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Abstract: The development of new catheter and applicator technologies in recent years has sig-

nificantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, 

we review these advances, focusing on the performance of catheter imaging and reconstruction 

techniques in brachytherapy procedures using magnetic resonance images and electromagnetic 

tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable proper-

ties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, 

noise performance, and limitations of electromagnetic tracking for catheter reconstruction 

are discussed. Several newly developed applicators for accelerated partial breast irradiation 

and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment 

schemes in prostate cancer and accelerated partial breast irradiation are presented.

Keywords: catheter technologies, catheter reconstruction, electromagnetic tracking, hypofrac-

tionated high dose rate treatment, accelerated partial breast irradiation

Introduction
The field of radiation therapy has seen great progress in the past decade. While sub-

stantial advances have been made in external beam therapy, as a result of development 

of intensity modulated radiation therapy,1–3 volumetric modulated arc therapy,4 and 

other techniques, brachytherapy has also seen exciting improvements because of the 

development of new applicator and catheter technologies. For both types of treatment, 

advanced imaging guidance has given physicists and physicians the confidence to 

deliver hypofractionated treatments safely. As with innovations in multi-leaf collimators 

and accelerator design for external beam therapy, new catheter-related technologies, 

together with new sources and applicators, make advanced brachytherapy treatments 

possible.

Brachytherapy, ie, the delivery of radiotherapy from a source placed close to the 

target site, is one of the oldest forms of radiation therapy. In 1901, Pierre Curie loaned 

a quantity of radium to the famed dermatologist Henri-Alexandre Danlos for the pur-

pose of treating cutaneous conditions. Over a century later, brachytherapy is one of 

the most important modalities for the treatment of malignancies. Brachytherapy has 

been involved in the treatment of nearly all sites in radiation therapy. There are two 

broad categories of brachytherapy, low dose rate (LDR) and high dose rate (HDR). 

Permanent or temporary LDR implants include those for the treatment of brain tumors, 

including metastases and glioblastoma multiforme, using a GliaSite (IsoRay Medical 

Inc., Richland, WA, USA) applicator filled with either 125I or 131Cs,5,6 ocular tumors 

using an eye plaque loaded with 125I, 103Pd, or 106Ru seeds,7–10 lung cancer using 125I 
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seeds in a Vicryl mesh,11 breast cancer using 125I inserted 

into interstitial catheters,12 prostate cancer using 125I, 131Cs, 

or 108Pd seeds permanently implanted into the gland,13,14 and 

gynecologic cancers using 137Cs tubes in a Fletcher-Suit or 

Henschke applicator.15,16 HDR brachytherapy, on the other 

hand, with a more flexible dose distribution, no radiation 

exposure to health care personnel, and lower patient cost, has 

drawn much more attention in the field of radiation oncology 

recently. In an HDR treatment, an 192Ir source is transported 

through multiple catheters or multiple channels in an applica-

tor to the center of or in proximity to the target, and delivers 

the planned dose by keeping the source staying at designated 

dwell positions for varying amounts of time. Any tumor 

that can be accessed with catheters or an applicator can be 

treated with HDR. With the development of new applicator 

and catheter technologies, as well as image guidance, HDR 

procedures are replacing LDR procedures in most clinical 

situations involving brachytherapy.

LDR permanent seed implants have been used exten-

sively since the 1980s for prostate cancer, and have been 

recommended for the treatment of organ-confined low-risk 

and some intermediate-risk patients.14,17,18 Long-term out-

comes showed that the prostate-specific antigen relapse-free 

survival at 8 years was 93% for patients treated with 125I 

implants where the dose to 90% of the prostate was .130 

Gy.19 Recently, thinner 20-gauge seed implant needles have 

been applied clinically for the purpose of reducing trauma-

associated edema. The initial report demonstrated improved 

dosimetry due to reduced trauma and less perineal pain.20 

HDR prostate brachytherapy, originally used as a boost 

together with external beam treatment, has been receiving 

more attention as monotherapy for suitable patients, due to 

its better-controlled dosimetry, no residual radioactivity, 

higher dose rate, and better suitability for low α/β ratio 

prostate cancer. The results of clinical trials show that it has 

outcomes similar to those of LDR brachytherapy,21 while 

reducing most toxicities.22 Typically, in a template-guided 

prostate HDR implant, 15–18 catheters are inserted through 

the perineum into the prostate, under the guidance of tran-

srectal ultrasound (TRUS). The treatment plan can be based 

either on the TRUS images or on a computed tomography 

(CT) scan of the patient with all the catheters in place.

Accelerated partial breast irradiation (APBI) has been used 

extensively for the treatment of breast cancer, as it has been 

noted that recurrences following whole breast radiotherapy are 

mostly at the tumor bed.23,24 The first brachytherapy technique 

for delivering APBI, interstitial breast brachytherapy, is not 

common in the USA due to high operator training requirements. 

