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Anisotropic 
ow phenomena are a key probe of the existence of Quark-Gluon Plasma. Several new observables associated with
correlations between anisotropic 
ow harmonics are developed, which are expected to be sensitive to the initial 
uctuations and
transport properties of the created matter in heavy-ion collisions. I review recent developments of correlations of anisotropic

ow harmonics. �e experimental measurements, together with the comparisons to theoretical model calculations, open up new
opportunities of exploring novel QCD dynamics in heavy-ion collisions.

1. Introduction

One of the fundamental questions in the phenomenology
of Quantum Chromo Dynamics (QCD) is, what are the
properties of matter at extreme densities and temperatures
where quarks and gluons are in a new state of matter, the
so-called Quark-Gluon Plasma (QGP)? [1, 2]. Collisions of
high-energy heavy ions, at the BrookhavenRelativisticHeavy
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC), allow us to create and study the properties of theQGP
matter in the laboratory. �is matter expands under large
pressure gradients, which transfer the inhomogeneous initial
conditions into azimuthal anisotropy of produced particles
in momentum space. �is anisotropy of produced particles
is one of the probes of the properties of the QGP [3, 4]. It
can be characterized by an expansion of the single-particle
azimuthal distribution �(�):

� (�) = 1
2�
+∞∑
�=−∞

�→
��−���, (1)

where � is the azimuthal angle of emitted particles,
�→
� is the�th order 
ow vector de�ned as

�→
� = V����Ψ� , itsmagnitude V�
is the �th order anisotropic 
owharmonic, and its orientation
is symmetry plane (participant plane) angleΨ�. Alternatively,

this anisotropy can be generally given by the joint probability
density function (PDF) in terms of V� and Ψ� as

� (V�, V�, . . . , Ψ�, Ψ�, . . .)
= 1
�event

��event

V�V� ⋅ ⋅ ⋅ �V��V� ⋅ ⋅ ⋅ �Ψ��Ψ� ⋅ ⋅ ⋅ .
(2)

In the last decade, the experimental measurements of ani-
sotropic 
ow V� [5–55], combined with theoretical advances
from calculations made in a variety of frameworks [56–62],
have led to broad and deep knowledge of initial conditions
and properties of the created hot/dense QCD matter. In par-
ticular, the precision anisotropic 
ow measurements based
on the huge data collected at the LHC experiments and
the successful description from hydrodynamic calculations
demonstrate that the QGP created in heavy-ion collisions
behaves like a strongly coupled liquid with a very small
speci�c shear viscosity �/� [63–68], which is close to a
quantum limit 1/4� [69].

It has been investigated into great details of event-by-
event 
uctuations of single 
ow harmonic. Based on the
measurements of higher-order cumulants of anisotropic 
ow
[43, 48, 51, 74, 75] and the event-by-event V� distributions
[40], it was realized that the newly proposed Elliptic-Power
function [76–78] gives the best description of underlying

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2016, Article ID 9365637, 13 pages
http://dx.doi.org/10.1155/2016/9365637



2 Advances in High Energy Physics

sBC �/s = 0.0

sWN �/s = 0.16

sBC �/s = 0.16

0.5 1.0 1.5 2.00.0

pT (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
c(
� 2

,�
3
)

20–30%

(a)

sBC �/s = 0.0

sWN �/s = 0.16

sBC �/s = 0.16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c(
� 2

,�
4
)

0.5 1.0 1.5 2.00.0

pT (GeV)

20–30%

(b)

Figure 1: �� dependence of �(V2, V3) (a) and �(V2, V4) (b) in centrality 20–30% in Pb–Pb collisions at√�
NN

= 2.76TeV. Figures are taken from
[83].

PDF of single harmonic V� distributions [72, 79, 80]. On
the other hand, it has been known for a while that both
the 
ow harmonic (magnitude) V� and its symmetry plane

