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Abstract

There has been an exponential growth in the performance and output of sequencing technologies (omics data) with full
genome sequencing now producing gigabases of reads on a daily basis. These data may hold the promise of personalized
medicine, leading to routinely available sequencing tests that can guide patient treatment decisions. In the era of high-
throughput sequencing (HTS), computational considerations, data governance and clinical translation are the greatest rate-
limiting steps. To ensure that the analysis, management and interpretation of such extensive omics data is exploited to its
full potential, key factors, including sample sourcing, technology selection and computational expertise and resources,
need to be considered, leading to an integrated set of high-performance tools and systems. This article provides an up-
to-date overview of the evolution of HTS and the accompanying tools, infrastructure and data management approaches
that are emerging in this space, which, if used within in a multidisciplinary context, may ultimately facilitate the develop-
ment of personalized medicine.
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Introduction

Over the past decade, there have been exponential advances in

our capacity to sequence a human genome. As recently as 2016,

it would have taken over a day [1]. Now, using current technol-

ogy [2], it is possible to process a genome sequence within an

hour [3, 4]. The development of high-throughput sequencing

(HTS) technologies has been central to achieving this, with mas-

sively parallel sequencing offering larger throughput than the

conventional Sanger sequencing [5] approach.

While advances have been made across all aspects of the

sequencing workflow, the focus on platform development has

made a significant contribution to driving down machine size

and HTS costs while facilitating performance gains. In addition,

this has been enhanced by reductions in both the cost of com-

putational power and size, as expected through Moore’s law [6].

However, since 2007 [7], the reduction in the sequencing cost

per genome has surpassed Moore’s law; thus, we are now in the

era of the sub-$1000 genome. An extensive review of the past

10 years of HTS can be found in [8] along with additional

technological solutions in [9, 10] and more recently in [11].

The decreasing costs of HTS have brought it within the reach

of smaller laboratories, facilitating the generation of high-

dimensional in-house data sets, with typical HTS devices produc-

ing over 100 gigabases (Gb) of reads in 24h [12]. As with other

examples of ‘Big Data’, the steps involved in the design, pre-

processing, normalization and downstream analysis of HTS data

are significant. Furthermore, there are substantial challenges pre-

sented, including sample collection and quality control, selection

of HTS technology, to the integration of data sets across platforms

and technologies. HTS data therefore present its own set of in silico

and computational challenges, leading to a ‘Data Deluge’ [13] in

which the emphasis hasmoved from data generation to the ability

to store, access, share and analyse the data effectively. As reported

by Sboner et al. [14], these additional elements contribute towards

a more realistic assessment of the true cost of HTS use. In add-

ition, there are also data governance and patient privacy implica-

tions, particularly resulting from the speed of change brought

about by the application of HTS in clinical workflows [15, 16].

Considering these intersecting challenges within the biomed-

ical domain, particularly with regard to clinical (and commercial)

translation, HTS can be considered from the perspectives of four

key stakeholders: biologists, clinicians and patients alongside

bioinformaticians/computer scientists. Against this background,

we consider common HTS bottlenecks that can be encountered

at different workflow stages. We then present potential in silico

and computational solutions, extending on the review in [17],

and examine further rate-limiting issues that may in turn be

raised. We therefore conclude with a discussion on the future

role of HTS in facilitating biomedical research and its potential

translation to clinical decision-making tools.

HTS: from biomedical research to clinical
application

In the biomedical domain, HTS can be used to characterize bio-

logical markers (biomarkers), including genes and proteins,

often derived from human tissue or blood, to understand dis-

ease development and progression and/or predict treatment

response or patient survival [18]. Biomarkers can be classified

into three categories: diagnostic (presence or absence of dis-

ease), predictive (how a patient responds to treatment) and

prognostic (how long a patient survives post-intervention) [18].

Markers and drivers of disease development, progression

and treatment response can be detected at the deoxyribonucleic

acid (DNA), ribonucleic acid (RNA) or protein levels with a range

of HTS techniques (Figure 1). We consider both biomarker and
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Figure 1. Summary schema of omics levels with associated technologies, data types, outputs, analytical considerations and research and clinical applications. Five lev-

els or components, genome, epigenome, transcriptome, proteome and metabolome are presented, all of which can be considered with respect to the phenome (com-

mon patient characteristics). Key associations between omics levels are also represented, including transcription (between the genome and transcriptome), histone

modification and TF-binding (connecting the epigenome with the proteome) and translation (from the transcriptome to the proteome).

Source: Adapted from: [19–21] and [22].
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HTS applications at five key omics levels, genome, epigenome,

transcriptome, proteome and metabolome. These levels are

connected via genetic data transfer processes, including tran-

scription, translation, binding and protein modification [23, 24].

As shown in Figure 1, each of these omics levels can be consid-

ered with respect to patient characteristics, such as risk of dis-

ease or response to a treatment, i.e. phenotypes.

At the genome (DNA) level, alterations in genes are analysed,

e.g. single-nucleotide polymorphisms (SNPs), indels, copy num-

ber variations (CNVs) and fusion genes [25] (Figure 1). SNPs

(equivalent to ‘typos’ in the genome), indels (insertion or deletion

of bases in a sequence) and CNVs (where portions of the genome

are repeated) have been linked to disease susceptibility. SNPs in

the VCAM-1 and ARFGEF2 genes, a deletion in the CTFR gene and

CNVs in the HLA gene were found to be associated with cases of

sickle cell anaemia [26], cystic fibrosis (CF) [27] and rheumatoid

arthritis [28], respectively. Fusion genes, when two individual

genes form a hybrid gene, can also be associated with disease de-

velopment, as with TMPRSS2-ERG in prostate cancer [29].

Microarrays [30], and more recently, DNA-sequencing (DNA-seq),

comprising whole-genome sequencing (WGS), whole-exome

sequencing (WES) and targeted sequencing (TS) have been used

to study these alterations. WGS enables the interrogation of

alterations in both the coding and non-coding regions of the gen-

ome [31] and has been used to identify multiple SNPs relating to

the diagnosis of tuberculosis and treatment resistance [32]. WES

is limited to coding regions, approximately 1% of the genome

[31]. A more affordable option than WGS, WES may omit poten-

tially informative gene regulation regions, though its use was

well founded in a study of intellectual disability, as three novel

disease-causing candidate genes were identified [33]. TS focuses

on specific regions of the genome and is useful when prior infor-

mation is known about the disease [34], e.g. in a study to under-

stand resistance to first-line antimalarial therapy, TS identified

six novel resistance-causingmutations [35].

Epigenomics encompasses the chemical modification,

through internal or external factors, of DNA, which in turn can

repress the corresponding gene expression, leading to disease or

treatment resistance (Figure 1) [36]. Both microarray and

sequencing technologies can be used to quantify DNA methyla-

tion status. Bisulphite conversion is necessary for both older

(microarray) and newer sequencing-based technologies, facilitat-

ing the detection of methylated cytosines (one of four DNA com-

ponent bases), though is a harsh process that can affect the

quality of DNA for downstream analysis [37]. Whole-genome

bisulphite sequencing (WGBS) was used to identify methylation

of the IFITM3 gene as a candidate in the development of kidney

disease [38]. Legendre et al. [39] used WGBS to develop a blood-

based methylation patterns that could be used to stratify breast

cancer patients into metastatic disease risk groups. Chromatin

immunoprecipitation sequencing (ChIP-seq) allows for the pre-

cise characterization of transcription factor (TF)-binding sites (lo-

cation at which a protein binds to DNA to initiate transcription)

and patterns of histone (a DNA packaging protein) modification,

both of which can affect gene expression. Using this technology,

advances in understanding the impact of the epigenome on the

development of metastatic disease in patients with early pros-

tate cancer were made [40]. Within oestrogen receptor-positive

(ERþ) breast cancer, the use of ChIP-Seq helped to identify the

prognostic role of the gene FOXA1 in facilitating ER-binding [41].

