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Abstract: The orchestration of software-defined networks (SDN) and the internet of things (IoT)
has revolutionized the computing fields. These include the broad spectrum of connectivity to
sensors and electronic appliances beyond standard computing devices. However, these networks are
still vulnerable to botnet attacks such as distributed denial of service, network probing, backdoors,
information stealing, and phishing attacks. These attacks can disrupt and sometimes cause irreversible
damage to several sectors of the economy. As a result, several machine learning-based solutions have
been proposed to improve the real-time detection of botnet attacks in SDN-enabled IoT networks.
The aim of this review is to investigate research studies that applied machine learning techniques
for deterring botnet attacks in SDN-enabled IoT networks. Initially the first major botnet attacks in
SDN-IoT networks have been thoroughly discussed. Secondly a commonly used machine learning
techniques for detecting and mitigating botnet attacks in SDN-IoT networks are discussed. Finally,
the performance of these machine learning techniques in detecting and mitigating botnet attacks is
presented in terms of commonly used machine learning models’ performance metrics. Both classical
machine learning (ML) and deep learning (DL) techniques have comparable performance in botnet
attack detection. However, the classical ML techniques require extensive feature engineering to
achieve optimal features for efficient botnet attack detection. Besides, they fall short of detecting
unforeseen botnet attacks. Furthermore, timely detection, real-time monitoring, and adaptability to
new types of attacks are still challenging tasks in classical ML techniques. These are mainly because
classical machine learning techniques use signatures of the already known malware both in training
and after deployment.

Keywords: botnets; software defined networks; internet of things; machine learning

1. Introduction

Digitization has brought a lot of advantages in a computing context. As a result, na-
tions have increased their dependencies on digitization, software-defined networks (SDN),
and the internet of things (IoT) [1,2]. In the digitization era, the major challenge we are
facing is cybersecurity. Cyber-attacks can disrupt and sometimes cause irreversible damage
to several to the economy. For instance, they can cause an electrical blackout [3], theft of
financial institutions [4], failure of military equipment [5], and breaches of national security
secrets [6]. Also, they can result in the theft of valuable and sensitive data like medical
records. Besides, they can disrupt phone and computer networks or paralyze systems.
According to the Outpost24 report [7], more than 3800 big corporations experienced data
breaches in 2019 that resulted in dire consequences. Despite all these attacks, there has
been a lack of awareness and system security, as well as a lack of quality research findings
that can bring an effective solution to contain malware attacks [8].
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An IoT network is a network of physical objects or things empowered with limited
computation, storage, and communication capabilities as well as embedded with electronics
(such as sensors and actuators), software, and network connectivity that enables these
objects to collect, sometimes process, and exchange data [9,10].

Several applications and services benefited a lot from IoT, including critical infras-
tructure management, agriculture, military, smart grid/cities, and personal healthcare [9].
However, IoTs are vulnerable to malware attacks, specifically Botnet malware [11]. The
vulnerability is mainly because IoT devices lack sufficient security mechanisms due to a
lack of secured credential usage and updates [12], and unsecured communication [13].

1.1. IoT Botnets

The term botnet is derived from two words, robot and network. A bot is a program
that performs user-centric tasks independently without any interaction from a user [14].
Based on how to control the bots, there are two types of botnet architecture, a centralized
client-server and a decentralized peer-to-peer (P2P) approach. In a centralized client-server
approach, the botmaster controls and monitors all bots from a single central point through
command and control (C&C) commands. In a decentralized mode, each bot acts as a server
and client that distributes and receives commands [15].

IoT botnet becomes part of the network where they maliciously control computing
devices by performing three operations. The first operation is locating vulnerable devices
(scanning). Then, a suitable bot that fits the architecture of the vulnerable device is installed
(propagation). Finally, an attack is initiated via command and control operation (attack
operation) [16]. For instance, the Mirai botnet contains attack vectors, a scanner process that
actively seeks other devices to compromise, and the C&C that controls the compromised
devices (bots) to facilitate further propagation and initiate an attack [17].

An IoT botnet consists of a network of devices, such as cameras, routers, DVRs,
wearables, and other embedded devices, that are infected with malware [18]. Some of the
most common Botnet malware attacks that affect IoT include Mirai and BASHLITE [17].
These botnets have been designed to launch several types of diverse cyber-attacks. The
most common attack is identity theft, where the Bot-code infecting a machine gathers
sensitive user information and sends it to the botmaster. Similarly, in e-mail spamming
attacks, infected devices are used to produce and send fake e-mails. In a key-logging type
attack, the user’s input is logged and transferred to the botmaster [16].

1.2. Software Defined Networks (SDN)

The vertical integration of data and control planes in traditional networks poses
challenges in the installation, management, re-configuration, and maintenance of the net-
work [19,20]. To mitigate these challenges and provide additional capabilities to networks,
SDN was introduced in early 2010 [20]. As shown in Figure 1 in an SDN architecture, there
is a separation among data, control, and management plane. In the architecture shown in
Figure 1, the control plane is decoupled from the network hardware and implemented as
software. The SDN controller acts as the brain of the SDN system that manages the flow of
control commands to the data plane via southbound application program interfaces (APIs).
In addition, it oversees the flow of controls to the management plane via the northbound
APIs. Furthermore, the SDN controller facilitates the communication between controllers
and legacy networks via the eastbound and westbound APIs, respectively [19].
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Figure 1. Architecture of an SDN system [19].

The management plane ensures seamless network operation and monitors the per-
formance. From the perspective of traditional networks, the management plane handles
the management of fault, configuration, accounting, performance, and security of an SDN
system [21]. On the other hand, the data plane contains networking devices such as routers
and switches. However, these devices do not make autonomous decisions like their equiv-
alents in traditional networks. In contrast, they communicate with the SDN controller
through southbound APIs such as OpenFlow to decide flow entries [22].

Generally, SDN has superiority over the traditional network in terms of programma-
bility, flexibility, usability, security, on-demand quality service, topology discovery, user
mobility support, and fault localization. Besides, SDN handles interoperability of heteroge-
neous device across the network and facilitate rapid innovation [19].

1.3. SDN-Enabled IoT

According to Li et al. [23], the orchestration of IoT with SDN can reduce the security
vulnerability of IoT devices. This reduction can be achieved by provisioning sufficient
computational resources during the deployment of complex anti-malware applications.
SDN also enhances IoT networks’ scalability, management, resource usage, and resilience
against attacks [23]. Furthermore, the SDN decoupled the traditional network architecture
by separating the control and data planes. This characteristic has brought simplicity within
the network through simplifying re-configuration, control and management, enhancing
interoperability, and improving network programmability. The other enhancement that
the orchestration brought is; the improvement of the security of the traditional IoT net-
works [24]. However, the SDN-based IoT networks are still vulnerable to botnet attacks,
and several techniques have been proposed to alleviate these attacks [25–29].

An SDN-enabled IoT architecture consists of four hierarchical layers. The lowest layer
in the hierarchy is called the perception layer. This layer consists of sensors and actuators
that sense an environment and act upon the environment, respectively. The layer that
comprises the SDN gateways and routers is called the communication/network layer. This
layer, under the control of the SDN controller, plays the role of data forwarding. The third
layer is called the computing layer. It consists of an SDN controller and billing mechanisms.
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The last layer in the hierarchy is the service/application layer, where developers and
operators build IoT services through programming the SDN controller [30]. In SDN-enabled
IoT, the SDN controller plays a critical role in managing flow control to the switches/routers
via southbound APIs and the applications via northbound APIs [31].

1.4. Machine Learning in SDN

Unlike the conventional rule-based programming approach, machine learning tech-
niques solve complex problems by learning from the dataset compiled from past experi-
ences. This process is accomplished in a variety of methods. The first method is through
generating a model by processing the labeled dataset and performing a prediction or classi-
fication for a new instance of input data by executing the trained model. This technique is
known as supervised machine learning [32]. The second method is trained by providing
a set of unlabelled datasets to the ML algorithm and letting the ML algorithms identify
the trends of similarity within the dataset. These techniques are known as unsupervised
machine learning [33]. The other learning approach is reinforcement learning, the agent
takes actions and continuously senses the environment to update the knowledge base
on intelligent policies guided by reward [34]. So, in reinforcement learning, the machine
explores the environment and executes an action based on its state and the environment
condition to maximize the goal [32]. Machine learning techniques have been used in au-
tomating and aiding experts in different application areas such as medical sciences [35–38],
agriculture [39–41], cyber security [42–44].

