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ABSTRACT Cetaceans have elicited the attention of researchers in recent decades due to their importance

to the ecosystem and their economic values. They use sound for communication, echolocation and other

social activities. Their sounds are highly non-stationary, transitory and range from short to long sounds.

Passive acoustic monitoring (PAM) is a popular method used for monitoring cetaceans in their ecosystems.

The volumes of data accumulated using PAM are usually big, so they are difficult to analyze using manual

inspection. Therefore different techniques with mixed outcomes have been developed for the automatic

detection and classification of signals of different cetacean species. So far, no single technique developed is

perfect to detect and classify the vocalizations of over 82 known species due to variability in time-frequency,

difference in the amplitude among species and within species’ vocal repertoire, physical environment, among

others. The accuracy of any detector or classifier depends on the technique adopted as well as the nature

of the signal to be analyzed. In this article, we review the existing techniques for the automatic detection

and classification of cetacean vocalizations. We categorize the surveyed techniques, while emphasizing the

advantages and disadvantages of these techniques. The article suggests possible research directions that can

improve existing detection and classification techniques. In addition, the article recommends other suitable

techniques that can be used to analyze non-linear and non-stationary signals such as the cetaceans’ signals.

Several research have been dedicated to this topic, however, there is no review of these past results that gives

a quick overview in the area of cetacean detection and classification. This review will help researchers and

practitioners in the field to make insightful decisions based on their requirements.

INDEX TERMS Cetacean, classification, detection, feature extraction, passive acoustic monitoring (PAM),

vocalization.

I. INTRODUCTION

The increasing human anthropogenic activities have signif-

icantly changed the soundscape in oceans. This has contin-

ued to threaten the existence of ocean mammals because

they utilize sound for navigation, communication, avoidance

of predators, recognition of prey for survival and to func-

tion properly within their ecosystem [1]–[8]. Anthropogenic

activities, which have been detrimental to marine fauna

include shipping, offshore exploration, geophysical seismic

surveys and naval sonar operations [1]–[4], [7]. The potential

negative effects of these activities include (a) physical injury,

(b) physiological dysfunction: permanent or temporary loss
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of hearing sensitivity, (c) behavioral modification: decrease

in exploration efficiency, or inefficient use of environment,

separation of mother-calf pairs, (d) masking- difficulty in

recognizing crucial sounds as a result of increase in back-

ground noise, (e) avoidance and displacement from critical

feeding and breeding grounds, (f) decrease reproduction rate

[7]–[10]. Reactions of marine mammals to these negative

impacts varies due to factors such as species, age, gender, pre-

vious noise experience, location or body of water and behav-

ioral state [10]. There have been growing research on the

consequence of these human activities on marine mammals

in recent years [4], [8], [9], [11], [12]. Ecosystem managers

are particularly interested in conserving these mammals by

searching for ways to mitigate the effects of human activities

within the marine ecosystem [1] in order to support their
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conservation and protection [6], [13]. However, they are faced

with the challenge of inadequate knowledge on the ecosys-

tems of these mammals [1], [13].

There are different groups of marine mammals. They are

grouped them into: cetaceans (whales, dolphins and por-

poises), carnivora (pinnipeds, seals, sea lions, walruses, sea

otters and the polar bear) and sirenians (manatee, dugongs

and sea dogs) [9], [14], [15]. The cetaceans and sirenians

order live their entire life in water [13], [14], thus making

it difficult for scientists to know the exact estimate of their

population [1], [13]. Two suborders exist in the cetacean tax-

onomy: odontocete or toothed whales with about 72 known

living species (examples include the Belugawhale, bottlenose

dolphins, Cuiver’s beaked whale, Killer whale, among oth-

ers) and mysticete or baleen whales with about 14 known

living species (examples include Humpback whale, Bryde’s

whale, Bowheadwhale, among others) [9], [14]. The cetacean

species are present throughout the world oceans (with the

odontocete suborder present in some freshwater lakes and

rivers) [9].

Cetaceans have elicited attention of policy makers and

researchers due to their economic importance. There are

continuous increase in public demands for ecotourism busi-

ness which reportedly involve over 87 nations and territories

[16]. Commercial tourism on free ranging cetaceans gives

tourists the opportunities to observe, touch, swim. The whale-

watching business enterprise generates over US$2 billion

yearly [17]; thus, employing thousands of people and con-

tributing to governments revenue. Cetaceans are also of great

importance in maintenance of state of health of ecosystem

and serving as sentry species for the state of marine ecosys-

tem [18]. Some cetacean species are also used for security

purposes by the US navy [19]. Besides, anthropogenic noise

effects on marine mammals, in particular seismic activi-

ties,seismic activities, military operations, and the oil and gas

industries, is one of the main policy concerns to government

[20], [21].

Traditionally, cetaceans were visually surveyed to assess

how they utilize a specific area in order to have insight into

their ecology. But, their populations are often underestimated

because they spend their entire life in water which makes

visual observation insufficient for accurate estimation of their

population [13], [22], [23]. The visual observation is also

hindered by environmental conditions such as remote topog-

raphy, time of the day, the short time cetaceans spend on the

surface, and high mobility rate [13], [22], [24].

Acoustic monitoring on the other hand, serves as an impor-

tant avenue to monitor marine mammals at great distance (as

far as 100km in some instances for low frequency calls) com-

pared to visual methods, because sound can propagate much

further in oceans than light [6], [13], [25]. Acoustic moni-

toring is also not affected by conditions under which visual

method cannot perform. Acoustic monitoring can either be

active or passive. In active acousticmonitoring (AAM), sound

energy is transmitted and the returning signals are analyzed.

This approach is not popular because it can upset the animals

behaviour due to it intrusive mode of operation [24]. For pas-

sive acoustic monitoring (PAM) however, marine mammals

sounds are captured from the surrounding environment in a

non-invasive manner through the use of underwater micro-

phones (hydrophones), hence it is widely used for marine

mammals observation [24], [26]. Besides being significant

for the survey and census of cetacean distribution, PAM is

also an important component in lessening the negative con-

sequences of human actions on cetaceans [6], [13]. It requires

the cetaceans to produce signal which makes it perform better

for high vocal species. Also, it can be tricky to estimate the

number of species present based on the number of detected

calls because in order to obtain an accurate and precise pop-

ulation density, the cue rate must be properly calculated [23].

The success of PAM is however dependent on the quality of

the techniques use to isolate the signal of interest from the rest

of signals present in a dataset, particularly for remote sources

and low signal to noise ratio (SNR) [6].

Cetaceans produce a variety of distinctive sounds for com-

munication, echolocation and other social functions. These

sounds which are non-stationary, vary in physical properties,

with many species producing different or combinations of

sounds [9], [13]. These vocalizations occupy a very wide

frequency band and show different characteristics which

include: variation within and between species [22], [27], they

can be species-specific [28], temporal and geographical dif-

ference [22]; thus, making them complex to analyze [29]. The

cetacean sounds are generally categorized as clicks, whistles,

songs and (burst) pulsed calls [30]–[32]. The click sounds

which are produced by all cetaceans are used for echolo-

cation and foraging [30], [33]. They are impulsive short

pulses of substantial strength which last for micro seconds

and extremely directional. Cetaceans produce multiple clicks

at a time with diverse cue rate ranging from 0.5-2 clicks

per seconds. The whistle and pulsed calls are used for social

activities. The whistles which are produced by all cetaceans

but at different frequency [30] are relatively tonal or pulsed,

narrow band, frequency-modulated signals with frequency

range from 2 to 30kHz [34] depending on species. Songs are

the most complicated of signals produced by the Mysticete

suborder [13], [34]. A song is a series of individual calls

organized into a hierarchical structure that can go on for

several minutes in some instances, even hours [30]. Just a

few cetacean generate songs, examples include humpback,

bowhead, blue and fin whales [13], [34], [35]. The known fre-

quency ranges of cetacean sounds including clicks, whistles

and FM calls is from about 10Hz to 100kHz [24], [30].

Different techniques, with mixed outcomes have been

developed for the detection and classification of cetacean

vocalization. The difference in the outputs of these techniques

are as results of time-frequency variability, difference in the

amplitude among species and within species’ vocal reper-

toire, physical environment where the sounds were recorded,

ability to cope with noise, ability to perform in real time,

computational requirements [1], [6], [22]. No single tech-

nique is perfect to detect and classify all species [22]. These
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FIGURE 1. Block diagram of cetacean detection and classification stages.

techniques are centered on signal processing, pattern recog-

nition and machine learning concepts. The vocalizations of a

targeted species can be manually detected, when a specialist

listens to sound or view spectrograms to find the vocalization

[24], [36]. However, the large acoustic data collected during

the recordings are difficult to analyze by the human operators,

hence the need to have an algorithm that can automatically

detect and classify these large volume of recorded sounds.

This helps in processing the large acoustic datasets relatively

faster and with consistency. Besides, human bias are elim-

inated and sounds that are beyond the human hearing limit

can be detected, thus reducing the error rate [1], [36], [37].

Application of a robust automatic detection and classifica-

tion model to cetacean vocalizations can give understanding

into their repertoire variation, individual vocal changeability,

social setting relationships and some other crucial cetacean

behavioral questions [38]. In the last few years, machine

learning approaches and other automatic techniques have

been used for the detection and classification of cetacean

sounds [33], [39]–[46] with varying performance outputs.

The basic block diagram of the detection and classification

stages is shown in Fig. 1. The cetacean vocalizations are

recorded through the use of hydrophones and preprocessed.

The preprocessing include extraction of features which is

followed by the detection and classification stages. The

detection stage is the process of identifying the presence

of the targeted cetacean signal in the dataset from other

unwanted signals that may be present. These unwanted sig-

nals may include background noises (non bioacoustics sig-

nals), presence of signals of non-targeted species in the

recording area, and so on. The classification stage is the

process of assigning the detected signals to a predefined

category (species-specific) [31], [47] having been guided

by a previous knowledge of what is expected, usually by a

human expert. The variability within and between the emitted

signals make the classification stage very crucial. It helps in

categorizing individual species. Therefore, having different

techniques that automatically detect and categorize different

species of cetacean will aid comparisons both between and

within species. Each of the stages in Fig. 1 are explicitly

discussed in subsequent sections.

In this paper, a review of existing techniques for the detec-

tion and classification of cetacean vocalizations has been

carried out. Many research work had been dedicated to devel-

oping techniques for automatic detection and classification of

cetacean signals. However, there has not been a detail review

to give a comprehensive overview of the existing techniques

for detection and classification except in [22] which gave

an overview without addressing details of each technique.

A block diagram of the implementation steps for designing

automatic detectors and classifiers is shown in Fig. 1. Each

of the four steps involved are reviewed with more detail

on popular techniques used for feature extraction as well

as for design of detectors and classifiers. The strengths and

weaknesses of every method are elaborated in order to guide

researchers on best technique to deploy, depending on their

goals. The relevance of this paper is to assist anyone engaging

in related research to have a quick overview on the procedures

for the detection and classification of cetacean signals.

The remainder of this paper is arranged as follows.

