

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

XINPENG WANG ^{1,*}, QINGZHI ZHAO², RUIJIE XI^{3, 4}, CHENFENG LI⁵, GUANQING LI⁵ and LING'AI LI⁵

¹Department of Surveying and Mapping Engineering, College of Mining, Guizhou University, Guizhou 550025, P. R. China
²College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
³GNSS Research Center, Wuhan University, Wuhan 430079, P. R. China
⁴Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7, United Kingdom
⁵School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, P. R. China

Corresponding author: Xinpeng Wang (e-mail: xpwang3@gzu.edu.cn).

This work was supported in part by Introduced Talents Research Fund Project of Guizhou University under Grant 2020043, and in part by the Natural Science Basic Research Project of Shaanxi under Grant 2020JQ-738.

ABSTRACT Deformation monitoring and dynamic characteristic analysis of bridge structures are the vital and basic requirements for the safe operation of bridges. In recent years, Global Navigation Satellite System (GNSS) has become increasingly widely used in bridge structural health monitoring with the development of the GNSS technology, especially the continuous improvement and development of China's Beidou navigation satellite system (BDS). This article summarises the application process of GNSS dynamic deformation monitoring and the development of GNSS deformation measurement technology of bridge structural health monitoring, the dynamic characteristic identification method and its application in bridge GNSS monitoring. The positioning solution methods for GNSS monitoring, the high sampling rate GNSS receiver for monitoring, multi-frequency and multi-system GNSS monitoring and the weakening of multipath effect of GNSS monitoring are summarised in detail. Then, the conclusions and prospects are posed for future research and related application.

INDEX TERMS Bridge Structural Health Monitoring; GNSS Measurement; Displacement Monitoring; Dynamic Characteristic Identification; Natural frequency

I. INTRODUCTION

The bridge structure inevitably produces damage accumulation and resistance attenuation due to the influence of various factors, such as vehicles, pedestrian traffic, material corrosion, environmental excitation, earthquakes, ship collisions, resulting in a decline in its bearing capacity and reliability, regardless of the bridge types [1-3]. Similar to other civil engineering, the bridge structural modal parameters, including natural frequency, modal shape and modal damping, are functions of the physical characteristics of the structure (mass, damping and stiffness), whose changes in the latter will cause changes in the former [4-6]. Specifically, the bridge under the action of load and environmental factors may cause the dynamic

response of bridge morphology [7]. Hence, bridge safety must be ensured to strengthen the monitoring of structural responses, such as bridge morphology and structural dynamics. The morphology of bridge includes linear and nonlinear deformation or displacement of the pylon and the main beam, and the dynamic characteristics of the structure focus on its modal parameters, which are important indicators of bridge safety control.

The structural deformation monitoring of the bridge belongs to the category of structural health monitoring, which mainly focuses on the dynamic evaluation and management of the dynamic parameters of the bridge structure. The linear and non-linear characteristics form on the basis of the real-time and dynamic monitoring. When an

abnormal phenomenon occurs in some aspects if the various characteristic parameters of the bridge structure are compared with those of the normal structure, the abnormality needs to be judged whether damage has occurred. Subsequently, and then the degree and location of the damage needs to determined. Then, the current state of the structure and the trend of structural damage and even the remaining service life of the structure were evaluated [8]. Rytter divided the damage identification of structural monitoring into the following four progressive levels in his doctoral dissertation [9]: ① determine if the structure suffered damaged; ② determine the geometric location of the damage on the basis of ①; ③, quantify the damage severity on the basis of ②; and ④ predict the remaining service life of structural engineering on the basis of ③.

These tasks require the general structural condition monitoring system to closely monitor the structural load, deformation, static and dynamic response of the structure, vibration frequency and other information in long-term, continuous, real-time or post-time form [10]. Deformation monitoring mainly focuses on the static and dynamic position, displacement, settlement and, linear and even nonlinear deformation of each bridge structure, and the natural frequency (or vibration frequency) of the bridge structure is the most accessible modal parameter [11].

The commonly used vibration frequency monitoring tools, such as accelerometers, lack a trend item that is generated during the integration and cannot measure long-period quasistatic displacement [12]. Accordingly, researchers and engineers have developed and employed a large number of monitoring tools, such as Robotic Total Station [13-17], ground photogrammetric equipment [18-20], 3D laser scanners [20-22], GNSS [23-30] and Ground-based Synthetic Aperture Radar (GB-SAR) [31-36], to monitor the structural deformation. Then, these monitoring data remedy the accelerometer's limitation or serve as one of its combined monitoring devices to identify static, dynamic and permanent deformation or displacement of the bridge in real time. However, the accuracy of photogrammetry and laser scanning methods greatly declines due to the increase of in line-of-sight distance. The synthetic aperture radar (SAR) can observe high accuracy only in the line-of-sight direction, and the accuracy of observation perpendicular to the line-of-sight direction is far inferior to conventional surveys, such as total station measurement. These approaches all have some shortcomings. The GNSS measurement technology, an important means of bridge structural monitoring, can monitor the deformation of the external structure of the bridge allweather and all-time. However, researchers, engineers and monitoring workers prefer GNSS because of its high measurement accuracy, high sampling rate, high automation, capabilities for providing continuous 3D coordinate measurement, and qualified in climatic conditions. According to incomplete statistics, more than one-third of large bridges in mainland China have installed GNSS

receivers as important monitoring sensors to provide longterm continuous deformation information for important health monitoring systems [37]. GNSS has shown unique advantages in the monitoring of bridge structures with the continuous development of software and hardware, especially the emergence of high-sampling-rate GNSS receivers and the successful global networking of BDS in July, 2020, providing a scientific basis for the healthy operation of engineering structures. The x, y, and H (denoted as 3D) coordinate time series signals in the bridge axis coordinate system that varies with time are obtained via GNSS monitoring of the dynamic deformation of structure. These signals can not only provide high-precision deformation information, also the vibration characteristics of the bridge structure. Such data can serve as early warning information for the safe operation of the bridge. For example, the collapse of Minjiang Bridge in Sichuan, China, on July 27th, 2018 caused no death and property loss. Casualty and damage were prevented because that the bridge monitoring system showed large displacement and abnormal vibration and the bridge manager timely closed the bridge [38]. Several similar examples show that the bridge health monitoring system has important guiding significance for ensuring the safe operation of bridges, and avoiding casualties and property safety.