The transcriptome encompasses all RNA found in the cell

(Figure 1). Messenger RNA (mRNA) is the most commonly studied

form of RNA. The transcriptome, capturing the downstream sig-

nals from the genome and epigenome, has been used for

molecular subtyping and studying drug response [42–45], apply-

ing both microarray and HTS technologies. For example, using

microarray technology, four breast cancer subtypes associated

with patient response to chemotherapy were defined based on a

set of RNA patterns (PAM50) [46]. Other RNA types such non-

coding RNAs and microRNA (miRNA) have also been described

[47]. In particular, miRNA has been shown to be important in dis-

ease development and progression through gene regulatory

functionality [48]. miRNAs have been associated with relapsing–

remitting multiple sclerosis [49] and dormancy of the human im-

munodeficiency virus type 1 (HIV-1) in patients treated with anti-

retroviral therapy [50]. RNA can be studied through both

microarray and RNA-Sequencing (RNA-Seq) with RNA-Seq also

allowing for the discovery of additional modifications, e.g. fusion

genes, similar to the genome level [51]. RNA-Seq has also been

extensively used, often within a multi-omics or integrative con-

text. This has resulted in the characterization of novel molecular

subgroups associated with treatment response and/or survival in

multiple cancer studies, including pancreatic [43], oesophageal

[44], prostate [42] and cholangiocarcinoma [45]. microRNA

sequencing (miRNA-Seq) has also been used in the identification

of miRNAs that were significantly associated with remote meta-

static disease in lung adenocarcinoma [52].

All the previous elements (genome, epigenome and transcrip-

tome) contribute to the proteome, the set of proteins that com-

prise an organism (Figure 1) [53]. The sequence, structure and

expression of proteins are encoded by the genome but can be

altered at the transcriptional level with the potential for changes

being introduced at translation [53]. In comparison with other

omics levels, it is relatively poorly characterized [54]. Array-based

methods, including reverse phase protein array (RPPA) and mass

spectrometry (MS) technologies can be applied at this level [55].

Using an array-based technology, Velez et al. [56] identified pro-

tein targets for a tailored treatment of a patient with inflamma-

tory disease of the retina, reversing sight loss. In addition to

array-based methods, MS or liquid chromatography (LC)-MS can

be used to study the sequence and structure of proteins, each

having a unique weight (mass) fingerprint that can be used to

identify their presence in a sample [55]. Liao et al. [57] used LC-MS

to identify candidate proteins in samples obtained from rheuma-

toid arthritis patients with none erosion.

Metabolomics is the study of the chemical fingerprints that

cellular processes leave behind (Figure 1), i.e. metabolites, which

are small molecules, such as amino acids or lipids, resulting from

the breakdown of proteins through protein–protein interactions

[19]. Similar to proteins, metabolites are identified and studied by

MS generating metabolite profiles. The study of metabolites is a

well-established and important element in drug discovery, par-

ticularly the understanding of the metabolism of a drug and po-

tential associated toxicities [58]. Lipidomics, the study of lipid

levels, such as cholesterol and triglyceride, in blood and tissue is

a fast-emerging sub-field within metabolomics [59, 60]. Using MS,

Sales et al. [61] characterised a ‘lipotype’ in men that corre-

sponded to a potential risk of developing metabolic syndrome.

While, Ke et al. [62] discovered that in epithelial ovarian cancer,

patients post-surgery, who had recurred were found to have high

levels of lipid and amino acidmetabolism.

Research applications of HTS

The research community’s reliance on microarray technology is

now being replaced by a welcoming endorsement of sequencing

technologies. This trend can be seen in the work of the flagship

The Cancer Genome Atlas (TCGA) consortium [63]. In 2008, the
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first TCGA publication in glioblastoma used Sanger sequencing

and array-based technologies to analyse patient samples at the

genomic, epigenomic and transcriptomic levels [64]. In 2017,

WES, RNA-Seq and miRNA-Seq, in addition to array-based SNP,

methylation and protein analysis were used in a study of uter-

ine carcinosarcoma [65]. As predicted [66], sequencing, particu-

larly, RNA-Seq technology is rapidly replacing microarray-based

approaches, because of its technical superiority [67] and ability

to derive novel biological insights [68]. Moreover, using data

from TCGA, pan-cancer studies analysing data from 10 000 solid

tumours identified the impact of important biologies such as

impaired DNA damage response [69] and comprehensive

immune biology across cancers [70]. Indeed, this subsequent

improvement in understanding the driving biologies and poten-

tial vulnerabilities of cancers demonstrate the importance of

HTS in advancing our understanding of disease.

Clinical applications and limitations of HTS

HTS has also been applied within clinical trial contexts including

in the development of early cancer detection assays or tests and

selection of new treatments for patients not responding to stand-

ard regimes [71, 72]. Three current clinical trials use TS at the gen-

ome level (Figure 1). The first, the STRIVE Study, is using

sequencing to detect and analyse circulating cell-free nucleic acids,

present in blood samples taken from patients who had undergone

a screeningmammogram to improve early detection of breast can-

cer [73]. Another trial, NCI-Match, has enrolled cancer patients

(with solid tumours or lymphomas) that had received treatment,

yet had progressed, to help determine drug repurposing options,

thereby improving outcomes for cancer patients [74]. Another ex-

ploratory study, the Michigan Oncology Sequencing Project (Mi-

ONCOSEQ) uses a multi-sequencing approach to stratify clinical

trial-eligible patients, with metastatic or refractory cancers. Mi-

ONCOSEQ also considers the bioethical issues surrounding genom-

ic testing and results disclosure to patients and clinicians [75].

Reaching the clinical trial stage does not always result in suc-

cess. Despite identifying a drug–target mutation in nearly half of

patients enrolled, the MOSCATO trial [76] reported the ability to

deliver this therapy in less than one quarter of patients, of whom

11% responded. The large numbers screened for a limited clinical

response is an important shortcoming of current HTS

approaches. Despite this, HTS approaches have already resulted

in improved outcomes. Sequencing the genome of one excep-

tional responder in a failed clinical trial of everolimus in bladder

cancer, an inhibitor of the gene mTOR, identified a mutation of a

key mTOR regulator, the TSC1 gene [77]. Further sequencing dis-

covered this mutation in 8% of bladder cancers. Initiatives are

now ongoing to sequence exceptional responders in clinical trials

to identify other, currently unknown, targetable mutations [78],

demonstrating the prospective potent impact of HTS.

Although HTS-based clinical trials may not always fulfil

their original potential, crucially, platform and diagnostic

acceptance of HTS by regulatory bodies has been forthcoming.

In 2013, the Illumina MiSeqDx was the first HTS platform to be

approved as an in vitro diagnostic tool by the Food and Drug

Administration (FDA), alongside two Illumina diagnostic assays,

the CF Clinical Sequencing and CF 139-Variant assays, both of

which target the region around the CFTR gene at the genomic

level, for screening and diagnosis purposes [79–81]. Later, in

2016, the FDA published draft guidance for the development of

further HTS-based assays for rare inherited diseases [82]. Then,

in 2017, the FDA approved a further three HTS-based in vitro

diagnostic tests, including FoundationOne’s companion

diagnostic, F1CDx [83], Memorial Sloan Kettering Cancer

Center’s MSK-IMPACT [84] and Thermo Fisher Scientific’s

Oncomine Dx Target Test [85, 86]. Both F1CDx and MSK-IMPACT

can detect sequence modifications in various cancers to identify

patients who may benefit from a number of targeted therapies

[83, 84]. Similarly, Thermo Fisher Scientific’s Oncomine Dx

Target Test also quantifies genomic sequence changes in

tumours to guide treatment for non-small cell lung cancer [86].

Translating research into clinical applications

However, regulatory approval does not equate to a global clinical

acceptance and uptake. A number of breast cancer predictive

transcriptome-based tests were derived in the pre-HTS era, such

as PAM50 (Prosigna, NanoString Technologies, United States) [46,

87] and MammaPrint (MammaPrint BluePrint, Agendia BV, The

Netherlands) [88, 89], both of which were later developed into

commercial tests, the latter using RNA-Seq. Both were approved

by both the FDA for use in the United States and in the European

Economic Area through the Conformité Européene (CE) mark [82,

90–92] and included in the updated clinical decision-making

guidelines from the European Group on Tumor Markers [93].