Section II describes the process of collecting the data and

preprocessing norms. Section III and Section IV reviews

the existing techniques for feature extractions, detection and

classification respectively. Section V discusses the style of

reporting outputs in this area of research. The findings, chal-

lenges and future research prospects in this subject area are

discussed in Section VI while the paper is concluded in

Section VII.

II. DATA RECORDING AND PREPROCESSING

Sounds are recorded via the use of hydrophones (underwa-

ter microphones). The recording is done via two methods;

mobile survey (mobile PAM) and stationary (fixed) survey

(fixed PAM). In mobile survey, hydrophones can be attached

at the rear of a ship or ocean glider to sample a large area.

The hydrophones are towed behind a ship or ocean glider on a

cable of tens to thousands of meters longs. On the other hand,

hydrophones are left in a location for a long period to record

sounds either continuously or with an on-off sampling plan

in stationary (fixed) survey [48]. Advantages of the mobile

method include; coverage of large area and ease of combining

acoustics survey with a visual survey. Advantages of the fixed

method include; observations usually traverse a longer time

period thus giving opportunity to have a large dataset to work

with and it is often less expensive than the mobile PAM [6],

[24]. It is however faced with challenges such as recovering

of instruments in deep water, difficulty in telling whether

high vocalization rate represent many cetaceans vocalizing

occasionally or a few cetaceans vocalizing a lot [49]. Thus,

certain conditions such as frequency range, total deployment

period, and difficulty of recovery of recording gadgets are

considered when choosing a recording method [48].

The hydrophones set-up for recordings can either be

an array of multiple-hydrophones or single hydrophone.

In a multiple array set-up, at least four hydrophones are
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set appropriately, are essential to determine the three-

dimensional location of a calling animal by accessing the

travel time differences of the incoming sound. This method

is usually ambiguous and expensive to implement. A single

hydrophone method for taking recording provides a simple

means to record. It is cheaper and performs well under certain

conditions [50]. Cetaceans usually move in clusters with

many individuals vocalizing simultaneously as they move

[51]. The recorded sound is thus complex to analyze as a

result of this simultaneous vocalization and the presence of

anthropogenic noise [25], [51]. Estimating the abundance

of species or types from the recorded sounds is often a

problem because the sound could be from an individual

vocalizing continuously or multiple individual vocalizing

simultaneously.

The preprocessing stage focuses on recovering of fre-

quency data and producing a time-frequency-amplitude rep-

resentation of the recorded signal to form a dataset [25],

[26]. This process include the denoising done to clean and

enhance the quality of the whale sound [32]. This is followed

by annotation of part of the recording, where the applicable

sound must be located in time which they occur within the

recording by a human expert who is assumed to know the

exact sound of the target. The beginning and end point of

particular sound class is identified in the recording file. A sin-

gle identification can be regarded as a label. Multiple sets of

such labels can be identified in a long recording. The different

recognized labels are then used as samples for training of

the technique to be used for detection and classification.

This is usually done via visual inspection of spectrogram.

However, a number of software are available to carry out

the annotation seamlessly. Examples of existing software for

annotation are Sonic Visualiser, RAVEN c© and Audacity TM

[29]. Fig. 2 and Fig. 3 are examples of spectrogram and time

series representation of Bryde’s whale and Blue whale calls

respectively.

III. FEATURE EXTRACTION METHODS

Underwater signals are highly non stationary due to the pres-

ence of environmental sounds (rain, cracking of ice, estuaries,

and so on), human anthropogenic sounds (shipping, offshore

exploration, geophysical seismic survey, and so on) and the

biological sounds (marine mammals sound) [54]. Many of

these sounds are not relevant to the detection and classifi-

cation of interest, thus they tend to reduce performance of

detectors and classifiers. Hence, the need to extract useful

information from raw sound recordings. Feature extraction

(FE) is the process of extracting relevant information from the

data so as to enhance the accuracy of the detector and classi-

fier by removing redundant data. The features presented to a

detector or classifier is central to its performance. Raw data

usually include other unwanted information. The FE process

is basically for extracting the needed features or parameters

of the signal of interest from the raw dataset. The reduction

can be via feature extraction and feature selection. While

feature selection is the selection of subsets of relevant feature

FIGURE 2. An example of spectrogram and time-series representation of
Bryde’s whale pulse call. The sound was recorded in Gordon’s bay
harbour, False bay, South-West, South Africa [52].

FIGURE 3. An example of spectrogram and time-series representation of
Northeast Pacific Blue whale call. The sound was recorded from offshore
Vancouver Island B.C., Washington and Oregon, California and off Mexico
in the Gulf of California, USA. [53].

variables from the raw datasets, feature extraction on the other

hand is the elimination of irrelevant variables from the raw

datasets by building new datasets without losing any relevant

variables of interest [55], [56]. The main difference between

these two methodologies is that feature selection reduces the

number of features to that are best at differentiating between

classes but feature extraction will create entirely new smaller
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datasets by measuring certain features or properties that can

be used to differentiate between data of different classes. The

required features can be selected from original datasetGwith

variables {g1, g2, g3, . . . .., gN} and we have a new subset G′

with variables {g′
1, g

′
2, g

′
3, . . . .., g

′
N}. In feature extraction,

original dataset Y with variables {y1, y2, . . . .., yN} is trans-

formed to a new dataset Z with variables {z1, z2, . . . . . . , zM},

whereM < N . The recorded sounds are translated to a set of

feature vectors that interprets the prominent attributes of the

recordings. In order to build an effective detector or classifier,

the features to be extracted must satisfy the specific problem

to be addressed. It should be noted that these methods are

not exclusively used for cetacean signal analysis. In fact, they

have enjoyed wide application in different fields of studies.

Therefore, our explanation on each is tailored towards it

application to cetacean signal analysis.

A. SHORT TIME FOURIER TRANSFORM (STFT)

The short-time Fourier transform (STFT) method also known

as windowed Fourier transform is used for analyzing non

stationary signals. It strives to solve the problem of loss of

time information in the Fourier transform (FT) by introducing

a sliding window w(t) passing through the whole signal x(t).

It presents the time-localized details of the non-stationary

signal x(t) by disclosing the changes of the frequency content

as time progresses. It has been used as feature extracting

tool on Phonocardiogram (PCG) signals [57], [58], vibration

signals measured from rolling bearings and other machine

components [59]. The STFT is obtained by multiplying the

time signal x(t) by a suitable sliding time window function

w(t−τ ) which is constructed to excerpt a part of the signal and
thereafter obtain the FT. The location of the sliding window

adds a time dimension and obtains a time varying frequency

analysis. The STFT is mathematically defined as [58], [59]:

X (τ, ω) =
∫ ∞

−∞
x(t)w(t − τ ) exp−jωtdt, (1)

where ω is the frequency. The STFT employs a sliding win-

dow to obtain a spectrogram which provides information of

both time and frequency of a signal. This information is

however of limited resolution due to the fixed size of the

sliding window.

The STFT is applied to underwater continuous-wave

(CW)-like signals to acquire the feature vectors, which is

energy intensity to be used as the sample space binary clus-

tering of Gaussian mixture model [60]. In [25], the STFT was

used to create whistle contour in a denoised spectrogram of

whistles of long-finned pilot whales and killer whales. A raw

sound data that have been denoised were sequentially sliced

into sound frames. The STFT coefficients for every single

sound frame was computed to create visible contours of the

whistles in the spectrogram. The sound frames containing the

whistles were manually marked and labeled in preparation

for their usage for training and testing of deep convolutional

neural networks (CNNs) model meant to detect and classify

the whistles accordingly.

B. WAVELET TRANSFORM (WT)

The wavelet transform technique (WT) is perfect in describ-

ing features of non-stationary signals. The technique is used

in many applications such as image processing, signal pro-

cessing, communication systems, time-frequency analysis

and pattern recognition [61]–[65]. The WT decomposes sig-

nal into wavelets of several scales in the time-domain with

changing window sizes, with each scale representing a par-

ticular feature of the signal under review. This technique

is centered on small wavelets with limited duration [66]

developed as alternative to solving time-frequency resolu-

tion problems associated with short time Fourier transform

(STFT) [67]. In contrast to the STFT which uses a single

window analysis, the WT uses long windows at low fre-

quency and short windows at high frequency. It provides

improved time-frequency resolution of components of the

signal under review. It has three advantages; (1) it is more

efficient for short-lived features extraction as related with

cetacean signals, (2) it provides uniform resolution for all

the scales, and (3) it extracts signals throughout the spectrum

without the need for a dominant frequency band. The wavelet

basis function ψs,u(t) is defined as

ψs,u(t) = 1√
|s|
ψ

(

t − u

s

)

, s > 0, u ∈ ℜ, (2)

where ψ(t) is the mother wavelet function, s is the scaling

parameter which allows ψs,u(t) to expand or contract and u

is the translating parameter (translation in time allowing time

shifting of ψs,u(t)). By convention, the wavelet function is

configured to attain a balance between time domain (limited

distance) and frequency domain (limited bandwidth). As the

mother wavelet dilates and time-shift (translate), a small

scaling parameter s leads to high frequency wavelet function

ψs,u(t) which gives good time resolution with poor frequency

output while a large scaling parameter s leads to low fre-

quency wavelet function ψs,u(t) which gives poor time res-

olution with good frequency output [67], [68].

There are two kinds of WT: the continuous wavelet trans-

form (CWT) and the discrete wavelet transform (DWT). Both

can be applied in cetacean signal feature extraction. CWT

uses a continuous wavelet function to determine the complete

wavelet coefficient ψs,u of a continuous signal by analyzing

the low-frequency content of a signal with a broad translation

function, while it analyzes high-frequency content of a signal

with a short-duration function [66], [67]. The CWT transform

is defined as shown in equation (3) [66]

Wx(s, u) =
∫ ∞

−∞
x(t)

1√
s
ψ

(

t − u

s

)

dt, (3)

where ψ(t) is the mother wavelet function, x(t) is the input

signal, s and u are as defined above. The input signal x(t)

which is hitherto a one-dimensional signal has been trans-

formed to a two-dimensional coefficients Wx(s, u). The two

variables; s and u can execute the time-frequency analysis.

A specific frequency (parameter s) can be found at a definite

time instant (parameter u). Intuitively, equation (3) simply
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mean Wx(s, u) is the energy of x of scale s at t = u. CWT is

associated with two problems; it implementation is difficult

and finding the scaling function is hard.

The DWT of a time domain signal x(t) is defined as:

Wx(s, u) =
∑

t

1√
s
x(t)ψ∗

(

t − u

s

)

dt (4)

The scaling parameter s and the translating parameter u only

take discrete values in the DWT. DWT can be implemented

efficiently using a pair of low pass and high pass filter as

proposed in [69]. The low and high-frequency parts of a signal

are separated through the use of filters. The signal is passed

through low pass and high pass filters and down sampled by

a factor of two. Details of DWT procedures are explained

in [69].

The DWT is easy to implement and yields faster compu-

tational time because it uses filters. The wavelet transform

is however confronted with the problem of poor discrimina-

tion between signals with close high-frequency components

which is as a result of poor frequency resolution in the high-

frequency region [67]. This leads to complexity in differenti-

ating high frequency transients. Thewavelet packet transform

(WPT) provides an alternative that overcomes this limitation.