With the development of bridges, the GNSS monitoring data during construction and operation constitute a massive 3D coordinate time series. The safety structural condition must be evaluated through abnormal displacement and deformation, but it is far from enough. The massive GNSS monitoring data acquired must be processed to accurately obtain the vibration frequency of the bridge structure and evaluate its safety status [39, 40]. The bridge GNSS monitoring data often contain rich bridge structural modal information.

However, such data often exhibit nonlinear and nonstationary characteristics and contain a substantial amount of observation noise due to the influence of environmental factors. In recent years, an increasing number of timefrequency analytical methods, such as fast Fourier transform (FFT) [41], short-term FT (STFT) [42], wavelet transform (WT) [43, 44] and Hilbert-Huang translation (HHT) [45, 46], have been employed to extract and analyse the modal parameters of bridge structures. However, these methods have certain shortcomings. In practice, an accurate identification of the dynamic deformation and modal information of the bridge structure is conducive to timely grasp its operating conditions, detect bridge damage, or further analyse and predict its remaining service life. In scientific research, accurately exploring the dynamic characteristics of bridge structures, especially the changing mechanism of natural frequencies under excitation conditions, will provide practical verification for the theoretical design of bridge structures and also a strong scientific basis to improve and optimise bridge design.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

EEEACCESS Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

In this case, the review consists of the following contents: introduction (Section 1), application progress of GNSS monitoring dynamic deformation of bridge structures (Section 2), summary of GNSS deformation measurement technology for bridge health monitoring (Section 3), summary of the dynamic characteristic identification methods and their application in bridge monitoring (Section 4) and, conclusion and prospect (Section 5).

II. APPLICATION PROGRESS OF GNSS MONITORING DYNAMIC DEFORMATION OF BRIDGE STRUCTURES

In the 1990s, GNSS monitoring began to be applied to the dynamic deformation of bridge structures. Early in 1993, Canadian scholar Loves et al. [47] applied GNSS measurement to the 160 m-high Calgary Tower vibration measurement under strong wind. The vibration frequency in the east-west and north-south directions was at 0.3 Hz, and the maximum amplitude was 16 mm. After confirming that the GNSS technology can be used as a helpful method for structural vibration measurement, in 1995, Leroy of France pioneered the application of GNSS sensors to the dynamic monitoring of the longest suspension bridge, Normandy Bridge in France, and successfully obtained the cm-level bridge dynamic displacement [48]. This success inspired the majority of scientific researchers and engineers to continuously apply this technology to the structural condition monitoring of bridges. Then, the GNSS technology has been used in the fields of structural monitoring of huge projects, such as high-rise buildings, towers and bridges [49-53]. Ashkenazi et al. [54, 55] applied the GNSS technology to the monitoring of the Humber River Suspension Bridge with a main span of 1 410 m in 1997, and pioneered the verification of the real-time dynamic difference method for bridge 3D vibration displacement monitoring with an accuracy of up to mm level. His collaborators, Roberts et al. [56, 57] monitored the bridge again in 1999, and obtained a consistent finite element calculation result with a vertical vibration frequency of 0.117 Hz. Nakamura [58] used the GNSS technology to monitor the dynamic deformation of a suspension bridge with a main span of 720 m in 1998. The study concluded that the vibration displacement and main frequency of the main girder under wind load were consistent with the results of the wind tunnel experiments and finite element calculations.

In the 21st century, the application of GNSS in dynamic monitoring of bridge structures has been further developed. Kashima et al. [59] conducted GNSS monitoring on the Akashi Kaikyo Bridge with a main span of 1 991 m and a total length of 3 910 m in 2001. They compared the results with other sensors and verified that the GNSS technology is a reliable method for bridge health monitoring. Guo's team [60-62] from Tsinghua University began to establish monitoring systems on TsingMa Bridge in Hong Kong and Humen Bridge in Guangzhou in 2000. The team was the first time to conduct real-time online monitoring of long-span suspension bridges in China via the GNSS technology and obtain real-time bridge displacements. Then, the natural mode of the bridge was analysed, and some conclusions were achieved. Robers and Meng, from the University of Nottingham, UK have been working on the GNSS study for bridge health monitoring for a long time since 2000 [63]. Their results were applied to the Wilford Suspension Bridge in Nottingham [64-66], the Forth Road Bridge in Scotland [67, 68] and the Millennium Bridge on the Thames in London [69]. The results were encouraging. Wong and others of the Highways Department of Hong Kong, China [70] established a wind and structural health monitoring system, including GNSS receivers on Tsing Ma Suspension Bridge, Kap Shui Mun Cable-stayed Bridge and Ting Kau Cablestayed Bridge. The accuracy of the plane and elevation direction obtained reached 10 and 20 mm, respectively. Miao and Li, et al. [71, 72] and Li and Yi, et al. [73, 74] established structural monitoring systems, including GNSS, on Runyang Yangtze River Bridge and Shandong Binzhou Yellow River Bridge, respectively, in 2004. In the same year, Larocca et al. [75, 76] applied the GNSS technology to the dynamic monitoring of the Hawkshaw cable-stayed bridge in Brazil, and found that the main frequencies of the vertical and lateral vibration are 0.57 and 0.60 Hz, respectively; the maximum vertical displacement of its vibration varies with the load. Lekidis et al. [77] used a GNSS receiver to dynamically monitor the Evripos suspension bridge in Greece in 2005, and the identified fourth-order modal frequencies were consistent with the finite element calculation results, verifying the feasibility of its use in earthquake-induced bridge vibration monitoring. In the same year, Erdogan et al. [78] applied the GNSS receiver to the vibration monitoring of the Bosporus Bridge passing by during the Eurasian Marathon. They obtained the highfrequency and low-frequency bridge vibration frequencies under different loads, which were calculated with accelerometers and finite element methods; the results are consistent. Raziq et al. [79] used a GNSS receiver to monitor the West Gate Bridge in Melbourne, Australia in 2006, and obtained the vertical displacement of the bridge deck and the vibration frequency of the bridge tower. Watson et al. [80] applied the GNSS technology to the structural dynamic monitoring of the Tamar River Bridge in Australia in 2007. The measured maximum dynamic displacements of the midspan point of the main span and the top of the main tower reached 54 and 17 mm, respectively. Yao et al. [81, 82] applied the GNSS technology to the dynamic monitoring of Nanpu Bridge in China, in 2008, and obtained results consistent with the prediction of the finite element model. Huang et al. [25, 83] applied the GNSS technology to the deformation monitoring during the construction and operation of the Sutong Bridge in Jiangsu, China, and obtained modal frequencies of 0.166 and 0.500 Hz. Kaloop et al. [39, 84] began to apply the GNSS technology to the pylon deformation monitoring of Tianjin Yonghe Bridge in 2009. Although they failed to identify high-frequency vibration

characteristics due to certain items such as the influence of noise, they successfully identified the low-frequency vibration characteristics. Such GNSS dynamic monitoring provides a scientific basis for fine dynamic monitoring and frequency extraction, and its reliability is superior.