However, the National Comprehensive Cancer Network [94],

while acknowledging other tests were available, only referred to

the possible use of the OncotypeDx assay (Genomic Health, CA,

USA) [95], which was developed using an older, targeted, RNA-

quantification technology, reverse transcription polymerase

chain reaction. Understandably, there is still a sense of caution

regarding the use of HTS in a clinical context [96, 97], with an ar-

gument that further randomized trials are required to demon-

strate the effectiveness of approved tests.

In choosing an HTS technology, users need to consider not

only the biological hypothesis being tested but also sample col-

lection and quality control issues, together with downstream

computational and analytical overheads associated with a

chosen platform. Whether working at the research or clinical

translation level, a multidisciplinary approach is required at

each HTS stage, bringing together clinicians, biologists and bio-

informaticians to ensure ultimate patient benefit.

HTS platforms, pipelines and challenges

Against this heterogeneous background of regulatory approval

and clinical acceptance, we examine additional barriers to

and facilitators of HTS application to personalized medicine.

We consider the key initial challenges, including sample collec-

tion [98] and quality [99], choice of platform [100], library prepar-

ation [101] and sequencing and data analysis [100] (Figure 2).

We also highlight key stakeholders at each level.

Sample collection

Patient tissue forms the backbone of personalized medicine re-

search. Samples for analysis may originate from formalin-fixed,

paraffin-embedded (FFPE) or fresh-frozen samples. With FFPE,

sample quality can be compromised by RNA degradation, lead-

ing to HTS library construction failure [98] (Figure 2). Microarray

platforms have been developed to reliably quantify transcrip-

tion from FFPE samples [102]. Although results with respect to

RNA-Seq have been promising [103], some suggest that the

bottleneck of RNA degradation currently restricts the use of HTS

to DNA-seq, e.g. TS or WES [104]. With regard to the latter, the

limited concordance between a WES study of fresh-frozen and

FFPE melanoma samples raises concerns [105]. Where there is
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prior knowledge of a disease, a TS approach, focused on

selected genes or regions, can be more appropriate, maintaining

resolution, with increasing efficiency and affordability [106].

With the development of FFPE-tailored pre-processing pipelines

alongside refinement in the underlying technologies, it is

expected that HTS accuracy will potentially improve, enabling

clinical uptake [105, 107]. An alternative approach to adjusting

the technology would be to switch to fresh-frozen tissue

(or adopt a combined strategy). Such a move would involve

input from clinicians, including surgeons and pathologists,

particularly in biobanks. This would represent a much more

efficient alternative to FFPE, with less technical limitations

and could facilitate faster clinical decision-making, though

it can present considerable storage and maintenance implica-

tions [108].

Sample heterogeneity

Once a sample has been taken from tissue, its composition can

be affected by heterogeneity, e.g. in tumour samples, signals

may originate frommultiple cell types including stroma and im-

mune compartments [99] (Figure 2). This composition varies

across samples and has implications for biomarker develop-

ment, with the potential to confound results. At a bioinformat-

ics level, in silico optimisation and/or gene list-based approaches

have been applied to separate out signals (termed deconvolu-

tion) into their respective cell types [99, 109–112]. Once stratified

into separate cell-type components, standard downstream

analyses can follow. Experimental (biological) alternatives,

namely, cell-specific HTS technologies, are also being used.

Single-cell RNA-Seq (scRNA-Seq) has been successful in predict-

ing treatment response in lung adenocarcinoma [113], glioblast-

oma [114] and melanoma [115]. The processing particularly

of scRNA-Seq data requires special consideration. Standard

methods, as used with ‘bulk’ or multi-cell data, are not always

appropriate [116–118]. While scRNA-Seq may appear to be a

viable alternative to in silico approaches, it has been suggested

that cell-sorting or cell isolation experimental methods may in

turn alter gene expression levels [119].

Platform choice

While sample type considerations may impact on platform

choice, an overall assessment of an HTS platform’s abilities,

relative strengths and weaknesses, from biological, clinical and

bioinformatics perspectives, will facilitate the appropriate ap-

plication of the resultant data [100] (Figure 2). Recent platform

examples include the IlluminaV
R

MiSeq [120], Ion PGMTM

(Personal Genome Machine) [121], the PacBio RS II [122] and

Qiagen Gene Reader (Sequencing-By-Synthesis) [123]. Last year,

the NovaSeq Series from Illumina exceeded existing perform-

ance measures guaranteeing an average sequencing time of 1 h

per genome [2]. Genomics England has had a partnership with

Ilumina since 2014 [124] and has more recently in 2018 extended

its partnerships to include Edico Genomics. This new alliance

offers a high-performance DRAGEN Bio-IT Platform [4, 125] that

reports performance greater than the 2017 NovaSeq solution.

An extensive review of the past 10 years of HTS can be found in

[8] along with additional technological solutions in [9, 10] and

more recently in [11].

Library preparation

Once a suitable platform has been selected, library preparation,

the conversion of nucleic acid materials derived from tissue,

etc., into a form suitable for sequencing input, is the next key

but potentially a challenging step [101] with biological and bio-

informatics implications (Figure 2). Amplification of libraries

by polymerase chain reaction (PCR) is prone to introducing

bias; although PCR-free methods exist, these too are not

Figure 2. Overview of stages, barriers, facilitators and stakeholders in HTS pipelines from hypothesis setting to clinical interpretation. Eight common stages involved

within a generic HTS pipeline/workflow are presented, set against factors acting as barriers to, or facilitators of, progress towards commercial/clinical translation and

key stakeholders.
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challenge-free [101]. Library preparation methods are crucial

when only small amounts of DNA be obtained from clinical

samples. Sundaram et al. [126] compared seven library prepar-

ation methods for ChIP-Seq analysis of HeLa cell lines

(a preclinical model of cervical cancer) against a PCR-free library

preparation approach. This study concluded that there was an

inverse correlation between the number cycles of amplification

and performance.

Sequencing

There are different HTS approaches depending on the choice of

platform, each of which uses bespoke protocols. As such, the

output from data from different HTS workflows/platforms can

vary [127]. This lack of standardization can present a challenge

when comparing the quality and accuracy of output (Figure 2).

Although primarily a bioinformatics issue, both biologists and

clinicians need to be aware of how different protocols can

impact results. Within a clinical diagnostic context, accuracy,

reproducibility and standardization of HTS results can be

improved through focusing on the development of reference

standards [128].

Regardless of technology applied, the initial analysis or

base-calling (whereby bases are assigned to peaks) is usually

performed using platform-associated proprietary software.

Alignment to a reference genome, or alternatively de novo assem-

bly, is next performed. Novel methods in both sequence align-

ment and assembly are routinely proposed and published [129],

such as the cloud computing-based CloudBurst and Rainbow

[130, 131]. Additionally, enabling technologies such as Hadoop

MapReduce can be used to implement algorithms, including

RMAP and Bowtie [132] (covered in the ‘HPC Solutions’ section).

Data analysis and interpretation

Post-alignment, the appropriate analysis of data is central to an

HTS project [133] (Figure 2). As the size and complexity of HTS

data increase, the development of new analytical methods is

required, optimization for speed and memory usage being key

[9]. Given the relative youth of HTS, the lack of consensus be-

tween HTS analytical methodologies is not surprising [128, 134].

Regardless of hypothesis, platform, library preparation,

sequencing protocol or downstream analytical algorithm, it is

clear that HTS usage will demand extensive use of resources,

both technical and human. The recruitment of skilled bioinfor-

maticians, who can develop and manage the most appropriate

tools and work within a multidisciplinary context, is crucial.

Therefore, training, and standardization of training, in the use

of HTS technologies is also key, as recognized by the NGS

Trainer Consortium [135, 136].