It decomposes both low and high frequency components at

each level; thus giving better resolution. Procedure for signal

decomposition using WPT is explained in details in [59].

There are different wavelet transform families such as

Haar wavelet, Morlet wavelet, Packet wavelet, Daubechies

wavelet, symlet wavelet, Coiflet wavelet. They differ with

respect to length of support of the mother wavelet, speed

of decaying coefficients, symmetry and orthogonality and

bi-orthogonality of the resulting functions [70]. Certain cri-

teria are to be used to select a particular mother wavelet

family. In cetacean vocalization detection and classification

process, WT method is used to extract a set of features

that may be used in classifying signals. The wavelet family

basis are selected according to the signal to be analyzed

for the formation of feature vectors. Due to difference in

the species signal (between and within individual species),

different wavelet families may be used to analyze the signal

of a species, evident in the analysis of sperm whale signals,

where the authors use different wavelet families with each

stating the advantages of the wavelet family used. Morlet

mother wavelet was used in [61]; Daubechies mother wavelet

present better result in [71] while wavelet packet transform

was preferred in [72].

The CWT has been used as feature extraction tools for

sperm whale clicks by different authors employing different

wavelet families [61], [71], [73]. The sound emitted by sperm

whales are distinctive, short-time and have a broadband spec-

trum [73]. A new feature extraction method based on CWT

approach was used in [32] to decompose identified (picked)

clicks from denoised sounds of spermwhales and long-finned

pilot whales, and a wavelet coefficient matrix was obtained

from every single picked click. A feature extraction procedure

built on the concept of wavelet coefficient matrix was pro-

posed, centering on the energy distribution and duration vari-

ance between the two whale clicks. The feature vector was

from the scale (frequency) features and time feature achieved

from each picked click. It gave improved time resolution

and frequency resolution when compared with STFT and

other time frequency transformmethods. Fargues andBennett

in [61] compared classification rate achieved using DWT

and AutoRegressive (AR) modeling to extract features from

recordings containing killer whale, pilot whale, sperm whale,

gray whale, humpback whale, and underwater earthquake

signals while a back-propagation neural network is used for

classification.

C. HILBERT HUANG TRANSFORM (HHT)

The Hilbert Huang transform (HHT) is an alternative method

for characterizing bioacoustics signals. It enjoys wide area

of applications in bioacoustics signal characterization, fault

diagnosis in nuclear reactors, biomedical diagnosis, electrical

machines condition monitoring, seismic studies, financial

application, among others [74]. It gives an improved result

than conventional time-frequency analysis methods such as

STFT and WT [51]. The method is entirely empirical and it

is implemented in two phases.

First phase is the decomposition of the signals into some

monocomponent signals called intrinsicmode function (IMF)

using Empirical mode decomposition (EMD). Each IMF rep-

resents a definite frequency range and it indicates the time

evolution of the components included within that band. The

EMD operates in time domain, it is adaptive and highly effec-

tive. The second phase is Hilbert spectral analysis which is

the application of the Hilbert transform and a time frequency

representation associated with each IMF is performed. The

time-frequency representation of the IMFs is important for

the comprehension of the inherent structure of the analyzed

dataset [51], [74], [75]. The signal x(t) given can be decom-

posed as:

x̂(t) =
n
∑

i=1

ci(t) + rn(t), (5)

where ci is the ith IMF of the signal, rn is the residue and

x̂(t) is an approximate of the original signal x(t). The Hilbert

transform is used to derive the time-frequency representation

from the modes as proposed in [75]. The final presentation

of the result is an energy-frequency-time distribution of the

data.

HHT has been used for extracting features in a number

of cetacean detection and classification work. HHT has been

used in the analysis of sperm whale clicks and killer whale

clicks in [76] and [29] respectively. The original HHT tech-

nique is however facedwith three limitations. One, generation

of undesirable IMFs at low-frequency region which may lead

to misinterpretation of the result. Two, the first obtained IMF

may cover too wide frequency range such that monocompo-

nent attribute cannot be achieved, this limitation however is

subject to the analyzed signal. Three, signals with low energy
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component cannot be separated via the EMD operation [77].

An improved HHT technique proposed in [77] established

criteria for selection of IMF through the use of Wavelet

Packet Transform (WPT) as preprocessor for decomposition

of signal into a set of narrow band signals. Thus, frequency

components with low-energy are easily identified at differ-

ent narrow bands. The EMD operation is then performed

on these narrow band signals with each derived IMF truly

becoming monocomponent. Application of the WPT prior to

EMD operation would have avoided the other two identified

limitations. This improved HHT technique was shown to

detect underwater acoustic signals more effectively in [78].

D. EMPIRICAL MODE DECOMPOSITION (EMD)

In some recent works [39], [45], the EMDmethodwas used to

extracted features without the HHT applied. In [39], the IMF

generated from the EMD were used to obtain feature vec-

tors. The sound sources detected were uniquely labeled and

verified before manually grouped into different categories.

The unique labels were used to classify the detected sound

sources. This new approach is a modern way to carry out

unsupervised detection and classification in the time-domain

depending entirely on EMD-type processing, eliminating the

necessity to apply the Hilbert transform and manual label-

ing of pre-processed data by an expert. They claimed their

approach can be applied to a number of transient sound

sources (humpback whale songs, Killer whale whistle, beluga

whale whistles).Also, in [45], the generated IMFs from EMD

process were used to form feature vectors which were fed

into a hidden Markov model (HMM) to detect Bryde’s whale

pulsed calls.

E. LINEAR PREDICTION COEFFICIENTS (LPCs)

The Linear prediction coefficients (LPCs) is a signal analy-

sis method used in speech coding, speech synthesis, speech

recognition, speaker recognition and verification and for

speech storage [79]. The LPCs expeditiously represent

speech signals as short-time spectral information [80], [81].

The main concept of this method is that it predicts the value

of the current sample signal Y (n) by a linear combination of

past samples and then approximates the difference between

the actual value and the predicted value as shown:

Ŷ (n) =
m
∑

k=1

akY (n− k), (6)

e[n] = Y (n) − Ŷ (n), (7)

where Y (n) is current sample signal, Ŷ (n) is the predicted

value, ak are mth order linear predictor coefficients, e[n] is

the prediction error. The LPC coefficients ak are determined

by minimizing the sum squared errors over a given interval

that is, the actual speech samples and the linearly predicted

ones as shown in Equation (8) [79];

∑

n

e2 =
∑

n

(

Y (n) −
m
∑

k=1

akY (n− k)

)2

(8)

FIGURE 4. Steps for feature extraction in LPC technique.

differentiating Equation (8) with respect to ak , k =
1, 2, . . . .,m yields Equation (9)

∂E

∂ak
=

n1
∑

n=n0
Y (n)Y (n− k)

−
m
∑

j=1

aj

n1
∑

n=n0
Y (n)Y (n− k)Y (n)Y (n− j) = 0, (9)

leading to a set of m linear equations as shown in equation

(10) with m unknown quantities a1, a2, . . . ., am which can

be solved efficiently for ak as explained in [82]

m
∑

k=1

ajcjk = cok , k = 1, 2, . . . ,m , (10)

where

cjk = ckj =
n1
∑

n=n0
Y (n− j)Y (n− k), (11)

Extracting features using LPC can be achieved in four steps

as depicted in fig. 4: pre-emphasis, framing, windowing and

computation of the LPC as explained in [83]. LPC was used

as one of the feature extraction tools for recognition of indi-

vidual humpback whale base on their vocalization data [84].

The extracted coefficients were tested on different classifier

models in each of the works. The generated features were

useful for the classifier; however quantization, stability and

interpolation are some of the drawback of LPC.

F. MEL-SCALE FREQUENCY CEPSTRAL COEFFICIENTS

(MFCCs)

The MFCC is a widely used feature extraction technique

in signal processing. It has been used to extract features in

speech recognition, image identification, gesture recognition,

palm recognition, drone sound recognition, speaker identi-

fication, cetacean vocalization detection and classification

[56], [85]–[88]. Features are extracted in the cepstral domain

to build a feature vector set for every type of signal. The

wide spread use of MFCC is due to it low computational

complexity, it is however sensitive to noise due to its depen-

dence on spectral form. Features are extracted by transform-

ing signals from the time domain into the frequency domain

(mel frequency scale). Two filter types exist in MFCC which

are linearly set apart at low frequency below 1kHz and a

logarithm spacing above 1kHz [89], [90]. Generally, feature

extractions using MFCC involve the following steps; Pre-

emphasis, framing, hamming windowing, Fast Fourier Trans-

form (FFT), the Mel-scale Filter bank, Logarithm operation
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FIGURE 5. Steps for feature extraction in MFCC technique.

and Discrete Cosine Transform (DCT) as explicitly explained

in [87], [90], [91]. A block diagram of these steps for extract-

ing features using MFCC technique is shown in Fig. 5

The corresponding value for frequency f is expressed in Hz

and the ith mel-ceptral coefficient is shown in Equations (12)

and (13) respectively, where K is the total number of cepstral

coefficients, Xk is the logarithmic energy of the kth mel-

spectrum band.

Mel(f ) = 1127ln

(

1 + f

700

)

Hz, (12)

MFCC i =
K
∑

k=1

Xk cos

(

i(k − 0.5)π

K

)

, i = 1, 2, . . . ,K ,

(13)

Typically the first twelve coefficients are utilized to com-

pose MFCC. The set of coefficient is the output feature

vectors. Thus, each input acoustic signal is transformed into

a sequence of feature vectors. The delta coefficients are

included so as to demonstrate the dynamic features.

MFCCs has been used for feature extractions in several

cetacean vocalization detection and classification processes.

In most cases, it produced better performance than other

feature extraction techniques due to its simplicity [92]. Three

feature extraction techniques (LPC, cepstrum and MFCC)

were applied to extract essential features on individual Hump-

back whale vocalization in [93]. The MFCC was shown to

outperform the other two methods.

G. OTHER FEATURE EXTRACTION METHODS

There are other feature extraction methods developed by

some researchers who applied them in their work for extrac-

tion of features from cetacean signals. These isolated tested

techniques are potential areas where further research can be

done to determine their viability for global application to

cetacean signals. Examples of such methods include Bienen-

stock, Cooper, and Munro (BCM) theory used in [54] as a

feature extracting tool in the design of a classifier. It was

tested on Sperm whale and Porpoise signals. A network of

BCM neurons was used to extract features from a wavelet

representation. This is reported to have an improved clas-

sification accuracy of the signals. Recently, a simple but

robust feature extraction method was proposed in [42] where

three parameters; the mean, relative amplitude, and relative

power/energy (MAP) from the signals were used to form

feature vectors. These feature vectors were adapted with the

HMM for the detection of Bryde’s whale short pulse calls.

The MAP feature vectors were empirically selected based

on the observation of the calls to be detected. The result

obtained presents enhanced sensitivity and false discovery

rate performance besides showing a low computational com-

plexity in comparison to the LPC-HMM and the MFCC-

HMM detectors. Others are Teager energy operator (TEO)

[44], [94], Weyl transform (WyT) [95].