Since 2010, GNSS bridge monitoring applications have been integrated with other technological means and further improved. Yi et al. [85] applied a 20 Hz sampling rate GNSS receiver to the structural monitoring of Dalian North Bridge in 2010. The obtained structural vibration frequency is in good agreement with that of the finite element and the accelerometer method. Meng et al. [86] began to use GNSS as the main observation method in 2013, combined with an accelerometer, an interferometry synthetic aperture radar (InSAR), a fibre grating sensor (FBG) and other sensors to establish a special bridge monitoring system (Integrated GNSS positioning and Earth Observation techniques for Structure Health Monitoring, GeoSHM); then, they carried out monitoring research on the British Forth Road Bridge and Wuhan Erqi Yangtze River Bridge. Chen and Meng [87] used this system to analyse the vertical law of deformation of the Forth Road Bridge. Moshas et al. [88] applied different sensors, such as GNSS, to the dynamic monitoring of a 40 m main span pedestrian bridge in 2011. They obtained a structural vibration displacement of 6 mm and a vibration frequency of 4.28 Hz by supposing different load conditions, verifying the potential of a rigid bridge response monitored by GNSS. In 2014, Ogundipe et al. [89] used five GNSS receivers for the dynamic monitoring of a steel box girder viaduct with a main span of 174 m in the UK, and obtained a maximum vertical vibration amplitude of 10 mm and a vibration frequency of 0.526 Hz. Ogundipe and Kaloop et al. [90-91] applied the GNSS technology to the dynamic monitoring of the Mansoura Bridge in Mansoura City, Egypt and Talkha Expressway Steel Bridge, and obtained the corresponding main frequency of the bridge vibration. Yu et al. [92] employed eight GNSS receivers and other sensors on the Aizhai Suspension Bridge with a main span of 1 176 m in Jishou City, Hunan Province. Two receivers were installed on the top of the towers in Jishou and Chadong to monitor the displacement of the tower in the longitudinal direction. The other receivers were arranged at the upstream and downstream of the quarter-span, mid-span, and three-quarter span of the bridge to monitor the lateral and longitudinal displacements of the reinforced steel beams. These approaches provide a scientific basis for ensuring the healthy operation of the 'internet sensation bridge' with a height difference of 355 m from the bridge deck to the valley bottom.

In this section, the development of GNSS in the ten-year phase and its overall application in bridge monitoring are introduced.

III. SUMMARY OF DEFORMATION MEASUREMENT TECHNOLOGY FOR BRIDGE STRUCTURAL HEALTH MONITORING

GNSS dynamic monitoring often employs relative positioning methods. The position of the moving carrier relative to the reference point is determined by fully using the synchronous observation data of the GNSS receiver placed on the reference point and the moving carrier; this method is called relative positioning [93, 94]. This main goals are to collect, summarise, calculate and broadcast the satellite ephemeris correction values, satellite clock offset correction values, ionospheric correction values, tropospheric correction values and other information to the receiver on the moving carrier to obtain accurate relative location [93, 94]. The timespace reference, signal structure, system configuration, positioning principle, error source, data processing method and operation application of GNSS measurement can be found in the textbook [94], which will not be provided here. When the GNSS technology is adopted for dynamic monitoring, it is generally used to obtain continuous absolute deformation of bridges and other major engineering structures. However, the level and accuracy requirements of deformation measurement in the literature are difficult to achieve [74, 95, 96] due to the influence of GNSS receivers. satellites, signal propagation paths, data processing strategies and other factors. This mechanism also limits the widespread application of GNSS in structural deformation monitoring to a certain extent. Given this issue, an increasing number of scientific researchers and engineers have focused on GNSS positioning solution methods for monitoring, high sampling rate GNSS receiver for monitoring, multi-frequency and multi-system GNSS monitoring, weakening of multipath effect of GNSS monitoring, analysis of noise characteristics of GNSS monitoring and its signal denoising to obtain continuous, real-time, high-sampling micro-deformation information of major engineering structures. These methods are constantly improving. Thus, this section contains five subsections, which are reviews on the above mentioned aspects.

A. REVIEW ON GNSS POSITIONING SOLUTION METHODS FOR MONITORING

In terms of positioning solution strategy, Lovse et al. [47] first applied the post-processing kinematic (PPK) technology to the dynamic monitoring of the Calgary Tower, and obtained monitoring accuracies of ± 5 and ± 10 mm. The PPK is a dynamic relative positioning technology that uses carrier phase observations for post-processing. Meng [63] reported that, the measured noise level is reduced to mm- level after the carrier phase dynamic difference and filtering via the experimental analysis of GNSS zero baseline and short baseline.

Since 1996, Ashkenaziz et al. [54] studied the application of ambiguity resolution on the fly (AROF or OTF) method. Then, real-time kinematic (RTK) was applied to the deformation monitoring of the Humber Bridge, and the

structural vibration displacement of the bridge was 1-2 cm [55]. Here, the RTK is a technology that uses the carrier phase observation value to perform real-time dynamic positioning between the rover and the reference station within a certain distance (such as 15 km). Since 2000, Janssen et al. [97] changed the traditional relative positioning method of considering the single-frequency observations of the GNSS receiver only to improve the accuracy of the error correction of the baseline observation, and added the consideration of the dual-frequency observations of the GNSS receiver. Then, the influence of ionospheric error is weakened, and the deformation monitoring accuracy of the horizontal direction achieved ±1 cm, and those of elevation are ± 1.5 cm to ± 3.0 cm. Roberts and Meng [98, 99] applied the RTK technology to a suspension bridge on the Trent River in Nottingham, England-Wilford Bridge. Guo et al. [62] used the GPS RTK technology on the Humen Bridge in Guangdong to obtain a deformation monitoring accuracy of ±1.0 cm. Nordin et al. [100] applied the GPS RTK technology to the dynamic monitoring of a bridge in the Malaysian Polytechnic University, and provided a conclusion of the state safety assessment.

