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Abstract

As one of the most consumed beverages in the world, coffee plays many major socioeconomical roles in various regions.
Because of the wide coffee varieties available in the marketplaces, and the substantial price gaps between them (e.g.,
Arabica versus Robusta; speciality versus commodity coffees), coffees are susceptible to intentional or accidental
adulteration. Therefore, there is a sustaining interest from the producers and regulatory agents to develop protocols to
detect fraudulent practices. In general, strategies to authenticate coffee are based on targeted chemical profile analyses to
determine specific markers of adulterants, or nontargeted analyses based on the “fingerprinting” concept. This paper
reviews the literature related to chemometric approaches to discriminate coffees based on nuclear magnetic resonance
spectroscopy, chromatography, infrared/Raman spectroscopy, and array sensors/indicators. In terms of chemical profiling,
the paper focuses on the detection of diterpenes, homostachydrine, phenolic acids, carbohydrates, fatty acids,
triacylglycerols, and deoxyribonucleic acid. Finally, the prospects of coffee authentication are discussed.

Coffee is one of the most commonly consumed beverages in the
world. In general, coffees from Coffea Arabica (commonly known
as Arabica) tend to carry more fruity notes, a buttery odor, and a
roasty aroma compared to brews from Coffea canephora var.
Robusta (commonly known as Robusta), which tends to be more
bitter (1). Due to their finer sensory profile and other agronom-
ical reasons (i.e., growing at elevated altitude, greater suscepti-
bility to diseases), Arabica coffee beans command a higher price
than Robusta (2), creating conditions that are prone to fraudu-
lent practices along the value chain. In the context of “speciality
coffees” [e.g., Antigua from Guatemala, Bourbon Pointu from
Reunion Island, Blue Mountain from Jamaica, Kalossi from
Indonesia, Tres Rios from Costa Rica, Yirgacheffe from Ethiopia,
palm civet coffee (Kopi Luwak) from Indonesia], which are char-
acterized by their unique sensory properties and/or limited sup-
plies, it is susceptible to adulteration due to higher market
prices (3, 4). Possible adulteration scenarios in coffee are: mis-
representing low value beans as high value counterparts, blend-
ing single-origins with other beans, mixing of two species (e.g.,
adding cheaper Robusta to pure Arabica), and the incorporation

of undeclared plant materials (e.g., chicory, coffee husks, cere-
als, malt, or starch). Accidental adulteration could also occur
through lack of proper bean identification techniques at proc-
essing and café levels (5). The detection of adulteration is there-
fore of interest to both regulatory authorities, producers, and
consumers.

Through sensory cues (sight, taste, and smell), expert coffee
procurers and cuppers may be capable of discerning the origins
and varieties of green and roasted whole beans. However, the
accuracy and repeatability can vary substantially depending on
the level of experience, sensory acuteness towards specific cof-
fee sensory traits, physiological well-being, environmental con-
ditions, and so on. The discrimination will be more challenging
for ground and brew samples, since the specific features associ-
ated with particular coffee beans may be reduced or eliminated
during the grinding process. Optical and electron microscopy
may be used to detect the presence of adulterants, although
this approach is subjective and inefficient. Hence, other more
accurate, repeatable, and reproducible analytical techniques
(physical, chemical, and biological) are required (6).
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A typical workflow for the detection of adulteration first
involves sample extraction by a myriad of different techniques
(e.g., liquid-liquid extraction, solid-phase extraction, solid-
phase microextraction), followed by the detection of chemical
species of interest using analytical instruments (e.g., chroma-
tography, spectroscopy, mass spectrometry, electronic sensors)
(7). The detection of adulteration can be based on
“fingerprinting” (untargeted, i.e., determination of as many
metabolites as possible without specifically identifying the
metabolites) or chemical “profiling” (targeted, i.e., identified and
quantified related metabolites) approaches. The former is use-
ful for rapid classification and screening of samples, while the
latter yields direct functional information useful for confirming
the identity of the adulterants and addressing specific objec-
tives of the investigation. In the context of coffee authentica-
tion, both approaches exploit the use of analytical techniques
based on chemical (organic marker compounds, metabolites,
mineral, etc.), biomolecular (DNA, proteins), or isotopic (H, C, O,
N) principles (8, 9).

The objective of this paper is to review the literature related
to adulteration detection of coffee, specifically focusing on the
techniques and methodologies relevant for coffee brew.
Although some of the literature studies reviewed are based on
the analysis of coffee beans and grounds, they are included
because the experimental techniques and approaches may
be adaptable for the analysis of brews, with additional sample
preparatory steps.

Fingerprinting Analysis through Chemometrics

Spectral data derived from electromagnetic radiation [e.g.,
visible, near-infrared (NIR), mid-infrared (MIR), ultraviolet (UV)],
nuclear magnetic resonance (NMR), and mass spectrometry
contain molecular information that can be used as unique fin-
gerprints of coffee species and varieties. Spectral data are highly
complex; statistical procedures are often used to reduce the di-
mensionality of the data in order to be useful for coffee authen-
tication, such as identification of spectrum regions that are
relevant to the quality parameter, pattern recognition, and
detecting the presence of outliers. For this purpose, non-
supervised exploratory methods, including principle compo-
nent analysis (PCA), factorial analysis, and cluster analysis are
often being used (8, 10). While the chemometric approach
allows the use of spectral data for sample detections, DiFoggio
discussed several issues related to error propagation, such as
long-term stability of the spectrometer, spectral noises, and
artefacts that can result in poor prediction (11). Unlike explicit
modeling where phenomenon of interest is described by a spe-
cific model (e.g., kinetic), implicit modeling methods, such as
principle component regression (PCR) and partial least square
(PLS), do not impose fundamental theory on the data. Moreover,
fingerprint data often include variations that are not related
to the phenomenon of interest, and thus must be validated
and confirmed if the model includes meaningful variance (12).
This section provides an overview of chemometric techniques
exploited by researchers for the detection of adulteration in
coffee brews.

NMR spectroscopy
NMR reveals the spin state information of carbon and hydrogen
nuclei, providing specific information regarding the number
of magnetically distinct atoms of the compounds being investi-
gated. With 1H-NMR, one can determine the number of distinc-
tive hydrogen nuclei present, as well as the nature of their

surrounding environment (13). This characteristic is attractive
for coffee brew analysis as the technique allows analysis of
brew samples without chemical derivatization and separation,
which greatly simplifies the workflow.