More recently, single-entry balloon applicators, such as 

the single-lumen and multi-lumen  MammoSite (Hologic, 

Bedford, MA, USA) and Contura (SenoRx Inc., Irvine, CA, 

USA) applicators, have been extensively used in partial breast 

treatment. The outcomes, side effects, and cosmetic results 

have been studied in many national and institutional trials.25,26 

Recently, Cuttino et al reported the outcome of a Phase IV 

multi- institutional trial using the Contura device. The local 

recurrence rate was 2.8%, and 88% of patients had good to 

excellent cosmesis at a median follow-up duration of 3 years.27 

We have reported the 5-year outcomes and cosmetic results 

for the randomized National Surgical Adjuvant Breast Project 

B-39 trial of whole breast irradiation versus partial breast 

irradiation,28–30 and found that the 5-year actuarial ipsilateral 

breast recurrence rate was 3.8%, and 90.4% of the patients had 

excellent/good cosmetic results at 72 months post-treatment. 

Factors predicting recurrence were negative estrogen receptor 

status (P=0.0011) for invasive breast cancer, while age ,50 

years (P=0.0096) and positive margin status (P=0.0126) were 

associated with recurrence in patients with ductal carcinoma 

in situ. Predictors associated with worse cosmetic outcome 

were skin spacing and tumor size. In addition to these find-

ings, patients with skin spacing ,5 mm (,7 mm at some 

institutions) were not eligible for treatment with these bal-

loon applicators. To overcome this skin distance limitation, 

a new applicator, the strut-adjusted volume implant (SAVI; 

Cianna Medical, Aliso Viejo, CA, USA), has been recently 

developed. It has better skin-sparing capability, and thus allows 

an increase in eligibility for APBI. Although it does have a 

high V200 volume (as the irradiated tissue is much closer to 

the source dwell positions), initial studies have shown that it 

can provide better dosimetry to the target while minimizing 

the dose to the skin and ribs, with a low incidence of side 

effects.31 However, long-term toxicity and cosmetic studies 

are not yet available.

Brachytherapy also plays a key role in treating patients 

with uterine and cervical cancer. The Manchester system, 

which is the most commonly used dosimetric system, dates 

back to 1938.32 It was later updated to the revised Manchester 

system,33 in which the prescription has been traditionally tied 

to Point A, which is based on applicator geometry rather 

than target and patient anatomy, and represents the tolerance 

dose of a critical structure (uterine vessels), rather than the 

tumoricidal dose to a target structure. In a 2007 survey, 60% 

of institutions still used this method.34 Although simple and 

effective, this method has been shown to frequently under-

dose the target and overdose the critical structures, due to 

variations in human anatomy. International Commission on 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

201

Catheter technologies in radiation oncology brachytherapy

Radiation Units and Measurements Report 38 was intended 

to standardize treatment planning and reference volumes, 

but was not well accepted in the clinic.35 To increase the 

therapeutic ratio and take advantage of image guidance, 

both the European Society for Radiotherapy and Oncology 

(ESTRO)36,37 and the American Society for Therapeutic Radi-

ology and Oncology38 have published guidelines for using 

volumetric imaging, especially magnetic resonance (MR) 

imaging, for target delineation, and for using dose-volume 

histogram parameters for target coverage, hotspot identifica-

tion, and organ at risk dose reporting. Recently, the  American 

Brachytherapy Society published consensus guidelines 

for gynecologic procedures.39–41 The trend in gynecologic 

brachytherapy is to use HDR rather than LDR, with volu-

metric image-based planning, especially MR imaging.42–44 

Recent studies demonstrated improved dosimetry with 

three-dimensional image guidance and use of ESTRO 

guidelines.45,46 Recently developed and updated applicators 

and catheter techniques for gynecologic brachytherapy are 

aimed to make applicators CT/MR-compatible, MR-visible, 

cause fewer artifacts in MR images,47–51 and extend coverage 

area and flexibility by modifying traditional applicators.52–54 

For example, the new CT/MR Fletcher applicator with move-

able shielding incorporated in the ovoids can reduce the dose 

by up to 50% in the anterior-posterior direction.55–57

Beyond prostate, breast, and gynecologic applications, 

HDR brachytherapy has been used for treatments of the 

pituitary,58 external auditory canal,59 upper gum,60 tongue,61,62 

ethmoid sinus sarcoma,63 stomal recurrences of laryngeal 

tumors,64 other sites of the head and neck,65–68 spine,69 liver,70 

colorectal endoscopic brachytherapy,71,72 and extremity 

sarcomas.

New catheter technologies have been applied to every 

aspect in brachytherapy. Below, we will focus on their 

applications in image guidance, catheter reconstruction, and 

extended coverage via newly developed applicators.

New catheter technologies  
in brachytherapy
After identifying the target, the key factors in a brachytherapy 

procedure are choosing appropriate sources and applicators, 

accurately placing them at the tumor or treatment location, 

identifying the sources or reconstructing the catheter track 

correctly, planning the treatment accordingly, and keeping 

the catheters in the same position during all subsequent 

fractions, so as to precisely deliver the planned dose. Most 

of the radioactive seeds and sources are delivered to the 

treatment region via a catheter and applicators. Except for 

interstitial brachytherapy treatments, the catheters are always 

in the form of a specialized applicator. Applicators are usu-

ally easier to place, reconstruct, and plan with, and result in 

more predictable dosimetry. Numerous new applicators have 

been developed recently to address different clinical aspects 

of various body sites, provide better visualization in various 

imaging modalities, provide better handling and implanting, 

or allow better dosimetry at the target.