(orientation)Ψ� of the 
ow vector
�→
� 
uctuate event-by-event

[81–83], but only recently �� and � dependent 
ow angle
(Ψ�) and magnitude (V�) were predicted by hydrodynamic
calculations [84, 85]. Many indications were quickly obtained
in experiments by looking at the deviations from unity of
V�[2]/V�{2} [86] and factorization ratio �� [52, 55, 86]. �ese
measurements were nicely predicted or reproduced by hydro-
dynamic calculations and are found to be sensitive to the ini-
tial state density 
uctuations and/or the shear viscosity of the
expanding �reball medium [84, 85, 87]. Most of these above-
mentioned studies are focused on the 
uctuations of single

ow harmonics and their corresponding symmetry planes,
as a function of collisions centrality, transverse momentum��, and pseudorapidity �. Results of correlations between
symmetry planes [28, 41] reveal a new type of correlations
between di�erent order 
ow vectors, which was investigated
in the observable of V2�/Ψ� before [88–90]. In particular, some
of the symmetry planes correlations show quite di�erent
centrality dependence from the initial state and �nal state,
and this characteristic sign change during system evolution is
correctly reproduced by theoretical calculations [62, 82, 91],
thus con�rming the validity of hydrodynamic framework in
heavy-ion collisions and further yielding valuable additional
insights into the 
uctuating initial conditions and hydrody-
namic response [62, 82, 92].

In addition to all these observables, the (anti)correlations
between anisotropic 
ow harmonics V� and V� are found to
be extremely interesting [45, 62, 70, 71, 93]. A completely new
set of information on the joint probability density function
(PDF) can be obtained from the rich correlation pattern

observed in experiments. On the other hand, no existent the-
oretical calculations [62, 70, 71, 93] could provide quantitative
descriptions of data [36]. �us, it is crucial to investigate
in depth the relationship between di�erent 
ow harmonics:
whether they are correlated, anticorrelated, or not correlated
from both experimental and theoretical points of view.

2. Correlations of V� and V� Fluctuations

It is found recently that the relationship between di�erent
order 
ow harmonics can be used to probe the initial state
conditions and the hydrodynamic response of the QGP [36,
71, 93–95]. In order to better understand the event-by-event�(�) distribution, it is critical to investigate the relationship
between V� and V�. Considering the naive ellipsoidal shape of
the overlap region in noncentral heavy-ion collisions gener-
ating nonvanishing even 
ow harmonics V2�, the correlations
between the even 
ow harmonics are expected. However, it is
not straightforward to use geometrical argument to explain
the relationship between even 
ow harmonics for central
collisions, where all the harmonics are driven by 
uctuations
instead of geometry, and to explain the relationship between
even and odd 
ow harmonics for central and noncentral
collisions [80]. A linear correlation function �(V�, V�) was
proposed to study the relationship between V� and V� [83].
It is de�ned as

� (V�, V�) = ⟨(V� − ⟨V�⟩	V) (V� − ⟨V�⟩	V)�
V�
�
V�

⟩
	V
, (3)

where �
V�

is the standard deviation of the quantity V�;�(V�, V�) is 1 (or −1) if V� and V� are linearly (antilinearly)
correlated and is 0 if they are not correlated. It was shown
in Figure 1 that there is an anticorrelation between V2 and
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Figure 2: Distributions of 
2 (a) and 
3 (b) calculated with ATLAS forward calorimeter for centrality interval 0-1%. Figures are taken from
[45].

V3, while a correlation was observed between V2 and V4. In
addition, it was demonstrated that �(V2, V4) depends on both
the initial conditions and �/�, while �(V2, V3) is only sensitive
to �/� [83]. Nevertheless, it cannot be accessible easily in
experimental measurements, which rely on two-particle and
multiparticle correlations techniques. �us, it is critical to
�nd an observable which studies the relationship between

ow harmonics without contributions from symmetry plane
correlations and can be accessed with observable tech-
niques from experiments. Two di�erent approaches, named�V��� �ℎ �� ��!"����"�! and �#$$���"� %&$&' ��, are
discussed in the following section.

2.1. Event Shape Engineering (ESE). �e �rst experimental
attempt was made by ATLAS Collaboration [45], using the
Event Shape Engineering (ESE) [96]. �is is a technique to
select events according to the magnitude of reduced 
ow

vector
�→
�. Figure 2 shows the performance of event shape

selection on 
2 (a) and 
3 (b) in ATLAS detector. For
each centrality the data sample is divided into several event
classes according to 
2 or 
3 distributions. �en V2 and V3
relationship was investigated by measurements of V2 and V3
in each event class from ESE selection. Without using ESE
selection, a boomerang-like pattern was observed for the
centrality dependence of V2-V3 correlation. �is is mainly
due to the fact that V3 has weaker centrality dependence
than V2. By using ESE, it was observed in Figure 3(b) that,
for event class with the same centrality (shown as the same
color), V3 decreases as V2 increases. It suggests that V2 is
anticorrelated with V3. Considering the linear hydrodynamic
response of V2 and V3 from eccentricity *2 and triangularity*3, the anticorrelation between V2 and V3 might reveal the
anticorrelation between *2 and *3 of the initial geometry.
�is indication of initial anticorrelations between *2 and *3
is observed in model calculations [96, 97].