In SDN, machine learning techniques have been implemented in the controller of
the software-defined network to add intelligence to the controller. The machine learning
techniques can enhance the SDN controller efficiency in the prediction of QoS, network
traffic classification, resource management, prediction of QoE, and overall security [28].

1.5. Paper Organization

The rest of the paper is organized as follows, Section 2 discusses recent related works,
and Section 3 elaborates on the technique used to conduct the review and research questions
addressed in this review. The major botnet attacks in SDN-IoT networks are investigated
and presented in Section 4. The commonly used machine learning techniques for botnet
attack detection in SDN-IoT networks are discussed in Section 5. The findings of this
review are discussed in Section 6, and a brief discussion on existing challenges and future
directions is provided in Section 7. Finally, the conclusion is presented in Section 8.

2. Related Work

So far, to the best of our knowledge, literature surveys related to machine learning-
based botnet attack detection in SDN-orchestrated IoT networks are very limited both in
number and scope. However, there exists literature that investigated the security features
that the SDN-IoT orchestration introduces in combating cyber-threats in IoT [45–47].

Wang et al. [25] investigated a few works of literature to identify state-of-the-art DDoS
attacks and the proposed machine learning mitigation mechanisms. Accordingly, they
tried to show machine learning techniques that use features of the incoming packets in
deciding whether the traffic is a DDoS attack. Relatively, a more extended survey was
provided by Shinan et al. [48]. The authors identified literature that focused on detecting
botnets using machine-learning techniques in traditional networks. Besides, they discussed
recent studies on machine learning-based botnet detection in an SDN. However, the survey
lacks in distinguishing the IoT environment from the traditional network, including the
nature of botnet attacks [49]. In addition, the survey did not include machine learning-
based botnet attack deterrence mechanisms in SDN-IoT orchestrated networks. Similarly,
Restuccia et al. [50] have investigated the uses of machine learning and SDN in establishing
secured IoT networks. Again, their survey did not include the vulnerability of the SDN-
enabled IoT networks for different types of botnet attacks.
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The limitation of SDN-enabled IoT networks in malware attack detection investigated
by Pajila and Julie [47]. Though the orchestration of IoT with SDN improves botnet attacks
such as DDoS attacks, there are still holes that make the SDN-IoT system vulnerable to a
new stream of assault [47]. Pajila and Julie [47] have surveyed and discussed the potential
of using machine learning techniques as one DDoS attack detection mechanism in SDN
networks. However, very few works of literature were included in their survey. In addition,
their survey did not discuss the use of ML techniques for botnet attack prevention.

The Summary of related works is shown in Table 1 with their contribution and lim-
itations. So, our review aimed at filling all the gaps discussed above and providing a
comprehensive review of works in the use of machine learning techniques for detecting
and mitigating botnet attacks in SDN-enabled IoT networks.

Table 1. Summary of Related Works.

Author and Citation Contribution Limitation

Pajila and Julie [47]

Reviewed the potential of using
machine learning techniques as one
DDoS attacks detection mechanism in
SDN networks

Few works of literature were
included in their work

Shinan et al. [48]

Surveyed literature that focuses
on detecting botnets using
machine learning techniques in
traditional networks

Did not focus on SDN-enabled
IoT networks botnet attacks

Snehi et al. [51]

A detailed survey and discussion on
improving the performance of
Software-defined cyber-physical
systems through architectural
redesigning have been presented.

The contribution of machine
learning techniques in
improving the cyber-physical
security of SDN-enable IoT
networks did not present.

Cui et al. [52]

Comprehensive review on DDOS
identification. Classification of DDOS
detection mechanisms is proposed,
that makes it

In this survey botnet detection
using a machine learning
approach on SDN-based IoT
devices is not conducted.

Aversano et al. [53]

Summarizes recently conducted
studies in the area of deep learning
applications on IoT Security.
Identifies the datasets used by
different deep learning architectures
for IoT security.

The review did not specify
which type of security threat
and machine learning-based
solutions for botnets in an
SDN-enabled IoT.

Ismael et al. [54]
Comprehensive surveys of DDoS
detection and mitigation techniques
are made

Recommendation of the
selected architecture or
technique is not properly
addressed. The survey did not
include SDN-IoT botnets

3. Methods

This section presents the methodology for reviewing the ML-based techniques in
botnet attack detection in SDN-enabled IoT networks. So, the objectives, research ques-
tions, search strings for identifying research studies, and selection criteria are discussed in
this section.

So, the main objective of this literature review is to investigate existing research studies
proposed for deterring botnet attacks in SDN-enabled IoT networks using machine learning
techniques. Research questions are formulated to address the core points of the review as
shown in Table 2. Search strings and databases used to find literature for this review are
indicated in Algorithms 1 and 2, respectively. Based on the inclusion and exclusion criteria
shown on Table 3, some of the literature found in listed databases using the indicated
search strings are excluded.
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Table 2. Research questions for the review.

No. Research Question Aims to Answer

1 What are the major botnet attacks in
SDN-IoT networks?

To investigate the major botnet attacks in
SDN-IoT networks

2
What machine learning techniques
were used in deterring botnet attacks
in SDN-enabled IoT networks?

To identify the commonly used machine learning
techniques for preventing botnet attacks in
SDN-IoT networks

3
How machine learning techniques
were used in deterring botnet attacks
in SDN-enabled IoT networks?

To acquaint the proposed machine learning
techniques for detecting and mitigating botnet
attacks in SDN-IoT networks

4

How successful the proposed
machine learning techniques were in
deterring botnet attacks in
SDN-enabled IoT networks?

To analyze and compare proposed machine
learning techniques in detecting and mitigating
botnet attacks in SDN-IoT networks

Algorithm 1: Pseudocode for Defining Search String
Search_String = [(“DOS” OR “DDOS” OR “Port Scanning” OR “brute forcing

attacks” OR “credential stuffing”)

AND

(“Attack” OR “Malware” OR “Network Security for IoT” OR “Cyber attack on

SDN-IoT”) OR “BotNet Attack”)

AND

(“Machine Learning Methods” OR “Deep Learning Methods” OR “CNN” OR

“DNN” OR “LSTM” OR “GRU” OR“RNN” OR “Classical Machine Learning

Methods” OR “SVM” OR “RF” OR “KNN” OR “LR” OR “DT” OR “NB”)

AND

(“Detection” OR “Classification” OR “Prevention”)]

Table 3. Inclusion and exclusion criteria for paper selection.

Inclusion Criteria (IC) Exclusion Criteria (EC)

IC1: The papers are in the field of
BotNet attack.

EC1: Papers that are not conducted
in SDN-IOT.

IC2: The papers have to study different BotNet
attacks on SDN-IoT devices.

EC2: Publications not peer-reviewed, abstract,
an editorial letter and book review,
scientific report.

IC3: The paper should be published
in reputable journals or recognized
Conference proceedings.

EC3: MSc and Ph.D. thesis, Posters, Seminar.

IC4: The studies should be written in English. EC4: Studies that are published prior to 2016.
IC5: Published between 2016 and 2022.