Analytical/computational challenges

HTS data sets are both high-dimensional and complex in struc-

ture. Integrating such data with other data sets, platforms or

technologies, to obtain a complete disease profile, is therefore

both algorithmically and computationally challenging. A com-

prehensive review of meta-omics (integration of independent

data sets at the same omics level) and poly-omics (integration

of different omics types) algorithmic approaches is presented

in Ma and Zhang [22]. Poly-omics projects such as TCGA

have applied consensus-based methods to detect connecting

patterns between different omics levels, e.g. Cluster of Cluster

Assignments (COCA) [137] in breast cancer [138] and

iCluster [139] in application to prostate cancer [42] and

hepatocellular carcinoma [140]. Alternatively, network-based

approaches [141–143] to data analysis have the potential to inte-

grate data from disparate sources, while providing clinically

relevant results. Multidisciplinary initiatives such as molecular

tumour boards [144, 145], which bring together bioinformati-

cians, biologists and clinicians, can also help address the issue

of translating complex data to be relevant to clinical care pro-

viders and patients.

The associated algorithmic approaches can require significant

computational power. The resources offered by high-

performance computing (HPC) can thus be exploited by bioinfor-

maticians/computer scientists. There is now a major focus on

the development of computing tools [146], platforms [147–149],

data governance and infrastructure guidelines. A range of HPC

solutions to support HTS is examined in the next section.

HPC solutions

HPC can be achieved by using both hardware and software to

partition tasks into groups of discrete and independent compu-

tations allowing them to be scheduled in parallel, with the

seamless integration of results. There are a number of possible

HPC solutions that can be tailored to meet computational

demands. A short introduction is provided on these distinct

HPC areas: cluster [150], graphics processing units (GPUs), cloud

computing platforms [151] and field-programmable gate arrays

(FPGAs) (Figure 3), together with example solutions in the HTS

domain. Each approach differs in terms of technology, cost, per-

formance, scalability and ease of implementation.

Commodity clusters

Commodity clusters (Figure 3, Supplementary Table S1) have

attained popularity within bioinformatics, because of their rela-

tively low cost and scalability [152, 153]. They consist of regular

desktops, with central processing units (CPUs) (for handling

computations) or networked with servers (larger versions of

desktops), [154] linked together to form a distributed computer

system. This type of infrastructure enables parallel computing

to be undertaken in (small) laboratories using low-cost hard-

ware and standard software. However, technical experience is

required in-house for the set-up; interconnection of desktops,

set-up of the operating system and configuration of parallel pro-

gramming software.

Open-source software frameworks such as Apache Hadoop

[155] can support the scheduling of parallel operations, along

with computational load and fault management. Hadoop [156]

uses the MapReduce parallel programming framework, as

popularized by Google, to facilitate the processing on data sets

within the cluster infrastructure.

Kawalia et al. [157] describe a WES workflow, which incorpo-

rates MapReduce-like components for parallel calculations on

clusters, enabling a ‘catch-up’ between data production and

data processing and analysis (Table 1). MapReduce concepts

have also been implemented in many other parallel solutions

(Table 1) such as the Genome Analysis Toolkit (GATK) [146], a

platform used for DNA- and RNA-Seq analysis in TCGA [42] and

the 100 000 Genomes Project [158].

GPU computing

GPUs (Figure 3, Supplementary Table S2) are card-based devices,

which can be slotted into the graphics port of a laptop or desk-

top. One GPU card can comprise hundreds of computational
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units, in comparison with a CPU, offering increased scalability

and processing performance [154, 181, 182]. Considering the

price to performance ratio, parallel GPUs are potentially a more

affordable and efficient option when compared with multiple,

sequential CPUs [181–183].

Owing to the low cost and high-throughput processing capa-

bilities, the GPU solution would be suitable for use in small re-

search groups/laboratories. Code developed to run on CPUs

cannot be ported to GPUs because of differences in architecture

design. Therefore, computational expertise is a must. Also, data

transfer between CPU and GPU memories [184] can create com-

putational bottlenecks, limiting the potential for performance

gain. Furthermore, modern GPUs have a complex architecture,

which is vendor-dependent, e.g. Advanced Micro Devices Inc

(AMD)\ATI Technologies Inc (ATI) or NVIDIA. Compute Unified

Device Architecture (CUDA) [185] offered by NVIDIA is the most

used platform andmodel for GPU parallel programming.

A large number of CUDA-compatible HTS data processing

and analysis tools have been developed in the past for use with

RNA-seq [163] and DNA-seq, e.g. Cushaw [186], BarraCUDA

[187], SOAP3 [188], CUDASWþþ [189] and SeqNFind [183], with a

focus on sequence alignment using GPUs [186, 187] or CPUs and

GPUs combined [189] (Table 1).

Cloud computing

Cluster and GPU-based solutions can be implemented in-house.

Cloud computing (Figure 3, Supplementary Table S3) refers to

the use of off-site (remote) computers or servers for storage and

processing, accessed by a user across a network connection.

A major advantage of cloud solutions is that they provide adapt-

able storage and performance, without the necessity to deploy

and maintain internal resources [147, 148], thereby providing

scalable solutions to individual researchers through to large-

scale clinical labs.

At the start of the ‘Big Data’ era, cloud computing was domi-

nated by the use of Hadoop-based clusters. Since then, there

has been a significant growth in the services provided by cloud

vendors, offering data and project management tools that facili-

tate collaborations, regulate access to shared data and enable

visualization and analysis of that data. Commercial options

provide powerful solutions; however, organizations can develop

their own private clouds using open-source facilities. These in-

house servers may be regarded as more suitable solutions

for sensitive data (e.g. patient information). Public clouds can

be a viable option if sensitive data are encrypted, anonymized

or used at a sufficiently abstract level omitting sensitive

details [190].

Figure 3. Overview of the difference options for high HPC. This is an illustration of commodity clusters, GPUs, FPGAs and cloud solutions. It highlights differences in

performance, flexibility and level of custom design.

Note: HDL, hardware description language; RTL, register-transfer level.
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The major players in commercial cloud provision, Amazon

Web Services (AWS) Elastic Compute Cloud [191], Google

Genomics [192] and Microsoft Azure [193], guarantee data secur-

ity, with scalability and speed. High-profile HTS studies such as

the 100 000 Genome Sequencing project have used private

clouds while partnering with private companies, including AWS

[194] and UK Cloud [195].

While commercial cloud solutions provide user-friendly

interfaces with extensive toolkits, there are inherent disadvan-

tages, including a lack of flexibility [196]. Open-source alterna-

tives include platforms and pipelines, such as the alignment

tool CloudBurst [130], a platform that combines virtual machine

and cloud technologies, and CloVR [149] and the automated

pipeline, Crossbow [167] (Table 1). However, open-source solu-

tions arguably require more investment from the user, includ-

ing system installation and management and the

implementation of data analysis pipelines [196], all requiring

substantial technical skills [149, 197].

FPGA-based platforms

FPGA devices (Figure 3, Supplementary Table S4) are program-

mable integrated circuits, which consist of an array of

configurable logic blocks each comprising local memory and

computational units. The FPGA’s strength lies in its ability to re-

configure the dedicated hardware resources to meet the specific

design needs of the implemented algorithms. FPGAs can yield

great performance gains over GPUs for highly regular parallel

operations. However, they are significantly more difficult to

program, although this process has been simplified through re-

cent high-level synthesis tools [198–200].

Furthermore, as with GPUs, FPGAs need to be part of a larger

HPC environment for controlling which operations are sent to

the device. However, vendors such as Intel have been develop-

ing hybrid CPU-FPGA Programmable Acceleration Cards [201]

providing support for an acceleration stack of software, firm-

ware and tools to assist this process. Recently, FPGAs have also

found application in cloud platforms, such as Microsoft Azure

[202] and Amazon AWS [203] providing additional flexibility and

performance. Development would still need to be undertaken

by bioinformaticians/computer scientists with computational

skills in hardware design; however, the tools and solutions are

evolving to make FPGA acceleration a more accessible option

[199–203].