Cagliani et al. evaluated the feasibility of using 1H-NMR
spectroscopy to determine Robusta composition in Arabica/
Robusta blends. They prepared water extractions of Arabica and
Robusta coffees, followed by analyzing the supernatant, after
centrifuge treatment, with 1H-NMR spectroscopy (14). They
employed Orthogonal Projection to Latent Structures (OPLS) to
analyze the NMR spectral data, which is a preprocessing
method to remove systematic variation from the spectral data
matrix, X, that are not correlated with the response matrix, Y
(e.g., concentration) of interest. Examples of systematic varia-
tions that are irrelevant for the analysis could be scattering of
light due to sample heterogeneity, differences in path length,
limited signals in narrow spectral regions, and so on. With the
removal of systematic variability in X that is orthogonal to Y, ro-
bust models can be achieved. Moreover, the non-correlated var-
iations in X can be analyzed separately to understand the
system better. For instance, the non-correlated variation may
be due to perturbation of spectrum baseline or slope variations
(15). Using the OPLS approach, Cagliani et al. were able to de-
velop a multivariate model capable of predicting the Arabica
content in the coffee blends accurately, despite the different
geographical origins and roasting conditions (14). The chemical
compounds that can be assigned to the 1H-NMR spectra of brew
samples were acetate, chlorogenic acids, caffeine, quinic acids,
trigonelline, 2-furylmethanol, N-methyl pyridine, and formate.
The same research group applied the similar OPLS 1H-NMR
technique to discriminate coffee from different geographical
regions (16). Forty coffee ground samples from three continents
(America, Africa, and Asia) were evaluated by extracting in
deuterated water, centrifuged, and decanted for analysis. They
concluded that the coffees from America were mainly charac-
terized by fatty acids. Coffees from Africa are characterized by
their chlorogenic acids and lactate. On the other hand, acetate
and trigonelline were the signature species for the Asian coffee
that accounted for sample differentiation (16). Using similar
methods, Consonni et al. can distinguish organic coffee from
conventional coffee, regardless of different geographical origins
and roasting conditions applied. From OPLS discriminant analy-
sis (DA), they determined that fatty acids, b-(1–3)-D-galactopyra-
nose, b-(1–4)-D-mannopyranose, quinic acid and its cyclic ester
are useful marker metabolites for organic coffee. On the other
hand, trigonelline, chlorogenic acid (CGA) isomers, caffeine, and
acetate were used as the key indicators for the conventional
coffees (17). Wei et al. also successfully applied OPLS to process
their 1H-NMR spectra of D2O coffee extract to achieve the taste
prediction of Robusta and Arabica coffees, with light and dark
roast degrees (18).

Arana et al. exploited 1H-NMR spectral fingerprints to dis-
criminate Colombian coffees from those of other regions in the
world (Vietnam, Guatemala, Cameroon, Vietnam, China,
Mexico, Peru, Brazil, Uganda). They prepared extracts of coffee
grounds (0.2 g) in non-deuterated chromatographic grade
methanol (1 mL) and then centrifuged. The supernatant was
transferred to the NMR tube followed by the addition of 50 lL of
deuterated methanol and then analyzed with a NMR spectrom-
eter. The spectra were analyzed using hierarchical PLS-DA.
They first identified whether the coffees were 100% Arabica (i.e.,
not blend, not Robusta), followed by classifying the Arabica
samples into Colombian versus non-Colombian groups. Score
plots of PCA exhibited clear separation between the two species.
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Score plot clusters also separated into two distinctive groups;
one being the Colombian coffees and the second one from other
origins. The “other origins” cluster was substantially more
scattered as compared to the Colombian cluster, which was
attributed to the larger variances in composition of coffee sam-
ples from different parts of the world (19).

Besides being used for the discrimination of Robusta and
Arabica coffees, 1H-NMR spectroscopy is useful for the detection
of non-coffee adulterants. Ribeiro et al. applied a simple 1H-
NMR method for the detection of corn, coffee husks, barley, and
soybean in aqueous extract of coffee samples (20). Ground sam-
ples (150 mg) were extracted with 1000 lL of deuterated water,
vortexed for 1 min and centrifuged for 10 min. The supernatant
was then transferred to an NMR tube for analysis using a 600
MHz NMR spectrometer. To detect the presence of corn, an in-
tense peak at 5.30 ppm was used. Signals at 5.30 and 3.15 ppm
were chosen for barley detection. Peaks at 5.30 and 4.87 ppm
were used for the detection of soybean and signals at 5.08 and
4.98 ppm were identified as the markers for coffee husk. Results
from the NMR were in accordance with the certified pure and
adulterated samples from Associaç~ao Brasileira da Indústria de
Café.

These observations suggest that 1H-NMR, along with multi-
variate analysis, can be a very powerful technique for adultera-
tion detection in coffee (21). Further refinement of NMR
methodology will expand its applicability for coffee testing, in-
cluding the detection of adulterants, and elucidating how roast-
ing conditions (e.g., time-temperature profile, degrees of roast)
affect the fingerprints of coffees. Figure 1 summarizes the peak
assignments of major chemical species in 1H-NMR spectrum for
aqueous and lipophilic extracts of Arabica and Robusta coffees.

Chromatography
Chromatography is one of the most versatile techniques for
fraud detection in coffee. With optimal columns and mobile
phases, mixtures of chemical species in coffee samples can be

effectively separated either in gaseous [gas chromatography
(GC)] or liquid [liquid chromatography (LC)] phases. In the pres-
ence of a suitable detector [e.g., flame ionization detector (FID),
thermal conductivity detector (TCD), mass spectrometer (MS),
diode array detector (DAD), fluorescence detector, and so on],
physical or chemical properties of the eluates can be monitored
as a function of time, yielding chromatograms that show
unique fingerprints of the coffee specimens (23). The usefulness
of the chromatographic fingerprints depends on the number of
theoretical plates attained by the column for separating the
mixtures, the detector’s sensitivity towards the eluates, and
more importantly, the reproducibility of the sample preparation
step in extracting the chemical species relevant for authentica-
tion purposes. In addition, due to the inherent variation of re-
tention time from changing of the mobile phase, stationary
phase, operating pressure, and temperature and so on, pre-
treatment of chromatogram data is essential before chemomet-
ric analysis.