Sensors 2022, 22, 9837 7 of 30

Algorithm 2: Pseudocode for Generating Potential Review Papers
SearchDatabases← Springer_Link, MDPI, Science_Direct, Wiley_Online,
IEEE_Xplore
{Initialization:}
Area_Keyword← [BotNet, So f tware_de f ined_Network, Malware, Attack, IoT]
Attack_keywords← [DOS, network− probing, DDOS, backdoor, Phishing,
credentialstealing]

Method_keywords← [Deep_Learning_Methods, Classical_Machine_Learning
_Methods]

Target_keywords← [Detection, Classi f ication]
Search_String← “Algorithm 1”
for attack ∈ Attack_keywords do

for keyword ∈ Area_keywords do
for target ∈ Target_keywords do

for method ∈ Method_keywords do
Search_String = Algorithm 1
for database ∈ Databases do

Paper_List1← databases.search(Search_String)
end for

end for
end for

end for
end for
Inclusion_Criteria = [IC1,IC2,IC3,IC4,IC5,IC6]
Exclusion_Criteria = [EC1,EC2,EC3,EC4]
Paper_List2← Apply.Inclusion_Critera(Paper_List1)
Paper_Final_Lists← Apply.Inclusion_Critera(Paper_List2)

4. Botnet Malware in SDN Orchestrated IoT

SDN-based IoT networks are still vulnerable to Botnet attacks [25,28]. Although
there are different botnet attack classification techniques, in SDN-enabled IoT networks
bots can be used to generate DDoS attacks [25], information stealing attacks [48], and
phishing attacks [55] on the network by getting a foothold in the network through backdoor
vulnerability [56] and network-probing attacks [57].

4.1. Distributed Denial of Service Attacks

The DDoS attack is one of the most common botnet attacks in SDN-enabled IoT
networks. It is an attack that hinders systems availability by consuming systems’ resources.
The DDoS attacks need three environmental agents to attack SDN-enabled IoT systems.
These are attacker, handler, and target environment [58]. In the attacking phase, the
botmaster selects a botnet based on its functionality and structure. Then, new devices with
security holes are identified through the botmaster that subsequently infects and controls
them. In the handling environment, the botnets use the Internet relay chat (IRC) or HTTP
for communication between the attacker and botmaster’s communication and control
server to further propagate in the network. On the other hand, the target environment
consists of the newly infected devices [58,59].

Based on the IoT’s depleted resources by the attack, the DDoS attack can be categorized
into application layer attacks, resource exhaustion attacks, and volumetric attacks [58].
Application layer attacks are the most troublesome type of DDoS attacks to be detected.
DDoS attacks on this layer are often mistaken for application instability, and implementation



Sensors 2022, 22, 9837 8 of 30

inefficiency [59]. The resource exhaustion DDoS attacks mainly exploit the communication
protocols and deplete the computation resources of the network that would have been
used for legitimate users. The third type of DDoS attack is a volumetric attack that affects
the system by saturating the communication channel. These types of attacks are easily get
noticed compared to the other two types of attacks [59].

4.2. Network-Probing Attacks

A network-probing botnet attack happens when an attacker continuously collects
information about the devices in the network or the network itself [60]. The network-
probing attack types include IP address scanning, port scanning, and sending a simple
service discovery protocol (SSDP) search query [60]. Unlike DDoS attacks, network-probing
attacks are harmless to the functionality of the network. However, these attacks often are
performed to gather the target’s information before launching other devastating attacks [57].
In SDN, there is no clearly defined approach that can be used for the prevention of probing
attacks. However, techniques such as rate limiting, activity modeling, and implementing
distributed firewall and access controls have been used [60,61].

4.3. Backdoor Vulnerability

A backdoor is the most common vulnerability threat in a network that integrates IoT.
IoT manufacturers often put backdoors on devices for remote debugging [62]. Besides,
backdoors can be included in an application by the application developer. In addition,
they can be a freestanding application of their own, such as the command and control
(C&C) interfaces used in the nodes of botnets [56]. Hackers often exploit this hole and
penetrate IoT networks to illegally access network resources and initiate further attacks
such as DDoS [63]. There are different backdoor attack initiation mechanisms, but the most
common are special credentials, hidden functionality, and unintended network activity [63].

4.4. Information Stealing

Nowadays, IoT gadgets are being used from simple home appliances to more ad-
vanced operations such as monitoring the health status of patients. In the same token,
personal information is becoming more vulnerable to theft via compromised IoT devices
and resulting in devastating consequences [64]. For instance, in a botnet attack, a botmaster
can generate a command so that the bot on the compromised host collects sensitive and
confidential information [48]. In a similar procedure to other botnet attacks, first, an attacker
identifies vulnerable devices. Then, the botmaster takes control of attacked devices. Finally,
attackers organize all infected devices in a network to gather or steal sensitive information
from the IoT devices in the network.

4.5. Phishing Attacks

Phishing is a type of social engineering and malware-based attack where attackers
steal users’ credentials using fraudulent attempts such as sending emails and inserting a
malicious piece of code into the IoT network system [55,65]. Therefore, a security mech-
anism is necessary to identify the threats, flaws, and countermeasures that may result in
phishing attacks on IoT devices. As a result, several tools have been developed to detect
phishing attacks in IoT networks [66].

Even though phishing attacks have been investigated a lot and several strategies have
been developed, the detection and prevention of phishing attacks in IoT networks remain a
challenge [66]. Recently, SDN-based phishing detection mechanisms that are based on deep
packet inspection (DPI) that operate on SDN switching devices have been proposed [67].

5. BotNet Attack Detection Techniques in SDN-Enabled IoT Networks

In SDN-based IoT, malware detection tools are deployed at the SDN controller to
mitigate the IoT devices and the overall network infrastructure from possible malware
attacks. The orchestration of IoT networks with SDN will improve the detection of cyber
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attacks in an IoT network. This improvement is mainly due to the control and data planes
in an SDN being separate so that the data forwarding is executed independently of logical
procedures of networking protocols [68,69]. However, due to the SDN controller being
centralized, it is highly prone to botnet attacks [70,71]. So, to mitigate large-scale botnet
attacks that may result in an exploding SDN controller, machine learning-based botnet
detection techniques have been proposed in literature [70]. Machine learning-based botnet
attack detection techniques for SDN-enabled IoT networks can be done using the classical
machine learning and deep learning approaches. These approaches are presented in the
following subsections.

5.1. Classical Machine Learning Methods

In botnet attack detection, several classical machine learning algorithms have been
proposed and tested in literature [28,70,72–76]. One of the limitations of these techniques
is that they require extensive feature engineering to achieve optimal features. As a result,
they fall short in detecting unforeseen botnet attacks [77]. However, classical machine
learning-based botnet attack detection has been an active research area in the deterrence of
cyber-attacks in SDN-enabled IoT systems [74]. The most common botnet attack in SDN-
based IoT networks is generating spikes of huge traffic that hinder the system’s availability
for legitimate traffics. Such types of attacks are called DDoS attacks. One of the techniques
for mitigating such attacks is devising a reactive strategy that blocks infected IoT devices
from the network.

In the detection of new botnet attacks, a reinforcement learning-based technique
that has a real-time attack mitigation capability is proposed in [78]. The challenges in
developing reinforcement learning models in botnet detection are low sample efficiency
and the task of specifying the reward function. In the proposed model the agent prevents
an SDN-enabled IoT network by redirecting traffic, dropping suspicious connections, or
allowing traffic that was previously blocked [78]. The proposed techniques have shown
better performance in terms of identifying and blocking malicious traffics and increasing
the reward value. However, the literature lacks rigorous experiments and quantitative
performance evaluations.

In protecting SDN-enabled IoT networks from botnet attacks such as DoS and DDoS,
one of the most commonly tested classical machine learning algorithms is a random forest
(RF) [28,70,76]. Sarica et al. [28] proposed a random forest for DoS and DDoS attack
detection and mitigation using automated feature extraction from network flow traffic. The
model was trained using a dataset generated from IoT devices to train the Random Forest
classifier at the SDN application layer. The dataset contains six different classes which are
benign (normal traffic), DoS, DDoS, port scanning, OS fingerprinting, and fuzzing. The
reported performance of the model in identifying normal traffic and attacks such as DoS
and DDoS is quite high. Accordingly, the normal traffic identification performance of the
model in terms of accuracy, precision, recall, and F1 Score was 99.67%, 96.75%, 92.92%,
and 94.80%, respectively. Similarly, the precision, recall, and F1-score of the proposed
model in identifying the DoS attack were 97.77%, 99.12%, and 98.44%. And, for DDoS
attack detection, the model performance is with a precision of 97.29%, recall of 98.58%, and
F1-score of 97.93%.