Multi-modality image guidance 
of catheter/applicator insertion, 
reconstruction, and verification
Image guidance plays a key role in modern brachytherapy 

procedures, especially in the GEC-ESTRO guidelines for 

gynecologic brachytherapy.36,37,73 Tanderup et al recently 

reviewed the application of MR imaging and its advantages/

limitations in brachytherapy.74 With the increasing prevalence 

of MR imaging in brachytherapy, many classical applicators 

have been modified to be not only CT-compatible, but also 

MR-compatible. Nucletron (now Elekta AB, Stockholm, 

Sweden) has Fletcher, ring, and tandem applicators available 

in a plastic material for CT/MR compatibility. Varian Medi-

cal Systems Inc. (Palo Alto, CA, USA) provides titanium 

gynecologic applicators for the same purpose. Although 

mechanically stronger and more compact than their plastic 

counterparts, titanium applicators show strong susceptibility 

to distortion and artifacts in MR imaging. These artifacts 

appear as signal hypointensity around the applicators. The 

extension and location of the artifacts depend on many 

factors. Lewin et al investigated the impact of these fac-

tors on needle localization in MR-guided biopsy in 1996.75 

Although applicators in brachytherapy are much larger than 

biopsy needles, most of their findings still apply: higher MR 

main magnet B
0
 strength is associated with greater artifact; 

a smaller angle between the needle and B
0
 results in less 

artifact; and the MR scanning sequence plays a key role in 

determining the extent and amplitude of artifacts.

Haack et al47 and Petit et al50 studied titanium applicator 

reconstruction in phantoms and patients using 1.5 T MR 

images. Although the artifact width for titanium tandems 

varied with the relative angle between the tandem and B
0
, 

both reported reaching submillimeter accuracy in localizing 

the center of the tandem in phantom studies, due to the sym-

metric round shape of the tandem. However, the tip of the 

tandem was much harder to localize, as a result of not only 

uncertainty in artifact extension, but also in data sampling 

from the relatively large slice thickness of MR imaging. In 

patient studies, both groups reported  interobserver accuracy 
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results, as CT images were not used as a “gold-standard” 

reference for clinical patients. As both studies used dif-

ferent MR scan protocols and applicators, both reported 

different reconstruction accuracies. Haack et al used a 

T1-weighted turbo spin-echo sequence with 0.8×0.8 mm 

in-plane resolution and 3 mm slice thickness, and reported 

an interobserver accuracy of −0.9±2.3 mm for tandem tip 

localization. Although Lewin et al mentioned that artifact was 

more pronounced with gradient-echo sequences than with 

turbo spin-echo sequences, higher artifact is not necessarily 

associated with lower reconstruction accuracy. By increasing 

the contrast between soft tissue and the applicator using a 

spoiled gradient-echo sequence with 1.6×1.6 mm in-plane 

resolution and 1.6 mm slice spacing, Petit et al were able to 

reach a mean interobserver accuracy of 0.7 mm and a maxi-

mum deviation ,1.7 mm. They accomplished this by using 

an applicator model, which used the outline of the ovoid and 

the direction of the tandem as a reference, because of their 

fixed geometry. Recently, Schindel et al have proposed use 

of a marker flange on titanium tandems, and reported an 

accuracy of 0.42±0.14 mm for localization of the marker 

flange when using CuSO
4
 as the marker filling material in 

a 3 T T1-weighted MR scan with a three-dimensional voxel 

size of 1.2×0.9×1.0 mm.49 The same group also investigated 

the artifact and distortion of titanium tandem and ovoid and 

tandem and ring applicators in 3T MR scans.48 Instead of 

determining the accuracy of reconstruction, they tried to 

quantify the actual artifact width. In a phantom study, they 

found that the artifact’s width at the tandem tip for both tan-

dem and ovoid and tandem and ring was 1.5±0.5 mm in the 

superior direction. Similar results were found for the ovoids. 

In a patient study, the width of the artifact for the tandem 

was ,2.6±1.3 mm. The distortion was ,1.2±0.6 mm.

Both Haack et al and Schindel et al studied plastic cath-

eter reconstruction with MR imaging. Haack et al reported a 

1.1 mm and 0.6 mm deviation from CT reconstruction for the 

tip of the tandem and the center of the ring source channel, 

respectively, in a phantom study using a custom-made CuSO
4
 

filled dummy plastic catheter in a 1.5T MR scan. Schindel 

et al investigated signal intensities for different marker agents 

in a 3 T MR scan.49 They found that CuSO
4
 generated the 

best hypersignals in T1-weighted MR sequences, and saline 

is the best agent for T2-weighted MR sequences.