Figure 4 shows the investigation of relationship between
V2 and V4. A boomerang-like pattern, although weaker than
that for V2-V3 relationship shown in Figure 3(a), is observed in
Figure 4(a), prior to the ESE selection.A�er the ESE selection,
it is found in Figure 4(b) that V4 increases with increasing

V2. �is suggests a correlation between the two harmonics
and it can be understood by the interplay between linear
and nonlinear collective dynamics in the system evolution
[45]. �is nonlinear contribution of V4 from V2 is further
investigated by �tting the correlation pattern using V4 =
√�20 + (�1V22)2, where �0 and �1 denote the linear and nonlinear
components. It is found that the linear component has
weak centrality dependence, while the nonlinear component,
increasing dramatically with collision centrality, becomes the
dominant contribution in themost peripheral collisions [45].

�ese (anti)correlation patterns between V� and V�
observed in experiments open a new window to the under-
standing of the collectivity phenomena in heavy-ion colli-
sions. However, it was also noticed that these measurements
were based on 2-particle correlations, which might be suf-
fered by non
ow e�ects, and they require subdividing such
calculations and modeling resolutions associated with ESE
due to �nite event-wise multiplicities. Considering the com-
putational constraints, this approach cannot be performed
easily in hydrodynamic calculations which usually are based
on limited statistics compared to experimental data.

2.2. Symmetric Cumulants (SC). A new type of observables
for the analyses of 
ow harmonic correlations, symmetric
cumulants (originally named Standard Candles (SC) in [93]),
was proposed as SC($, �) = (cos($�1+��2−$�3− ��4))
.
If$ ̸= �, the isotropic part of the corresponding four-particle
cumulant is given by

(cos ($�1 + ��2 − $�3 − ��4))

= (cos ($�1 + ��2 − $�3 − ��4))

−(cos [$ (�1 − �2)])(cos [� (�1 − �2)])
= ⟨V2�V2�⟩ − ⟨V2�⟩ ⟨V2�⟩ .

(4)

For a detector with uniform acceptance in azimuthal direc-
tion, the asymmetric terms, for example,(cos($�1−��2)),
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Figure 3:�e correlation of V2 (9-axis) with V3 (#-axis) measured in 0.5 < �� < 2GeV/�. (a) shows V2 and V3 values for fourteen 5% centrality
intervals over the centrality range of 0–70% without event shape selection. (b) shows V2 and V3 values in 15 :2 intervals in seven centrality
ranges (markers) with larger V2 value corresponding to larger :2 value. Figures are taken from [45].
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Figure 4:�e correlation of V2 (9-axis) with V4 (#-axis) measured in 0.5 < �� < 2GeV/�. (a) shows V2 and V3 values for fourteen 5% centrality
intervals over the centrality range of 0–70% without event shape selection. (b) shows V2 and V4 values in 15 :2 intervals in seven centrality
ranges (markers) with larger V2 value corresponding to larger :2 value. Figures are taken from [45].
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Figure 5: �e centrality dependence of symmetric cumulants SC(4, 2) and SC(3, 2) at√�
NN

. Figures are taken from [72, 93].

are averaged to zero. �e single event 4-particle correlation
(cos($�1 + ��2 − $�3 − ��4)) could be calculated as

⟨cos ($�1 + ��2 − $�3 − ��4)⟩
= 1
? (? − 1) (? − 2) (? − 3) [AAAA
�AAAA

2 AAAA
�AAAA2

− 2Re [
�+�
∗�
∗� ] − 2Re [
�
∗�−�
∗� ] + AAAA
�+�AAAA2
+ AAAA
�−�AAAA2 − (? − 4) (AAAA
�AAAA2 + AAAA
�AAAA2) +? (? − 6)] .