A random forest (RF) based botnet attack detection technique in an SDN-enabled
network using only forwarded information has been proposed in [70]. In the proposed
framework, network function virtualization (NFV) detects network attacks and makes a
service chain of virtual network functions (VNF). In turn, one of the VNFs keeps monitoring
traffic and collects the feature set information that will be transferred into an SDN controller
to be used for machine learning-based botnet detection. The RF model is trained using the
public botnet dataset CTU-13, BoNeSi, and Mirai. The RF is trained using network traffic
information feature sets including source/destination address, port numbers, flags, types
of services, protocols, and bytes. The proposed RF algorithm has achieved an accuracy of
100% on CTU-13 and Mirai, and 98% on BoNeSi. After the network traffic is analyzed via a
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random forest machine learning model, the controller defends the overall network in real
time by changing the network’s behavior. Similarly, Arman et al. [79] have used an SDN-
enabled home gateway to their proposed random forest machine learning model efficiency
in detecting volumetric DDoS attacks. The model receiver’s network flow information from
the Ryu SDN controller via Open Virtual Switch installed on IoT gateways so that the traffic
will be classified as either normal or adversarial. The reported model’s performance in
terms of accuracy was 92%. In addition, Nanda et al. [80] proposed a random forest-based
DDoS attack detection system in SDN-enabled IoT networks. In the proposed system,
the incoming packet header is classified into either a normal packet or an attack using a
random forest model deployed in an SDN controller. Then, normal packets are forwarded
to the SDN switches for further processing, and if the packet is in an attack the system
pops up a notification. The model was tested on an attack dataset collected by the author,
and the reported performance in terms of accuracy, precision, recall, and F1-score was
98.7%, 98.7%, 98.7%, and 98.7%. However, the performance of the model decreases in a
scenario where the rate of attack packets is lower. The performance of different machine
learning-based algorithms on the detection of low-rate DDoS attacks in SDN-enable IoT
has also been tested by Cheng et al. [81]. Often, low-rate traffic attacks go undetected until
the data plane of the SDN is overwhelmed and even crashed [82]. So, Cheng et al. [81] have
compared the low-rate DDoS attack detection performance of different machine learning
models when deployed both on the controller and data planes of the SDN. Accordingly, as
shown on Table 4 the RF has shown the highest detection performance both on the SDN
controller and SDN switches.

An eXtreme Gradient Boosting (XGBoost) machine learning model, another tree-based
algorithm that consists of a number of hyper-parameters to be tuned has also been proposed
for botnet malware detection in SDN-enabled IoT networks [72]. The model was trained
using three datasets CICDDoS2019, NSL-KDD, and CAIDA-DDoS attack 2007. These
datasets are subjected to an efficient preprocessing stage to prevent misleading accuracy
and overfitting problems. Then, different features with the most descriptive information
had been identified which were used to train the XGBoost in classifying whether the
network traffic is a DDoS attack or normal [72]. The reported model performance in a
real-time SDN environment was above 99.98% in terms of accuracy, precision, recall, and
F1-score. Similarly, AdaBoost-based DDoS attack detection in an SDN-based network
has been proposed by Swami et al. [83]. Accordingly, the accuracy, precision, recall, and
F1-score of the model were 99.99%, 100%, 99.98%, are 99.99%, respectively.

An ensemble of machine learning techniques that combines decision tree and gradient
boosting was proposed by Thorat and Kumar [76]. The proposed model was implemented
on the SDN controller and has achieved the highest performance of 98.93%, 97.88%, and
97.94% in terms of accuracy, precision, and recall, respectively. Furthermore, the proposed
model has the capability of preventing the DDoS attack on the IoT device and avoids the
need to mitigate the attack on the cloud server [76]. Similarly, Aslam et al. [73] proposed
a variety of support vector machines (SVM) such as Lagrangian SVM, Finite Newton
Lagrangian SVM, Smooth SVM, and Finite Newton SVM that have different types of
kernels for the DDoS attack detection and mitigation in SDN-enabled IoT networks. The
SVM classifiers were trained using four types of traffic features, that are, rate of source
IP (RSIP), a standard deviation of flow packets (SDFP), a standard deviation of flow
bytes (SDFB), rate of flow entries on switch (RFES), and the ratio of pair-flow entries on
switch (RPFES). According to Aslam et al., [73], these features contain highly descriptive
information for distinguishing normal and malicious traffics in SDN-enabled IoT networks.
For instance, attack packets have smaller sizes compared to normal packets. In addition,
the packet flow rate from normal IoT devices is preset. However, the inter-packet interval
of malicious packets is short and random. So, after the proposed SVM models were trained,
it was reported that the Finite Newton Support Vector Machine (NSVM) has the highest
performance with an F1-score of 94%.
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An ensemble of several classical machine learning algorithms has been proposed by
Aslam et al. [74]. The proposed framework mitigates the SDN-enabled IoT networks from
possible DDoS attacks. The framework is adaptive and multi-layered that the first layer
contains ensembles of several classical machine learning algorithms including support
vector machine (SVM), Naive Bayes (NB), Random Forest (RF), K-Nearest Neighbor (KNN),
and Logistic Regression (LR) classifiers. The model is trained using the IoT’s network. The
outputs of the classifiers of the first layer are subjected to voting in which the output from
the majority of the classifier wins. This is done in the second layer through ensemble voting
(EV). The third layer in the framework measures the real-time live network traffic to detect
DDoS attacks. Accordingly, authors tested their proposed framework and the reported
result indicates that the framework has better efficiency in four performance metrics
of accuracy, precision, recall, and F1-score were 99%, 98%, 96%, and 95%, respectively.
However, the proposed model did not take into consideration the DDoS attacks mitigation
technique for the botnet attacks on the SDN controller itself. Similarly, Tsogbaatar et al. [75]
proposed a model that integrates deep autoencoder as a feature extractor and an ensembled
probabilistic neural network (PNN) for anomaly detection, including N-BaIoT and botnets
simulated on BoNeSi datasets. The proposed model was tested on a real-time SDN-enabled
IoT network testbed, and the model has demonstrated a detection rate in terms of F1-score
of more than 99.8% both on benchmark and real-time testbed datasets.

A summary of the literature reviewed in this section is given Table 4. As shown in the
table, the performance of these models is quite high once a descriptive feature that contains
important information about the network flow has been identified using extensive feature
engineering. However, they have a limitation in detecting unforeseen botnet attacks.

Table 4. Summary of BotNet attack Detection using Classical Machine Learning in an SDN-enabled
IoT Networks.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Sarica et al. [28] RF Collected by
authors [84]

99.67-Normal 96.75-Normal 92.92-Normal 94.8-Normal
99.67-DoS 96.75-DoS 92.92-DoS 94.8-DoS

- 97.29-DDoS 98.58-DDoS 97.93-DDoS

Bhunia et al. [68] non-linear SVM simulated dataset - 98 97 -

Park et al. [70] RF
CTU-13 Dataset 100 - - -

Mirai 100 - - -
BoNesi 98 - - -

Alamri et al. [72] XGBoost
CICDDoS2019,
NSL-KDD, and
CAIDA-DDoS

99.9 99.98 99.99 99.98

Aslam et al. [73]
Finite Newton
Support Vector

Machine (NSVM)
Simulated dataset - - - 94

Aslam et al. [74] Ensemble Simulated dataset 99 98 96 95

Tsogbaatar et al.
[75] PNN

collected
real-time dataset - - - 99.8

NBaIoT - - - 99.9

Thorat and
Kumar [76] RF+XGBoost Not explicitly

indicated 98.93 97.88 97.94 -

Arman et al. [79] RF Testbed data 92 - - -

Nanda et al. [80] RF Simulated dataset 98.7 98.7 98.7 98.7

Cheng et al. [81]

SVM (controller) Real-time
collected 97 96 97 97

SVM (switch) Real-time
collected 90 94 95 94

NB (controller) Real-time
collected 79 72 84 77

NB (switch) Real-time
collected 66 92 67 77
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Table 4. Cont.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Cheng et al. [81]

KNN (controller) Real-time
collected 97 96 97 97

KNN (switch) Real-time
collected 89 93 95 94

RF (controller) Real-time
collected 97 97 97 97

RF (switch) Real-time
collected 91 95 94 94

Swami et al. [83] Adaboost Simulated 99.99 99.98 100 99.99

Wani and
Revathi [85]