electromagnetic tracking
In brachytherapy, catheter reconstruction is one of the most 

important procedures in treatment planning, and relates the 

source tracks and dwell positions to the patient’s anatomy 

(eg, targets and organs at risk). As discussed previously, 

investigators have tried to improve the fidelity of detect-

ability and visualization of catheters and applicators on 

imaging. However, due to the intrinsic limitations of some 

imaging modalities, it is difficult to accurately reconstruct 

catheters. For example, in a TRUS-based real time prostate 

HDR implant procedure, a treatment plan is generated in 

real time and the treatment is delivered while the patient is 

still in the same position. As the dosimetry of a treatment 

plan is directly related to needle positions, accurate catheter 

reconstruction is critical for accurate dosimetry. However, as 

shown in Figure 1, this is highly challenging, due to degraded 

ultrasound images from tissue speckles, calcifications, and 

in some cases, radiopaque markers. In addition, interference 

between catheters, due to signal reflection and interchannel 

crosstalk, further deteriorates catheter identification and thus 

reconstruction. As image resolution decreases with increasing 

distance from the probe, the catheter localization accuracy 

in the anterior part of the image is further decreased. Studies 

have shown that ultrasound beam width artifacts, an obscured 

needle tip, and a slightly bent ultrasound probe can result in 

greater than 5 mm errors in catheter tip localization.76–78 When 

a catheter is shadowed by another catheter posteriorly, or is 

close to strongly reflecting objects, its reconstruction can be 

very unreliable. Wilkinson and Kolar recently investigated 

medical event reports on the Nuclear Regulatory Commission 

website for HDR-related events for the years 1999–2012.79 

Of all 44 events reported, 29 were related to catheter recon-

struction, including wrong index length, wrong catheter track 

identification, and misidentification of first dwell position.

To address these challenges in catheter reconstruction 

and thus improve dosimetric accuracy, we first introduced 

and implemented an electromagnetic tracking (EMT) sys-

tem to automatically track catheter positions, increasing the 

accuracy and speed of the catheter reconstruction process.80 

EMT has been used for interventional radiology,81 guidance 

of intraoperative surgical procedures,82–84 and radiation 

therapy.85 EMT uses a three-pole transmitter to generate 

an electromagnetic field. One or more sensors located in 

the electromagnetic field generate voltages proportional 

to their distance from the transmitter, which are then used 

to calculate positional and angular information. Two EMT 

techniques exist, ie, alternating current (AC) tracking and 

direct current (DC) tracking. In AC tracking, because the 

rapidly varying electromagnetic field continuously induces 

eddy currents in nearby metals, the field may be distorted, 

causing error and noise. With DC tracking, however, pulsed 

DC fields quickly reach a steady magnetic state soon after 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

203

Catheter technologies in radiation oncology brachytherapy

transmission. By adjusting sampling rates to times when 

eddy currents are decaying or have died out, DC trackers can 

theoretically operate with minimal or no distortion. However, 

in practice, EMT still suffers substantial interference if not 

configured carefully and correctly. The performance of EMT 

in HDR catheter reconstruction depends on the accuracy of 

the EMT system itself, as well as its ability to resist noise 

and interference from the surrounding environment, the 

accuracy of the registration between the EMT results and 

the ultrasound/CT image data set, and the calibration scheme 

used to correct for nonuniform distortions resulting from 

metal interference.

eMT system accuracy

The factors that affect EMT system accuracy include: the 

inverse relationship of accuracy versus the distance between 

the field generator (FG) and the electromagnetic sensor; 

the electromagnetic noise from the outside environment 

and the electronic noise from within the acquisition circuit; 

and distortion of the magnetic field by ferromagnetic or 

other metallic materials. The variations of the magnetic 

field generated by an FG in an AC or quasi-DC system 

induce eddy currents in metals, causing distortions in the 

electromagnetic field. Ferromagnetic materials themselves 

add additional distortion, as they have an inherent magnetic 

field. The positioning error of a sensor, ∆r, introduced by 

these types of interference, has the following relationship 

with distance:86

 

∆ ∝r
d

d d

tr

tm mr

4

3 3⋅
 (1)

where d
tr
, d

tm
, and d

mr
 are the distances from the FG to the 

sensor, the FG to a metal object, and the metal object to the 

sensor, respectively. Positioning error thus decreases with a 

decreased sensor to FG distance, an increased metal object to 

FG distance, and an increased metal object to sensor distance. 

The electronic noise is mostly Gaussian-distributed, and can 

be reduced by averaging more sampling points, at the expense 

of lower tracking speed. Reducing sampling frequency in a 

quasi-DC system can alleviate the eddy current effect, but 

cannot correct for the intrinsic interference of ferromagnetic 

materials.86 In addition, the signal to noise ratio of an EMT 

system can be improved by increasing the strength of the FG 

and increasing the size of the electromagnetic sensors.

In our study, a DC electromagnetic FG (mid-range model) 

and a 6 degree-of-freedom sensor with a diameter of 1.3 mm 

(Model 130) were used in a trakSTAR system (Ascension 

Technology Corporation, Shelburne, VT, USA, as shown in 

Figure 2) for tracking catheter positions during prostate HDR 

brachytherapy. According to the manufacturer, this FG and 

sensor combination can provide a 46 cm working range from 

Figure 1 Prostate (yellow contour), uretheral (green contour), catheters (white dots in the axial image), and their reconstructions (blue circles and catheters) shown in a 

TRUS image-based prostate high dose rate planning system. The coronal, axial, and sagittal views of the TRUS image are shown in the left upper, left lower, and right lower 

panes, respectively.