Oliveira et al. evaluated the feasibility of using GC-MS for the
detection of coffee adulteration with roasted barley, focusing on
looking at the headspace volatile compounds above ground
samples using a solid phase micro-extraction (SPME) technique.
Only chromatogram peaks with signal-to-noise ratios of higher
than 50 were selected for PCA analysis. Their method was capa-
ble of detecting coffee containing roasted barley at concentra-
tions as low as 1% (w/w). They observed that this level of
detection was more feasible for dark roast coffees, for which
adulteration tends to be more prevalent to evade sensory detec-
tion (24). Piccino et al. employed a solid phase extraction (SPE)
method to extract the brew volatiles in order to discriminate
the coffee brew of three trade classifications (“Grand cru”,
“Sublime”, and “Authentique”) of Bourbon Pointu coffee, and
Coffea arabica var. laurina, from Reunion Island. With their GC-
MS method, potent odorants specific to the trade classification
were identified by their odor activity value. They established
that “Grand cru” classification is characterized by aldehydes

Figure 1. Peak assignments of 1H-NMR spectra for (i) water extract of Robusta coffee (14); (ii) water extract of Arabica coffee (14); (iii) water extract of Arabica coffee (16);

(iv) methanol extract of Arabica coffee (19); (v) lipophilic extract (in deuterated chloroform) of Robusta coffee (22); and (vi) lipophilic extract (in deuterated chloroform)

of Arabica coffee (22). T: trigonelline; NP: N-methyl pyridine; F: formate; C: caffeine; CGA: chlorogenic acids; FM: 2-furyl methanol; Q: quinic acid; LA: lactic acid; FA: fatty

acids; w: water; K: kahweol; TG: triglyceride; 16-OMC: 16-O-methylcafestol. Figures were re-created based on the spectral data from Cagliani et al. (14), Consonni et al.

(16), Arana et al. (19), and Monakhova et al. (22).
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[e.g., (E,E)-2,4-nonadienal; (E,Z)-2,4-heptadienal], “Sublime” by
2-phenylacetaldehyde, and “Authentique” by pyrazine com-
pounds (e.g., 2-methyl-5-propylpyrazine) (3).

Carbohydrates are very useful tracers for the authenticity as-
sessment of coffee. High performance anion-exchange chroma-
tography (HPAEC) with pulsed amperometric detection (PAD) is
the most commonly-used technique to study the carbohydrate
composition of coffee and to detect coffee frauds (25). HPAEC
exploits the weak acidic nature of carbohydrates to achieve se-
lective separations at elevated pH, using an anion-exchange
stationary phase without the need of derivatization. PAD of car-
bohydrates, with typical signal-to-noise ratios of �10 picomol,
is based on measuring the electrical current generated by the
oxidation of carbohydrates at the surface of a gold electrode at
high pH, by applying a positive potential. The current is propor-
tional to the carbohydrate concentration. Between runs, the
electrode needs to be regenerated by increasing the electrical
potential to oxidize the gold surface, followed by a reduction in
potential to reduce the electrode surface back to gold. The offi-
cial method ISO 11292 is essentially based on HPAEC-PAD for
the determination of free and total carbohydrates in soluble cof-
fees (26). Domingues et al. applied a high-performance liquid
chromatography (HPLC)-HPAEC-PAD method for carbohydrate
analysis to detect adulteration of Brazilian coffees with triticale
and acai seeds (25). They concluded that galactose was charac-
teristic for the Arabica coffee matrix. By contrast, glucose
and xylose were predominantly present in triticale, and man-
nose in the acai matrix. On the other hand, Domingues et al.
performed the carbohydrate analysis with the post-column
derivatization reaction with a HPLC-UV-Vis system. Overall, the
post-column derivatization approach had lower resolution and
sensitivity than the HPLC-HPAEC-PAD technique. However, in
view of the faster and easier operating protocols, and the avail-
ability in most laboratories, the former can be more preferable
for routine screening of adulterants during quality control,
while the latter is more superior for quantification and the de-
velopment of predictive modelling (25). In another study, Cai
et al. applied a similar liquid chromatography technique to pro-
file oligosaccharides in coffee. They used ultra-performance liq-
uid chromatography (UPLC)-high resolution mass spectrometry
(HRMS) to establish the oligosaccharide profiles for the detec-
tion of rice and soybean adulterants in ground coffee.
Oligosaccharides were extracted, purified, and derivatized with
2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine for UPLC-
HRMS analysis. From OPLS DA, they identified 17 oligosaccha-
ride indicators that were present in rice and soybean, but not in
coffee. Focusing on these oligosaccharides from the adulterants,
the chemometric analysis allowed the detection of rice or soy-
bean contents of as low as 5% in coffee (27).

Choi et al. applied an integrated metabolomic approach of
combining multiple analytical data to determine the geographi-
cal origins of coffee. They fingerprinted the water:methanol
(1:1) extracts of 21 coffee samples from different origins, using
LC-MS and GC-FID. In addition, they conducted targeted analy-
ses on total protein, carbohydrate, monosaccharide, and amine.
Through PCA analysis of the integrated data from the non-
targeted fingerprinting and targeted analyses, the researchers
accurately classified the coffees into the regions of Asia, South
America, and Africa (28). In an attempt to discriminate Arabica
from Robusta coffees, Casal et al. investigated trigonelline,
nicotinic acid, and caffeine contents in hot brews. Samples
were filtered and analyzed using an HPLC equipped with a
reversed-phase column and a diode array detector. A gradient
mobile phase of phosphate buffer (pH 4.0; 0.1 M) and methanol

was used, allowing simultaneous detection of the three analytes
(29). They concluded that trigonelline and caffeine can be used in
the discrimination of pure roasted Arabica and Robusta coffees,
but not enough for identification of geographical origins.

Infrared (IR) and Raman Spectroscopy
The electromagnetic spectrum useful for vibrational analysis
spans three regions. The mid-infrared region spans from 2.5 to
15 lm, corresponding to 4000 to 400 cm�1 wavenumber. The
near-infrared spans from 0.77 to 2.5 lm (13 000 to 4000 cm�1),
while far-infrared is the region of >25 lm (<400 cm�1). Because
covalent bonds absorb electromagnetic radiation at the fre-
quencies in the infrared regions, and infrared spectra is unique
for specific molecule, infrared spectroscopy is a useful tech-
nique for obtaining the “fingerprints” of coffee samples.
Moreover, since IR analysis is non-destructive and requires
minimal sample preparation, it is a powerful tool for rapid
analysis of coffee samples (13, 30).