FPGAs have been used in computational biology settings

[170], though to a lesser extent than cluster, GPU and cloud-

based options with respect to HTS (Table 1). The most high-

profile example involves Edico Genome, developers of the

FPGA-powered DRAGEN Bio-IT Platform [4] and their partner-

ship with Genomics England [125]. FPGAs are central to enabling

this work, offering acceleration on sequencing pipeline compu-

tational bottlenecks, e.g. alignment and mapping. Owing to its

high level of parallelism, DRAGEN can process a ‘whole human

genome at 30x coverage in about 20minutes, compared to

20-30hours using a CPU-based system’ [4].

Each technology discussed offers advantages in their own

right, providing performance gains dependent on the

approaches taken. However, these solutions differ in terms

of scalability, flexibility, cost and computational expertise for

implementation. These solutions do not necessarily need to be

taken individually, and the combination of clusters, GPUs,

FPGAs and cloud-based workflows offers great promise to pro-

vide tailored genomic analysis solutions.

Data management and governance

While technological and bioinformatics developments have

paved the way for the generation of HTS data on smaller

machines within reduced time frames and limited budgets, new

challenges have arisen. Governance comes to the fore when

Table 1. Example HTS applications using cluster, GPU, cloud and FPGA HPC solutions

HPC solution HTS personalized medicine applications

Cluster Exome analysis workflow: [157]

GATK [146] used by TCGA [42] and the 100 000 Genomes Project [158]

Sequence alignment BLAST [159]

Dimensionality reduction, Self-Organizing Maps (SOM) [160]

GPU Process-intensive tasks such as RNA-seq alignment [161] and assembly [162].

Review of GPUs applied to RNA-Seq on cancer [163] such as parallel construction of Fuzzy C-Means clustering algorithm

[164]

Read mapping [165]

Error correction [166]

Cloud HTS read mapping algorithms such as CloudBurst [130], CloVR [149] and the Crossbow [167]

Tailored bioinformatics platforms: BIOVIA ScienceCloud [147], DNAnexus [148], BaseSpace Sequence Hub [168] and

Seven Bridges [169]

Key projects have used public and private clouds, namely, International Cancer Genome Consortium and 100 000

Genomes Project

FPGA Survey of FPGAs used in computational biology contexts: [170]

General overview: [171, 172]

Alignment algorithms: [173, 174].

Basic Local Alignment Search Tool (BLAST) FPGA accelerators: [175–177]

Short read mapping: [174]

Genome sequencing: MapReduce framework with acceleration on FPGA [178]

Large-scale protein sequence alignment: [173]

Complexity analysis of sequence tracts algorithm for low-complexity regions (LCRs) in protein sequences: [179]

DRAGEN (Dynamic Read Analysis for Genomics) Processor: [180]
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considering the storage, sharing and privacy of the resultant

data generated.

Data size

While HTS data production costs are falling, the associated stor-

age costs are reducing at a much slower rate [5]. Obtaining the

actual sequence is only one part of a more complex overhead.

Data storage, transmission, navigation and searches and the

associated data processing resource and tools must also be con-

sidered [14, 204].

Management of large genomic data sets is discussed by

Batley and Edwards [205]. Although data volume reduces from

terabytes/gigabytes at the raw sequence stage, to gigabytes/

megabytes once stored in text sequence format, there are fur-

ther challenges in terms of data searchability and accessibility.

Using standard sequence comparison algorithms is time-con-

suming; furthermore, tools such as BLAST are computationally

intensive [160, 177, 206].

Compression techniques offer another effective storage so-

lution [207–209], often comparing sequences against reference

genomes [204, 210]. In Brandon et al. [204] resultant differences

were encoded using entropy-based methods such as Huffman.

Through such techniques, a 345-fold compression rate was

achieved, in one example reducing a 56 MB sequence down to

167 KB.

The graphical representation and interpretation of data is

also an important factor, particularly as data sets increase in

size and diversity, leading to the development of visualization

tools [211, 212].

Data security

Genetic information can provide the ultimate insight into the

health of private individuals. As such it needs to be treated with

the greatest levels of confidence, security and ethical standards.

Once such data become a component of a computer

infrastructure, high-level cyber security measures need to be

used, namely, encryption, authentication and authorization

[213]. Furthermore, before inclusion in a publicly available HTS

repository, donor anonymity must be safeguarded [214, 215].

The US Presidential Commission for the Study of Bioethical

Issues recommended that there needs to be ‘strong baseline

protections while promoting data access and sharing’ [216].

Such sharing should be with the goal of progressing biological

knowledge for public benefit.

Recognizing the translational challenges posed by data repo-

sitories [217], bodies such as the Electronic MEdical Records and

GEnomics (eMERGE) Consortium [218] have contributed towards

developing good practice guidelines and standards in the gov-

ernance of genomic data (Table 2). In sharing or publishing

data, ensuring the anonymity of patients is routinely achieved

through de-identification. In certain research areas, e.g. the

study of rare diseases, there is a risk of traceability through pub-

lication of associated information such as age, ethnicity and

gender [214]. The security and storage of such data can be fur-

ther protected by considering it as protected health information

(PHI).

Despite the computational benefits of cloud-based solutions,

the security of data and subsequent analysis held within such

frameworks are still considered bottlenecks [224]. Cloud-based

providers have responded, through the development of in-built

facilities, such as encryption, auditing, data backup and recov-

ery, to comply with data governance and management regula-

tions as required, e.g. by the Health Insurance Portability and

Accountability Act (HIPAA) of 1996 [225]. Examples include AWS

DNAnexus [148] and the hybrid offering from Microsoft Azure

[226]. HTS-tailored alternatives such as BC Platforms can be

implemented in-house, targeting security- and cost-conscious

end users [227].

Genetic databases can be shared successfully and at a global

scale. One such example, GenBank, is a generic sequence data-

base (nucleotide sequences and their protein translations)

established and coordinated by the National Center for

Table 2. US and EU organizations established for the protection of health and personal data

Legislation Date Description

Health Insurance Portability and Accountability Act (HIPPA) 1996 HIPPA safeguards individuals’ PHI [219]. Its privacy rules set

guidelines on how health data can be disseminated through

suitable de-identification. Two standards (Safe Harbor and

Expert Determination) may be used for the de-identification

process [220]

Health Information Technology for Economic and Clinical Health

Act (HITECH)

2009 HIPAA was later supplemented by the Health Information

Technology for Economic and Clinical Health Act (HITECH)

Genetic Information Nondiscrimination Act of 2008 (GINA) 2008 A US Federal Law that prohibits discrimination in health insur-

ance and employment as a result of genetic information

[221]

Note however that GINA does not provide complete coverage,

e.g. it does not prohibit health insurers from using genetic

information in determining insurance premiums

Patient Protection and Affordable Care Act (ACA) of 2010 2010 Makes it illegal for health insurers to raise premiums or remove

cover for those with pre-existing conditions

Directive 95/46/EC of the European Parliament and Council of the

European Union (EU)

1995 This directive covers the protection of individuals with regard

to the processing of personal data and on the free movement

of such data. (Official Journal of the European Union L 281:

0031–0050.)

Directive (EU) 2016/680 With effect

from 2018

Directive 95/46/EC will be repealed and replaced by the regula-

tion and directive on the protection of natural persons with

regard to the processing of personal data—General Data

Protection Regulation (GDPR) [222, 223]

Regulation (EU) 2016/679/
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Biotechnology (part of the National Institutes of Health in the

United States) [228]. The initiative is part of the International

Nucleotide Sequence Database Collaboration (INSDC), compris-

ing members from DNA DataBank of Japan (DDBJ) and the

European Nucleotide Archive (ENA) [229–231].

The INSDC collections, comprising submissions from both

small- and large-scale independent laboratories, are freely

available. INSDC adds to its database daily, with a GenBank pub-

lic update every 2 months. The expansion of GenBank’s data-

base has doubled approximately every 18months [232],

highlighting the growth, supporting infrastructure and accept-

ance, in sharing sequencing data. The European Bioinformatics

Institute (EBI) repository, ArrayExpress [233], also allows

researchers to upload their HTS data sets for public distribution.

In depositing data, standardization is required, e.g. Minimum

Information About a Microarray Experiment (MIAME) and

Minimum Information about a high-throughput nucleotide

SEQuencing Experiment (MINSEQE) guidelines [234].