On the basis of RTK technology, Wang et al. [101] employed extended Kalman filter with a third-order difference and non-ionospheric model to eliminate the effects of ionosphere and white noise, and applied this to Donghai Bridge, which connects Pudong, Shanghai and Zhoushan, Zhejiang Province. The dynamic monitoring results were good. Wang et al. [82] used the GPS RTK technology in the dynamic monitoring of Nanpu Bridge in 2008, and Elnabwy et al. [28] did so in the dynamic monitoring of Talkha expressway steel bridge in 2010. Yu et al. [30] abandoned the conventional reference station rover model, but innovatively adopted a remote continuously operating reference station (CORS) as a reference station. They also established a network-based RTK system to monitor bridge dynamic responses. Kim et al. [102] applied the combinatorial computing method of the GNSS technology and accelerometer measurement to the dynamic displacement monitoring of the Humber Bridge in the United Kingdom, and obtained high positioning accuracy. Xiong et al. [103,104] applied the GPS RTK technology to the dynamic monitoring of super high-rise buildings in Tianjin Radio and Television Tower and Tianjin Gaoyin Finance 117 Building. They also processed the monitoring data with Chebyshev Type I high-pass filtering, and the dynamic displacement amplitude reached ± 3.0 and ± 5 cm. The technical method was applied to the dynamic monitoring of Tianjin Fumin Bridge [105], and a standard deviation of ±2.0 cm was obtained. Xi et al. [106] applied the RTK technology based on the BDS and GPS RTK technology to the dynamic monitoring of the Baishazhou Bridge in Wuhan. They also found that the BDS RTK has equivalent or even better ability to recognise dynamic deformation whilst acquiring dynamic characteristics.

In contrast with the aforementioned PPK, RTK, network RTK and other baseline difference resolution techniques, in the GNSS Precise Point Positioning (PPP) technology developed in recent years, users might do not need to set up a reference station and only utilise the carrier phase and code measurement pseudorange observations of only one GNSS receiver. This method fully uses high-precision satellite orbit and clock error products, and adopts model correction and parameter estimation to carefully consider the error impact related to the satellite end, signal propagation path, and receiver end on positioning to achieve high-precision positioning results [107]. Zumberge et al. [108] employed a large-scale continuously operating GPS receiver and other hardware systems to conduct PPP research as early as 1997. However, the application in geosciences was limited due to low accuracy.

With outstanding contributions to the positioning model and parameter estimation, precision satellite clock error estimation, cycle slip fixation and repair, non-difference ambiguity resolution, regional CORS network enhancement PPP ambiguity fast fixation, PPP ambiguity fixation and regional enhancement taking into account atmospheric constraints, PPP extends its areas from wide-area precision positioning, seismic monitoring, water vapor inversion, ionospheric monitoring, large-scale movement measurement, satellite orbit determination, to that of higher precision, such as deformation monitoring. Kuang et al. [109] applied the GNSS PPP technology to the dynamic displacement monitoring of high-rise buildings in 2013, and obtained high consistency compared with the results of traditional relative positioning RTK solution and accelerometer measurement. Mart n et al. [110] showed that the accuracy of the N, E, and U directions of the relative fixed rover reached within ±7.0, ± 8.0 and ± 10.0 cm through real-time PPP experiments. The horizontal and vertical direction accuracies of the moving trolley could reach ±15 and ±25 cm, respectively. Although this mechanism is not as accurate as traditional reference station-rover RTK model, it provides a new direction for dynamic deformation.

Yigit et al. [111] applied the GNSS PPP technology to monitor the simulated vibration of a narrow steel plate with a micromovement of 0.1 mm on the roof of Department of Civil Engineering, Stable University of Technology in 2014. The result showed that the measurement accuracy is consistent with that of traditional relative positioning RTK solution. Yigit et al. [112] also evaluated and verified the ability of the GNSS PPP technology to monitor the vertical vibration of the structure through experiments. They believed that this technology is reliable for monitoring the vertical dynamic characteristics of long, medium and short span suspension bridges. Kaloop et al. [113] dynamically monitored the excited vertical vibration of cantilever steel bars of different lengths, employed the GNSS PPP mode and relative positioning RTK mode to solve the positioning results, and extracted the dynamic characteristics of the This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

EEEACCESS Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

obtained results. The result showed that the characteristics were consistent with those calculated by the finite element method. Paziewski et al. [114] conducted microdeformation monitoring experiments on different baseline lengths, and adopted different calculation strategies of GNSS RTK, PPP and Direct Signal Processing for dynamic displacement detection GNSS Method (SPM). The accuracy of SPM with short baseline can reach that of RTK with long baseline. Tang et al. [115] established a portable manipulator driven by a motor to rotate at a certain speed on the roof of a building at University of Nottingham Ningbo China. The sampling interval of the monitoring data is set to 1 s. When calculated under strict satellite clock offset, non-difference ambiguity parameters, total zenith delay and dynamic displacement, the result is consistent with the traditional relative positioning method (double difference calculation of the base and reference stations). This GNSS PPP method was applied to the dynamic monitoring of the long-span bridge in the United Kingdom-Severn Bridge. Thus, the PPP method is a scientific and reliable alternative for bridge dynamic monitoring in the case of difficult double-difference solutions.

In this part, the development of GNSS precision positioning technology and method for the purpose of bridge structural monitoring is introduced.

B. REVIEW ON HIGH SAMPLING RATE GNSS RECEIVER FOR MONITORING

According to the relationship between the sampling rate and the measured signal frequency described by the Nyquist theorem:

$$f_s > 2f_N$$

The sampling rate f_s must be twice greater than the highest frequency component of interest in the measured signal. The frequency f_N is often referred to as the Nyquist frequency. This notion means that the bridge dynamic monitoring frequency must be $2f_0$ or higher if the highest frequency actually contained in the bridge vibration comes up to f_0 .