Briandet et al. employed Fourier transform infrared (FTIR)
techniques, in attenuated total reflection (ATR) and diffuse re-
flectance modes, to discriminate instant coffee from adulter-
ated counterparts doped with glucose, starch, or chicory (5).
They applied PCA to reduce the dimensionality of the spectral
data, followed by linear discriminant analysis (LDA) of the sam-
ples. They also applied PLS regression and artificial neural net-
work to discriminate the adulterated coffee samples. Coffee and
adulterant were thoroughly mixed and then scanned directly in
reflectance measurement, while for ATR analysis, samples were
dissolved in water (0.33 g/mL) and then scanned. They reported
that both methods were capable of 100% discriminating
samples with adulterants, at a level of as low as 20 g/kg.
Despite the strong absorbance from water in ATR mode, the
FTIR spectral data in the fingerprint region (1000 to 1500 cm�1)
provided adequate signals to discriminate the adulterated
from the authentic products. Similarly, Kemsley et al.
employed FTIR diffuse reflectance spectroscopy and success-
fully discriminated Arabica (20 varieties) from Robusta (8 vari-
eties) coffee grounds (31).

Wang et al. combined ATR-FTIR and chemometric analysis
to discriminate Arabica coffees from different geographical ori-
gins (Colombia, Costa Rica, Ethiopia, Kenya) and of different
degrees of roast, by analyzing the extracts obtained by exposing
the coffee grounds to organic solvents (hexane, dichlorome-
thane, ethyl acetate, and acetone; polarity indices of 0.1, 3.1, 4.4,
and 5.1, respectively) in the presence of an equal volume of wa-
ter (32). From PCA, the different clustering behaviors were ob-
served for extracts prepared from different solvents, attributing
to the different polarities of the solvents used. Hexane tended
to extract nonpolar compounds from the coffee, while acetone
extracted polar compounds. For dichloromethane and ethyl ac-
etate, both polar and nonpolar compounds are extracted. Ethyl
acetate extracts provided more distinctive PCA clusters for cof-
fees from four countries. The main spectral regions that contrib-
ute to the differences were 1697, 1647–1643, and 1743–1741 cm�1,
due to isolated and conjugated C¼O stretching. With this
approach, coffees from different origins were all correctly clas-
sified (100%) when ethyl acetate was used as a co-solvent, by
classification models based on soft independent modeling of
class analogy (SIMCA) (32).

Giraudo et al. employed Fourier transform near-infrared (FT-
NIR) spectroscopy and multivariate analysis to classify 191
green coffee beans from 2 continents and 9 countries (88 from
central South America and 103 from Asian countries). NIR spec-
tra of whole green beans were collected using a spectrometer
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equipped with an integrating sphere in diffuse reflectance
mode without pre-treatment. Their PLS-DA models were based
on a hierarchical approach of considering first the continent
and then the country of origin. The model allowed them to
achieve more than 98% accuracy in prediction (33). Similarly,
Luna et al. applied Raman spectroscopy directly on green coffee
beans to classify their clonal varieties, focusing on a spectral
range of 1200 and 1800 cm�1 (34). They compared the perfor-
mance of various chemometric techniques, including LDA,
mixture discriminant analysis (MDA), quadratic discriminant
analysis (QDA), regularized discriminant analysis (RDA), PLS–
DA, and SIMCA. Using mean centering (MC) spectral preprocess-
ing, they reported relatively poor prediction accuracy (63, 71, 63,
63, 61, and 98% correction for LDA, MDA, RDA, QDA, PLS–DA,
and SIMCA, respectively). Multiplicative scatter correction (MSC)
provided more accurate results when compared to the MC tech-
nique (98% for LDA, and 100% for all other statistical methods).
These findings highlight that, for whole bean analysis, due to
the heterogeneity of the specimens, pre-processing treatment
on the spectral data is essential.

Assis et al. combined ATR-FTIR and a novel paper spray ioni-
zation mass spectrometry (PS-MS) (35) to evaluate 120 Arabica/
Robusta blends adulterated with Robusta (0.0–33.0%). PLS mod-
els based on fusion of ATR-FTIR and PS-MS data sets resulted in
better predictions than the individual datasets. Furthermore,
genetic algorithms (GA) and ordered predictors selection (OPS)
variable selection methods allowed the removal of irrelevant
information and redundant variables, reducing the number of
variables to about 10% of the original spectra, facilitating
the spectral interpretation. They concluded that trigonelline,
chlorogenic acid, quinic acid, and sugar are the main markers
that distinguished Robusta from Arabica coffees (36).

Array Sensors/Indicators
Array sensors/indicators are based on the technique of
collecting a combined response simultaneously from an array
of sensing elements that are responsive to the complex mix-
tures of compounds present in the samples, without attempting
to separate them. Conventional electronic noses and tongues
are based on this concept, by using multiple cross-reactive non-
specific sensors responsive to changes in physical properties
or surface reaction, such as those based on metal oxide, conduc-
tive polymer, acoustic wave, quartz crystal microbalance, and
so on (37, 38). This approach has been used by researchers for
the discrimination of various food products, including coffees
(39–43).

Suslick and colleagues adopted an alternate approach of
applying colorimetric indicator array with specific chemistries
for coffee aroma analyses (44). Unlike the conventional elec-
tronic nose technology that relies on nonspecific van der
Waals interactions, their colorimetric array employed specific
chemical reactions. They created a 6 � 6 indicator array by
printing various classes of chemically responsive pigments on
a poly(ethylene terephthalate) substrate, including metallopor-
phyrins (sensitive to Lewis bases, i.e., electron pair donation,
metal ion ligation), acid indicators, base indicators, vapochro-
mic (dyes with large permanent dipoles that respond to local
polarity), and metal salts (respond to redox reactions). Saturating
the colorimetric array to the aroma of commercial roasted coffee
samples caused color changes of the dye elements. Subtracting
the final color with the initial color of each of the elements
resulted in a color difference map that represent the molecular
fingerprint for each of the coffee aroma (Figure 2a). By analyzing
the 108-dimensional vector [i.e., changes in red, green, and