Ethical issues surrounding genetic data

There are multiple ethical challenges when handling HTS data.

Apart from the obvious examples, e.g. a data breach, there are

other more subtle, unanticipated incidences. A key case is that of

Henrietta Lacks. Henrietta died from cervical cancer in 1951; yet,

the cell line derived from her tumour (HeLa) is still replicating and

has become a pivotal resource as a preclinical model [235]. The eth-

ical conflict in this example arose from the lack of consideration

for the family of Lacks and indeed lack of consent with regard to

the publication of the results from sequencing of the cell line. An

uploaded sequenced HeLa sample was retracted from the ENA

because of privacy concerns in 2013 [236, 237]. This highlighted the

lack of clarity and legislation surrounding ownership over donated

samples and the potential impact for familymembers.

Furthermore, if we consider the process of genetic discovery,

what is the line between research and clinical diagnosis [238]?

This presents many quandaries for retrospective research proj-

ects in particular. If a cancer patient, who had agreed to donate

material from their tumour for a research project, was found

to possess a particular gene mutation, do researchers have a re-

sponsibility to inform the patient and/or the patient’s family

[75]? If a compound had not yet been approved for treating this

particular mutation, this new knowledge could not be used to

advance the health of the patient.

If we take it on ourselves to sequence our DNA, could this

impact insurance? Table 2 provides a summary of current legis-

lation for the United States and European Union (EU). Both the

US Health Information Technology and Clinical Health Act

(HITECH) and the EU Directive 2016/680 Regulation 2016/679

provide safeguarding of individuals health data and how it is

handled and transmitted. As part of the 2010 US Patient

Protection and Affordable Care Act (ACA) cancer risk assess-

ment, via genetic testing, was promoted as a preventive meas-

ure under the assurance that no person would be negatively

impacted by changes in cost or provision in their insurance

cover [239]. While the legislation was not fully comprehensive

of all conditions, the ‘good-will’ of preventive medicine, based

on personalized risk, was present. However, with current

changes in US legislation and the development of the

‘Preserving Employee Wellness Programs Act’ [240], concerns

have been raised regarding the protection of employees’ rights

[241]. The full implications are unclear, but it does appear that

employees will be given fewer options in terms of privacy, con-

tradicting the legislation as set out by the 2008 Genetic

Information Nondiscrimination Act (GINA). If employers are

empowered to this extent, there is a risk that the public will lose

confidence in, and acceptance of, genetic testing, impacting

negatively on the uptake in preventative screening.

Discussion

We have provided a broad overview of the facilitators and bar-

riers associated with the widespread adoption of HTS in

personalized medicine (Figure 2). Technological advances have

been a key driver in offering affordable and efficient access to

sequencing solutions, with the 1 h genome sequence now a

reality [3] and Illumina forecasting a $100 cost per genome

within 3–10 years [242]. Illumina have also been developing

chip-based sequencing incorporating their DNA- and RNA-Seq

technologies into a semiconductor device with the resulting

product launched in 2017 [243].

In terms of computational power to perform analysis, tech-

nology is at a significant stage. Cloud platforms offer scalability,

security and computational performance [148, 191, 193, 227,

244]. Meanwhile, advances beyond the cloud also continue with

visions for silicon chip-based and mobile solutions [243, 245]

with an eye towards real-time processing of HTS data.

A multidisciplinary approach to technological development

and translational research is required to promote HTS within

personalized medicine. However, barriers must be acknowl-

edged; the phenomenal production rate of sequencing data has

the potential to overwhelm current computing infrastructures

and bioinformatics resources [5, 14, 246].

Addressing heterogeneity in output through standardization

is crucial when considering HTS data integration with health-

care informatics structures. In particular, to consider assimila-

tion, electronic healthcare records, raw HTS data and associated

ontologies, must be normalized [247]. This challenge has been

recognized with a call for replicable and auditable workflows

[171]. This must be supported by an investment in informatics

infrastructure, with a focus on storage and software develop-

ment [248]. Patient consent highlights the need for a goodwill

‘buy-in’ by the general public, in terms of data-sharing, along-

side a closer patient involvement [215]. This can only be

achieved if there is confidence in privacy assurances.

A disconnect between HTS data production and the analytics

required to facilitate biological understanding still exists.

Li et al. [249] acknowledge that ‘integrative analysis of this rich

clinical, pathological, molecular and imaging data represents

one of the greatest bottlenecks in biomarker discovery research

in cancer and other diseases’. This may be addressed by larger

studies such as the 100 000 Genome Project, which aims to se-

quence the genomes of 100 000 patients enabling downstream

integration of results with associated clinico-pathological data

[158] or the PatientsLikeMe project, which is collaborating with

governmental and pharmaceutical companies [250].

Such large-scale projects will depend on the standardization

of data management and analysis, if HTS-produced biomarkers

are to be translated into the clinic for patient diagnosis and

treatment stratification. Also, avoiding the ‘Winner’s Curse’ can

be achieved through the use of appropriate study design, robust

statistical methods and validation [251, 252]. Standardized,

replicable pipelines, from sequencing to downstream analysis,

are therefore now required, such as the FDA/HUPO Proteomics

Standards Initiative-established Sequencing Quality Control

(SEQC) project [253]. While we are still playing bioinformatics

catch-up with the HTS wave, new small-scale real-time

sequencing solutions are coming on-stream [3, 4, 32]. It is
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essential that we apply the lessons learned from the previous

computational and governance challenges to keep pace with

new HTS developments.

Conclusion

To ensure its place within the personalized medicine arsenal,

first and foremost, the computational resources required for

HTS processing must be accessible in terms of costs, skills and

efficiency. Standardization in HTS processing and analytical

pipelines will facilitate validation and ensure replication of

results, within clinically relevant time frames. This, in turn,

alongside multidisciplinary collaboration, will enable its full

integration into patient care and treatment, through the provi-

sion of new diagnostic, predictive and prognostic tests.

Key Points

• An overview on sequencing technologies and their role

in personalized medicine.
• Identification of current bottlenecks in the translation

of ‘omic’ data to personalized medicine.
• Up-to-date review on current computational technolo-

gies, infrastructure and future solutions to handling

and analysing of sequencing data in real time.
• The changing required in clinical governance in the

face of rapid adoption of sequencing technologies into

clinical workflows.
• This paper provides a review of high-throughput

sequencing in the context of biomedical research to

clinical use with a focus on applications, pipelines,

processes and technologies along with challenges.

Supplementary Data

Supplementary data are available online at https://academi-
c.oup.com/bib.
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76. Massard C, Michiels S, Ferté C, et al. High-throughput gen-

omics and clinical outcome in hard-to-treat advanced can-

cers: results of the MOSCATO 01 trial. Cancer Discov 2017;7(6):

586–95.

77. Iyer G, Hanrahan AJ, Milowsky MI, et al. Genome sequencing

identifies a basis for everolimus sensitivity. Science 2012;

338(6104):221.

78. Chau NG, Lorch JH. Exceptional responders inspire change:

lessons for drug development from the bedside to the bench

and back. Oncologist 2015;20(7):699–701.

79. Collins FS, Hamburg MA. First FDA authorization for next-

generation sequencer.N Engl J Med 2013;369(25):2369–71.

80. Sosnay PR, Siklosi KR, Van Goor F, et al. Defining the disease

liability of variants in the cystic fibrosis transmembrane

conductance regulator gene. Nat Genet 2013;45:1160–7.

81. Hughes EE, Stevens CF, Saavedra-Matiz CA, et al. Clinical

sensitivity of cystic fibrosis mutation panels in a diverse

population. HumMutat 2016;37(2):201–8.