Therefore, not only the highest requirements of accuracy and reliability must be met for the GNSS dynamic monitoring of bridge structures but also the requirements of high sampling rate of the monitoring point positioning solution. The main vibration frequency range of very large bridges is generally in the range of 0–2 Hz, so the sampling rate of the GNSS receiver must surpass 4 Hz or even higher.

Since Lovse, researchers begun to use GNSS receivers with sampling rates of 10 Hz and below for dynamic monitoring of GNSS structures [47, 60, 62, 64, 116, 117]. In recent years, GNSS receivers with a sampling rate of 10–100 Hz have emerged and been employed for more accurate structural dynamic monitoring [84, 90, 110, 116, 118-121]. In 2011, Moschas et al. [118, 122] used a receiver with a

sampling rate of 10 Hz to synchronously study the dynamic characteristics of vibration excited by jump of a group of people on a 10 m short span bridge. Roberts, Meng and Wang et al. [123,124] adopted a receiver with a 10 Hz sampling rate to monitor the Forth Road Highway Bridge in the United Kingdom for 46 h in 2012, indicating that GNSS monitoring can provide the amplitude and dynamic frequency of the quasi-static deflection of the structure.

The higher the vibration frequency of the bridge comes up to, the higher sampling rate the GNSS receiver requires. To monitor the dynamic characteristics of higher frequency structures, researchers studied GNSS receivers with higher sampling rates. Kaloop et al. [39] and Yu et al. [121] used GNSS receivers with a sampling rate of 20 Hz to monitor short-, medium-, and long- span bridges. They believed that the deformation monitoring accuracy of such bridge vibration monitoring can reach a sub-millimeter level. Kaloop et al. [91,125] employed a GNSS receiver with a 1 Hz sampling rate to monitor the Mansoura Railway Bridge and the Pearl River Huangpu Bridge in Egypt. Another, GNSS receiver with 20 Hz sampling rate is used to monitor the health and damage of the Yonghe Bridge. They concluded that the high and low sampling rate GNSS measurements can extract the dynamic deformation components of the bridge, and the high sampling rate GNSS measurement is more suitable for detecting the frequency components of bridge vibration. Yi et al. [126] employed GNSS receivers with 50 and 100 Hz sampling rates to monitor the static and dynamic changes, and concluded that such high-frequency receivers can evaluate the performance of rigid and flexible structures. Moschas et al. [127] used a GNSS receiver with a sampling rate of 100 Hz to monitor the static and dynamic vibration characteristics of short-span pedestrian bridges, and obtained millimeter-level monitoring accuracy and a vibration frequency of 7 Hz.

In this part, the development of GNSS high-sampling rate receivers for bridge structural monitoring is introduced. Therefore, various rapid-developed, high-frequency GNSS receivers can meet the frequency requirements for monitoring bridge dynamic deformation.

C. REVIEW ON MULTI-FREQUENCY AND MULTI-SYSTEM GNSS MONITIORING

With the development of the GNSS technology in various countries or regions at present, satellite navigation systems that have reached a certain scale include GPS of the United States, GLObal NAvigation Satellite System (GLONASS) of Russia, Galileo of the European Union, and BDS of China. And many regional satellite navigation systems are also emerging, such as the Indian Regional Navigation Satellite System (IRNSS/NavIC), the Japanese Quasi-Zenith Satellite System (QZSS), and the Regional South Korean Positioning System (KPS). Currently, more than 130 satellites are in orbit providing for navigation and positioning related services. When a commonly used single GPS system is adopted for bridge dynamic monitoring, it

may be affected by certain factors, such as a single GNSS system satellite signal occlusion and poor geometric structure, resulting in low monitoring accuracy, reliability and stability [128]. The current situation of GNSS multi-frequency and multi-system coexistence will help improve this situation.

GNSS receivers are generally divided into singlefrequency, dual-frequency and triplefrequency receivers. Single-frequency receives only L1 carrier signals transmitted by GNSS satellites, dual-frequency simultaneously receives L1 and L2 carrier signals, and triple-frequency concurrently receives L1, L2 and L5 (BDS provides B1, B2 and B3 carrier signals) [129]. The singlefrequency receiver takes a longer time (1 min and 30 min) to solve the fixed solution compared with the dualfrequency receiver. Accordingly, Cosser et al. [130] applied this concept to the deflection monitoring of the Wilford suspension bridge experiment with the above two receivers. The (among them, the dual-frequency receiver uses the "go and stop" method to solve the problem). The results indicated that the dual-frequency one can obtain a more accurate ionospheric model and reach better monitoring accuracy. By contrast, and the single-frequency receiver obtains poor quality of monitoring results in a short time. Thus, So Yi et al. [131] suggested that engineers should weigh the accuracy of monitoring and the price of testing equipment, and choose a compromise scheme.

People choose dual-frequency or triple-frequency receivers for structural health monitoring to ensure accuracy. Zou et al. [132] applied the Satellite-specific Epoch-differenced Ionospheric Delay model to singlefrequency and dual-frequency receiver observations to obtain high crustal deformation accuracy and encrypt the GNSS control network. A plane accuracy of ±2.0 mm and an elevation accuracy of ±5.0 mm were obtained via comprehensive processing of the values obtained. Feng et al. [133] proposed the Three Carrier Ambiguity Resolution method and used it as the theoretical basis for regional relative localisation RTK. Xi et al. [134] used BDS/GPSbased triple-frequency observations to study fast initialisation in real-time bridge dynamic monitoring, and applied this to the monitoring data of Wuhan Baishazhou Yangtze River Bridge. The authors concluded that multifrequency can help in determining the ambiguity.