(5)

And the single event 2-particle correlation (cos[$(�1 −�2)]) could be obtained as

⟨cos [$ (�1 − �2)]⟩ = 1
? (? − 1) [AAAA
�AAAA

2 −?] . (6)

�en, the weights of ?(? − 1) and ?(? − 1)(? −2)(? − 3) are used to get the event-averaged 2-particle and
4-particle correlations, as introduced in [93]. Due to the
de�nition, this new type of 4-particle cumulants SC($, �)
is independent of the symmetry planes Ψ� and Ψ� and is
expected to be less sensitive to non
ow correlations, which
should be strongly suppressed in 4-particle cumulants. �is
was con�rmed by SC($, �) calculation using HIJING model
[98, 99] which does not include anisotropic collectivity but,
for example, azimuthal correlations due to jet production. It
is observed that both (cos($�1 + ��2 − $�3 − ��4)) and
(cos[$(�1 − �2)])(cos[�(�1 − �2)]) are nonzero, while
SC($, �) are compatible with zero in HIJING simulations
[36]. �is con�rms that SC($, �) measurements are nearly
insensitive to non
ow correlations. �erefore, it is believed
that SC($, �) is nonzero if there is (anti)correlations of V�
and V�. �e investigation of SC($, �) will allow us to know

whether �nding V� larger than ⟨V�⟩ in an event will enhance
or reduce the probability of �nding V� larger than ⟨V�⟩ in that
event, which provides unique information for the event-by-
event simulations of anisotropic 
ow harmonics.

Figure 5 shows the �rst calculation of SC(4, 2) (solid
markers) and SC(3, 2) (open markers) as a function of
centrality from AMPT model [93]. Nonzero values for both
SC(4, 2) and SC(3, 2) are observed. Positive SC(4, 2) suggests
a correlation between the event-by-event 
uctuations of V2
and V4, which indicates that �nding V2 larger than ⟨V2⟩ in
an event enhances the probability of �nding V4 larger than⟨V4⟩ in that event. On the other hand, the negative results of
SC(3, 2) imply that �nding V2 larger than ⟨V2⟩ enhances the
probability of �nding V3 smaller than ⟨V3⟩ [93].

Several con�gurations of the AMPT model have been
investigated to better understand the results based on AMPT
simulations [93]. Partonic interactions can be tweaked by
changing the partonic cross section: the default value is 10mb,
while using 3mb generates weaker partonic interactions in
ZPC [100, 101]. One can also change the hadronic interactions
by controlling the termination time in ART. Setting NTMAX
=3,whereNTMAX is a parameterwhich controls the number
of time steps in ART (rescattering time), will e�ectively turn
o� the hadronic interactions [100, 101]. For SC(4, 2) and
SC(3, 2) calculations for three di�erent scenarios, (a) 3mb,
(b) 10mb, and (c) 10mb, no rescattering is presented in
Figure 5. It is found that when the partonic cross section
is decreasing from 10mb (lower shear viscosity) to 3mb
(higher shear viscosity), the strength of SC(4, 2) decreases.
Additionally, the “10mb, no rescattering” setup seems to give
slightly smaller magnitudes of SC(4, 2) and SC(3, 2).

Further studies have been performed in AMPT initial
conditions, based on the observable of SC($, �)� which is
de�ned as ⟨*2�*2�⟩ − ⟨*2�⟩⟨*2�⟩ [72]. �e centrality dependence



6 Advances in High Energy Physics

10 20 30 40 50 60 700

Centrality percentile

−3

−2

−1

0

1

2

3

SC
(m

,n
)

Hydrodynamics
SC(4, 2), /s = 0.20

SC(4, 2), /s(T) param. 1

SC(4, 2), /s(T) param. 4

SC(3, 2), /s = 0.20

SC(3, 2), /s(T) param. 1

SC(3, 2), /s(T) param. 4

SC(4, 2)

SC(3, 2)

×10−6

2.76 TeVALICE Pb-PbsNN =

(a)

10 20 30 40 50 60 700

Centrality percentile

−0.5

0

0.5

1

SC
(m

,n
)/
⟨

2 m
⟩⟨
2 n

⟩

Hydrodynamics SC(4, 2)/⟨24⟩⟨
2
2⟩

SC(3, 2)/⟨23⟩⟨
2
2⟩

SC(4, 2)/⟨24⟩⟨
2
2⟩, /s = 0.20

SC(4, 2)/⟨24⟩⟨
2
2⟩, /s(T)

param. 1, 2, 3, 4

param. 1, 2, 3, 4
/s(T)SC(3, 2)/⟨23⟩⟨

2
2⟩,

SC(3, 2)/⟨23⟩⟨
2
2⟩, /s = 0.20

(b)