82. US Food and Drug Administration. Use of standards in FDA

regulatory oversight of Next Generation Sequencing

(NGS)—based In Vitro Diagnostics (IVDs) used for diagnosing

germline diseases (draft guidance). US Food and Drug

Administration, 2016. https://www.fda.gov/downloads/

MedicalDevices/DeviceRegulationandGuidance/Guidance

Documents/UCM509838.pdf

83. Foundation Medicine. FoundationOne CDx. Foundation

Medicine. 2017. https://www.foundationmedicine.com/gen

omic-testing/foundation-one-cdx

84. Memorial Sloan Kettering Cancer Center. MSK researchers

develop targeted test for mutations in both rare and com-

mon cancers. Memorial Sloan Kettering Cancer Center,

2018. https://www.mskcc.org/msk-impact

85. US Food and Drug Administration. FDA Fact Sheet—CDRH’s

approach to tumor profiling next generation sequencing

tests. US Food and Drug Administration, 2018. https://www.

fda.gov/downloads/medicaldevices/productsandmedical

procedures/invitrodiagnostics/ucm584603.pdf

86. Thermo Fisher Scientific. Oncomine Dx target test. Thermo

Fisher Scientific, 2018. https://www.thermofisher.com/uk/

en/home/clinical/diagnostic-testing/condition-disease-diag

nostics/oncology-diagnostics/oncomine-dx-target-test.html

87. Wallden B, Storhoff J, Nielsen T, et al. Development and veri-

fication of the PAM50-based Prosigna breast cancer gene sig-

nature assay. BMCMed Genomics 2015;8:54.

88. Saghatchian M, Mook S, Pruneri G, et al. Additional prognos-

tic value of the 70-gene signature (MammaPrintV
R

) among

breast cancer patients with 4-9 positive lymph nodes. Breast

2013;22(5):682–690.

89. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-

expression signature as a predictor of survival in breast can-

cer.N Engl J Med 2002;347(25):1999–2009.

90. US Food and Drug Administration. 510(k) substantial

equivalence determination decision summary assay and in-

strument combinationtemplate: Prosigna. US Food and Drug

Administration, 2017. https://www.accessdata.fda.gov/

cdrh_docs/reviews/K130010.pdf

91. Agendia. Agendia announces CE mark for NGS-Based

MammaPrintV
R

BluePrintV
R

Kit enhancing access to

personalized treatment for breast cancer patients in Europe.

Agendia, 2018. http://www.agendia.com/agendia-announ

ces-ce-mark-for-ngs-based-mammaprint-blueprint-kit/

92. NanoString Technologies. NanoString Technologies obtains

CE mark for PAM50-based test for breast cancer. NanoString

Technologies, 2012. http://investors.nanostring.com/static-

files/8de61464-0e6b-482a-b5c6-1665c9a8e90c

93. Duffy MJ, Harbeck N, Nap M, et al. Clinical use of biomarkers

in breast cancer: updated guidelines from the European

Group on TumorMarkers (EGTM). Eur J Cancer 2017;75:284–98.

94. NCCN. National Comprehensive Cancer Network—NCCB clinical

practice guidelines in oncology. NCCN, 2018. https://www.nccn.

org/

95. Paik S, Shak S, Tang G, et al. A multigene assay to predict re-

currence of tamoxifen-treated, node-negative breast cancer.

N Engl J Med 2004;351(27):2817–26.

96. Prasad V. Perspective: the precision-oncology illusion.

Nature 2016;537(7619):S63.

97. Prasad V. Why the US Centers for Medicare and Medicaid

Services (CMS) should have required a randomized trial of

Foundation Medicine (F1CDx) before paying for it. Ann Oncol

2018;29(2):298–300.

98. Zhang P, Lehmann BD, Shyr Y, et al. The utilization of forma-

lin fixed-paraffin-embedded specimens in high throughput

genomic studies. Int J Genomics 2017;2017:1–9.

99. Shen-Orr SS, Tibshirani R, Khatri P, et al. Cell type–specific

gene expression differences in complex tissues. Nat Methods

2010;7(4):287–9.

100.Henson J, Tischler G, Ning Z. Next-generation sequencing

and large genome assemblies. Pharmacogenomics 2012;13(8):

901–15.

101.van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation

methods for next-generation sequencing: tone down the

bias. Exp Cell Res 2014;322:12–20.

102.Kennedy RD, Bylesjo M, Kerr P, et al. Development and inde-

pendent validation of a prognostic assay for stage II colon

cancer using formalin-fixed paraffin-embedded tissue. J Clin

Oncol 2011;29:4620–6.

103.Graw S, Meier R, Minn K, et al. Robust gene expression and

mutation analyses of RNA-sequencing of formalin-fixed

diagnostic tumor samples. Sci Rep 2015;5(1):12335.

104.Menon R, Deng M, Boehm D, et al. Exome enrichment and

SOLiD sequencing of formalin fixed paraffin embedded

(FFPE) prostate cancer tissue. Int J Mol Sci 2012;13(7):8933–42.

105.De Paoli-Iseppi R, Johansson PA, Menzies AM, et al.

Comparison of whole-exome sequencing of matched fresh

and formalin fixed paraffin embedded melanoma tumours:

implications for clinical decision making. Pathology 2016;

48(3):261–6.

106.Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles

classify human cancers. Nature 2005;435(7043):834–8.

107.Wagle N, Berger MF, Davis MJ, et al. High-throughput detec-

tion of actionable genomic alterations in clinical tumor

samples by targeted, massively parallel sequencing. Cancer

Discov 2012;2(1):82–93.

108.Arreaza G, Qiu P, Pang L, et al. Pre-Analytical Considerations

for Successful Next-Generation Sequencing (NGS): chal-

lenges and opportunities for Formalin-Fixed and Paraffin-

Embedded tumor tissue (FFPE) samples. Int J Mol Sci 2016;

17(9):1579.

109.Gong T, Hartmann N, Kohane IS, et al. Optimal deconvolu-

tion of transcriptional profiling data using quadratic pro-

gramming with application to complex clinical blood

samples. PLoS One 2011;6(11):e27156.

Barriers and facilitators of HTS applications in personalized medicine | 13

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby051/5062275
by Library,Queen's University,Belfast user
on 20 August 2018

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM509838.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM509838.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM509838.pdf
https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx
https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx
https://www.mskcc.org/msk-impact
https://www.fda.gov/downloads/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm584603.pdf
https://www.fda.gov/downloads/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm584603.pdf
https://www.fda.gov/downloads/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm584603.pdf
https://www.thermofisher.com/uk/en/home/clinical/diagnostic-testing/condition-disease-diagnostics/oncology-diagnostics/oncomine-dx-target-test.html
https://www.thermofisher.com/uk/en/home/clinical/diagnostic-testing/condition-disease-diagnostics/oncology-diagnostics/oncomine-dx-target-test.html
https://www.thermofisher.com/uk/en/home/clinical/diagnostic-testing/condition-disease-diagnostics/oncology-diagnostics/oncomine-dx-target-test.html
https://www.accessdata.fda.gov/cdrh_docs/reviews/K130010.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/K130010.pdf
http://www.agendia.com/agendia-announces-ce-mark-for-ngs-based-mammaprint-blueprint-kit/
http://www.agendia.com/agendia-announces-ce-mark-for-ngs-based-mammaprint-blueprint-kit/
http://investors.nanostring.com/static-files/8de61464-0e6b-482a-b5c6-1665c9a8e90c
http://investors.nanostring.com/static-files/8de61464-0e6b-482a-b5c6-1665c9a8e90c
https://www.nccn.org/
https://www.nccn.org/


110.Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection

identifies distinct tumor- and stroma-specific subtypes of

pancreatic ductal adenocarcinoma. Nat Genet 2015;47(10):

1168–78.

111.Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring

tumour purity and stromal and immune cell admixture

from expression data. Nat Commun 2013;4:1–29.

112.Li Y, Xie X. A mixture model for expression deconvolution

from RNA-seq in heterogeneous tissues. BMC Bioinforma

2013;14(Suppl 5): S11.

113.Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing

identifies subclonal heterogeneity in anti-cancer drug

responses of lung adenocarcinoma cells. Genome Biol 2015;

16:127.

114.Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq

highlights intratumoral heterogeneity in primary glioblast-

oma. Science 2014;344(6190):1396–401.

115.Tirosh I, Izar B, Prakadan SM, et al. Dissecting themulticellu-

lar ecosystem of metastatic melanoma by single-cell RNA-

seq. Science 2016;352(6282):189–96.