Dual-frequency and triple-frequency receivers are more expensive. Some researchers and colleagues are considering "the one hand", which is to study the feasibility of singlefrequency GNSS receivers to the monitor dynamic deformation of bridges to reduce monitoring costs. Crosser monitors suspension bridges with different spans using single-frequency receivers [135]. In his doctoral dissertation, he believes that single-frequency receivers can obtain the dynamic and quasi-static displacements of longspan suspension bridges. However, only the fundamental frequency and dynamic displacement components can be monitored for small and medium-span bridges, not for the quasi-static displacement components affected by noise. Hedgecock et al. [136,137] proposed a new algorithm to improve the accuracy of the single-frequency receiver for monitoring dynamic displacement. Azar et al. [138] conducted a test with a single-frequency GNSS receiver on the Wavasan Bridge in Putrajaya Temple, Malaysia. They believed that the single-frequency receiver is only suitable for dynamic deformation of bridges over 2 cm, and amplitudes smaller than 2 cm cannot be monitored and identified. The new algorithm proposed by Larocca et al. [75] fully utilises the principle of interferometry, which focuses on collecting at least two navigation satellite L1 carrier signals to calculate the vertical vibration displacement of the structure. This scheme identified the vibration displacement and frequency of the bridge on the Hawkshaw Bridge in Canada. Single-frequency receivers have difficulty in identifying small deformation displacements due to random noise, short-term instability of the receiver clock and multipath effects. Schaal et al. [139] proved that the phase difference of a single satellite by using the L1 carrier signal only can monitor the centimeter level through experimental analysis, and the phase difference of two satellites can monitor the millimeter level deformation oscillation. Carcanague [140] determined the number of the whole cycles from the floating point solution by the integer solution estimation method based on Doppler frequency shift measurement, and applied the real-time cycle slip detection algorithm on the basis of the geometric distance observations to deformation monitoring by RTK and PPP of single frequency receivers. Jo et al. [141] replaced a certain number of dual-frequency receivers by increasing the layout density of single-frequency receivers, and obtained a deformation monitoring accuracy of 20-30 cm. Zheng et al. [142] employed combinatorial methods of satellite epoch differential ionospheric delay model, dynamic PPP and sliding window static PPP to process the dynamic observations of single-frequency GNSS receivers. The deformation monitoring can reach a plane of ± 1.8 cm. The accuracy and elevation accuracy are ± 2.2 cm. Huang et al. [143] used any two adjacent stations as baselines to weaken the influence of ionospheric errors and also obtained better deformation monitoring accuracy.

Bakker et al. [144] introduced multiple systems into the PPP calculation of a single-frequency GNSS receiver and obtained better deformation monitoring accuracy than single-frequency GNSS. Studies have shown that fusion processing on multi-system GNSS data increases the number of visible satellites, enhances the geometric structure of satellite observations, and improves the efficiency of ambiguity determination [145]. In the dynamic monitoring of large bridges, multi-system GNSS can enhance the availability and reliability of the monitoring system when satellite signals are blocked by certain facilities, such as bridge towers and passing vehicles, thereby improving the positioning accuracy [145]. Tu et al. [146] proposed a real-time dynamic monitoring method combined with GPS, GLONASS, BDS and strong motion recorders, and verified its reliability in high-rise buildings,

dams, bridges and other projects. Paziewski et al. [114] comparatively analysed the influence of the combined GPS and BDS data fusion processing on the accuracy of deformation monitoring. Xi et al. not only combined GPS and GLONASS to eliminate GNSS signal distortion in bridge deformation monitoring [147], also proposed a combination strategy of dual-frequency carrier phase GPS and BDS to process deformation monitoring data, which can improve the reliability of bridges dynamic monitoring by GNSS [148]. Yu et al. [121] considered three different GNSS data processing modes: RTK, network RTK and PPK when identifying the dynamic displacement and modal frequency of the Wilford suspension bridge.

In addition, the new state of-the-art GNSS positioning technique, PPP-RTK, which generally characterize of PPP positioning model, real-time positioning, state-space representation (SSR) corrections and fast fixation of ambiguity, has the potential for detecting the dynamic response of vibrating structures in real time. However, it is difficult to further expand its scope of application until it solves the following 2 items: how to balance the relationship between data transmission volume, sampling rate and bandwidth; how to build a high-precision atmospheric model and determine its broadcast method.

Therefore, various rapid-developed, Multi-frequency and Multi-system GNSS receivers can meet the requirements on stability, reliability and high precision for monitoring bridge dynamic deformation.

D. REVIEW ON WEAKENING OF MULTIPATH EFFECT OF GNSS MONITORING

As previously mentioned above, the relative positioning method is used in bridge dynamic monitoring to obtain the deformation information of the monitoring point. Accordingly, the main system errors, such as the clock difference between the receiver clock and the satellite clock, can be basically eliminated. The error caused by ionospheric and tropospheric delays can be basically ignored because the distance between the monitoring points is relatively short. However, the multi-path error has so complicated relationship with the geometric association formed by the observation station, surrounding bridges, water surface and other environments; and the satellite position distribution wherein the multi-path error cannot be effectively weakened by the aforementioned data solution strategy becomes an important source of error in GNSS high-precision relative positioning measurement, especially bridge dynamic monitoring [149,150].

The impact caused by the multipath effect can be partially weakened through the appropriate selection of the station location, improving the polarisation characteristics of the antenna [151], adding a choke antenna to the receiver [152], removing the reflector near the antenna, using absorbing materials and absorbing devices at the bottom of the antenna [153,154] and other aspects. However, the multipath error has not been completely eliminated [155]. Therefore, many studies worldwide are devoted to data

post-processing methods to weaken or eliminate the influence of multipath effects.

First, the multipath effect can be weakened or detected through pseudorange measurement, carrier phase measurement observations, or different combinations thereof. Ogaja et al. [156] wrote a special program to identify multipath errors in high-frequency GNSS surveys based on additional information, such as Translation, Editing and Quality Checking (TEQC) record files in L1 pseudorange surveys. The results indicated that the method was simple, effective and helpful in explaining the source of multi-path error on the GNSS stations, which is convenient for its location selection. Moradi et al. [157] proposed a new carrier phase multipath error observation method, which can isolate the carrier phase multipath error between the linear combination of observations, such as Wide-Lane (WL), and the results of applying it to RTK positioning measurement show that it makes sense. Wang et al. [158] analysed the multipath effect of BDS"s Geostationary Earth Orbit (GEO) satellite pseudo-code measurement. Ye et al. [159] analysed the multipath effect of the BDS carrier phase measurement. Strode et al. [160] proposed a method for detecting the influence of GNSS multipath by comparing the signal-noise ratio (SNR) of three frequencies. Dai et al. [161] studied the characteristics of the multipath effects of BDS's GEO satellites, inclined geosynchronous orbit (IGSO) satellites, and Medium Earth Orbit (MEO) satellites, and established a correction model for application in deformation. The practical results in the monitoring show that the accuracy has been greatly improved. Gao et al. [162] used actual observations of GPS and BDS tri-frequency observations to analyse the phase multipath effects of three typical carrier, namely, the ultrawide lane (Extra-WL, EWL) combination, the ionospheric estimation of EWL/WL with ambiguity correction, and the combination of the narrow lane (NL) ionosphere-free Ambiguity (AR) non-geometric, (geometry-free and ionosphere-free, GIF). Thus, the established model that based on this concept to measure positioning has also achieved good results.