Multi-layer
perceptron Simulated - 98.74 96.43 -

Wang et al. [86]

Dynamic
generative

self-organizing
map (DGSOM)

ISCX-IDS2012 95.41 - - -

Zeleke et al. [87] RF CICIDS2017 >99.96 >99.51 >99.51 >99.51

5.2. Deep Learning Methods

As discussed in Section 5.1, the classical machine learning based botnet detection
techniques have proven their effectiveness in botnet attack detection in SDN-enabled IoT
networks. But, timely detection, real-time monitoring, and adaptability to new attacks are
still serious challenges that should be addressed. This is mainly because classical machine
learning techniques use signatures of the already known malware both in training and after
deployment. However, some conventional machine learning classifiers such as random
forests showed comparable performance to the deep learning classifiers [88]. Nevertheless,
deep learning-based techniques including deep reinforcement learning methods have
shown effectiveness in real-time monitoring of unseen botnet attacks in SDN-based IoT
networks [34,89]. In this sub-section, we will evaluate the role of deep learning techniques
in bot detection based on how each has been used. Then, each technique will be reviewed
in two ways: first, a short and brief discussion of the technique is presented, and second, a
brief look at how the technique has been used in botnet detection is carried out.

5.2.1. Deep Neural Networks (DNN)

Deep learning models are based on the structure of a feed-forward neural network
and consist of the input layer, hidden layers, and output layer. A general architecture
of DNN is shown in Figure 2. The input layer receives the vector representation, that is,
X = {x1, x2, ..., xd} of the task to be classified. The feature inference is done through hidden
layers, and in the output layer the class vector, that is, Y = {y1, y2, ..., yd} associated with
the type of data traffic generated in the network. In the DNN with M total number of
layers and km being the number of processing units in the mth layer with m = 1, ..., M and
the (m, n)th unit in architecture represent the nth unit in the mth layer, the corresponding
input-output of the unit is mapped as [90,91]:

fm,n(wm,n, ϕm−1) = A(wT
m,n ϕm−1 + bm,n) (1)

where A is an activation function such as sigmoid, tanh, and ReLu, ϕm−1 ∈ Rk
m−1 denotes

the output from (m − 1)th layer and input to the mth layer, wm,n ∈ Rk
m−1 denotes the

weight vector associated with the (m, n)th unit, and bm,n denotes the bias vector associated
with the (m, n)th unit.
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Figure 2. A general architecture of Deep Neural Network.

The DNN’s hidden units at a particular layer m, can be mapped by:

Fm(Wm, φl−1) = [ fm,1(wm,1, ϕm−1), ..., fm,km(wm,km , ϕm−1)]
T (2)

where Wm = [wm,1, ..., wm,km ] ∈ Rk
m−1 × km being the mth layer weight matrix. Then, the

training is performed by minimizing the loss function given in Equation (3).

J(W, xi) = E(F(W, xi), yi) (3)

where the error function E(., .) is differentiable with respect to W.
Recently, with the advancement of the computing power of devices, the deep neural

network has been drawing the attention of many researchers in the field of computer vision,
pattern recognition, audio, and text analysis [92]. Similarly, DNNs have been used for
detecting botnet malware in SDN-enabled IoT networks [93–95]. Khan et al. [93] evaluated
different hybridized DNNs with other deep learning models for detecting well-known
malware botnet, N_BaIoT. DNN-DNN hybrid model is one of the proposed models and
has achieved a botnet detection accuracy of 99.93%, a precision of 99.87%, a recall of 99.86%,
and an F1-score of 99.86%. The model performance is better when compared to other
hybrid models but with higher time complexity [93].

A simple DNN with three hidden layers containing 12, 6, and 3 neurons with 6 input
and 2 output dimensions was proposed by T. A. Tang et al. [95] to detect denial of service
(DoS) and network-probing attacks. The proposed model was trained using the NSL-
KDD dataset. The technique’s reported performance was with an accuracy of 75.75%, a
precision of 83%, a recall of 75%, and an F1-score of 74%. Similarly, Narayanadoss et al. [96]
proposed a simple DNN architecture to detect DDoS attacks in vehicular SDN-enabled
IoT networks. The DNN architecture is so simple that it has 2 hidden layers having
25 neurons each. The input layer has 50 neurons, and a single neuron on the output layer
tells whether the network is under attack. To generate the model training and testing
dataset, Narayanadoss et al. [96] used iperf3 to generate the normal and abnormal traffics.
The model performance is tested under different scenarios, including varying numbers and
speeds of vehicles. The model performance for thirty-five (35) vehicles in terms of accuracy
is around 85%, and the precision, recall, and F1-score are around 87%.

A DNN model that detects and classifies 12 different types of botnet attack traffics on
a variety of IoT devices in an SDN has been proposed in [97]. The proposed DNN model
has three hidden layers with 134, 60, and 26 neurons each. The model was trained and
tested using CICDDoS2019 and TON_IoT datasets. The reported classification performance
of the model on the CICDDoD2019 dataset in terms of average accuracy, precision, recall,
and F1-score, were 93.88%, 68%, 63%, and 58%, respectively. On the TON_IoT dataset, the
reported performance of the proposed model in terms of average accuracy, precision, recall,
and F1-score, were 98.93%, 93%, 93%, and 95%, respectively [97]. However, the model
performance is higher in classifying the data traffic into binary classes.
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To overcome the challenges, such as the need for a large labeled dataset and the
difficulty of detecting new attack types, Ravi et al. [98] proposed a semi-supervised learning
technique that integrates DNN and K-means. The hybridization of DNN and K-means in
the proposed model increases the model generalization capability and improves the model
detection accuracy in case of unknown attacks. The proposed model is trained on the
NSL-KDD dataset, and the reported attack detection accuracy was 99.78% and the F1-score
of 99.72%.

Al-Abassi et al. [94] has also proposed an ensemble of DNNs with a decision tree
(DT) to detect malware in an industrial control system. The classification output from this
N DNN model was concatenated via a super vector using a fusion activation function.
Then, the concatenated vector is passed on to a DT classifier to detect attacks from the
newly merged representation. The proposed model was trained and tested using industrial
control system (ICS) datasets [94] and the reported results indicate the ensembles of DNN
with DT have shown a better malware detection performance compared to other classifiers
like RF, DNN, and AdaBoost. Accordingly, the accuracy, precision, recall, and F1-score
of the system were 99.67%, 97%, 99%, and 99%, respectively. However, given cascaded
and stacked machine learning models, it is difficult to conclude the system’s performance
in real-time. Furthermore, the computational complexity of the proposed model did
not present.

A summary of DNN-based botnet detection in SDN-enabled IoT networks is shown
in Table 5. The reported results indicate that the ensembles of DNN with other machine
learning algorithms improve the detection and mitigation of cyber-attacks in SDN-enabled
IoT networks.

Table 5. Summary of BotNet attack Detection using Deep Neural Network in an SDN-enabled
IoT Networks.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Khan et al. [93] DNN-DNN N_BaIoT 99.93 99.87 99.86 99.86

Al-Abassi et al. [94] DNN+DT ICS 99.67 97 99 99

Tang et al. [95] DNN NSL-KDD 75.75 83 75 74

Narayanadoss et al. [96] DNN Simulated data 85 87 87 87

Ferrag et al. [97] DNN CICDDoS2019 93.88 68 63 58
TON_IoT 98.93 93 93 95

Ravi et al. [98] DNN+K-means NSL-KDD 99.78 - - 99.72

Makuvaza et al. [99] DNN CICIDS 2017 96.67 97.21 97.29 97.25

Ravi et al. [100] Deep ELM Simulated 97.9 97.2 97.6 97.2
UNB-ISCX 96.28 95.16 97.27 96.2

Maeda, Shogo et al. [101] DNN CTU-13 and ISOT 98.7 98.99 99.70 99.34

Sattar et al. [102] DNN-LSTM N_BaIoT 99.99 99.99 99.99 99.99

5.2.2. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a class of artificial neural networks
designed to automatically and adaptively learn spatial hierarchies of features through back-
propagation. CNN has multiple building blocks, including convolution layers, pooling
layers, and fully connected layers [91]. The convolution and pooling layers perform feature
extraction, and the fully connected (FC) layers map the extracted features into the output
traffic classes. As shown in the Figure 3, the input data is convolved by the kernel resulting
in a set of linear activated feature maps. Then, each linear activated feature map passes
through non-linear activations such as rectified linear units (ReLu). A further modification
is done through pooling functions such as max-pooling to downsample the spatial size of
the feature map. As the output of the predecessor convolution layer is given as an input to
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the successor convolution layer, the extracted features become more complex and hold the
most descriptive information of the input data [91]. A complete CNN architecture shown
in Figure 4 contains a stack of several building blocks depicted in Figure 3.