blue (RGB) values in the 36 elements) using hierarchical cluster
analysis, they were able to accurately identify the coffees in all
55 cases. Their PCA also revealed extremely high levels of dimen-
sionality for the array indicator; 18 dimensions were required to
define 90% of the total variance as compared to 2–3 dimensions
in traditional electronic nose analysis that are relying on physi-
sorption onto metal oxides or into polymer films (44). Suslick
et al. further demonstrated the feasibility of using the colorimet-
ric array indicator for discriminating Columbian coffees roasted
at different time-temperature conditions with 100% accuracy in
45 trials (Figure 2b). Kim and Kang adopted a similar approach to
use a 3 � 4 colorimetric sensory array for the classification of cof-
fees (45). Their approach is based on printing twelve sensing ele-
ments on a polyvinylidene fluoride hydrophobic membrane,
forming an array indicator capable of interacting with coffee
aroma volatiles and displaying different color patterns. The first
group of sensing array elements was made up of a mixture of a
pH indicator (thymol blue, cresol red, bromocresol purple, neu-
tral red, bromoxylenol blue, and metanil yellow) with 2,4-dini-
trophenylhydrazine stabilized with PEG 400. These elements
react with carbonyl compounds (e.g., Strecker aldehydes and
a-diketones) and change color. The second group of elements
was targeting sulfur compounds (e.g., thiols and mercaptophe-
nol, 2,5-dimethylfuran-3-thiol, methanethiol, 2-furfurylthiol,
etc) (46, 47), made up of a mixture of 5,50-dithiobis(2-nitroben-
zoic acid) and a pH dye (bromothymol blue, cresol red, bromox-
ylenol blue, bromophenol blue, chlorophenol red, or metanil
yellow) with PEG 400 as a stabilizer. The colorimetry sensory
array displayed distinctive color patterns which differentiated
Arabica and Robusta coffees, on the basis of their brew meth-
ods and degree of roast (Figure 2c). The researchers demon-
strated that the array indicator, in conjunction with principal
component and hierarchical cluster analyses, was capable of
rapid discrimination of Arabica and Robusta coffees with dif-
ferent roast degrees and brewing procedures. The same re-
search group applied a similar colorimetric indicator array and
was able to discriminate coffee samples processed to different
roast degrees (48).

Chemical Profiling through Compositional Analyses

Diterpenes
Cafestol, kahweol, and 16-O-methylcafestol (16-OMC) are the
three main diterpenes found in the lipid fraction of coffees
(Figure 3). Arabica coffees contain substantially higher contents
of cafestol and kahweol. On the other hand, Robusta coffees
contain mainly cafestol with a small amount of kahweol, along
with 16-OMC. Free diterpenes are present in small quantities in
coffee oils; the majority of them present as diterpene esters
with fatty acids. Approximately 98% of these diterpene esters
are with palmitic, linoleic, oleic, stearic, arachidic, and behenic
acids, representing 9.4–21.2 g/kg and 2.2–7.6 g/kg on a dry
weight basis for Arabica and Robusta coffees, respectively.
Cafestol contents are 5.2–11.8 g/kg and 1.2–4.2 g/kg for Arabica
and Robusta, respectively (49).

Since 16-OMC esters are present only in Robusta
(�10–50 mg/kg) and not in Arabica coffees, and as it is stable
during the roasting process, 16-OMC can be used as a reliable in-
dicator of the presence of Robusta in coffee brews (49). Currently,
the official method for the detection of 16-OMC is DIN 10779 (51,
52). To detect 16-OMC, coffee oil is extracted from the coffee
samples using methyl tert-butyl ether and dichloromethane,
followed by saponification. The diterpene is then determined
from the unsaponifiable fraction by GC or reversed-phase
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chromatography using acetonitrile/water as eluent. This process
is laborious and time consuming (�5 to 6 h). Recently, a rapid
method based on a high-resolution 1H-NMR spectroscopy for
the detection of 16-OMC was reported by Schievano et al. In
their method, roasted coffee beans were grinded in liquid nitro-
gen, and then extracted with deuterated chloroform for 15 min.
The extract was filtered through a cotton wool filter directly
into the NMR tube, and 1H-NMR spectrum was acquired imme-
diately (52). This 16-OMC detection method had a limit of detec-
tion of 5 mg/kg and limit of quantitation of 20 mg/kg, which
allowed the detection of the presence of Robusta at <0.9% lev-
els. Considering the simplicity of the procedure and relatively

short turnaround time, this method can be quite appealing for
routine testing of large quantities of samples. Based on that,
Monakhova et al. conducted 1H-NMR spectroscopy analyses of li-
pophilic (CDCl3 with 0.1% tetramethylsilane) and aqueous (warm
water) extracts of 77 commercial coffee samples. NMR analysis
on the aqueous extracts did not reveal any specific markers, but
the analysis of the lipophilic fraction confirmed that the signal at
chemical shift 3.16 ppm is related to 16-OMC and can be used to
detect the presence of Robusta. Meanwhile, a signal at chemical
shift 10.21 ppm, which is related to kahweol can be used as
a marker for coffees from Arabica species, since this signal is
negligible for Robusta coffees (22).

Figure 3. Chemical structures of the major diterpenes and homostachydrine in coffees. Adapted from Speer and Kölling-Speer (49) and Servillo et al. (50).

Figure 2. (a) Color changes after 2 min of exposure to commercial roasted coffees. First, second, third, fourth, and fifth rows within each of the colorimetric arrays con-

tains different classes of chemical responsive pigments based on metalloporphyrins, acid indicators, base indicators, vapochromic, and metal salts, respectively (44).

(b) Color changes of the same colorimetric array as in (a), after 2 min exposure to a Colombian coffee bean roasted at 220 �C for different durations (44). (c) Colorimetric

sensor array responses to Arabica and Robusta coffees, processed to light and medium dark roast degrees, brewed using espresso and Aero-press methods (45). Within

each of the 3 � 4 arrays, the top six sensor elements are sensitive to carbonyl compounds, while the bottom six elements are sensitive to sulfur compounds. Colors of

the array elements shown are based on subtracting the RGB color values of the initial image from those of the final images. Adapted from Kim and Kang (45) and

Suslick et al. (44), with permissions from American Chemical Society and Elsevier.
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Recently, the peak at the chemical shift 3.16 ppm was
detected in Arabica coffees by Gunning et al., using 60 and 600
MHz fields NMR with improved preparation procedure (extrac-
tion in chloroform, filtration, evaporation, followed by re-
dissolving in deuterated chloroform) (53). Contrary to the previ-
ous belief that the peak at 3.16 ppm only arose from 16-OMC in
Robusta, their findings showed that the chemical shift at 3.16
ppm could be caused by 16-OMC or 16-O-methylkahweol (16-
OMK) from both Arabica and Robusta. This finding implies that
the existence of the peak at 3.16 ppm cannot be used as simple
indication of presence/absence test for Robusta, and the detec-
tion limit of the approach must be considered as well. Since typ-
ical Arabica coffees contain about 1–2% combined 16-OMC and
16-OMK of a typical Robusta, it is not possible to detect Robusta
adulteration in Arabica below this level using 16-OMC/16-OMK
as markers (53).