Figure 6:�e centrality dependence of symmetric cumulants SC(4, 2) (red markers) and SC(3, 2) (blue markers) at√�
NN

= 2.76TeV Pb–Pb
collisions. Figures are taken from [36].

of SC(4, 2)� and SC(3, 2)� is presented as red circles and
blue diamonds in Figure 5(b). Positive and increasing trend
from central to peripheral collisions has been observed for
SC(4, 2)�. In contrast, negative and decreasing trend was
observed for SC(3, 2)� in the AMPT initial conditions. �is
shows that �nding *2 larger than ⟨*2⟩ in an event enhances
the probability of �nding *4 larger than ⟨*4⟩, while in parallel
enhancing the probability of �nding *3 smaller than ⟨*3⟩
in that event. Same conclusions were obtained using MC-
Glauber initial conditions [75].

Based on AMPT calculations, it seems that the signs
of SC($, �)

V
(for $, � = 2, 3, 4) in the �nal state are

determined by the correlations of SC($, �)� in the initial state,
while its magnitude also depends on the properties of the
created system. �is clearly suggests that SC($, �)

V
is a new

promising observable to constrain the initial conditions and
the transport properties of the system.

�e �rst experimental measurements of centrality depen-
dence of SC(4, 2) (red squares) and SC(3, 2) (blue circles)
are presented in Figure 6(a). Positive values of SC(4, 2) are
observed for all cases of centrality.�is con�rms a correlation
between the event-by-event 
uctuations of V2 and V4. On the
other hand, the measured negative results of SC(3, 2) show
the anticorrelation between V2 and V3 magnitudes. �e same
measurements are performed using the like-sign technique,
which is another powerful approach to estimate non
ow
e�ects [27]. It was found that the di�erence between correla-
tions for like-sign and all charged combinations, whichmight
be mainly due to non
ow e�ects, is much smaller compared

to the magnitudes of SC($, �) itself. �is further proves that
nonzero values of SC($, �)measured in experiments cannot
be explained by non
ow e�ects solely.

In addition, the comparison between experimental
data and the event-by-event perturbative-QCD+saturation+
hydro (“EKRT”) calculations [62], which incorporate both
initial conditions and hydrodynamic evolution, is shown
in Figure 6. It was shown that this model can capture
quantitatively the centrality dependence of individual V2,
V3, and V4 harmonics in central and mid-central collisions
[62]. However, it can only qualitatively but not quantitatively
predict SC($, �) measurements by ALICE. For given �/�(G)
parameterization tuned by individual 
ow harmonic, the
calculation cannot describe SC(4, 2) and SC(3, 2) simultane-
ously for any single centrality. Experimental measurements
are also compared to the VISH2+1 model calculations (see
Figure 7), using various combinations of initial conditions
(IC) from (a)MC-Glb, (b)MC-KLN, and (c)MC-AMPTwith�/� = 0.08 and 0.20. It is noticed that the one with MC-Glb
IC and �/� = 0.08 is compatible with SC(4, 2) measurement
and the calculation with MC-AMPT IC and �/� = 0.08 can
describe SC(3, 2)measurement [70]. However, just like EKRT
calculations, none of these combinations is able to describe
SC(4, 2) and SC(3, 2) simultaneously. �us, it is concluded
that the new SC($, �) observables provide better handle on
the initial conditions and �/�(G) than each of the individual
harmonic measurements alone.

A�er being presented for the �rst time at Quark Matter
2015 conference, preliminary results of SC(4, 2) and SC(3, 2)
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Figure 7:�e centrality dependence of symmetric cumulants SC(4, 2) (red markers) and SC(3, 2) (blue markers) at√�
NN

= 2.76TeV Pb–Pb
collisions by VISH2+1 simulations. Figures are taken from [70].

gained a lot of attention [102]. One of the key suggestions
was to normalize SC($, �) by dividing with the products⟨V2�⟩⟨V2�⟩ in order to get rid of in
uences from individual

ow harmonics. �e results are shown in Figure 6(b), with
normalized SC(3, 2) and SC(4, 2) observables by dividing

with the products ⟨V23⟩⟨V22⟩ and ⟨V24⟩⟨V22⟩, respectively [36].