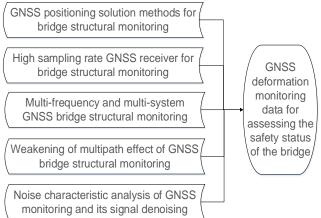
Second, the SNR observations, as a part of the GNSS observations, are indicators of the quality of the observed signal with S1/S2 in RINEX. The observation signal is reflected and diffracted by the surrounding environment of the observation station, showing low-frequency or highfrequency characteristics in the SNR observations [163]. Bilich et al. [164, 165] established the multipath environmental power spectral time series of the GNSS station environment to distinguish satellites and frequency bands in which SNR has an important influence on multipath errors. Luo et al. [166] proposed an improved weighted observation model based on the SNR power measurement method, and the multipath effect was considerably weakened. Benton et al. [167] designed a filter that separates the effects of multipath from the SNR data of GNSS, and the effect is considerable. Xi [145] established a refined random model on the basis of the SNR observations

based on the characteristics of GPS and GLONASS SNR sequences varying with satellite altitude angles and the relationship between the accuracy of observations and satellite altitude angles. A good bridge monitoring effect can be observed in the new model compared with others.

Third, during deformation monitoring, the observation environment around the station remains unchanged. However, the satellite orbits periodically reappear with sidereal days. Researchers may consider establishing a multipath effect model based on the extraction of the residuals of the previous stellar days, which may correct the multipath effect of subsequent sidereal days [145]. Choi et al. [168] studied the repetition period of GPS satellites. They found that the repetition period of different satellites is different, and significantly varies from the commonly assumed sidereal day period. When the 1 Hz GPS measurement positioning estimate is filtered by the calculated satellite repetition period, the error of lowfrequency observation may greatly fall. Agnew et al. [169] were committed to finding out the satellite repetition period by the repetition period of the orbit and the repetition time of the satellite passing over the station. They found that the repetition period changed to different degrees. This concept provides a corresponding basis for the weakening of the multipath effect during GNSS observation. Larson et al. [170] proposed an Aspect Repeat Time Adjustment (ARTA) method fitting for the data with the same direction, which can reduce the impact of multipath effects on the basis of the repeatability of GNSS, thereby greatly improving the monitoring accuracy in the horizontal direction. Given that the multipath error is likely to exceed the error tolerance when the satellite's cut-off altitude angle is low, the GNSS data must be collected in the best state for the satellite's cutoff altitude angle. Ragheb et al. [171] compared the stability of the error repetition delay caused by the correlation processing on the basis of the coordinate sequence of consecutive days and the residual sequence of the carrier phase observation, and pointed out its advantages and disadvantages in weakening the multipath error. Zhong et al. [172] proposed a method of sidereal day filtering based on single-frequency difference, which was used to reduce the influence of multipath in the calculation of short-baseline GNSS observations and achieved good results. Atkins et al. [173] used the sidereal day filtering algorithm in the time domain to reduce the multipath error of the GNSS carrier phase measurement without ionospheric difference. Wang et al. [174] determined the contributions of different observation environment parts to the multipath effect via the time series power spectral density of the residual error from the single-difference solution of the phase.

Fourth, some researchers also determined the spatial position relationship between the surrounding environment of the GNSS station (reflections and diffractors) and the phase center of the receiver by other technical means. Then, the observations that might be reflected or diffracted will be picked out and excluded. Lau et al. [175] established a Ray-

Tracking model of the station environment on the basis of the study of the geometric relationship between the satellite-reflector-antenna and the characteristics of the reflective material and the antenna, which is used to reduce the multipath effect. Yi et al. [176] studied the multipath effect of the GNSS signals in the background of different building materials, and applied this pattern to improve the accuracy of measurement and positioning. Groves et al. [177] used urban 3D maps and Non-Line-Of-Sight (NLOS) signal propagation models to weaken the impact of multipath effects. Zimmermann et al. used ground laser scanning [178] and Fresnel zone [179] to establish station environmental models to determine and exclude indirect signal observations, thereby reducing multipath errors.


Last but not least, given that the GNSS long-term observation contains the aforementioned periodic repetition characteristics, the time series of GNSS observation data contains periodic repetitive signals of a certain frequency. Many time series analytical filtering or signal denoising technologies, such as adaptive filtering (AF), Fourier transform (FT), wavelet, Vondrak and Empirical Mode Decomposition (EMD) were employed to extract (or reduce) multipath effects. Roberts et al. [180,181] eliminated the ionospheric delay, cycle jumps and background noise basically in the GNSS observations by Adaptive Filtering (AF) method. He also believes that the combination of GPS and accelerometer plus AF could reach millimeter-level vertical accuracy of monitoring displacement [182]. Satirapod and Rizos [183] weakened the multipath error caused by the phase in the original GNSS observations via the wavelet decomposition method. Zhong et al. [184] proposed a new method that combines the crossauthentication method with the Vandrak digital filter, which fully uses the periodic repetition characteristics of the GNSS multipath effect to effectively weaken the multipath effect. Huang et al. [185,186] employed wavelet decomposition and difference correction methods to process the observation data for multiple consecutive days, which effectively weakened the influence of the multipath effect. The 3D position accuracy of GPS dynamic monitoring reached mm level. Dai et al. [187] applied EMD to the extraction of an accurate GNSS multipath effect error repeatability model for the first time, and made corrections that effectively improved the positioning accuracy. Kijewski-Correa and Kochly [188] analysed the receiver measurement results of the GNSS and accelerometer on the vibration table, and verified the existence of the multipath effect. This mechanism can be weakened by FT and Wavelet Spectra (WS). Aram et al. [189] proposed a GNSS data processing method that selects the best satellite geometry on the basis of wavelet analysis, which can approximate the value of the multipath error, filter the residual error in the data and correct the multipath effect. Wang et al. [190] and Cui et al. [191] applied Ensemble Empirical Mode Decomposition (EEMD), improved EMD to the reduction of multipath errors and achieved significant results. Dai et al. [192] applied EMD,