Abbreviation: TRUS, transrectal ultrasound.
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the center of the FG. Localization accuracy was assessed 

using a calibration phantom with known catheter positions, 

as shown in Figure 3. The effects of the relative positions 

between the electromagnetic sensor and FG, the surrounding 

environment, and sampling frequencies were investigated. 

Our initial results showed that the performance of an EMT 

system can be improved by reducing the interference from 

surrounding equipment, decreasing the distance from the FG 

to the tracking area, and choosing an appropriate sampling 

frequency. An accuracy of 0.9±0.2 mm was obtained for 

dynamic tracking when using the optimum configuration.

Recently, Bharat et al reported a similar study that 

used EMT for catheter reconstruction in prostate HDR 

brachytherapy.87 An AC EMT system was used for this 

study. By attaching electromagnetic sensors to a robotic 

arm, the static localization accuracy of the electromagnetic 

system was evaluated both in an ideal environment and with 

distorting equipment present. An accuracy of 0.26±0.16 mm 

was achieved in the ideal environment. The error increased 

to .2 mm when distorting equipment (a 20 inch LCD 

 monitor) was approaching 30 cm of the center of the FG.

Poulin et al reported their results using EMT for catheter 

reconstruction in HDR brachytherapy.88 A  second-generation 

Aurora planar FG (Northern Digital Inc., Waterloo, Canada) 

Figure 2 electromagnetic tracking system components. A computer communicates 

with the control box through a USB interface. Both transmitter and sensor are 

connected to the control box.

Abbreviation: USB, universal serial bus.

Figure 3 electromagnetic tracking system setup and performance investigated using 

a calibration phantom.

with a stated accuracy of 0.7 mm in positioning and 0.2° 

in orientation was used. A Philips Percunav™ 18G ×15 

cm biopsy needle (Philips Electronics NV, Eindhoven, the 

Netherlands) was used in this study. 6-French catheters were 

inserted into a gelatin phantom, which was then scanned 

with a micro-CT (GE Healthcare, Fairfield, CT, USA). 

 Reconstruction was performed with an isotropic resolution 

of 89 µm in three dimensions, and the identified catheter 

tracks were used as the reference. The phantom was then 

scanned with a conventional CT (Philips Big Bore, Philips 

Medical,  Amsterdam, the Netherlands) as well, using a 2 mm 

slice thickness and 0.375 mm resolution in axial images. 

Catheters were tracked with EMT in an ideal environment. 

Reconstruction results from both conventional CT and EMT 

were registered to the reference using an iterative closest 

point algorithm employing a finite difference method.88 An 

accuracy of 1.08±0.72 mm and 0.66±0.33 mm was achieved 

with CT reconstruction and EMT reconstruction, respec-

tively. The inferior accuracy from CT-based reconstruction 

was attributed to the 2.0 mm slice thickness of the CT 

images. Table 1 lists all reports that mentioned using EMT 

for catheter tracking.

Registration between different coordinate systems

As data from an EMT system is based on the coordinates 

of the FG, it has to be transformed to the treatment plan-

ning coordinate system C
RTplan

 (in a typical prostate HDR 

planning system, this is usually based on the position of 

the implant template grid). A rigid registration is usually 

conducted based on three or more points, the positions of 

which are known in both coordinate systems. The registra-

tion points used are the catheter tip positions from the most 

posterior catheters, the tip positions of which can be clearly 

identified in TRUS images. Several other registration points 

can be chosen at free holes (holes without needles) on the 

template. The system yields two data sets; the first consists 

of the coordinates of selected registration points exported 

from the treatment planning system, while the second 

consists of the positions of the same registration points in 

electromagnetic FG coordinates. An algorithm is then used 

to find the best transformation between the two coordinate 

systems using these two data sets. As the location errors 

from the EMT system are anisotropic (depending on the 

sensors’ distances to the electromagnetic FG, noise, and 

 interference), an iterative optimization approach with 

anisotropic weighting is used.89 In addition to the errors 

resulting from EMT, there are likewise uncertainties in 

identifying catheter tip  positions in TRUS images, due 
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to the limited slice  thickness between ultrasound axial 

images and uncertainties in positional encoding during 

images scanning. As a result, the rigid registration can 

be rough and the errors in catheter reconstruction using 

transferred EMT acquisitions can be much greater than 

the corresponding intrinsic EMT tracking errors. A better 

way to register the two coordinate systems is to combine 

an optical tracking system with the EMT system by attach-

ing optical markers to the FG and to the implant template/

stepper unit, which can improve registration accuracy 

greater than 0.5 mm.

In the report by Bharat et al,87 a comprehensive registra-

tion scheme was employed. A reference electromagnetic sen-

sor was used to remove the dependence of relative position 

variation between the FG and the template grid. All EMT 

data was converted to the coordinate frame of the reference 

sensor C
Ref

 before conversion to the template grid coordinate 

system C
Grid

 (in a typical prostate HDR planning system, the 

C
Grid

 is the same as the C
RTplan

 mentioned previously). By 

introducing two additional electromagnetic sensors attached 

to the ultrasound probe, the pixels on TRUS images can be 

associated with the C
Ref

 coordinate system, and the manually 

reconstructed catheters in TRUS images can be correlated to 

the C
Ref

 as well. The reconstructed catheters in correspond-

ing CT images are converted to the C
Ref

 coordinate system 

after registering CT images to the TRUS image data set. 