Other than 1H-NMR method, GC has been employed by
researchers to detect the presence of Robusta. For example,
Pacetti et al. for the determination of Robusta content in Italian
espresso coffee blends, by taking the peak ratio of kahweol (AK)
and 16-OMC (AOMC), i.e., AK/(AK þ AOMC), without the require-
ment of quantifying these compounds (54). The method
requires coffee oil extraction (with hexane) and saponification
processes. The unsaponifiable fraction was silylated before GC
analysis with flame ionization detector. They established a cu-
bic polynomial function to correlate Robusta content with AK/
(AK þ AOMC) ratio, yielding a strong correlation (r2 ¼ 0.998).
Reportedly, the roasting conditions did not affect the accuracy
of the results.

Wermelinger et al. applied the Raman spectroscopy to deter-
mine the Robusta content in Arabica/Robusta blends by analyz-
ing the lipid fraction, obtained from Soxhlet extraction (55).
They took the ratio between two Raman peaks, i.e., one for kah-
weol (1570 cm�1) and the other for fatty acids (1460 or 1665
cm�1), to determine the Robusta content in the coffee mixture.
The results agreed well with the laborious HPLC-based official
method DIN 10779. The Raman method had a detection limit of
4.9 to 7.5% of Robusta level. Also based on kahweol content,
Keidel et al. successfully employed Fourier transform Raman
spectroscopy (1064 nm excitation) to discriminate Robusta and
Arabica green coffee beans from different origins (Asia, Africa,
and South America). The approach resulted in decent reproduc-
ibility with an average mean standard deviation of 3.5%.
Moreover, the method is singe-bean sensitive, allowing rapid
detection of adulteration of low-value Robusta coffee in Arabica
coffee (56). It is noteworthy that since kahweol is unstable in
light, with Raman spectroscopy approach, irradiation time
should be minimized and controlled.

These studies show that the determination of diterpene
indicators, i.e., 16-OMC and kahweol, can be an effective strat-
egy to detect the adulteration of Arabica with Robusta in cof-
fees. Since diterpenes are hydrophobic, lipophilic extract
fraction should be used for analysis. In the context of coffee
brew, depending on the brewing method employed, the avail-
able target analytes can vary substantially due to the variation
in lipid content. For example, drip coffee passing through filter
paper tends to have minimal diterpene due to absorption by the
cellulosic filtration medium, while Turkish coffee tends to be
the highest. Light roast coffee prepared by French press or
boiled preparations have the highest cafestol extraction
yield, while dark roast Mocha and Turkish preparations have
the lowest extraction. Also, capsule coffee tends to contain the
highest cafestol and kahweol (57–61). Therefore, using diter-
penes as indicators to discriminate coffee species is more

optimal at coffee bean and grind levels than the final brew
products.

Homostachydrine
Besides 16-OMC, one of the potential signature compounds for
the detection of Robusta is homostachydrine. The compound is
a positively-charged betaine (pipecolic acid betaine; Figure 3),
naturally present in some plant tissues, such as those from
Medicago (alfalfa), Citrus, and Achillea genera. It is believed to
be an osmolyte in plants, playing important roles in plant resis-
tance to drought and/or salinity stress (62). Homostachydrine is
derived from pipecolic acid, an amino acid of higher homologue
of proline (50, 63). Recently, Servillo et al. discovered that
homostachydrine is present in Robusta and Arabica coffees.
More importantly, they observed that the homostachydrine
content was considerably higher in Robusta (31.0 6 10.0 mg/kg)
than Arabica beans (1.5 6 0.5 mg/kg).

The homostachydrine content was detected based on a
HPLC electrospray ionization (ESI)-MS technique, using a C8 col-
umn with 0.1% formic acid in water as a mobile phase. The
method of extraction is relatively straightforward. Coffee
grounds were extracted in 0.1% formic acid in the ratio 1:50 (w/w)
under agitation for 1 h and then centrifuged at 18 000 g for
30 min, filtered, and then analyzed. This approach is simpler
and less time-consuming than the official DIN 10779 method for
16-OMC detection. Also, since 16-OMC content spans a large
range (0.8 to 2.5 g/kg) in Robusta coffees, using this indicator
compound for accurate determination of Robusta in a blend is
challenging. On the other hand, the relatively narrow variation
of homostachydrine content in Robusta beans (31.0 6 10.0 mg/kg)
can serve as a more accurate indicator to quantify Robusta
percentage in coffee blends (63).

Phenolic Acids
Coffee brew contributes significantly to the dietary intake of
antioxidants for consumers, attributing to the antioxidant ca-
pacity of phenolic compounds and melanoidins. Chlorogenic
acids, a family of quinic acid esterified with a trans-cinnamic
acid moiety (e.g., caffeic, ferulic, and p-coumaric acid), are the
main phenolic acids in coffee, ranging from 3 to 12 g/100 g of
green coffee (dry weight basis) (64–66).

Górna�s et al. investigated the phenolic acid profiles of
boiled-type coffee brews, both regular and decaffeinated beans
from different regions and species, roasted to different degrees
(67). The phenolic acid was extracted from the brew using ion
exchange column and characterized using HPLC. The predomi-
nant phenolic acids in green and roasted coffee samples are 3-,
4- and 5-caffeoylquinic acids, with the content in green beans
being 2- to 6- fold higher than the roasted samples. Moreover,
Robusta has a higher content of phenolic acid as compared to
Arabica species, which was reported by other researchers as
well (64–66). However, total phenolic acid alone is not enough to
accurately distinguish Arabica and Robusta roasted coffee
beans, considering the sensitivity to degree of roast and rela-
tively small differences in concentration.