Figure 3. Components of a typical CNN layer.

Figure 4. A typical CNN Architecture.

Training of a convolutional neural network is performed by finding the optimum
value of kernels and weights in the convolutional layers and the fully connected layers.
The optimum values are those values of the filters and weights that minimize the difference
between the model’s output and the ground truth on a dataset. The model performance is
calculated using kernels and weights values using a loss function such as cross-entropy. The
error is back-propagated through an optimization algorithm such as gradient descent [91].

Deep 2D CNNs have shown tremendous success in computer vision applications.
Besides, depending on the dataset types found in several applications, single-dimensional
(1D) CNN architectures have been proposed in literature [103]. Assis et al. [104], proposed
a 1D CNN model to detect and mitigate DDoS attacks in SDN-enabled IoT networks.
The proposed CNN architecture takes IP flow traffic data of a second length in the form
of a 3D tensor. The proposed architecture is composed of a stack of two Conv1D and
MaxPooling1D layers that are followed by the flatten and dropout layers. Then, the fully-
connected layer performs a global model classification. Finally, data is classified into
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normal or DDoS attacks on the output layer. The proposed model is trained and tested
using a dataset simulated by the author and CICDDoS 2019 datasets. Accordingly, the
proposed CNN achieved an average detection performance of 99.9% on the simulated
dataset with all performance metrics of accuracy, precision, recall, and F1-score. However,
the number of hosts used for generating this simulated dataset was two hundred (200)
connected with six (6) switches. So, the simulated SDN environment may not suffice to
efficiently test the capability of the proposed CNN model against DDoS attacks. This is
noticed by the slight reduction in the model’s performance when trained and tested using
the CICDDoS 2019 dataset. In this scenario, the reported performance results in terms of
accuracy, precision, recall, and F1-score were 95.4%, 93.3%, 92.4%, and 92.8%, respectively.
However, the reported results in both scenarios indicate the superiority of the proposed
method compared to other machine learning techniques used for comparison. In the same
token, Ferrag et al. [97] have shown the superiority of convolutional neural networks in
different attack detection compared to DNNs and RNNs. The performance of the CNN
model in classifying 12 multi-class attacks using the CICDDoS2019 dataset was 95.12% of
accuracy, 91% of precision, 90% of recall, and 89% of precision. Whereas, for the TON_IoT
dataset the reported performance of the proposed CNN model in terms of average accuracy
was 99.92% [97]. The superior performance is mainly because of its ability for extracting
descriptive information from a stream of network packets [105].

Convolutional neural networks have been used to carry out a feature extraction
process in hybridized deep learning-driven botnet malware detection algorithms [106].
As we discussed earlier, the convolutional and pooling layers of CNN capture spatial
features efficiently. However, due to a lack of temporal information, it is not easy to identify
the inter-dependency of features in 2D-CNN. To compensate for this, Liaqat et al. [106]
proposed a hybridized deep learning architecture that has cuDNNLSTM layers after the
CNN layers. The proposed hybrid model was trained and tested on the Bot-IoT dataset,
and the reported results with accuracy of 99.99%, a precision of 99.83%, recall of 99.33%,
and F1-score of 99.33%, indicates the superiority of the CNN-cuDNNLSTM architecture in
detecting the botnet malware in SDN-enabled IoT networks.

Ullah et al. [107] proposed a hybrid architecture that hybridized CNN and LSTM.
Again, CNN was used as a feature extractor where its pooling layer outputs are given to
the LSTM model. The proposed framework was trained and tested on CIDDS-01, and
the reported performance results in terms of accuracy, precision, recall, and F1-score were
99.92%, 99.85%, 99.94%, and 99.91%, respectively. Similarly, S. Khan et al. [108] have
proposed a hybrid CNN-LSTM model for malware detection in an SDN-enabled internet of
medical things (IoMT) network. The hybridization of these two models brings together the
efficient feature extraction of the CNN and the LSTM’s capability in learning the temporal
interdependence of features. The proposed hybrid model has achieved a malware detection
performance in terms of accuracy, precision, recall, and F1-score of 99.96%, 96.34%, 99.11%,
and 100%, respectively.

In the vehicular environment, where the IoT nodes are mobile, CNN has shown
comparably lower performance in the detection of attacks compared to DNN and LSTM
models [96]. In such type of mobile environment, there is difficulty in identifying the correct
temporal and spatial correlations among the flow of data packets between IoT nodes. The
proposed CNN model by Narayanadoss et al. [96] has achieved a 76% attack detection
accuracy, while its precision, recall, and F1-score were around 83%. A summary of the
literature reviewed in this section is given Table 6.
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Table 6. Summary of BotNet attack Detection using Convolutional Neural Network in an SDN-
enabled IoT Networks.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Narayanadoss et al. [96] CNN Simulated data 76 83 83 83

Ferrag et al. [97] CNN CICDDoS 2019 95.12 91 90 89
TON_IoT 99.92 - - -

Assis et al. [104] CNN Simulated data 99.9 99.9 99.9 99.9
CICDDoS 2019 95.4 93.3 92.4 92.8

Liaqat et al. [106] CNN-
cuDNNLSTM Bot-IoT 99.99 99.83 99.33 99.33

Ullah et al. [107] LSTM-CNN CIDDS-01 99.92 99.85 99.94 99.91

Khan et al. [108] CNN-LSTM Not explicitly
indicated 99.96 96.34 99.11 100

Haider et al. [109] CNN CICIDS-2017 99.45 99.57 99.54 99.51

Wang et al. [110] CNN real-time
collected 97 97 99 96

5.2.3. Recurrent Neural Network

A recurrent neural network (RNN), having a memory capability, learns from the
current training input data and prior input information [111]. This behavior is achieved
by the feedback connections that allow the network to incorporate the effects of the prior
part of the input sequence. So, an RNN model training assumes the dependency of the
network output on the previous input sequences. Having this concept into consideration,
an RNN has different design patterns. These design patterns include a recurrent connection
between hidden units that produce an output at each time step as shown in Figure 5a, a
recurrent connection only from the output at a one-time step to the hidden units at the
next time step as shown in Figure 5b, and recurrent connections between hidden units that
produce a single output for input sequences as shown in Figure 5c [91].

Taking Figure 5a, input sequence x is mapped to o output values as given in Equation (4).

o(t) = c + V tanh(b + Wh(t−1) + Ux(t)) (4)

where b and c are bias vectors, U weights in the input-to-hidden connections, V weights
in the hidden-to-output connections, and W hidden-to-hidden connections. After post-
processing on o, for instance, using softmax, a normalized probability of the output ŷ is
obtained as indicated in Equation (5). So, learning in RNN is minimizing the difference
between the model output vector ŷ(t) and the labeled ground truth y(t), that is, the loss
L. The learning is achieved via computing the gradient through the network using opti-
mization algorithms such as back-propagation through time. Consecutively, the gradient
operation is applied on all parameters of the network [91].

ŷ(t) = so f tmax(o(t)) (5)

RNN can be made deeper by stacking additional hidden layers in the network. Deep
RNN architectures can perform hierarchical feature learning and have brought a commend-
able anomaly classification performance even in highly unbalanced training data [112].
However, recurrent neural networks suffer from the vanishing and exploding gradient
problem that poses a challenge in the learning process [91,111]. So, new variants of gated
RNN, such as long short-term memory (LSTM) and gated recurrent unit (GRU) have been
proposed [91].
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(a)

(b)

(c)

Figure 5. Recurrent neural network possible architectural patterns.
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An LSTM is the most commonly used variant of RNN. In an LSTM, the intuition is
incorporating a gated unit that helps to avoid vanishing and exploding gradient problems
by controlling the flow of information through the network units. This behavior is achieved
through input modulation and forget gets of the LSTM memory cell. So, by introducing
context-conditioned self-loops, gradients can flow long in the network. On the other hand,
Gated Recurrent Unit (GRU) has a similar concept to LSTM but a single gating unit, that is,
forget gate controls the forgetting factor and decision to update state unit [91].