�e 2-particle correlations ⟨V2�⟩ and ⟨V2�⟩ are obtained with
a pseudorapidity gap of |Δ�| > 1.0 to suppress contributions
from non
ow e�ects. It was shown in Figure 8(a) that
the normalized SC(4, 2) observable exhibits clear sensitivity
to di�erent �/� parameterizations and the initial condi-
tions, which provides a unique opportunity to discriminate
between various possibilities of the detailed setting of �/�(G)
of the produced QGP and the initial conditions used in
hydrodynamic calculations. On the other hand, normalized
SC(3, 2) is independent of the setting of �/�(G). In addition,
it was demonstrated in Figure 9 that the normalized SC(3, 2),
also named NSCV(3, 2) in the following text, is compatible
with its corresponding observable SC�(3, 2) in the initial
state. �us, NSCV(3, 2) could be taken as golden observable
to directly constrain initial conditions without demands for
precise knowledge of transport properties of the system [70].
Furthermore, none of existing theoretical calculations can
reproduce the data; there is still a long way to go for the
development of hydrodynamic calculations.

Predictions of relationship between other harmonics are
provided in [70] and shown in Figure 8. Besides di�erent

sensitivities to IC and �/� as seen above, the centrality depen-
dence of the relationship between 
ow harmonics seems
quite di�erent. For instance, despite the di�erences in the
initial conditions, a maximum value of SC(5, 3) is observed
in central collision using �/� = 0.20, while the maximum
value is seen in more peripheral collision if �/� = 0.08 is
used.

Compared to the previous measurements of relationship
between 
ow harmonics investigated using the ESE tech-
nique, SC($, �) observable provides a quantitative measure
of these correlation strengths. Further investigations on
relationship between 
ow harmonics using list of observables
in Table 1 could be performed as a function of centrality,
transverse momentum, and pseudorapidity et al., which is
clearly nontrivial. Although one did not use the information
of symmetry planes in both ESE and SC studies, recent
study just reveals that 
ow harmonic correlations might not
be completely independent on symmetry plane correlations
[73].�e proportionality relations between symmetric cumu-
lants involving higher harmonics V4 or V5 and symmetry
plane correlations are derived, which seem to build the bridge
between 
ow harmonic correlations and 
ow angle correla-
tions (symmetry plane correlations). �is might point out to
a new direction of investigations of correlations between 
ow
vectors and will shed a new light on the nature of 
uctuating
initial conditions and �/� of the created QGP in heavy-ion
collisions.
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Figure 8: �e centrality dependence of normalized symmetric cumulants NSC($, �) at √�
NN

= 2.76TeV Pb–Pb collisions by VISH2+1
simulations. Figures are taken from [70].

3. Summary

In the past two decades, the underlying PDF of each single
harmonic �(V�) was investigated in great detail. However,
at the moment, how the joint underlying PDF, including

di�erent order symmetry planes and harmonics, is described
is an open question, especially if these correlations between
di�erent 
ow harmonics modify the single harmonics �(V�).
New observables discussed here begin to answer these open
questions. Nevertheless, many more investigations between
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Table 1: List of observables for correlations of 
ow harmonics, including all combinations of symmetric 2-harmonic 4-particle cumulants
(up to V6).

Observables Equations Number of particles Exp. �.

(cos (2�1 + 3�2 − 2�3 − 3�4))
 ⟨V22V23⟩ − ⟨V22⟩ ⟨V23⟩ 4 [36] [70–72]

(cos (2�1 + 4�2 − 2�3 − 4�4))
 ⟨V22V24⟩ − ⟨V22⟩ ⟨V24⟩ 4 [36] [70–73]

(cos (2�1 + 5�2 − 2�3 − 5�4))
 ⟨V22V25⟩ − ⟨V22⟩ ⟨V25⟩ 4 [70, 71, 73]

(cos (2�1 + 6�2 − 2�3 − 6�4))
 ⟨V22V26⟩ − ⟨V22⟩ ⟨V26⟩ 4

(cos (3�1 + 4�2 − 3�3 − 4�4))
 ⟨V23V24⟩ − ⟨V23⟩ ⟨V24⟩ 4 [70]

(cos (3�1 + 5�2 − 3�3 − 5�4))
 ⟨V23V25⟩ − ⟨V23⟩ ⟨V25⟩ 4 [70, 71, 73]