A summary of surveyed feature extraction (FE) techniques

in this work is given in Table 1. The examples of sound

types each technique has been used to analyzed are indicated.

It is observed that some FE are used directly for detection,

EMD and HHT have been directly used for the detection and

classification of cetacean signals as observed in [29], [39],

[76]. The advantages and disadvantages of each technique are

highlighted as well as general remark on the characteristics of

the techniques.

IV. DETECTION AND CLASSIFICATION TECHNIQUES

Different techniques for the automatic detection and classifi-

cation of cetacean signals have been developed over the years.

Certain factors such as the characteristics of background

noise and intrusive sounds, amount of variation in the species’

sound, feature vectors, and whether a template parameter

exist for the targeted signal are considered when choosing a

technique for analysis of marine sound [48]. Due to variations

in acoustic repertoire with respect to region or population,

it is important that the classifier is trained with calls from the

intended region so as to enhance the accuracy of the classifi-

cation [11]. Among the widely used existing detection and

classification techniques include Gaussian mixture models

(GMM), Hidden markov models (HMM), neural networks

(NN), support vector machines (SVM), spectrogram cross-

correlation (SPCC), matched filtering (MF) and dynamic

time warping (DTW). Others that are not so popular but are

potential areas where further research could be carried out

to determine their viability for global application to cetacean

signals include Short-Time Windowed Energy (STWE) [71].

According to the paper surveyed, we categorized these tech-

niques into two broad classes, namely: statistical-based, and

threshold-based techniques as shown in Fig. 6. We arrived at

this categorization as a result of similarity in the implementa-

tion procedures shared by the techniques. The performance of

each technique is dependent on the species, physical environ-

ment where the data are recorded, size of datasets available,

and more importantly the feature vectors extracted from the

recordings. However, some techniques do not require feature

vector extraction process to carry out detection or classifica-

tion. Such techniques have the ability to learn the inherent

features needed for detection or classification during the

training of the data..

A. STATISTICAL-BASED TECHNIQUES

The statistical-based detection and classification techniques

are techniques whose procedures use statistical inference for
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TABLE 1. Characteristics of Feature Extraction Techniques.

FIGURE 6. Categorization of existing detection and classification techniques.

the discovery of the best pattern that matches the features

trained with the model. The modeling of these techniques

are centered around statistical analysis. Examples of these

techniques include GMM, HMM, NN, and SVM. They usu-

ally require large amount of datasets for the training and

the testing stages. They are widely used for cetacean signal

analysis and usually require a large amount of dataset for

training and testing. Most of the techniques in this catego-

rization are feature-based, i.e. they require features to be

extracted from the signal to be analyzed before application

of the detection and classification algorithms [96]. In this

categorization, the model developed decides the outputs from

the training dataset. In other words, the dataset is divided

into two parts. The first part is used for training the model

while the second part, which the testing stage, is used to

validate the performance of the model. The model is trained
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by learning to recognize salient patterns from the dataset.

These patterns must be carefully defined within the context

of what is expected. The training stage essentially enables

the model to be able to accurately predict the patterns of the

dataset. During the model testing, output will be exclusively

dependent on the observed patterns from the training stage.

It is important to note that the data used for testing must have

never been used for training. In some of these techniques,

the size of the training and the testing data have impact on

the performance of the detector or classifier.

1) GAUSSIAN MIXTURE MODELS (GMM)

The Gaussian mixture model (GMM) is a classifier which

uses the estimate of probability density function (PDF) to

model densities of different kind of signals [97]. It has been

applied to a broad range of applications such as sound pro-

cessing and image processing. It has the ability to arbitrarily

model any type of data distribution by modifying the param-

eters and number of Gaussian PDFs. A set of N Gaussian

distributions of feature vectors x = (x1, x2, . . . , xD)T is

represented as:

pr
(

x

∣

∣

∣
µ,
∑

)

=
N
∑

i=1

ki
1

(2π)
d
2 |
∑

i |
1
2

e−
1
2 (x−µi)T

∑−1(x−µi),

(14)

whereµi is the mean,
∑

is the covariance matrix of the Gaus-

sian, |
∑

| is the determinant of
∑

,
∑− 1 is the inverse of

∑

,

d is the dimension of the vector, ki is the mixture coefficients

(weight of the ith Gaussian) andwith T denoting the transpose

operator. The integral sum across the total feature space is 1:

N
∑

i=1

ki = 1, 0 ≤ ki ≤ 1

The two parameters that directly decide the Gaussian dis-

tribution are the µ and
∑

as shown in equation (16). The

Expectation Maximization (EM) algorithm [98], [99] is used

to obtain the best Gaussian mixture parameters for a given set

of feature vectors. The EM algorithm is an iterative algorithm

which is based on maximizing the log-likelihood of the train-

ing data with respect to some parameters such as the means,

covariances of the matrix and the mixture coefficient [60].

The maximization is attained when the algorithm converges

after iterative update of2 where2 = (µi,
∑

i, ki) [100]. For

an assumed feature vector x parameter 2, the likelihood of

the parameters given x is calculated using:

pr(x|2) =
N
∑

i=1

kipr
(

x

∣

∣

∣
µi,

∑

i

)

. (15)

Therefore, the log-likelihood of 2 given x for all the feature

vectors x = (x1, x2, . . . , xD) generated by the same GMM is

[98]:

log pr(x|2) =
D
∑

d=1

log

N
∑

i=1

kipr
(

x(d)
∣

∣

∣
µi,

∑

i

)

, (16)

The EM algorithm is now used to find these parameters [98].

Equation (16) is for instance where samples are independent

and identically distributed (i.i.d). GMMs have been applied

substantially in the analysis of cetacean vocalizations. The

feature vectors extracted are treated as probability distribu-

tion. Feature vectors of size D are assumed to be placed in

different areas called clusters within the space when plotting

the feature vectors. The number of theN mixture components

is empirically chosen; depending on what is aimed to be

achieved.

In several research works, GMMs have been used to

develop techniques for detecting and classifying the sounds

of different species of cetaceans. Peso Parada and Cardenal-

Lôpez [12] used cepstral coefficients extracted as feature

vectors on a GMM classifier to detect and classify sound

recordings of underwater signals into one of four types:

pulses, whistles, background noise, combined whistles and

pulses. The detection rate achieved was 87.5% for a 23.6%

classification error rate (CER). Multiple signal classification

(MUSIC) algorithm and an unpredictability measure were

introduced as feature vector extractor to address the prob-

lem of modeling narrow-band high-frequency signals such

as whistles using only cepstral coefficients in the GMM

classifier. This approach significantly improved the detection

rate to 90.3% and reduces the CER to 18.1%.

Roch et al. [101] developed a GMM classifier to classify

free-ranging delphinid vocalizations of four different species

of odontocete (long-beaked, short-beaked common dolphins,

bottlenose and Pacific white-sided dolphins) from sounds

recorded at Southern California bight. GMMs are trainedwith

different mixtures which varies from 64 to 512. The classifier

accuracy increases with an increase in the number of mixtures

per GMM. The optimal number of mixtures varies from

species to species. The training data size also has a positive

effect on the accuracy of the classifier. Different output was

recorded when the mixture was retain at 256 mixture with

20s test segment while the training data size is varied. The

overall precision were impacted with reduction in the amount

of training data. For common dolphins, it was noted that the

recognition rate was higher with shorter amount of training

data.

Detection and segmentation of continuous-wave (CW)

underwater signals in the presence of strong background

noise was carried out using a spectral feature analysis cen-

tered on soft clustering of GMM in [60]. The nature of the

targeted signals are continuous, broad spectrum and the fre-

quency is close to the frequency of background noise. These

make it difficult to detect the CW signal under the impact of

ocean noise reverberation. The energy intensity of the data set

was acquired through some windowed FFT process; which

is then used as the sample space for the binary clustering

of the GMM. The GMM parameter were obtained using the

EM algorithm. Their simulation result shows that the detector

can produce an accurate detection and segmentation of CW

underwater signals even in the presence of strong background

noise.
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FIGURE 7. Hidden markov model types.

GMM and SVM techniques were used to build a clas-

sifier that distinguishes between clicks from three species

of odontocetes: Risso’s dolphin, Blainville’s beaked whales,

and short-finned pilot whales [44]. The experiments were

structured in two parts; (1) to detect the specific clicks pro-

duced by species of target X and (2) classify the set of clicks

produced by particular species. Different GMM mixtures

models; 2,4,8,16,32 and 64 were created. The 16 mixture

models surpassed other mixture models in performance. This

result was compared with the output of the SVM using detec-

tion error tradeoff (DET) curve. DET curve is said to be

efficient plots for highlighting divergence between similar

systems. DET of the three species were plotted with the fol-

lowing equal error rates (EERs): Blainville’s beaked whales-

GMM 3.32%, SVM 5.54%, short-finned pilot whales-GMM

16.18%, SM 15.00% and Risso’s dolphins-GMM 0.03%,

SVM 0.07%.

2) HIDDEN MARKOV MODEL (HMM)

The HiddenMarkovModel (HMM) is a popular model that is

applied in a wide range of practical applications like speech

recognition, speech analysis, data compression, computa-

tional molecular biology and pattern recognition, due to its

ability to model non-stationary random processes [12], [38],

[102]. Over the years, extensive research have been dedicated

to its study and this has consequently led to availability

of large tool set. HMM can be defined as a probabilistic

ranking classifier that assigns a tag or class to every unit in

a sequence of observations, therefore calculating the prob-

ability distribution over sequence of observations and picks

the best observation sequence [103], [104]. Fig. 7 shows an

example of two types of 4-state HMM; (1) ergodic (random)

HMM, and (2) left-to-right (Bakis) HMM. In the ergodic

HMM type, any state can be reached in a single step from any

other state in the model, therefore the transition probabilities

are non-zero. However, in the Bakis HMMnetwork, the states

go from left to right, thus state transitions are constrained

to only from lower-numbered state to higher-numbered state

[102]. Conventionally, Bakis HMM type is used to model

time-varying sound signals [47], nevertheless, both types are

still applicable to model cetacean signals.

The following five (5) components are used to describe a

HMM [102]:

• Number of states N in a model R = r1r2 . . . ..rN ;

• The transition probability matrix Tp = {tij}, each {tij}
typifying probability of moving from one state ti to

another state tj;

• A sequence of X = {x1, x2, . . . , xT } observation that is

equivalent to the output of the system being modeled;

• The probability of an observation likelihood called the

emission probabilities E . It indicates the probability of

an observation xt (physical output) state being generated

from a (hidden) state i;

• The initial state distribution τ = τ1, τ2, . . . , τN .