Instead of using points from both the posterior catheter tips 

and the template grid, as we described previously, for the 

calculation of the transformation matrix from C
Ref

 to C
Grid

, 

points were drawn exclusively from the template grid. It 

seems that the authors from this group do not have access 

to a real treatment planning system, as the transformations 

from TRUS and CT image coordinates to C
Grid

 are built into 

the planning system, and hence these transformations are not 

necessary in a clinical situation. In their study, catheters in 

a prostate phantom were scanned with both TRUS and CT, 

and the corresponding catheter reconstructions were com-

pared with those from the EMT system in both a controlled 

ideal environment and an operating room environment. In 

the ideal environment, the discrepancies of reconstruction 

results between EMT and TRUS were 0.7±0.3 mm (maxi-

mum 1.7 mm) and 0.1±0.1 mm (maximum 0.2 mm) in the 

in-plane and out-of-plane directions, respectively. The cor-

responding discrepancies in the operating room environment 

were 0.6±0.3 mm (maximum 1.5 mm) and 0.4±0.2 mm 

(maximum 0.6 mm), respectively.

By registering EMT and CT dwell positions, Damato 

et al developed an error detection algorithm that can detect 

errors in catheter digitization during treatment planning.90 A 

trackSTAR EMT system (similar to the one we used) and two 

Model 90 sensors were used in their EMT system. Their resid-

ual mean error per catheter was 0.6±0.2 mm, with a maximum 

error of 1.3±0.7 mm. By analyzing the mean and maximum 

registration error, their algorithm was able to identify a swap/

partial swap of catheter number (when error was $2.6 mm) 

and catheter tip shift (when shift was .1.8±0.4 mm), with 

100% sensitivity and  specificity. Their report was based on 

a phantom study in an ideal  environment. The application 

of their method in a real clinical setup needs to be further 

validated.

Table 1 Accuracy of electromagnetic tracking from recent reports

Reference Year EMT field generator  
and type

EMT sensor and  

diameter

Test condition and  

environment

Accuracy (mm)

Zhou et al80 2013 Ascension trakSTAR,  

DC

Model 130, 1.3 mm Absolute, in OR without  

interfering equipment nearby

0.5±0.2

Absolute, in OR with interfering  

equipment nearby

0.9±0.2

Bharat et al87 2014 Aurora eMT system, DC 1.2 mm Absolute, in an ideal environment 0.26±0.16

Absolute, in an ideal environment  

with distorting equipment at 30 cm

.2

Post registration, eMT versus  

TRUS in ideal environment

iP: 0.7±0.3 (maximum 1.7) 

OP: 0.1±0.1 (maximum 0.2)

Post registration, eMT versus  

TRUS in OR

iP: 0.6±0.3 (maximum 1.5) 

OP: 0.4±0.2 (maximum 0.6)

Poulin et al88 2015 Aurora planar FG, AC Philips Percunav™18G  

×15 cm biopsy needle

Post registration, eMT versus  

µCT in ideal environment

iP: 0.66±0.33 

OP: 0.69±0.29

Damato  

et al90

2014 Ascension trakSTAR,  

DC

Model 90, 0.9 mm Post registration, in an ideal  

environment, eMT versus CT

0.6±0.2

Abbreviations: AC, alternating current; CT, computed tomography; DC, direct current; EMT, electromagnetic tracking; FG, field generator; OR, operating room; IP,  
in-plane; OP, out-of-plane, representing accuracy in catheter tip identification; TRUS, transrectal ultrasound.
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Calibration

While noise can be reduced by averaging and filtering raw 

data, distortion from metal interference can only be cor-

rected with proper calibration. Assuming the FG location 

and its position relative to the surrounding sources of metal 

interference are fixed, the distortion can be corrected through 

a calibration scheme calculated using premeasured data. 

Kindratenko reviewed most of the calibration methods in use 

and described the pros and cons for each method.91 The cali-

bration methods in most cases are application-dependent. In 

EMT, the Hardy multiquadric method,91 which is essentially 

a scattered data interpolation, is a good option. The Hardy 

multiquadric method is accurate in a premeasured space. 

However, corrections outside the premeasured space are not 

reliable. A quality assurance phantom with known catheter 

positions (as shown in Figure 3) can be used for calculating 

calibration profiles. It can be placed in several adjacent loca-

tions so that the acquired premeasured data can cover needle 

positions in most prostate implants. The Hardy multiquadric 

method can be briefly described as follows.

Given measured N calibration points P
i
 (i=1 to N) and 

their corresponding real positions Q
i
 (i=1 to N), a weighting 

vector A can be calculated for each coordinate so that:

 
W A Q⋅ =  (2)

where

 
W P i j to N

i j i j,

/

, ,= −( ) +( ) =P
2

1 2

1ε 2  (3)

is the system matrix and ε is the shape parameter, the value 

of which is chosen by experience and is usually between 2 

and 10. The weighting vector A can be solved as:

 
A W Q= ⋅−1  (4)

To calibrate live measured data points P
i
 (i=1 to M), a 

new system matrix W  is calculated and multiplied by the 

weighting vector A,

 
Q W A= ⋅  (5)

where

 
W P P to M j to N

i j i j,

/

, ,= −( ) +( ) = =2
2

1 2

1 1ε i  (6)

and Q is calibrated positions for P.