(cos (3�1 + 6�2 − 3�3 − 6�4))
 ⟨V23V26⟩ − ⟨V23⟩ ⟨V26⟩ 4

(cos (4�1 + 5�2 − 4�3 − 5�4))
 ⟨V24V25⟩ − ⟨V24⟩ ⟨V25⟩ 4

(cos (4�1 + 6�2 − 4�3 − 6�4))
 ⟨V24V26⟩ − ⟨V24⟩ ⟨V26⟩ 4

(cos (5�1 + 6�2 − 5�3 − 6�4))
 ⟨V25V26⟩ − ⟨V25⟩ ⟨V26⟩ 4
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Figure 9: �e centrality dependence of NSC(3, 2) (a, b, and c) and %(V23, V22) (d, e, and f) and the corresponding observables in the initial
conditions at√�

NN
= 2.76TeV Pb–Pb collisions from VISH2+1. Figures are taken from [70].

di�erent 
ow harmonics, including higher-order cumulants
and higher harmonics, are necessary to reasonably constrain
the joint PDF and ultimately lead to new insights into the
nature of 
uctuation of the created matter in heavy-ion col-
lisions. How to turn the multitude of measured and possibly
measurable in future relationships between anisotropic 
ow
harmonics into a focused search for correct initial conditions
and detailed setting of �/� is an exciting challenge for the
theory community.
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Ollitrault, and H. Song for the comments on the manuscript



10 Advances in High Energy Physics

and fruitful discussions. �e author is supported by the
Danish Council for Independent Research, Natural Sciences,
and the Danish National Research Foundation (Danmarks
Grundforskningsfond).

References

[1] T. D. Lee, “Feynman rules of quantum chromodynamics inside
a hadron,” Physical Review D, vol. 19, no. 6, pp. 1802–1819, 1979.

[2] E. V. Shuryak, “Quantum chromodynamics and the theory of
superdense matter,” Physics Reports, vol. 61, no. 2, pp. 71–158,
1980.

[3] J.-Y. Ollitrault, “Anisotropy as a signature of transverse collec-
tive 
ow,” Physical Review D, vol. 46, no. 1, pp. 229–245, 1992.

[4] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear
collisions by Fourier expansion of azimuthal particle distribu-
tions,” Zeitschri� fur Physik C-Particles and Fields, vol. 70, no. 4,
pp. 665–671, 1996.

[5] C. Alt, T. Anticic, B. Baatar et al., “Directed and elliptic 
ow
of charged pions and protons in Pb + Pb collisions at 40A and
158 AGeV,” Physical Review C, vol. 68, no. 3, Article ID 034903,
2003.

[6] K. H. Ackermann, N. Adams, C. Adler et al., “Elliptic 
ow inM&+M& collisions at√�NN = 130GeV,” Physical Review Letters,
vol. 86, pp. 402–407, 2001.

[7] C. Adler, Z. Ahammed, C. Allgower et al., “Identi�ed particle
elliptic 
ow in Au+Au collisions at √� = 130GeV,” Physical
Review Letters, vol. 87, no. 18, Article ID 182301, 2001.

[8] C. Adler, Z. Ahammed, Z. Allgower et al., “Elliptic 
ow from
two- and four-particle correlations in Au+Au collisions at

√�NN = 130GeV,” Physical Review C, vol. 66, Article ID 034904,
2002.

[9] J. Adams, M. M. Aggarwal, Z. Ahammed et al., “Azimuthal
anisotropy in Au+Au collisions at √�NN = 200GeV,” Physical
Review C, vol. 72, no. 1, Article ID 014904, 23 pages, 2005.

[10] J. Adams, L. Adamczyk, J. K. Adkins et al., “Multistrange Baryon
Elliptic Flow in Au+Au Collisions at √� = 200GeV,”
Physical Review Letters, vol. 95, no. 12, Article ID 122301, 2005.

[11] B. I. Abelev, M. M. Aggarwal, Z. Ahammed et al., “Centrality
dependence of charged hadron and strange hadron elliptic 
ow
from √� = 200GeV Au+Au collisions,” Physical Review C,
vol. 77, Article ID 054901, 2008.

[12] L. Adamczyk, J. K. Adkins, G. Agakishiev et al., “Elliptic 
ow
of identi�ed hadrons in Au+Au collisions at √�NN = 7.7–
62.4GeV,” Physical Review C, vol. 88, no. 1, Article ID 014902,
25 pages, 2013.