Thus, the HMM parameters are represented as:

β = (Tp,E, τ ) (17)

Generally, when a signal is to be modeled with a HMM,

three (3) problems are addressed in order to determine the

most prospectiveHMMorHMMsequence given an unknown

dataset (cetacean signals) [102]:

1) Estimation of the observation probability- (Likelihood

calculation of a certain observation sequence); given

an observation sequence X = {x1, x2, . . . , xT } and a

model β = (Tp,E, τ );

2) Finding the optimal sequence- (Decoding) from a

related state sequence Q = q1 q2 . . . .qT of the hidden

state from a given observation sequence X and a model

β;

3) Choosing the model parameter- (Learning/Training the

parameters Tp,E) that maximizes the probability of a

specific observation in a given state P(X |β).
The above 3 problems are solved using the following

algorithms; forward-backward algorithm (Baum-Welch) and

Viterbi algorithm. The detailed steps of the implementation

of these algorithms with respect to HMM have been treated

in detail in [102], [104]. Though, Baum-Welch has been

the conventional algorithm used for learning HMM, a new

learning algorithm was proposed in [105] centered on non-

negative matrix factorization (NMF) which is said to effec-

tively compact data into a statistical matrix. HMM can work

on any frame-based feature extractionmethod such asMFCC,

LPC.

The major dissimilarity between HMM and GMM is that

in HMM, the sequential evolution of the sound is noted,

therefore it is able to illustrate the structure of the calls. This

ability to note the sequential evolution of the sound enables

it to have more information to clarify among the sound types

detected. In GMM, the whole sound is considered as an entity

with exclusive properties that characterizes each class.

HMM has been used to analyze cetacean signals of differ-

ent species due to its ability to manage duration variability

through non-linear time alignment. It can also easily manage

silence or delay within vocalizations [1], [38], [47]. It has

also been used to analyze other bioacoustics signals like

fish [106], bird [92] and mammals [107]. It offers extremely

robust performances when applied to various bioacoustics

signals across a diverse range of species and classification
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tasks [38]. Putland et al. [1] used HMM technique to detect

Bryde’s whale vocalizations and it proved to be effective

despite the duration difference in Bryde’s whale vocaliza-

tions and directly overlapping vessel sounds. Classification

of individual calls in Humpback whales songs was done

using HMM [93]. Different training size was applied to the

entire data; 50% 25%, 10%. The classification performance

of each training data size differs. Their results show best

performance when 50% of the data was used for training

and the remaining 50% for testing, the overall classification

output was 94% as compared to when 25% and 10% were

used to train, the overall classification output were 90% and

78% respectively. This implies that the size of training data

has an effect on the classification performance, the larger the

data used during training, the better the performance of the

classifier. Although, there are instances when lower training

size give better classification, this can be attributed to the

call types; that is, different sound type may require different

training amount. However, it has been shown in [93] that

minimizing the amount of training set which reduces human

efforts can enhance the efficiency of the classifier because

the computational load and time would have been reduced

when running the algorithm. Thus, there exist opportunity

to choose between these two alternatives subject to ones

requirement; considering the give-and-take between time and

human efforts needed when training and the performance

result.

HMM techniques have been compared with other

techniques used for cetacean vocalization detection and clas-

sification. In most cases, the outcome of most of this compar-

ison showed that HMM outperformed the other techniques;

HMM and MF [108], HMM and GMM [37], HMM, SPCC

and MF [109]. Though this is also subject to the feature

extraction technique deployed and how it is implemented

with the HMM [38]. HMM and MF techniques were applied

on a set of 189 recorded underwater acoustics signals and

white Gaussian noise in [108] to detect the presence of bow-

head whale notes. HMM was able to detect 97% while MF

detected 84% of the bowhead notes present in the data. Both

methods give almost the same false positive rate (noise that

were wrongly classified as bowhead notes); HMM method

51% and matched filter method 49%. These noises are in

same frequency band as the bowhead songs and sometimes

resemble a portion of a note. Datta and Sturtivant in [110]

applied HMM for classification of common dolphin signature

whistles. The HMM was trained to represent members of the

whistles class after feature extraction usingMFCC. However,

there is need to check suitability of HMMmodels for analysis

of signature whistles. The dataset used in this work is small

compare the data size used for analysis involving HMM.

3) NEURAL NETWORKS (NNs)

Neural networks (NNs) are one of the popularly usedmachine

learning algorithms deployed in different fields to execute

tasks such as classification, detection, pattern recognition,

prediction and forecasting, optimization problems, among

others [111], [112]. The NNswork like the biological neurons

of the human brain by transforming inputs to outputs. Similar

to the human brain, the NNs is motivated by an activation

function. Themathematical neuron calculates aweighted sum

of its n inputs of signals xi, where i = 1, 2, . . . , n and the

output generated is 1 if this sum is above a definite threshold

t , otherwise, the output will be 0. This is mathematically

represented as

g = θ

(

n
∑

i=1

wixi − t

)

, (18)

where θ is a unit step function at 0, wi is the synapse weight

associated with the ith input. Equation (18) is a threshold

activation function, also known as theMcCulloch-Pitts model

[113]. However, in machine learning, instead of the threshold,

sigmoid σ is used as activation function:

σ (x) = 1

1 + e−x
(19)

A large postive value of x gives an output of the sigmoid

function that is near 1. The output will be near to zero when

x is much smaller than 0. The mathematical concept of how

NNs operates can be found in [111], [112]. Many neurons are

present in the NNs, each has many weights. The NNs learn

through trials and the weights can always be fine-tuned for

the NNs to learn (training stage).

The NNs can be categorized into two: (a) feed-forward

networks and (b) recurrent (or feedback) networks. Details

of this categorization of NNs architectures can be found in

[111]. There can also be different connection patterns of NNs

and the connection patterns influence the behaviour of the

networks. Each of the connection pattern has its specific

advantage. The NNs architectures are trained using suitable

algorithm to learn about the dataset [111]. The ability of NNs

to learn inherent rules from the given collection of dataset is

what make them useful to perform various tasks in various

fields; which thus makes them appealing. The training of

the networks is done with the aim to have an output that is

as close as possible to the desired outputs. There are three

training paradigms: supervised, unsupervised and hybrid. For

supervised learning, an outside agent provides the expected

output to the networks for every input pattern. The weights

are determined to permit the network to bring forth outputs

as accurate as possible to the known expected outputs. How-

ever, unsupervised learning are self-organizing maps (SOM)

networks that do not require an external agent to dictate the

pattern of their outcome but research the inherent structure

in the data or relationships between patterns in the data and

make these patterns into classes [111], [114]. In unsupervised

NNs learning, usually datasets are segregated into disjointed

subcategories in such a way that patterns in the same category

are as similar as possible and patterns in different groups are

as dissimilar as possible [114]. Hybrid learning merges both

supervised and unsupervised learning. Comprehensive tutori-

als on NNs have been explained in [111], [112], [115]. Their

ability to look for characteristic correlations in the dataset
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and form classes base on these correlations make them good

candidate for classification of cetacean vocalization [114].

NNs have been used for classification in various applications.

Two types of unsupervised, self-organizing NNs: a com-

petitive network and a Kohonen feature map were used for

classification of killer whale vocalizations in [114]. Both net-

works are trained with a combination of duty-cycle and peak-

frequency input values. The outputs of both networks were

complementary, not withstanding, each of the network has

its own advantages. The competitive network was efficient

in finding the minimum number of probable categories from

the dataset while the feature map was able to show additional

properties such as relative distribution of the feature space

and topological correlations among categories.

A method was developed for automatic categorization of

bioacoustic signals into biologically relevant categories in

[116] using a combination of DTW and Adaptive resonance

theory (ART) NNs dubbed ARTwarp algorithm. This method

modified ART2 with the adaption of DTW. DTW was used

to compute the similarities between the frequency contours

and the set of reference contours in order to ensure maximum

overlap in the frequency domain. A dataset from 4 individuals

bottlenose dolphin stereotyped whistles and field recordings

of transient killer whales calls were randomly selected for

testing of the method. The problem addressed here is the

categorization of the signal rather than the usual classification

(which is the process of ascribing a sound pattern to prede-

fined categories). The 104 dolphin whistles were partitioned

into 46 categories that were consistent with known biological

behavioral patterns of these dolphins.

Jiang et. al in [25] put forward a novel technique based on

deep Convolutional Neural Network (CNN) for the detection

and classification of whistles of long-finned pilot whales and

killer whales. CNNs is a class of deep feed-forward neural

networks that uses variation of multilayer perceptrons. The

detection and classification models were configured together.

The models were trained with tagged frame spectrograms

and tagged whistle spectrograms which contain features of

each of the whale species which have been earlier achieved

during the preprocessing stage. No specific time-frequency

features were extracted directly. The data inputs to the models

were the time-frequency spectrograms that qualify the entire

information of the whistles. Therefore, the feature extraction

pattern and the computed features were learned from the

training data. The detection segment of the models admit the

frame spectrograms of the unknown sounds as inputs and pro-

cess whether the corresponding frame spectrogram contains

the whistles or not. The detected whistle spectrograms are

measured and transmitted to the trained classification model

which in turn identifies the whales species. Their proposed

method was able to attain a 97% detection rate and 95% clas-

sification rate. The method is said to be adaptable for other

whales or dolphins species that produce whistles or other

sounds.

Back propagation (BP) NN is used for classification of

clicks of long-finned pilot whales and sperm whales in [32].

BP is a class of multilayer feed-forward network and one

of the commonly used NNs models [112]. The designed BP

network classifier is a one hidden layer containing four nodes

whose output gave an improved classification performance

of the feature vectors formed from CWT. The method is

also said to give acceptable performance with small training

dataset size or a small number of features. The method is

applicable to other species of whales or dolphins that emit

clicks.

Bermant et.al [33] achieved a 99.5% detection accu-

racy of sperm whales echolocation clicks from annotated

650 spectrogram images of the click data using a CNN

based approach to build an echolocation click detector. The

technique design the detector to label annotated spectrogram

image as ’click’ or ’no click’. No feature extraction technique

is explored here but the CNN is designed to understand the

inherent features needed for detection. The datasets used

came from long-term field studies of sperm whales from two

different locations: Off Island of Dominica in the eastern

Caribbean and Galapagos Islands. They further applied a

Recurrent neural network (RNN) approach to carry out three

classification types centered on high-quality manually anno-

tated datasets- (1) coda types classification, where 97.5% and

93.6% classification accuracy were achieved for categorizing

23 coda types from Dominica and 43 coda types from Gala-

pagos datasets, (2) vocal clan classification, where 95.3%

and 93.1% classification accuracy was obtained for two clan

classes from Dominica and four clan classes from Galapagos

datasets, (3) individual whale identification, where 99.4%

classification accuracy achieved using two Dominica sperm

whales. The robust result achieved further emphasis the effi-

cacy of machine learning approach to analysis of cetacean

signals.

Deep neural networks-based detector was developed in

[41] to detect the vocalization of North Atlantic right calls.

Two types of deep neural networks architectures: CNN and

RNN for the detector. They compared the performance of

the developed detector with some existing traditional detec-

tion methods. The detector was reported to produce lower

magnitude of false positive rate while exhibiting significantly

increasing true positive rate. Deep learning approach to devel-

oping algorithms for detection and classification of cetacean

signals is gaining more prominence as seen in recent works

[25], [33], [41], [96]. Deep learning being an illustrative

learning method where machine automatically learns the rep-

resentations that are needed from the input raw data makes

it a promising area to improving on existing techniques for

detection and classification of cetacean species. This will help

to pass up the preprocessing of the raw data into other forms

of input for detector or classifier model [96].