In the previous sections, we have seen the capability of the LSTM model in learning
temporal interdependence of features from the stream of data packets in SDN-enabled
IoT networks when it is used together with other deep learning models such as CNN. A
standalone LSTM has shown its effectiveness in detecting malware in SDN-enabled IoT
networks [113]. Hasan et al. [113] has employed an LSTM model that can be integrated into
commercially available SDN controllers such as Floodlight, POX, and OpenDaylight. The
model was trained, tested, and validated with the state-of-the-art N_BaIoT 2018 dataset.
With its inherent nature of remembering the input values at different time intervals, the
malware detection performance of the proposed model in terms of average accuracy,
precision, recall, and F1-score were 99.96%, 99.93%, 99.88%, and 99.88%.

An LSTM has often been hybridized with different deep-learning models to improve
the detection rate of malware attacks in SDN-enabled IoT. For instance, Khan et al. [93] eval-
uated the LSTM-DNN hybrid model in detecting the well-known malware botnet, N_BaIoT.
The model has achieved a botnet detection accuracy of 99.94%, a precision of 99.91%, a
recall of 99.86%, and an F1-score of 99.86%. The model performance is comparable to
other hybrid models but with the lowest time complexity [93]. Similarly, Javeed et al. [114]
proposed an SDN-enabled hybrid deep learning model to detect threats on IoT devices
using the publicly available dataset named CICIDS2018. The authors used six threat classes,
including benign, DDoS, Bot, and Brute Force to analyze the performance of their proposed
model. For threat detection, the combination of Cu-DNNGRU and Cu-BLSTM classifiers is
designed. The model has achieved an accuracy of 99.87%, a recall value of 99.96%, a preci-
sion value of 99.96%, and a 99.96% of F1 score. Another cyber-attack detection technique
by adopting a deep learning-based SDN-enabled model on a fog-to-IoT environment was
proposed by Ullah et al. [107]. The authors used two classes of attacks out of the ten classes
available from the publicly available dataset, that is, CIDDS-001 used to detect attacks on
IoT devices. A hybrid of LSTM and CNN algorithms is trained to detect newly evolving
threats in fog-to-IoT environments. With the use of a centralized controller, the proposed
model achieves a better result when compared to the previous state-of-the-art architectures.
The LSTM-CNN model detects the attaches with high accuracy and precision of 99.92%
and 99.85%, respectively. The well-known deep learning algorithms such as RNN, LSTM,
and Gated Recurrent Unit (GRU) are proposed by Alshra’a et al. [115] to identify Denial of
Service (DOS) attack on Software Defined Networks (SDN). The authors used 48 features
out of 83 based on literature recommendations in the SDN dataset to train the models. From
the three proposed architectures, LSTM shows the finest result by accuracy and precision
to detect Botnet, web-attack, brute force attacks, and exploitation User-to-Root attacks.

A summary of the literature reviewed in this section is given Table 7. As shown in the
table, RNN and its variants have been used to detect botnet attacks in SDN-enabled IoT
networks due to their capability of learning the temporal interdependence of features from
a stream of data packets.
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Table 7. Summary of BotNet attack Detection using RNN, LSTM and GRU in an SDN-enabled
IoT Networks.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Khan et al. [93] DNN-LSTM N_BaIoT 2018 99.94 99.91 99.86 99.86

Ullah et al. [107] LSTM-CNN CIDDS-001 99.92 99.85 99.94 99.91

Hasan et al. [113] LSTM N_BaIoT 2018 99.96 99.93 99.88 99.88

Javeed et al. [114] Cu-DNNGRU +
Cu-BLSTM CICIDS2018 99.87 99.87 99.96 99.96

Alshra’a et al. [115] RNN- 48 feat. InSDN 98.09 97.89 99.65 98.77
RNN-6 feat. InSDN 91.11 89.94 99.70 94.51

Alshra’a et al. [115] LSTM- 48 feat. InSDN 98.87 98.84 99.70 99.27
LSTM-6 feat. InSDN 92.57 92.13 98.77 95.33

Alshra’a et al. [115] GRU- 48 feat. InSDN 98.20 97.94 99.75 98.84
GRU-6 feat. InSDN 91.31 90.17 99.54 94.62

Malik et al. [116] LSTM+CNN CICIDS2017 98.6 99.37 99.35 99.35

salim et al. [117] LSTM testbed 96.1 98.38 93.03 94

Yeom et al. [118] LSTM Collected real network
flow traffic 92 - - -

Fredj et al. [119] LSTM Capture the Flag (CtF) - - - 93.35
RNN Capture the Flag (CtF) - - - 92.90

5.2.4. Deep Auto-Encoder

Deep auto-encoder are constructed by adding more hidden layers both in the encoder
and decoder sides of the deep belief network as shown in Figure 6. The input to the encoder
is raw data or input feature, and an output from the decoder is a reconstructed approxima-
tion of the original input data. An auto-encoder is an unsupervised learning algorithm that
uses back-propagation to approximate the input by minimizing the reconstruction error.
The encoder allows the transformation of the original input data, xi, into latent represen-
tation h(xi), and the decoder reconstructs the approximated version of the original input
data x̂i from the latent representations. Here, the error measures the difference between xi
and x̂i, usually defined as using mean square error or cross-entropy [120].

Figure 6. A Deep Autoencoder Architecture.
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There are different types of auto-encoders, including sparse, denoising, variational,
and convolutional auto-encoders. The deep auto-encoders are the most commonly used to
efficiently extract descriptive information about the botnet malware from packet level, flow
level, and system metrics data [121–123]. In line with this, Tsogbaatar et al. [121] proposed
a framework that dynamically deters malware attacks in an SDN-enabled IoT network.
The framework contains anomaly detection, intelligent flow management, and device
status forecasting modules. In the process of detecting dynamic attacks, the extraction of
descriptive features was carried out using the integrated deep encoder and deep proba-
bilistic neural network, that substituted the deep decoder part of the deep auto-encoder
architecture. The proposed framework was trained and tested on N-BaIoT benchmark and
simulated datasets. The reported model performance on these datasets with different data
imbalances is astonishing, with an accuracy of 99.8% and 99.9%, and an F1-score of 99.95%
and 99.47% on simulated and N-BaIoT datasets, respectively.

The other difficult phenomena in the SDN-enabled IoT network that poses a challenge
for machine learning-based anomaly detection is the time needed for the SDN controller
to acquire network flows and processing feature engineering tasks [124]. Accordingly,
Ujjan et al. [122] proposed a stacked auto-encoder (SAE) deep learning model that detects
DDoS traffic with the help of sFlow and using adaptive traffic sampling at a data plane of
the SDN. Then, the SAE model implemented in the SDN control plane uses the information
obtained from the data plane to determine whether the traffic is malicious or normal. The
proposed model was trained and tested using a real-time testbed network flow dataset
obtained with sFlow and adaptive traffic sampling. The reported performance of the
model shows that the sFlow-based classification achieved an accuracy of 91%, a preci-
sion of 95%, a recall of 83%, and an F1-score of 88.10%. However, symmetrically stacked
auto-encoders require high computational and memory resources as the number of stacks
increases [123,125]. This complexity poses a challenge for real-time malware detection in
SDN-enabled IoT networks. To address this challenge and provide real-time protection
for an SDN-enable IoT network, Krishnan et al. [123] proposed a framework based on a
non-symmetric stacked auto-encoder for reducing the input feature set. Then, the reduced
feature set is used as an input for the RF module where the traffic is classified as malicious
or not. Generally, the proposed framework combined multiple behavioral analysis and
anomaly detection techniques to intercept and detect malware attacks at multiple stages
and planes of an SDN. The model was trained and tested using NSL-KDD and CICIDS2017
datasets. Accordingly, the reported performance of the model in terms of average accuracy,
precision, recall, and F1-score was 99.3%, 99.8%, 99.5%, and 99.4%, respectively. Further-
more, the proposed model saved the training time by 94.96% and memory usage by 90.8%
compared to symmetric SAE with improved performance.