Catheter displacement in HDR 
brachytherapy
Another issue with HDR brachytherapy is interfraction 

catheter displacement and its effect on dosimetry. Our group 

first noticed this problem in 199592 and further demonstrated 

a mean 2.0 cm displacement between fraction 1 and 2 using 

fluoroscopy in 2001.93 Due to the high dose gradients in an 

HDR treatment plan, any unintended movement of a catheter 

relative to the target and critical organs may result in signifi-

cant changes in dosimetry. However, such movement may not 

be fully avoided due to changes in patient position, internal 

organ motion, and tissue swelling/edema.  Practitioners and 

researchers have been investigating the magnitude of catheter 

displacements and their effects on dosimetry by using films,94 

fluoroscopy images,93 helical CT,95–100 cone beam CT,101,102 or 

CT/MR scans.103 These investigations have yielded the fol-

lowing results. Firstly, catheters have their most significant 

movement in the caudal direction,94 and mostly in the range 

of 5–10 mm. Secondly, their displacement depends on the 

type of template/applicator being used, and on the immo-

bilization/suture method employed. Mikami et al reported 

much smaller median displacements (1 mm at 21 hours and 

2 mm at 45 hours) with their unique ambulatory technique.97 

Thirdly, catheter displacement is time interval/fraction 

number-dependent. Holly et al reported that even at the first 

treatment fraction, a mean displacement of 11 mm from the 

planning CT was noticed.101 Whitaker et al did a similar 

study and found a mean displacement of 7.5 mm between 

planning and treatment.99 As a result, using images acquired 

at the time of the first fraction as reference96 may not truly 

reflect the scale of displacement. Fourthly, internal move-

ment of the catheters may not be reflected by the catheter 

free length (external length) outside the template.95 The target 

may shift off from the catheters inside the body, while keep-

ing the outside template and catheters unchanged. Fifth and 

finally, fiducial markers, instead of bony structures, should 

be used for registration between subsequent fractions and 

the reference image set, even though their location relative 

to the target may migrate as well.94 Catheter displacement 

can be corrected by changing source dwell positions, or by 

physical readvancement of catheters before treatment; it 

may also be compensated for by using a large clinical target 

volume margin. Although treatment dosimetry is improved 

after this correction, it remains inferior to the corresponding 

original plans in most cases. To address this problem, we 

are investigating the use of EMT to improve this process. 

By registering to external markers or to implanted radiof-

requency transponders, EMT can be used to verify catheter 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

207

Catheter technologies in radiation oncology brachytherapy

 reconstruction before treatment delivery. As there is no added 

ionizing radiation dose to the patient, EMT can be safely 

reused to check any catheter displacement.

Applicators with better/improved 
dosimetry
Both industry vendors and researchers have been working on 

developing new devices and revising existing applicators to 

adapt to new clinical needs while improving their efficacy in 

traditional applications by improving dosimetry or extending 

coverage volume.

Strut-adjusted volume implant

The MammoSite applicator was first introduced into clinics 

for partial breast irradiation in 2002 with a single lumen and 

centered dwell position.104,105 Its spherical symmetric isod-

ose distribution made it difficult in some situations to avoid 

potential overdose to adjacent skin and ribs. To address this 

limitation, an updated multi-lumen MammoSite with four 

catheters, one central and three equidistant at about 5 mm 

from the center, as well as the Contura with five catheters, one 

central and four equidistant at about 6 mm from the center, 

were developed. However, even with additional lumens, it 

was difficult in some patients to avoid overdosing the ribs 

and skin surface (,5 mm to the balloon surface). In 2011, 

the SAVI device became available. It has six, eight, or ten 

equidistant struts surrounding a central lumen, without any 

water-filled balloon and directly in contact with the cavity 

wall. For a typical 8+1 SAVI applicator (eight surrounding 

channels and one central), the maximum separation between 

the surrounding channels and the central channel varies 

between 5 mm at the ends to 27 mm at the center (compare 

to the fixed 5–6 mm distance from the surrounding chan-

nels to the central one in balloon devices). Because of these 

characteristics, the SAVI can provide more dose modulation 

than balloon-based devices.106,107 As a result, the dose to the 

skin, ribs, and pectoralis muscle can be significantly reduced 

while maintaining coverage of the planning target volume. 

As no spacer (water-filled balloon) separates the surrounding 

catheters from the target tissue, dose heterogeneity is usually 

higher and the V
200

 is limited to 20 cc, instead of 10 cc, as in 

the case of treatments employing balloon devices.