4) SUPPORT VECTOR MACHINES (SVM)

Support vector machines (SVM) is one of the popularly

knownmachine learning algorithms that is based on statistical

learning concepts [117], [118]. It has enjoyed wide applica-

tions in diverse areas of study such as text categorization, state
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estimation, face recognition, image recognition, modeling

and control as well as cetacean signal classification among

others [117]. SVM is defined in [118] as systems which

utilize hypothesis space of a linear functions in a high dimen-

tional feature space, trained with a learning algorithm from

optimization theory that implements a learning preference

derived from statistical learning theory. The SVM formula-

tion uses the structural risk minimization (SRM) principle

[119] which minimizes the upper bound on the expected risk.

It has good classification ability through the use of the ker-

nel function mapping technique [119]. The SVM classifier’s

performance is heavily subject to parameter selection and

settings. Detail explanation on the working principles of the

SVM can be found in [117]–[120].

The SVM technique has been used to solve classification

problem in the analysis of signals of cetacean species. The

SVM classifier was used in [121] for classification of North

Atlantic Right whale up-calls. The authors proposed a novel

algorithm by integrating two feature extraction techniques;

DWT and MFCC. The MFCC was enhanced with the intro-

duction of DWT which assist in separating ocean noise from

the up-calls. A 92.27% detection rate was achieved with

this algorithm. SVM produce good performance for datasets

with overlapping characteristics. The performance output of

a GMM and SVM classifiers were compared in [44] using

detection error tradeoff (DET) curve. The equal error rates

(EERs) from the plotted DET of three species (Blainville’s

beaked whales-GMM 3.32%, SVM 5.54%, short-finned pilot

whales-GMM 16.18%, SM 15.00% and Risso’s dolphins-

GMM 0.03%, SVM 0.07%) indicated that GMM perform

better than SVM. It was proposed that adding more species

to the dataset may improve the performance of SVM.

A multi-class SVM classifier was developed in [122] to

classify vocalizations from beaked whales and species of

small odontocetes. The classifier which was dubbed class-

specific SVM (CS-SVM) distinguishes among the classes

of interest from a referenced class. The class selected is

the one with maximized decision function with respects to

the reference class. The CS-SVM was structured to recog-

nize the existence of noise which was treated as a common

reference class. This is not the case in a single SVM. A

workshop dataset comprising three species (beaked whale,

short-fin pilot whale, and Risso’s dolphin) of labeled and

unlabeled training and test data respectively was used to train

and test the classifier. A four class (the three species and

the noise) CS-SVM was created which were each trained

and tested with approximately 250 signal-present labeled

feature vectors and a similar number of noise-only feature

vectors. The training set were used in the optimization to

find the optimal hyperplane for each class. The performance

of the classifier was evaluated using the following metrics,

Pcc = fraction correctly classified (signal present), Pmiss =
fraction misclassified, and Pnse = fraction of noise correctly

classified. The classifier was then tested on unlabeled test

files with the following average performance Pcc = 91.5%,

Pmiss = 8.12%, and Pnse = 96.7%. The performance of

the classifier with unlabeled dataset was reported not to be

as good as the result obtained from labeled dataset. This

was attributed to the difference in the selected feature set.

Therefore, the method can be further tested with real live data

set that will indicate the location and method of recording of

the data.

Humpback whale vocalizations were recently classified

into song and non-song in [123] using three machine learn-

ing techniques: SVM, NNs, and Naive Bayes classifier.

Humpback whale vocalizations can be grouped into either

song or non-song. The song vocalizations are series of calls

organized into hierarchical structure that can go on for sev-

eral minutes while non-song vocalizations include feeding

cries, bow-shaped and downsweep or meow moans. 70-

second duration signals from the data were used as input

into the classifiers. The duration matches the hydrophone

array signal recording time frame in each of the file in the

dataset which was recorded from the Gulf of Maine. The

performance of each of the technique was evaluated using

the accuracy, receiver operating characteristics (ROC) curve,

and area under ROC curve (AUC). The performance of the

three classifiers were compared, the MFCC-based SVM led

with 94% accuracy while the MFCC-NN led with 94.27%

AUC. The authors intend to ascertain the generalization of

their approach to data from other regions of the world.

B. THRESHOLD-BASED TECHNIQUES

We categorized techniques that correlates their model output

with an already known template of the signal in view to

determine when detection or classification occur. For tech-

niques under this categorization, the detection or classifica-

tion patterns are set for the model through a define threshold.

They require a priori hypothesis of the structural pattern of

the signal. The model will then search for correlation in the

structure of the dataset and the known template. Usually, this

is done correlating the spectrogram of the signal recorded

with an already human annotated template that has set the

parameters for the signal of interest. The threshold as defined

by a human expert from the known template of the signal

decides the output of the model. Detection or classification

will occur when an energy within a specified frequency band

has exceeded the preset threshold. Techniques such as SPCC,

DTW,and MF among others falls under this categorization.

1) SPECTROGRAM CROSS-CORRELATION (SPCC)

Spectrogram Cross-Correlation (SPCC) is a correlation tech-

nique that is popular among existingmethods for bioacoustics

detection and classification due to its implementation sim-

plicity. It only require a single sound sample of call type to

be detected. It can be effectively applied to either continuous

detection or isolated vocalization task, where recordings have

been presegmented into separate files. A sliding window

is applied across a long recording, with correlation peaks

signifying target detection [38]. A spectrogram conveniently

represents signals by interpreting it in a waveform as a non-

negative function of instantaneous frequency and time.
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Generally, an input sound signal is converted into a spec-

trogram, a conditioning procedure; level equalization and

normalization are then applied. A template vocalization is

cross correlated directly with a spectrogram [124]:

S(t, f ) =
[

N−1
∑

n=0

w(n)x(t + n)exp

(−2π jnf

N

)

]2

, (20)

where w(n) is a windowing function, x(t + n) is signal to

be detected, and N is the length of the windowing function

to produce an output function d(t) which is the filter out-

put or detection score:

d(t) =
∑

t1

∑

f

S(t + t1, f )k(t1, f ), (21)

A threshold is then applied and the times at which the detec-

tion function goes over the threshold are considered detection

events (presence of sound of interest) [125]–[127].

The SPCC technique gives good performance in the fol-

lowing scenarios:

• For detection of call types when a relatively few

instances of call types are known, [109], [126],

• When the desired output is to minimize the number of

missed calls (false negatives) [126],

SPCC however, cannot be adjusted to variations in call

duration and alignment, and is also substantially influenced

by changes in frequency such as shifts triggered by vocal

uniqueness among callers as well as high SNR [38], [127].

It is also subject to ocean acoustic propagation effects,

i.e., signal distortion as the sound propagates through the

ocean medium.

The performance of SPCC technique developed in [109]

was compared with that of the matched filter and HMMusing

a set of 114 songs sample of bowhead end notes. Each of

the technique produced a recognition score for each of the

114 sounds in the sample set. A low detection threshold was

chosen in order to determine if the score would be considered

a detection event. The SPCC offers a better performance than

the matched filter. The SPCC was also compared with neural

network technique but with a lager dataset, the neural net-

works however performed better than the SPCC. The better

performance of neural networks is due to its ability to manage

time variation in bowhead vocalization better than the SPCC

perhaps as a result of its large training set. The SPCC works

fairly well with small training set, therefore, this technique

can fit in well in situation where small data recordings is

available.

Mellinger in [126] used two different approach to develop

SPCC method which was applied to detect right whale calls:

the manual parameter choice and the automated optimiza-

tion procedure. For the manual parameter choice procedure,

parameters controlling the spectrogram correlation procedure

were selected by hand, in a series of sequential steps, while

in the automated optimization procedure, parameters for the

spectrogram correlation were chosen by running an opti-

mization process to obtain the set of parameters that will

perform best. The performance of the automated optimiza-

tion procedure was substantially better than the spectrogram

correlation of the manually chosen parameter. This is because

the automatic optimization procedure uses the whole datasets

to choose its parameters while the manual procedure only use

a small subset of the datasets to choose it parameters. The two

SPCC approaches were compared to neural network method

with the latter performing better than the former for calls with

poor SNR.

SPCC performed best on short sounds recordingwhen used

for automatic detection of North Pacific right whale calls

[36]. It detects 17 calls out of 18 calls samples. However,

the proportion of false and missed detections increased as the

recording duration increases because longer duration record-

ings contain longer period of noise relative to the number of

right whale calls present. This stress the fact that SPCCworks

better when few datasets are available.

Mellinger and Clark [127] developed detector for auto-

matic detection of bowhead vocalization using SPCC and

matched filter techniques. A set of bowhead sound were ana-

lyzed with both techniques. SPCC performed relatively better

than the matched filter in a substantially noisy recordings.

Thematched filter on the other hand performs better when the

noise present in the recording is flat-spectrum. The same set

of bowhead sounds were tested with a NN method. The NN

performed better. However, SPCC and matched filter work

better than neural network when a few data set are available.

2) MATCH FILTERING (MF)

The match filtering (MF) technique is similar to the spectro-

gram cross correlation; it is also a correlated-based technique.

It is used in radar system and image processing analysis.

In this technique, synthetic waveforms or synthetic spectro-

grams are used rather than sounds edited out of the original

recordings [38], [109]. The matched filter detects signal of

interest by maximizing the SNR of the input signal with

respect to the noise present in recordings. This is followed by

cross-correlating the sound signal with the known template

signal. Generally, the objective of matched filtering technique

is to detect presence of sound s(t) in the received signals

x(t) which is contaminated with additive noise n(t) as [128],

[129]:

x(t) = s(t) + n(t). (22)

With respect to cetacean detection; in Equation (22), x(t) rep-

resents the dataset to be analyzed for the presence of species,

s(t) represents the known template signal associated with the

species of interest, and n(t) represents all other signals (such

as shipping sounds, sounds from other species) present in

the dataset. There is prior knowledge of the signal of species

of interest (which serves as template), but the shape of such

templates may vary within the species of interest. Due to this

prior knowledge, the detection can be achieved based on a

matched filter. A matched filter can be achieved using a finite

impulse response (FIR) digital filter which has an impulsed

response, h(t) = s(t − t0). That is, the time-reverse of the
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template signal, such that the output SNRwhen x(t) is applied

to the input is maximized [130]. The resulting output of the

filter y(t) is expressed as:

y(t) = ys(t) + yn(t), (23)

where the output signal, ys(t) = s(t) ∗ h(t) is the result of

the convolution of the signal with the filter response h(t).

Likewise, yn(t) = n(t) ∗ h(t) is the noise output of x(t) [128],
[130]. The condition for optimal detection is that the output

signal component ys(t) must be substantially greater than

the output noise component yn(t). To satisfy this condition,

the filter is to make the instantaneous power in the output

signal ys(t), measured at time t = t0 as large as possible

compare to the average power of the output noise yn(t). This

is equivalent to maximizing the peak pulse SNR as shown in

Equation (24); [128]

r0 = |ys(t0)|2
E[n2(t)]

. (24)

where E is the signal energy. The matched filter is an optimal

detector if n(t) is a white Gaussian noise random variable.