A summary of the literature reviewed in this section is given in Table 8. As shown in
the table, deep auto-encoders have been an efficient feature extractor, and when used with
other classifier models they result in higher classification performance.

Table 8. Summary of BotNet attack Detection using Deep Autoencoder in an SDN-enabled
IoT Networks.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Tsogbaatar et al. [121] DAE_EPNN Simulated 99.8 - - 99.95
N-BaIoT 99.9 - - 99.47

Ujjan et al. [122] SAE

real-time testbed
(sFlow) 91 95 83 88.1

real-time testbed
(Adaptive Polling) 89 92 78 85
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Table 8. Cont.

Author Method Dataset Acc (%) P (%) R (%) F1 (%)

Krishnan et al. [123] non-symmetric deep
SAE + RF

NSL-KDD and
CICIDS2017 99.3 99.8 99.5 99.4

Ahuja et al. [126] SAE Mendeley data
repository 99.75 99.69 99.94 99.82

Choobdar et al. [127] SAE NSL-KDD and
CICIDS2017 98.5 - - -

6. Discussion

The orchestration of IoT networks with SDN has greatly improved IoT devices’ sus-
ceptibility to cyber-attacks. This immunity is mainly because an SDN decouples the control
and data plane of the traditional network architectures and enhances IoT networks’ in-
teroperability, scalability, resource usage, control and management, and reconfigurability.
Furthermore, SDN can provide sufficient computational resources for deploying complex
anti-malware applications. However, SDN-enabled IoT networks are still vulnerable to
botnet attacks. In literature, classical machine learning and deep learning-based techniques
have been proposed to alleviate these attacks. So far, reviews undertaken in this area focus
on botnet malware detection on either IoT or SDN networks separately. However, SDN-IoT
orchestration has brought challenges from security and other aspects [128]. As a result,
several ML/DL-based solutions have been proposed in the literature, and it is an active
research area. These claims can be observed in the rise of literature published in this area
since 2020 as shown in Figure 7. So, this review focused on ML/DL-based botnet attack
detection techniques provided for SDN-IoT orchestrated networks.
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Classical machine learning-based botnet detection techniques have proven their ef-
fectiveness in botnet attack detection as shown by their performance in Table 4. However,
these techniques are highly dependent on extensive feature engineering. As a result, they
use signatures of the already known malware both in training and after deployment. This
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hinders their performance in case of unknown botnets. So, the number of literature that
proposes classical machine learning techniques for botnet detection in an SDN-IoT network
is small as shown in the pie chart of Figure 8. Figure 9 summarizes the number of papers (in
pink) as well as the percentage weight (in green) of classical machine learning techniques
reviewed in our work. Among classical machine learning techniques proposed in the
literature, random forests have been used in most of the literature as shown in Figure 9.
Random forest is one of the few machine learning algorithms that perform well in both
classification and prediction tasks with higher performance. Furthermore, it performs well
in case of missing a portion of data features and is less prone to overfitting.
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On the other hand, deep learning techniques such as deep neural networks, convo-
lutional neural networks, long-short term memory, recurrent neural networks, and deep
auto-encoders are being used in botnet attack detection in SDN-enabled IoT networks. As
shown in Figure 10, among the reviewed literature, DNN-based ones take the highest share.
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In papers such as [94,98] DNN based automatic feature extractor coupled with classical
machine learning techniques based classifiers such as decision tree (DT) and k-means in
classifying the data traffic.
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Generally, deep learning techniques have shown their effectiveness in real-time mon-
itoring botnet attacks in SDN-based IoT networks. This is mainly because DL models
do not require extensive feature engineering and have higher capacity compared to clas-
sical ML techniques. This can be observed in Tables 5–8. In addition, deep learning
techniques have shown their efficiency in detecting previously unseen botnet attacks in
real-time [107,122,123]. Furthermore, the capability of recurrent deep learning models
such as RNN, LSTM, and GRU in learning temporal interdependence of botnet attack
features from the stream of packets plays a key role in detecting unseen attacks [113,114].
Besides, these recurrent deep learning algorithms have been hybridized with other deep
learning techniques such as CNN and DNN to improve the botnet attack detection perfor-
mance [93,107,108].

However, hybridizing classical ML classifiers with deep learning techniques such as
deep autoencoders is becoming an alternative solution [121,123].

7. Open Challenges and Future Direction

The SDN-IoT orchestration has improved IoT networks’ resilience against attacks.
Also, the reported performance of proposed ML methods shows the capability of ML
techniques in detecting botnets. However, the existing SDN controllers lack standard attack
detection security mechanisms [19] that need to be standardized and enhanced. Apart from
the issues in an SDN controller, there are challenges to be addressed to have a robust botnet
attack detection ML technique that can work in real-time.

First, limited benchmark datasets exist for training and testing the proposed ML
models. In addition, due to the continuous change in the signature of botnet attacks, ML
models trained on a given attack signature might not be successful in detecting a previously
unseen attack. To alleviate these challenges, archiving a benchmark dataset is an important
step. Besides, the ML techniques should incorporate human-expert in the loop to maintain
continuous learning.

Second, to obtain an ML-based attack detection mechanism that can work in real-time,
the computational complexity associated with these models should be as minimum as
possible. In addition, the ML models did not provide the reason behind their decision
to classify the stream of packets as normal or malicious. To mitigate these challenges,
ML models should be lightweight, and the ML techniques should be designed in a way
to provide a reason behind classifying a given stream of packet traffics into an attack or
a normal.

Finally, we recommend the collaboration of ML and cyber-security scientists in the
development cycles of robust ML techniques that can continuously learn and prevent
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unseen attack signatures in order to achieve a secured and seamless operation in SDN-
IoT systems.

8. Conclusions

Automating botnet attack detection in SDN-enabled IoT networks is an important
step for the optimum detection of both known and unseen attacks on a real-time basis.
To this end, several works of literature that proposed machine learning techniques have
been published. So, in this paper, we investigated those research studies that applied both
classical machine learning and deep learning techniques for detecting botnet attacks in
SDN-enabled IoT networks. To achieve the goals of this review, we identified research
questions to be addressed. Furthermore, to identify the literature to be surveyed, literature
search strings, publication databases to be searched, and inclusion and exclusion criteria
have been determined. Then, botnet attack detection techniques for SDN-enabled IoT
networks are structurally categorized and summarized to give an insight to the reader on
the dataset used, the advantage and limitations of both ML and DL techniques, and the
reported performances of the proposed model in the literature.

Malicious actors often take advantage of vulnerabilities on IoT devices to inject bots
and get a foothold in SDN-enabled IoT systems. Once they access these IoT gadgets,
they can generate devastating attacks through or on these compromised IoT devices. So,
devising robust ML-based botnet detection that can operate in real-time is imperative in
SDN-enabled IoT systems. In this regard, the hybridizing machine learning techniques have
shown the potential for detecting botnets with known and unseen signatures. However, a
more rigorous evaluation of these models on different network settings is required before
relying on them. As a result, human experts should be incorporated into the deployment
loop of these models to have the capability of continuous learning and discovering unseen
botnet signatures.

In addition, proposed ML techniques in the literature have to be evaluated in terms of
their computational complexity to realize an ML model that can execute in real-time. How-
ever, as indicated in Tables 5–8 apart from metrics used to measure model performances,
proposed techniques are not evaluated in terms of their computational complexity.

Besides, well-organized real datasets which continuously updated to incorporate
newly detected botnet signatures should be used to train and test ML techniques proposed
by different authors. These enable benchmarking and making an objective evaluation of
proposed ML techniques.

In conclusion, different works of literature have shown the potential of ML techniques
to detect botnet attacks in SDN-orchestrated IoT networks. This potential of ML techniques
in building a robust botnet detection system that can operate in real time can be harnessed
by addressing the existing challenges.
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