[13] K. Adcox, S. S. Adler, N. N. Ajitanand et al., “Flow mea-
surements via two-particle azimuthal correlations in Au+Au
collisions at √�NN = 130GeV,” Physical Review Letters, vol. 89,
no. 21, Article ID 212301, 2002.

[14] S. S. Adler, S. Afanasiev, C. Aidala et al., “Elliptic 
ow of
identi�ed hadrons in Au+Au collisions at √� = 200GeV,”
Physical Review Letters, vol. 91, no. 18, Article ID 182301, 2003.

[15] A. Adare, S. Afanasiev, C. Aidala et al., “Scaling properties of
azimuthal anisotropy in Au + Au and Cu + Cu collisions at

√�NN = 200GeV,” Physical Review Letters, vol. 98, Article ID
162301, 2007.

[16] S. Afanasiev, C. Aidala, N. N. Ajitanand et al., “Systematic
studies of elliptic 
ow measurements in Au+Au collisions at

√� = 200GeV,” Physical Review C, vol. 80, no. 2, Article ID
024909, 2009.

[17] A. Adare, S. Afanasiev, C. Aidala et al., “Elliptic and hexade-
capole 
ow of charged hadrons in Au+Au collisions at √�NN =200GeV,” Physical Review Letters, vol. 105, no. 6, Article ID
062301, 6 pages, 2010.

[18] A. Adare, S. Afanasiev, C. Aidala et al., “Measurements of higher
order 
owharmonics inAu+Au collisions at√� = 200GeV,”
Physical Review Letters, vol. 107, Article ID 252301, 2011.

[19] B. B. Back, M. D. Baker, D. S. Barton et al., “Pseudorapidity and
centrality dependence of the collective 
ow of charged particles
in Au+Au collisions at √� = 200 GeV,” Physical Review
Letters, vol. 89, no. 22, Article ID 222301, 2002.

[20] B. B. Back, M. D. Baker, M. Ballintijn et al., “Centrality and
pseudorapidity dependence of elliptic 
ow for charged hadrons
in Au+Au collisions at √� = 200GeV,” Physical Review C,
vol. 72, Article ID 051901, 2005.

[21] B. B. Back,M. D. Baker,M. Ballintijn et al., “Energy dependence
of elliptic 
ow over a large pseudorapidity range in Au+Au
collisions at the BNL relativistic heavy ion collider,” Physical
Review Letters, vol. 94, no. 12, Article ID 122303, 4 pages, 2005.

[22] S. Manly, B. Alver, B. B. Back et al., “System size, energy
and pseudorapidity dependence of directed and elliptic 
ow at
RHIC,” Nuclear Physics A, vol. 774, pp. 523–526, 2006.

[23] B. B. Back,M. D. Baker,M. Ballintijn et al., “Energy dependence
of directed 
ow over a wide range of pseudorapidity in Au+Au
collisions at the BNL relativistic heavy ion collider,” Physical
Review Letters, vol. 97, no. 1, Article ID 012301, 2006.

[24] B. Alver, B. B. Back, M. D. Baker et al., “System size, energy,
pseudorapidity, and centrality dependence of elliptic 
ow,”
Physical Review Letters, vol. 98, no. 24, Article ID 242302, 5
pages, 2007.

[25] B. Alver, B. B. Back, M. D. Baker et al., “Event-by-event 
uc-
tuations of azimuthal particle anisotropy in Au+Au collisions
at √� = 200GeV,” Physical Review Letters, vol. 104, no. 14,
Article ID 142301, 2010.

[26] B. Alver, B. B. Back, M. D. Baker et al., “Non-
ow correlations
and elliptic 
ow 
uctuations in Au+Au collisions at √�NN =200GeV,” Physical Review C, vol. 81, no. 3, Article ID 034915,
8 pages, 2010.

[27] K. Aamodt, B. Abelev, A. Abrahantes Quintana et al., “Elliptic

ow of charged particles in Pb-Pb collisions at √� =2.76TeV,” Physical Review Letters, vol. 105, no. 25, Article ID
252302, 2010.

[28] K. Aamodt, B. Abelev, A. Abrahantes et al., “Higher harmonic
anisotropic 
ow measurements of charged particles in Pb-Pb
collisions at √� = 2.76TeV,” Physical Review Letters, vol. 107,
no. 3, Article ID 032301, 2011.

[29] B. Abelev, J. Adam, D. Adamová et al., “Anisotropic 
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