In other words, it is optimum detector for detection of sound

with white Gaussian background noise and a known signal

[127], [130]. However, it shows a poor performance level

than other techniques when there is variation in the recordings

which can be as a result of harmonic interference such as ship

noise [109].Matched filtering also gives optimal performance

for signals with known source. However, the exact source

signal of marine mammals are not known which implies that

matched filtering may not be an optimal detector for cetacean

signal analysis. Despite this shortcomingwith respect to it has

been applied in the detection of some cetacean species where

the matched filter performs cross-correlation between the

input signal x(t) and the ’targeted’ sound of interest s(t). The

target sound of interest, selected by a human expert serves as

template for the matched filter design. Any match with this

template defines the signal of interest. Measured parameters

such as mean frequency and bandwidth are used to synthesize

a filter kernel representing the sound type [127]. It strengths

and weaknesses are similar to that of SPCC [38]. Although,

it requiresmore efforts to construct the pattern templates but it

is easy to implement. Stochastic matched filter (SMF) [131],

[132] method, which is a better version of the traditional MF

has been proposed in analyzing PAM of cetacean signals.

SMF is attractive due to it ability to both detect and classify.

It was used in analyzing recorded data in noisy underwater

environment containing Antarctic Blue whales [132]. It has

been shown to give an improved performancewhen compared

with MF.

Stafford, Fox and Clark in [133], developed a matched fil-

ter using recorded blue whale calls (for template design) from

the U.S. Navy’s Sound Surveillance and System (SOSUS) for

detecting and localizing such calls in noisy environments. The

developed matched filter was applied to real-time recordings

from three different SOSUS arrays off the coast of the Pacific

Northwest to detect and locate blue whale calls. A match was

found between the calls recorded by patrol aircraft and the

SOSUS which were confirmed to be the same. The matched

filter developed has the advantage to detect the calls of

interest from noisy data. This is made possible because the

matched filter was designed from average values of numer-

ous blue whale calls obtained from different SOSUS arrays.

This makes it to be more robust for detection than a kernel

developed from a single calls.

MF and HMM techniques were applied on a set

of 189 recorded underwater acoustic signals and white Gaus-

sian noise in [108] to detect the presence of bowhead whale

notes. The performance of the two techniques were compared

where the HMM selected 97% and the matched filter selected

only 84%. Both methods give almost the same misclassifica-

tion output (noise that were wrongly classified as bowhead

notes); HMM method 51% and matched filter method 49%.

These noises are in same frequency band as the bowhead

notes and sometimes resemble a portion of a note.

3) DYNAMIC TIME WARPING (DTW)

Dynamic time warping (DTW) technique measures the simi-

larity between time temporal sequences which may vary in

speed. In other words, it serves to estimate the similarity

between an unknown token and a reference template [134].

DTW can be applied for the analysis of temporal sequences

of video, audio or image data. It has been explored in many

areas of applications like speech recognition, handwriting

and online signature matching, sign language recognition,

gestures recognition, data mining and time series clustering

(time series databases search), computer vision and com-

puter animation, surveillance, protein sequence alignment

and chemical engineering, music and signal processing [135].

Suppose we have two time series, a sequence Ŗ of length n

and a sequence Ģ of length m, where

Ŗ= (ŗ1, ŗ2, . . . , ŗi, . . . , ŗn) and Ģ= (g1, g2, . . . , gj, . . . , gm).

(25)

The optimalmatch between these two sequences can be found

using DTW, an n − by − m distance matrix Z̧ is constructed

as shown in Equation (26), where the (ith, jth) element of the

matrix corresponds to the squared distances, d(ŗi, gj) = (ŗi −
gj)

2, which is the alignment between points ŗi and gj.

Z̧ =

















z̧(ŗ1, gn) . . . z̧(ŗm, gn)

z̧(ŗ1, gn−1) . . . . z̧(ŗm, gn−1)
...

. . .
...

...
. . .

...

z̧(ŗ1, g1) . . . . z̧(ŗm, g1)

















, (26)

The path through the matrix that minimizes the total cumula-

tive distance between them is the optimal path. The shorter the

distance, the more similarity between points, and vice versa

[136]. The distance matrix Z̧ is solved to get a contiguous

set of matrix W̧ with elements W̧ = (w̧1, w̧2, . . . , w̧k , ) that

represents a mapping between Ŗ and Ģ. The connection of
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each element is called the warping path (warping distance

of dynamic time) W̧. The k th element of W̧, wk = (i.j)k
is the alignment of the ith point of series Ŗ and jth point of

series Ģ. The shortest path is defined as the DTW distance.

There are several paths to be considered, however, they are

not randomly chosen but subject to the following conditions

[135]–[137].

1) Boundedness condition: The length of warping path

W̧ should be within this range max(m, n) 6 K 6

m+ n− 1;
2) Boundary conditions: The starting point of warping

path W̧ is w̧1 = (1, 1) and the end point is w̧k = (m, n),

that is, the alignment path starts at the bottom left and

ends at the top right. This guarantees that the alignment

does not consider partially one of the sequences.

3) Continuity condition: Suppose the previous point is

w̧k−1 = (i′, j′), next point w̧k = (i, j) in warping path,

then there must be (i − i′) 6 1 and (j − j′) 6 1. This

condition restricts the allowable steps in the warping

path to adjacent cells. It ensures important features are

not omitted by the alignment.

4) Monotonicity condition: Suppose the previous point is

w̧k−1 = (i′, j′), point w̧k = (i, j) in warping path, then

there must be 0 6 (i−i′) and 0 6 (j−j′). This condition
preserves the time-ordering of points. This guarantees

that features are not repeated in the alignment.

The optimal path is the path that minimizes the warping cost

DTW (Ŗ, Ģ) = min
{√

∑k
k=1 w̧k

. (27)

Details on the working procedures of DTW are explained

in [135], [137]. DTW’s ability to distinguish the differences

in signals of similar contours but different length makes

it a good technique for classification of signals of differ-

ent cetacean species. It was first applied for classification

of 15 bottlenose dolphin whistles in [28] by comparing the

frequency contours. The frequency contours of the signals

were extracted using the STFT. The algorithm was able to

correctly classify the 15 whistles into five classes.

DTW showed great performance in automatic classifi-

cation of killer whale pulsed calls by presenting precise

measurement of differences in the calls [138]. The pulsed

calls are complex sound with many harmonics which make

their classification more challenging than whistles. Five calls

with high SNR from previously classified sounds of captive

killer whale from Marineland of Antibes, France were used

for the experiment in the work. DTW was used to relate

the pulsed calls contours’ fundamental frequencies of all

likely pairs of sounds number by number. The sounds were

classified into nine call types. However, preprocessing the

measurement of the frequency contours was time consum-

ing. Brown and Miller in [139] broaden what was done in

[138] by investigating the effectiveness of DTW algorithms

on more natural recordings that include diverse collection

of species. The DTW was implemented using four differ-

ent approaches; (1) Ellis method, (2) Sakoe-Chiba method,

(3) Itakura method, and (4) Chai-Vercoe method on large

dataset. The four algorithms give good classification between

70% to 90% despite the presence of biphonic calls and over

100 calls. The results show the versatility of DTW for anal-

ysis of cetacean signals. DTW can be used to observe the

movement and habitat inclination of killer whales by tracking

sounds heard from remote locations.

Ogundile and Versfeld in [52] developed a detector using

DTW and LPC algorithms for continuous recording of

Bryde’s whale short pulsed calls (< 3:1s long). The data

were weekly recorded for a period of five months on sight-

ing of the Bryde’s whale in a single site in the Gordon’s

bay harbour, False bay, South-West of South Africa. They

formed templates from manually identified short pulsed calls

from the datasets of each day’s recording. The manually

identified short pulse calls are from a small section of the

recordings while the remaining larger section (obviously con-

taining other non-targeted sound) is used to test the detector

performance. Each template has a k numbers of sample of

variable lengths l. The performance of the detector was sub-

stantiated for different values of k . The performance of the

detector was tested using 6, 12, and 18 number of samples

for each template. The best performance was achieved when

with 18 number of samples, this indicates that the higher the

number of samples, the better the performance of the detector.

Also, the effect of background noise influences the detector

performance. However, the DTW-based detector performed

lower than the LPC-based detector.

C. SUMMARY OF THE TECHNIQUES

In conclusion to this section, it must be noted that the list of

the survey in this work are some of the commonly used tech-

niques for detection and classification of cetacean species,

it is by no means the entire techniques. It is noted that

while all the threshold-based techniques do not require any

specific feature extraction method, some of the statistical-

based techniques can as well carry out detection and classi-

fication on their own. Furthermore, it has been proven that

the techniques for analysis of cetacean species signals can be

very adaptive as recently shown in the work of [52] and [39]

where LPC-based and EMD-based methods were deployed

for detection and classification. These methods have been

previously known to be deployed for extraction of features

from signals.

Table 2 shows summary of the characteristics of the detec-

tion and classification techniques reviewed in this paper.

The conclusions to the information provided in the table are

arrived at from the survey of past work. The sound types

applicable to each technique are stated. Some techniques fit

into all the types of sounds emitted by different cetacean

species while others are only applicable to one or two types

of the sound types. As stated earlier, the cetacean consists of

two suborder in their taxonomy; Odontocete and Mysticete.

The species applicable to each of the technique are grouped

according to their taxonomy. In some of the techniques, fea-

ture extraction process is not required. Such techniques can
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learn to extract needed features through the training of the

data. The advantages and disadvantages as well as general

remark on each of the technique are also included in the table.

V. OUTPUT PARAMETERS

The metrics used to determine the performance of each

method develop and tested varies. The detection and classifi-

cation of cetaceans sounds are important as mentioned earlier.

Different methods have been developed as discussed in this

review to carry out this important tasks. The detector or clas-

sifier output are characterized by certain parameters that

determine their accuracy level. However, the performance

measurements reporting style varies among authors. This can

be attributed to the use of different techniques for analysis of

these signals.

Like every scientific research, the outcomes of researches

in this field are reported in terms of observable parameters.

These parameters or metrics are to show the level of accuracy

attained in the detector/classifier designed. Though, there

are a number of reporting metrics such as true positive,

true negative, false positive, false negative also known as

missed calls, false positive rate (FPR), and true positive rate

(TPR) also known as Sensitivity that are usually adopted by

authors to report the output of their work. Authors do adopt

their own style in reporting outputs. No method is 100%

perfect, any method will produce false negative, false pos-

itive [48] depending on analyzed signals, feature extraction

technique or types of detector and classifier.

The common metrics used in reporting output are as fol-

lows.

1) False positives: This is when a detector wrongly

detects a signal as signal of interest; that is, the number

of sounds wrongly detected as sound of interest.

2) False negatives: This occur when the sound of interest

are missed. The false negatives are also known as the

missed calls.