Applicators for gynecology

Several gynecologic applicators have recently been made 

available to the clinician to improve dosimetry, anatomic ver-

satility, and coverage area, when compared with traditional 

applicators. The conventional single-channel vaginal cylinder 

has been extended to a multi-channel vaginal cylinder with 

one central channel and eight peripheral channels (Nucletron, 

Elekta AB). Studies have shown that with similar coverage 

of the clinical target volume, the multi-channel vaginal 

cylinder provides significantly improved dosimetry to the 

rectum.54 In 2009, Nucletron launched two new combined 

 intracavitary/interstitial gynecologic applicators. The intersti-

tial ring applicator is based on the Vienna  applicator108 and is 

used when tumor extension exceeds 3.5 cm at the ring level, 

2.5 cm at the point A level, and 2.2 cm at a distance 3–4 cm 

cranial to the ring surface or if the tumor is not symmetrically 

distributed around the tandem.109 The Utrecht interstitial 

Fletcher-like applicator uses the ovoids as templates for 

needle insertion.

Discussion and conclusion
More institutions have adopted the new GEC-ESTRO guide-

lines for image-guided brachytherapy. The increasing use of 

MR imaging as the sole imaging modality in gynecologic 

cases has made MR-compatible catheters and applicators 

more important. Although plastic applicators introduce 

minimum artifact and interference in MR scans, their size is 

not ideal in some situations. Their structural strength poses 

another potential risk for the procedure, as demonstrated by 

the recent recall of some plastic applicators. The titanium 

applicators, however, have substantial problems with arti-

fact, dependent on relative position and scanning sequence. 

Again, higher artifact width may not be associated with lower 

reconstruction accuracy. Instead, it is the uncertainty of this 

artifact width that results in higher variation of reconstruction 

accuracy. MR image-guided brachytherapy with titanium 

applicators should be carefully checked, and an additional CT 

scan may be necessary due to large uncertainties in applicator 

reconstruction. Further investigation is necessary to improve 

catheter and applicator reconstruction in MR.

Recently, the joint American Association of Physicists in 

Medicine/GEC-ESTRO committee reviewed the uncertain-

ties in brachytherapy.110 The advanced catheter technologies 

discussed in this paper are essentially trying to minimize the 

uncertainties and errors in brachytherapy. The using of MR 

imaging can minimize the uncertainty in delineating targets 

and organs at risk. Although catheter reconstruction with 

MR imaging may introduce additional uncertainties, it can 

be minimized by registering the MR images to CT images. 

Similarly, the EMT can be used to reduce the uncertainty 

in catheter reconstruction and correct interfraction catheter 

displacements. The accuracy of the EMT system can be 

improved with calibration schemes.
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As the uncertainties in brachytherapy being reduced, 

many new hypofractionation and focal tumor boost protocols 

have been developed.111–113 Hypofractionated HDR mono-

therapy for prostate cancer has been gaining more attention 

from investigators, not only because of reduced in-hospital 

time for the patient, but also because of the low α/β ratio (1 to 

2 Gy) of prostate cancer. Prada et al reported using treatments 

of a single HDR fraction of 19 Gy for patients with favorable 

prostate cancer.114 The treatments were well tolerated, and 

the biochemical control at 32 months was similar to that in 

patients treated with LDR prostate seed implants. In Canada, 

Morton et al treated patients with intermediate-risk prostate 

cancer with intensity modulated radiation therapy followed 

by a single HDR fraction of 15 Gy as a boost treatment.111 As 

the prescription doses in these hypofractionated treatments 

are significantly higher than in conventional treatments, the 

precision of treatment planning is critical. Ultrasound-based 

planning has the advantage of in situ imaging, planning, and 

treatment, and a satisfactory, reliable plan could be gener-

ated and delivered using this technique. However, catheter 

reconstruction based on ultrasound imaging can sometimes 

be very challenging. EMT provides a better way to not only 

improve the accuracy and speed of catheter reconstruction, 

but also reduces the degree of human error associated with 

it. Initial phantom studies show very promising results and 

further clinical tests are required to validate this technique 

in the treatment of real patients.

Studies have shown that breast cancers also have a low α/β 

ratio (5 Gy), which prompted investigators to hypofraction-

ate their treatment similarly to prostate cancer. New 2-day 

fractionation schemes have been demonstrated in different 

national and institutional trials. At our institution, we started 

a Phase II trial in 2004 using the MammoSite applicator to 

deliver four fractions of APBI in two treatment days (7 Gy/

fx for a total of 28 Gy). The initial published results of this 

study have demonstrated acceptable Grade II/III chronic 

toxicity rates and comparable local control, survival, and 

cosmesis when compared with the standard 5-day APBI 

treatment course with MammoSite.115–117 In 2009, SenoRx 

Inc., the company that produces the Contura applicator, 

initiated a multi-institutional study investigating the use of 

the Contura balloon brachytherapy device in a 2-day regi-

men at three specific dose levels, ie, 7 Gy ×4, 8.25 Gy ×3, 

and 10.25 Gy ×2. The initial study of 30 patients treated at 

the 7 Gy ×4 fraction dose level and followed for 6 months 

demonstrated the feasibility of this short-course APBI.118 

The optimized dosimetry provided by newly developed 

multi-catheter applicators is important in reducing doses to 

critical structures while maintaining target coverage. As new 

catheter technologies come to be applied in the clinic, patient 

care can be substantially improved.
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