Recently, Mehari et al. profiled the phenolic compounds of
100 green Arabica coffee beans using UPLC-MS, in order to de-
termine the geographical origin of green coffee beans from
Ethiopia (68). Green coffee beans were powdered and extracted
in 95% aqueous methanol and then centrifuged. The superna-
tant was treated with 15 mL each of Carrez reagents to remove
polymeric components, filtered, and then analyzed using UPLC-
MS. Principal component analysis of the data identified 3-caf-
feoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5 dicaffeoylquinic

Wang et al.: Journal of AOAC INTERNATIONAL Vol. 103, No. 2, 2020 | 301

D
ow

nloaded from
 https://academ

ic.oup.com
/jaoac/article/103/2/295/5803179 by guest on 21 August 2022



acid, and 4,5-dicaffeoylquinic acid as the most discriminating
phenolic compounds for the authentication of the various re-
gional and sub-regional green coffee beans in Ethiopia (68).
These findings suggest the feasibility of using phenolic com-
pounds to distinguish coffee brews from different origins.

Carbohydrates
Polysaccharides constitute about 50% of the dry weight of green
coffee beans. Branched arabinogalactan, linear mannan (and/or
galactomannans), and unsubstituted cellulose are the three
main fractions of polysaccharides in coffee. Arabinogalactans
comprise about one-third of the polysaccharides in mature
green beans, with its content in green Arabica beans lower (14%)
than the Robusta beans (17%). Mannan and cellulose contents
in Arabica and Robusta green beans are similar, at 22 and 7%,
respectively (69–71).

Blanc et al. were among the first who studied the sugar pro-
files of coffee (72). They looked at more than a hundred of com-
mercial instant coffees and extracts of roasted Arabica and
Robusta coffees, and concluded that pure soluble coffees, re-
gardless of the extraction conditions used, contained maximum
levels of about 0.3% total xylose and sucrose and about 2% total
glucose. Elevated levels of total xylose indicate the presence of
coffee husks/parchment. In this case, the type of husks/parch-
ments added (unroasted or roasted) can also be determined by
looking at the levels of free fructose and glucose. The addition
of maltodextrins and caramelized sugar can be recognized by
elevated levels of maltose and total glucose, and elevated levels
of sucrose and total glucose, respectively (72). Based on the
same concept, Daniel et al. applied capillary electrophoresis-
tandem mass spectrometry to identify coffee adulteration. It
was reported that fucose can be used to detect coffee adulter-
ated with soybean, while elevated concentrations of glucose
and xylose were observed in coffee adulterated with corn (73).
Thus, analysis of monosaccharide profiles can be one of the
techniques available for initial screening of suspected samples.

Fatty acid and triacylglycerol
Coffee oil is made up of approximately 75% triglyceride, with
linoleic (cis18:2n-6) and palmitic (16:0) acids being the main fatty
acids. The remaining fraction constitutes unsaponifiable
components, including �19% total free and esterified diterpene
alcohols, �5% total free and esterified sterols, and a small
amount of tocopherols (49). The fatty acid profiles between

coffee species are different, which have been exploited by
researchers as a basis for the determination of Arabica and
Robusta ratio in a mixture. For example, Romano et al. analyzed
the fatty acid profiles of mixed coffee grounds by gas chroma-
tography, after Soxhlet lipid extraction (AOAC Method 14.029)
and derivatization to form methyl esters. They concluded that
total monounsaturated fatty acids (TMUFA) concentration,
linolenic acid (cis18:3n-3) concentration, the 18:0/cis18:1n-9
ratio, and the TMUFA/(total saturated fatty acid) ratio are useful
indicators for the determination of Arabica-Robusta blend
proportions (Figure 4) (74). Similarly, Martin et al. extracted the
lipid fractions of green and roasted coffee beans, and then ana-
lyzed their fatty acids contents using gas chromatography.
They selected ten fatty acids [myristic (C14:0), palmitic
(C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic
(C18:2), linolenic (C18:3), arachidic (C20:0), eicosenoic (C20:1),
and behenic acid (C22:0)] for the differentiation of Arabica and
Robusta coffees. Chemometric analysis by PCA and LDA
achieved a complete separation of Arabica and Robusta coffees,
with oleic, linolenic, linoleic, and myristic acids identified as the
most differentiating descriptors (75). Alves et al. employed a
similar technique to analyze the fatty acids of 24 coffee samples
from different botanical and geotechnical regions, and achieved
the discrimination of Arabica and Robusta coffees both in green
and roasted stages (76). They cautioned that the fatty acid pro-
files of coffees were affected by roasting, specifically, trans iso-
mers increased sharply, which may be useful as an indicator of
roast-processing conditions.

Instead of analyzing the fatty acids, Cossignani et al. investi-
gated the approach of analyzing triacylglycerol (TAG) structure
(three sn- position of TAG) to differentiate roasted Arabica and
Robusta coffees. Stereospecific analysis of TAG started with the
isolation of TAG fraction from total fat by thin layer chromatog-
raphy (TLC) using silica gel plates, with petroleum ether/diethyl
ether/formic acid (70 þ 30 þ 1, v/v/v) as a developing solvent.
Then, the sn-2-monoacylglycerols (sn-2-MAG) was prepared by
pancreatic lipase hydrolysis, and the mixture of sn-1,3/sn-
1,2(2,3)-diacylglycerols (DAG) through Grignard deacylation by
adding ethyl magnesium bromide in anhydrous ethyl ether.
The sn-1,2(2,3)-DAG was isolated by TLC from the mixture of
sn-1,3/sn-1,2 (2,3) DAG using hexane/diethyl ether (1 þ 1, v/v) as
developing solvent, then were reacted with sn-1,2-diacylglycer-
ols kinase and adenosine triphosphate disodium aqueous
solution to form the sn-1,2-phosphatidic acids (sn-1,2-PA). The

Figure 4. Correlations between TMUFA, TMUFA/TSFA, cis18: 3n-3, and C18: 0/cis18: 1n-9 with Arabica content. TMUFA: total monounsaturated fatty acid; TSFA: total

saturated fatty acid; cis18: 3n-3: linolenic acid; cis18: 1n-9: oleic acid; C18: 0: stearic acid. Figures are recreated based on the data from Romano et al. (74).
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sn-1,2-PA was purified by TLC using chloroform/methanol/25%
ammonia (65 þ 25 þ 5, v/v/v) as the developing solvent. The
purified TAG, sn-2-MAG, and sn-1,2-PA were transesterified for
fatty acid methyl esters analysis. It was observed that Arabica
coffee had a higher content of palmitic and a-linolenic acids in
sn-1-position than Robusta, while linoleic acid tended to occu-
pyboth sn-1- and sn-3- positions. Moreover, oleic acid was more
dominant in Robusta at sn-1- and sn-3- positions. Reportedly,
this procedure, in conjunction with LDA allowed the research-
ers to characterize roasted pure coffee samples and coffee
mixtures with 10% Robusta coffee (77).

