% 0.000000 51.720000 1.000000 0.280000 

Var 0.250000 0.058274 0.245025 0.248602 

From the bar diagram in (Fig. 13) it is seen that the Mazahar-Eslam algorithm is most useful and 

sensitive comparing to Wolf and Rosenstein algorithms. 

 

 

3.7 Hurst exponent (H) 

The Hurst exponent is a measure that has been widelyused to evaluate the self-similarity and 

correlationproperties of fractional Brownian noise, the time seriesproduced by a fractional (fractal) Gaussian 

process.Hurst exponent is used to evaluate the presence orabsence of long-range dependence and its degree in 

atime series. However, local trends (nonstationarities) isoften present in physiological data and 

maycompromisethe ability of some methods to measure self-similarity.Hurst exponent is the measure of the 

smoothnessof a fractal time series based on the asymptotic behaviorof the rescaled range of the process. The 

Hurst exponentH is defined as: 

𝐻 = log  
𝑅

𝑆
 / log(𝑇)          (20) 
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Figure 12 The three algorithms Percentage deviation (D%) for  the normal case (Fig. 2). 

 

where T is the duration of the sample of data and R/Sthe corresponding value of rescaled range. The 

aboveexpression is obtained from the Hurst’s generalizedequation of time series that is also valid for 

Brownianmotion. If H = 0.5, the behavior of the time series issimilar to a random walk. If H < 0.5, the time-

seriescover less ‘‘distance’’ than a random walk. But ifH> 0.5, the time-series covers more ‘‘distance’’ than 

arandom walk. H is related to the dimension CD givenby: 

𝐻 = 𝐸 + 1 − 𝐶𝐷   (21) 

where E is the Euclidean dimension. 

 
Figure 13 The Variance of Wolf and Mazhar-Eslam algorithm for normal case (Fig.2). 

 

For normal subjects, the FD is high due to thevariation being chaotic. And for Complete Heart Block(CHB) 

and Ischemic/dilated cardiomyopathy, this FD decreases because theRR variation is low. And for AF and SSS, 

this FDvalue falls further, because the RR variation becomeserratic or periodic respectively [42]. The H is 0.611 

forthe HR signal shown in (Fig. 2). 
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Figure 14 Recurrence plot of normal heart rate (shown in Fig. 2) 

 

3.8 Recurrence plots 

In time-series analysis, the dynamic properties of thedata under consideration are relevant and valid only, 

ifthe data is stationary. Recurrence plots (RP) are used torevealnonstationarity of the series. These plots 

werefirst proposed by Eckmann et al. [43]as graphical toolfor the diagnosis of drift and hidden periodicities in 

thetime evolution, which are unnoticeable otherwise. Abrief description on the construction of recurrenceplots is 

described below. 

Let xi be the i
th

 point on the orbit in an m-dimensionalspace. The recurrence plot is an array of dots in 

an𝑁 × 𝑁square, where a dot is placed at (i,j)whenever xjissufficiently close to xi . To obtain the recurrence plot, 

mdimensionalorbit of xi is constructed. A radius r suchthat the ball of radius r centered at xi inℜ𝑚contains 

areasonable number of other points xj of the orbit. Finally,a dot is plotted for each point (i,j) for which xj is in 

theball of radius r centered at xi. The plot thus obtained isthe recurrence plot. The plots will be symmetric 

alongthe diagonal i = j, because if xi is close to xj, then xjisclose to xi . The recurrence plot of normal HR (shown 

inFig. 2) is given in (Fig. 14). For normal cases, the RP hasdiagonal line and less squares indicating more 

variationindicating high variation in the HR. Abnormalities likeCHB and in Ischemic/dilated cardiomyopathy 

cases,show more squares in the plot indicating the inherentperiodicity and the lower HR variation [44]. 

 

IV. Conclusion 
This review introduces the mathematics and techniques, necessary for a good understandingof the 

methodology used in HRV analysis. After the peak detection algorithm andthe preprocessing methods, the linear 

methods in time domain, frequency domainand the time-frequency representations were represented. Also an 

overview ofsome nonlinear techniques assessing scaling behavior, complexity and chaoticbehavior were given.  
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