116.Stegle O, Teichmann SA, Marioni JC. Computational and

analytical challenges in single-cell transcriptomics. Nat Rev

Genet 2015;16(3):133–45.

117.Bacher R, Kendziorski C. Design and computational analysis

of single-cell RNA-sequencing experiments. Genome Biol

2016;17:63.

118.Yuan GC, Cai L, Elowitz M, et al. Challenges and emerging

directions in single-cell analysis. Genome Biol 2017;18(1):84.

119.Feezor RJ, Baker HV, Mindrinos M, et al. Whole blood and

leukocyte RNA isolation for gene expression analyses.

Physiol Genomics 2004;19(3):247–54.

120. Illumina. MiSeq gene & small genome sequencer. Illumina,

2016. http://www.illumina.com/systems/miseq.html

121.Thermo Fisher Scientific. Ion PGM system for next-

generation sequencing. Thermo Fisher Scientific, 2018.

https://www.thermofisher.com/uk/en/home/life-science/

sequencing/next-generation-sequencing/ion-torrent-next-

generation-sequencing-workflow/ion-torrent-next-gener

ation-sequencing-run-sequence/ion-pgm-system-for-next-

generation-sequencing.html

122.PacBio. PacBio RS II. Pacific Biosciences, 2017. http://www.

pacb.com/products-and-services/pacbio-systems/rsii/

123.Qiagen. GeneRead Sequencing (NGS). QIAGEN, 2018. https://

www.qiagen.com/de/resources/technologies/ngs/

124.Genomics England. UK to become world number one in DNA

testing with plan to revolutionise fight against cancer and rare dis-

eases. Genomics England, 2014. https://www.genomicseng

land.co.uk/uk-to-become-world-number-one-in-dna-test

ing-with-plan-to-revolutionise-fight-against-cancer-and-

rare-diseases/

125.Genomics England. Genomics England adopts Edico

Genome’s DRAGEN Bio-IT Platform. 2018. https://www.

genomicsengland.co.uk/genomics-england-adopts-edico-

genomes-dragen-bio-it-platform/

126.Sundaram AY, Hughes T, Biondi S, et al. A comparative study

of ChIP-seq sequencing library preparation methods. BMC

Genomics 2016;17(1):816.

127.Quail MA, Smith M, Coupland P, et al. A tale of three next

generation sequencing platforms: comparison of Ion

Torrent, Pacific Biosciences and Illumina MiSeq sequencers.

BMC Genomics 2012;13(1):341.

128.Hardwick SA, Deveson IW, Mercer TR. Reference standards

for next-generation sequencing. Nat Rev Genet 2017;18(8):

473–84.

129.Flicek P, Birney E. Sense from sequence reads: methods for

alignment and assembly. Nat Methods 2010;7:479.

130.Schatz MC. CloudBurst: highly sensitive read mapping with

MapReduce. Bioinformatics 2009;25(11):1363–9.

131.Zhao S, Prenger K, Smith L, et al. Rainbow: a tool for large-

scale whole-genome sequencing data analysis using cloud

computing. BMC Genomics 2013;14:425.

132.Smith AD, Chung WY, Hodges E, et al. Updates to the RMAP

short-readmapping software. Bioinformatics 2009;25(21):2841–2.

133.McPherson JD. Next-generation gap. Nat Methods 2009;

6(Suppl 11):S2–5.

134.van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-

generation sequencing technology. Trends Genet 2014;30(9):

418–26.

135.Schiffthaler B, Kostadima M, Delhomme N, et al. Training in

high-throughput sequencing: common guidelines to enable

material sharing, dissemination, and reusability. PLoS

Comput Biol 2016;12(6):e1004937.

136.HTS Teacher’s Consortium. HTS training material reposi-

tory. 2016. http://bioinformatics.upsc.se/htmr

137.Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of

12 cancer types reveals molecular classification within and

across tissues of origin. Cell 2014;158(4):929–44.

138.Cancer Genome Atlas Network. Comprehensive molecular

portraits of human breast tumours.Nature 2012;490:61–70.

139.Shen R, Olshen AB, Ladanyi M. Integrative clustering of mul-

tiple genomic data types using a joint latent variable model

with application to breast and lung cancer subtype analysis.

Bioinformatics 2009;25(22):2906–12.

140.Ally A, Balasundaram M, Carlsen R, et al. Comprehensive

and integrative genomic characterization of hepatocellular

carcinoma. Cell 2017;169:1327–41.e23.

141.Ciucci S, Ge Y, Durán C, et al. Enlightening discriminative

network functional modules behind principal component

analysis separation in differential-omic science studies. Sci

Rep 2017;7:43946.

142.Kuperstein I, Grieco L, Cohen DPA, et al. The shortest path is

not the one you know: application of biological network

resources in precision oncology research. Mutagenesis 2015;

30(2):191–204.

143.Zhang W, Chien J, Yong J, et al. Network-based machine

learning and graph theory algorithms for precision oncol-

ogy.NPJ Precis Oncol 2017;1:25.

144.Burkard ME, Deming DA, Parsons BM, et al. Implementation

and clinical utility of an integrated academic-community

regional molecular tumor board. JCO Precis Oncol 2017;(1):

1–10.

145.Gupta A, Ayub M, Miller C, et al. 1628O Development of the

Manchester Cancer Research Centre Molecular Tumour

Board for matching patients to clinical trials based on tu-

mour and ctDNA genetic profiling. Ann Oncol 2017;28:

mdx390.

146.McKenna A, Hanna M, Banks E, et al. The genome analysis

toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res 2010;20:

1297–303.

147.ScienceCloud. A secure cloud solution. ScienceCloud, 2017.

https://www.sciencecloud.com/

148.DNAnexus. DNAnexus. DNAnexus, 2017. https://www.dna

nexus.com/

149.Angiuoli SV, Matalka M, Gussman A, et al. CloVR: a virtual

machine for automated and portable sequence analysis

from the desktop using cloud computing. BMC Bioinformatics

2011;12:356.

14 | Lightbody et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby051/5062275
by Library,Queen's University,Belfast user
on 20 August 2018

http://www.illumina.com/systems/miseq.html
https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing.html
https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing.html
https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing.html
https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing.html
https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing.html
http://www.pacb.com/products-and-services/pacbio-systems/rsii/
http://www.pacb.com/products-and-services/pacbio-systems/rsii/
https://www.qiagen.com/de/resources/technologies/ngs/
https://www.qiagen.com/de/resources/technologies/ngs/
https://www.genomicsengland.co.uk/uk-to-become-world-number-one-in-dna-testing-with-plan-to-revolutionise-fight-against-cancer-and-rare-diseases/
https://www.genomicsengland.co.uk/uk-to-become-world-number-one-in-dna-testing-with-plan-to-revolutionise-fight-against-cancer-and-rare-diseases/
https://www.genomicsengland.co.uk/uk-to-become-world-number-one-in-dna-testing-with-plan-to-revolutionise-fight-against-cancer-and-rare-diseases/
https://www.genomicsengland.co.uk/uk-to-become-world-number-one-in-dna-testing-with-plan-to-revolutionise-fight-against-cancer-and-rare-diseases/
https://www.genomicsengland.co.uk/genomics-england-adopts-edico-genomes-dragen-bio-it-platform/
https://www.genomicsengland.co.uk/genomics-england-adopts-edico-genomes-dragen-bio-it-platform/
https://www.genomicsengland.co.uk/genomics-england-adopts-edico-genomes-dragen-bio-it-platform/
http://bioinformatics.upsc.se/htmr
https://www.sciencecloud.com/
https://www.dnanexus.com/
https://www.dnanexus.com/


150.Mushtaq H, Al-Ars Z. Cluster-based apache spark imple-

mentation of the GATK DNA analysis pipeline. In: 2015 IEEE

International Conference on Bioinformatics and

Biomedicine (BIBM). Washington, DC: IEEE, 2015, 1471–7. doi:

10.1109/BIBM.2015.7359893.
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