DNA
DNA detection is another powerful tool for specific detection of
adulterants in coffee. This approach is capable of detecting and
quantifying small amounts of specific nucleic acid sequences
present in each specific coffee species, as well as other foreign
biological materials. The method is based on real-time PCR,
which is a technique that monitors the amplification of a tar-
geted DNA region that exhibits genetic variations existing
between coffee species.

Recently, Ferreira et al. reported the use of real-time PCR for
detection and quantification of cereals as adulterants in ground
roasted and soluble coffees (78). The method was sensitive and
specific, with limit of quantification (LOQ) down to 0.6, 14, and
16 pg/mL, for barley, corn, and rice DNA, respectively. The
marker genes that they used for barley, corn, and rice were cyto-
chrome f, zein protein, and a hypothetical protein chromosome
1, respectively, which had no similarity to organisms of Coffea
arabica and C. canephora (78, 79). Combes et al. developed a rapid
and low cost DNA-based method to detect and quantify the
adulterations in coffee (80). They adopted high resolution melt-
ing (HRM) analysis that allows genotyping by discriminating
single nucleotide polymorphisms (SNPs), based on the melting
profile of real-time PCR products. The identification of Arabica
and Robusta coffee species and quantification of their blend
ratios were performed by HRM analysis targeting sequences of
chloroplast genome SNPs. For green beans, thresholds of admix-
ture detection ranged from 1 to 5% of Robusta in Arabica were
established, indicating the detection of adulteration and its
quantification were possible for green coffee beans using this
DNA method. However, they highlighted that quantification of
roasted Robusta adulterants in Arabica products by HRM was
not repeatable. For accurate quantification, further optimization
of DNA extraction method, to dissociate inhibitors from DNA
before the precipitation step, is critical (80).

A low-cost, single-use, rapid dipstick approach was devel-
oped by Trantakis et al. for the qualitative detection of Robusta
in Arabica coffee mixtures. This detection method is based on
visual observation of reagent dried on a nitrocellulose strip,
with gold nanoparticles used as the reporters that enable visual
detection (81). The principles of their method were based on
PCR amplification of the DNA segment that flanks the unique
species marker using a thermocycler for PCR. A 15 min DNA po-
lymerase reaction extended an allele-specific primer occurred
only if the samples contained DNA complementary to the target
sequence. The products from the extension reaction were then
transferred onto the gold nanoparticles conjugated nitrocellu-
lose test strip, followed by immersing the wicking pad of the
test strip into a phosphate buffer for visual detection. The devel-
opment of a red-colored line, within 10 min, indicated positive
response. Besides, Spaniolas et al. applied a PCR- restriction
fragment length polymorphism (RFLP) and lab-on-a-chip capil-
lary electrophoresis approach to detect and quantify the

Robusta in Arabica coffees (82). Due to the simplicity, these DNA
based approaches do not require highly qualified personnel and
expensive equipment, which is appealing for routine testing.
However, one potential concern with the molecular biology de-
tection method is the susceptibility of thermal degradation of
DNA during the roasting treatment. Detection limit of adulter-
ant is likely affected by the different degrees of roast.

Conclusions

This review provides an overview on the analytical techniques
for the authentication of coffee. The majority of the literature
focused on the detection of Robusta in Arabica, while others in-
vestigated the detection of foreign components, and misrepre-
sentation of coffees of the intended origins. The detection of
coffee adulteration is technically challenging due to many pos-
sible fraudulent scenarios involved. Concerted data on coffee
adulteration are practically nonexistent due to different socio-
economic situations of various producing and end-use regions,
although the establishment of standard detection protocols
agreeable to the industry would be beneficial to prevent fraudu-
lent practices. Advanced analytical and instrumental techni-
ques are available for the detection of unintended materials in
coffee by identifying/quantifying their specific chemical/biologi-
cal markers with sensitivity higher than ever before. However,
many of these techniques require specific technical expertise
for data interpretation. Moreover, the instruments are expen-
sive and their operation tends to be costly. Moving into the fu-
ture, the development of rapid, low cost, and less specific
fingerprinting instruments accessible to the coffee industry will
likely be the trend. The availability of accessible adulterant de-
tection technology will enable parallel detection of adulteration
on a large scale and routine quality assurance testing, which
will improve the economic viability of various coffee varieties,
and allow the implementation of more effective traceability
programs to monitor the beans as they move though the value
chain. The establishment of official protocols will be important
for transferability of methods, such as using standard reference
materials to normalize fingerprinting signals between equip-
ment or labs. Sophisticated techniques will continue to find
their niche in confirmation analysis of suspected adulterants
and specific forensic investigation. Miniaturization and cost
reduction of advanced instruments will pave the way to big
data analytics (83), which capture comprehensive information
from farm to cup, useful not only in the context of authentica-
tion, but also to shed light on product quality, safety, and
productivity.
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Pérez-Casta~no, E., & González-Casado, A. (2016) Anal. Chim.
Acta 909, 9–23

9. Beebe, K.R., Pell, R.J., & Seasholtz, M.B. (1998) Chemometrics: A
Practical Guide, John Wiley and Sons, Inc., New York

10. Kjeldahl, K., & Bro, R. (2010) J. Chemometr. 24, 558–564
11. DiFoggio, R. (2000) Appl. Spectrosc. 54, 94A–113A
12. Seasholtz, M.B., & Kowalski, B.R. (1990) Appl. Spectrosc. 8,

1337–1348
13. Pavia, D.L., Lampmanm, G.M., & Kriz, G.S. (2001) Introduction

to Spectroscopy, 3rd Ed
14. Cagliani, L.R., Pellegrino, G., Giugno, G., & Consonni, R. (2013)

Talanta 106, 169–173
15. Trygg, J., & Wold, S. (2002) J. Chemometr. 16, 119–128
16. Consonni, R., Cagliani, L.R., & Cogliati, C. (2012) Talanta 88,

420–426
17. Consonni, R., Polla, D., & Cagliani, L.R. (2018) Food Control 94,

284–288
18. Wei, F., Furihata, K., Miyakawa, T., & Tanokura, M. (2014)

Food Chem. 152, 363–369
19. Arana, V.A., Medina, J., Alarcon, R., Moreno, E., Heintz, L.,
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