3) True positives: This is rightful detection of sound of

interest by the detector; that is the number of sounds

correctly detected.

4) True negatives: This is rightful prediction of the

absence of sound of interest by the detector.

5) False Positive rate (FPR): This is the proportion of

sound of interest that is falsely detected by the the

detector; it can be mathematically expressed as

FPR = false positives

true positives+ false positives
.

The best FPR is 0.0 while the worst is 1.0.

6) True Positive rate (TPR): This is the proportion of

sound of interest that is rightly detected by the the

detector; it is also known as sensitivity. It can be math-

ematically expressed as

TPR = true positives

true positives+ false negatives
.

The best TPR is 1.0 while the worst is 0.0.

7) Error rate (ERR): This is computed as the total num-

ber of all wrong predictions (false positives and false

negatives) divided by the total number of the dataset; it

can be mathematically expressed as

ERR = false positives+ false negatives

total number of the dataset
.

The best ERR is 0.0 while the worst is 1.0.

8) Accuracy (ACC): this is computed as the total number

of correct prediction (true positives and true negatives)

divided by the total number of the dataset; it can be

mathematically expressed as

ACC = true positives+ true negatives

total number of the dataset
.

The best ACC is 1.0 while the worst is 0.0.

9) Precision (PREC): this is computed as the total num-

ber of rightful detection divided by the total number of

detection (both true detection and false detection) in the

dataset; it can be mathematically expressed as

PREC = true positives

true positives+ false positives
.

The best PREC is 1.0 while the worst is 0.0.

Each designed detector or classifier has a unique set of

threshold or sensitivity subject to what it is intended to be

achieved. For instance, in a survey of a relatively rare species

such as Right Whales, the detector may be configured in such

a way that there as low number of missed calls (false nega-

tives) as possible due to availability of few datasets but such

detector may have a large number of false positives. On the

other hand, in a survey of a common species with abundant

datasets available, where accurate index of detection or clas-

sification is important, the detector can be configured in such

a way that the sensitivity level is low so as to reduce the

number of false positive detection and achieve high TPR [24].

However, some authors such as in [39], have been observed to

report the output of their research using some other metrics to

compare performance of their detector or classifier. Though,

this is does not really matter, in as much as there is a clear

reporting of the metrics use in determining the performance

level of their detector or classifier.

VI. FINDINGS, CHALLENGES AND FUTURE RESEARCH

PROSPECTS

The threats faced by cetaceans are enormous due to increas-

ing human anthropogenic activities. Ecosystem managers

are concerned about mitigating these threats but have chal-

lenges of inadequate information about them. This is because

cetaceans spent most of their time in water. However, they

use vocalizations essentially for their daily activities such

as communications, echolocation and social interactions.

Researchers have thus explored the advantage of these vocal-

izations to study them from a distance. PAM is used for

their monitoring and observations. However, PAM system

usually resulted in having large datasets can be difficult to

105198 VOLUME 8, 2020



A. M. Usman et al.: Review of Automatic Detection and Classification Techniques for Cetacean Vocalization

TABLE 2. Summary of surveyed detection and classification techniques.

manually analyzed. Design of automatic techniques for the

detection and classification of cetacean vocalizations has

greatly assisted with the processing of large acoustics dataset

that are acquired from long time recordings. It has also helped

eliminates human bias and errors thus leading to fast com-

putational time and relative consistencies. Therefore, it has

assisted the ecosystem managers in having more information

about their ecology. Thus, enhancing knowledge about their

biological behaviour, measurement of range and seasonal

presence, estimation of abundance of species within a spe-

cific area and so on. These techniques are based on signal

processing, pattern recognition and recentlymachine learning

algorithms. No detection or classification technique has given

100% output in terms of performance level. We observed that

the performances of the techniques are influenced by vari-

ous factors. These factors include feature extraction method

deployed, species involved, the quality of recording, size

of the recording, location of recording and computational
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TABLE 3. Summary of past work surveyed on detection and classification techniques.
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TABLE 3. (Continued.) Summary of past work surveyed on detection and classification techniques.
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requirements. We also observe that the procedures adopted

in implementation of the techniques by researchers varies

as reported in some of the work. Some of the techniques

may have more than one algorithms for their implementation.

An example is the DTW technique used for the classification

of killer whale vocalizations in [139], four algorithms are

used to implement the DTW, with each giving different out-

puts. Furthermore, researchers often use more than one tech-

niques to carry out detection and classification on a set of data

and compare performance output of each of the technique

deployed. An instance of such scenario is in [46] where five

different classifiers: SVM, CNN, Long-short-term memory

(LSTM) network, logistic regression, and decision tree are

used to classify large volume of fin whale vocalizations. The

comparison is carried out using multiple metrics including

accuracy, precision, recall, and so on. Recently, it has been

proven that the techniques for analysis of cetacean species

signals can be very adaptive as shown in the work of [52]

and [39] where LPC-based and EMD-based methods were

deployed for detection and classification. These methods

have been previously known for extraction of features from

signals in analysis of cetacean vocalization. Another promis-

ing future approach to this area of research is the deployment

of deep learning techniques as seen in recent works [25], [33],

[41], [46], [96] on analysis of signals of various cetacean

species. The deep learning avoids the preprocessing stage by

extracting features directly from the raw data [96]. It has been

reported to be efficient in carrying out detection of species

signals in challenging datasets [41] due to it ability to manage

complex, diverse, and unstructured data.

Despite the availability of different detection and classifi-

cation techniques, there are still some challenges facing this

research area. The comparison among different techniques

for performance outputs can be difficult due to the feature

extraction technique deploy. These feature extraction tech-

niques often universal [26] in approach (e.g. MFCC, LPC,

HHT) but some adjustments can be done to them to fit

in properly to the characteristics of signals to be analyzed.

Feature vectors play pivotal role to the output of any detec-

tor or classifier [38]. Thus the feature extraction techniques

must be carefully selected. Background noise as a result

of harsh recording surroundings, hydrophone type deploy

and sound propagation unpredictability can be inimical to

the detection and classification process. Some of the feature

extraction techniques can be very susceptible to noise which

will in turn reduce the precision of the system. Furthermore,

there is need to make available more wide-ranging, expert-

certified species sound catalogs such as the one available on

MobySound.org. The collection of sound can be laborious

and expensive for signal analysts to carry out. This can be

addressed if experts (biologists) can have a collaborative

efforts to develop harmonized catalogs for different species.

These catalogs can lead to launching of centralized database

(with information such as date/time of recordings, location,

and so on) that can be made accessible to researchers working

on development of automatic detectors and classifiers.

All the techniques have been used in a number of fields

for different applications. The non-stationary characteristics

of the cetacean signals often influence the use of some of

these techniques in this subject area. There are a number

of prospective areas for future research (deep learning tech-

niques as stated earlier for example) which can lead to dis-

covery of new techniques, thus increasing available options

for cetacean signal analysis. We also observed that despite

increase in efforts to develop robust techniques, there is

need for collaborative efforts that will standardize outputs of

research by different authors. The difference in the reporting

of work done by researchers are sometimes confusing. The

metrics use to report the performance level of detector or clas-

sifier by different authors can also be standardize for ease of

comparison. The implementation procedures are not usually

clearly stated. Most of the techniques are species-specific

in application and in some instance, location-based. There

is need to focus on developing robust techniques that can

cover many species despite the variability in the nature of

their sounds. More research efforts focusing on potentials of

adopting techniques for analyzing non stationary signals in

other field subject areas can give good lead to new discovery.

Continuous improvement on feature extraction techniques

will enhance accuracy of existing detection and classification

techniques. There is need for researchers to deep more into

exploring the opportunities of adapting feature extraction

techniques used in other research areas into this field. Such

prospective techniques such as dynamic mode decomposition

(DMD) [140] must be those that have the characteristics of

extracting feature vectors from non-stationary and non-linear

signals. There is need for continuous research efforts that will

lead to more improved techniques that can fit into a number

different species with similar characteristics and features. The

computational complexity of some the techniques need to be

improved.

We surveyed many previous works on automatic tech-

niques for the detection and classification of different

cetacean species. Table 3 shows a summary of a few of

the papers surveyed in this work. In these surveyed work,

we noted the tasks implemented; detection or classifica-

tion or both. The recording method used is also stated; either

fixed PAM or mobile PAM. The feature extraction, detection,

and classification techniques as well as the species involved

are also stated. In some instances, more than one technique

is used in a work. This is usually done to compare the perfor-

mances between the techniques so as to take a more informed

position on a particular technique. This is also applicable to

the species used for analysis where more than a species is

tested on same techniques in order to observe the difference

in their performances. General remark on what was done in

each of the survey is given. This include suggestions on areas

of possible improvements in future research. The remark

column is also to give readers a quick overview of each of

the surveyed work. Though, there are instances where some

of these information such as recording methods or location

are not stated in the literature. The missing information are

105202 VOLUME 8, 2020



A. M. Usman et al.: Review of Automatic Detection and Classification Techniques for Cetacean Vocalization

mostly observed in situation where authors are provided with

datasets from some institution data catalogs.

VII. CONCLUSION

The importance of cetaceans have led to increase interest

of researchers in them over the years. Despite their impor-

tance, they are continually exposed to threat from human

anthropogenic activities such as shipping, offshore explo-

ration, geophysical seismic surveys and naval sonar opera-

tions. Ecosystem managers are concerned about mitigating

these threats but have challenges of inadequate information

about them. This is because cetaceans spent most of their

time in water. These creatures use sounds for communication,

echolocation and other social activities. PAM have provided a

good alternative for their monitoring. However, PAM usually

lead to large volumes of recording which can be difficult to

manually analyze. The development of automatic techniques

for the automatic detection and classification has led to faster

and accurate analysis of cetacean signals. Human bias usually

encountered in manual detection and classification process

have also being eliminated. The success of any PAM is how-

ever dependent on the technique deployed to analyzed the

recorded signals.Many automatic detection and classification

techniques have been developed by different researchers with

mixed outcomes. However, there is nowork on a detail review

of the existing techniques that can serve as guide to anyone

new to this subject area. This review is intended to fill in

this gap. We highlighted the procedural steps for carrying

out feature extraction, detection and classification of cetacean

vocalizations. A review of most of the existing techniques

and methods for the design of feature extractor, detector and

classifier of cetacean vocalization have been carried out. The

differences in the outcomes of the surveyed techniques are

influenced by a couple of factors which are discussed. Thus,

there is no single technique that can detect and classify the

vocalizations over 82 known species of cetacean.

In this review,we look into the different existing techniques

so as to give an overview of each technique with respect to

their strengths and weaknesses. The techniques are subjective

in terms of performance which is determined by the type

of signal to be analyzed, species to be detected or classify,

feature extraction techniques deployed, location of recording

of data, and the expected outputs from the results. We have

seen from past efforts that some techniques are robust than

another. In deciding on a technique to be used in carrying out

an analysis, a thorough evaluation, appraisal, critical and far-

reaching knowledge of the technique is needed. This review

is intended to give a quick overview and serves as a guide

about this subject area for future improvement of existing

automated techniques for the detection and classification of

cetacean vocalizations.
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