Independent Component Analysis (ICA), Principal Component Analysis (PCA) and other methods to solve the problem of stellar day filtering, weakening the multipath effect with subsequent observations when the repetitive feature is not obvious with the observation interval increasing on the first day. Lu et al. [193] concluded that Singular Spectrum Analysis (SSA) can achieve the same multipath effect weakening effect as that of wavelet and EMD through experiments and analysis.

It can be seen that with the continuous emergence of multipath error reduction methods in GNSS measurement, GNSS measurement can fully meet the requirements of bridge structure displacement monitoring in terms of monitoring accuracy and reliability.

E. REVIEW ON THE NOISE CHARACTERISTIC ANALYSIS OF GNSS MONITORING AND ITS SIGNAL DENOISING

Although a large number of researchers have made disdainful efforts in the aforementioned reduction of multipath effects, the time series obtained by GNSS monitoring still has more or less noise, which greatly hinders the process of accurately obtaining dynamic structural deformation information based on GNSS. To this end, many scholars have devoted themselves to analysing the noise characteristics of GNSS monitoring and studying signal denoising methods. Chan et al. [194] briefly analysed the accuracy and error of dynamic monitoring in three directions through simulation experiments and GNSS monitoring on high-rise buildings and long-span bridges. Genrich and Bock [195] performed geodetic instantaneous positioning measurement by a 10-50 Hz GNSS receiver and analysed the error characteristics of the time series. They concluded that the measurement noise is coloured noise, and the logarithmic spectrum is less than 0.5 Hz for dynamic monitoring with the 1 Hz sampling rate in the range of 10 km. Meanwhile, the measurement noise is high frequency, and its accuracy is 0.5 mm in the horizontal direction and 3-4 mm in the vertical direction for compared with that with in the 2-20 Hz sampling rate in the range of 40 km. Hristopoulos et al. [196] performed low-frequency de-noising and spectral analysis on the corresponding time series of wind loads on high-rise buildings monitored by GNSS. Moschas et al. [197] performed spectral analysis on short-term GNSS monitoring time series of GNSS receiver equipment with the same configuration and high frequency (greater than 1 Hz). They believe that the part below 0.2 Hz is mainly coloured low-frequency noise, and that above 2.5 Hz only contains white noise. In addition, the long-term and short-term GNSS detection records of high-frequency components hardly contain coloured noise. Moschas et al. [198] also analysed the noise characteristics of different phase locked loop (PLL) bandwidths in GNSS deformation monitoring. They found that the high and low frequency noise increases with the increase in the bandwidth from 25, 50 Hz to 100 Hz. Zhang et al. [199] analysed the characteristics of the observation noise of different navigation and positioning systems and different constellations via the zero baseline data observed by GNSS. Zhang et al. [199] analysed the characteristics of the observation noise of different navigation and positioning systems and constellations via the zero baseline data observed by GNSS. Geng et al. [200] analysed the noise characteristics of high-frequency multi-system GNSS for half-day crustal deformation monitoring. Langbein et al. [201] studied the long-term coordinate sequence observed by 740 GPS stations in the western United States and concluded that the background noise is time-dependent and can be modelled as the combination of white noise, flicker noise, random walk noise and band-pass filtering noise. He et al. [202] studied the low-frequency noise characteristics of long-term GNSS time series and believed that the background noise model is mainly power exponential noise or flicker noise with white noise.

FIGURE 1. Deformation measurement technology based on GNSS for bridge structural health monitoring.

Many studies have focused on signal denoising of GNSS observation time series to obtain accurate and reliable bridge deformation information. Huang et al. [203] studied the error elimination of time series observation data by the wavelet analytical theory. Zhang et al. [204] proposed a multi-threshold criterion wavelet packet denoising method based on frequency order and segmented according to the information type. This method can eliminate the noise in each frequency and retain useful information with high frequency in the denoising signal when the sampling rate is low. Gao et al. [205] proposed an improved threshold denoising method based on the analysis of traditional hard threshold denoising, soft threshold denoising and forced denoising methods. This method is applied to process GNSS deformation monitoring data, whilst retaining data details and sudden changes, and it effectively eliminates high-frequency noise. Kaloop et al. [206] analysed the coordinate time series obtained by the specially designed GNSS short-term monitoring system on the Mansoura Railway Bridge in Egypt on the basis of wavelet analysis, integrated principal component analysis, wavelet compression, and denoising methods. The method could

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

IEEE ACCESS' Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

lo.	Bridge name	Structure type	Span length (m)	Number o receivers
1	Anqing Yangtze River Highway Bridge	Cable-stayed bridge	0+215+510+215+50	4
2	Anshun Baling River Bridge	Suspension bridge	Main span: 1088	9
3	Binzhou Yellow River Bridge	Cable-stayed bridge	Main span: 300	3
4	Shenyang Hunhe Boguan Bridge	Arch bridge	35+84+120+88+68+35	2
5	Dalian North Bridge	Suspension bridge	Main span: 132	6
6	East Sea Bridge	Cable-stayed bridge	Main span: 420	3
7	Chongqing Dongshuimen Yangtze River Bridge	Cable-stayed bridge	Main span: 520	3
8	Dongting Lake Bridge	Suspension bridge	310	5
9	Ordos Ulan Mulun River No. 4 Bridge	Cable-stayed bridge	Main span: 450	2
0	Wuhan Erqi Yangtze River Bridge	Cable-stayed bridge	Main span: 616	6
1	Ganyue Expressway Poyang Lake Bridge	Cable-stayed bridge	Main hole: 180+318+130	4
2	Hangzhou Bay Bridge	Cable-stayed bridge	116+246+116	8
3	Guangzhou Hedong Bridge	Cable-stayed bridge	Main span: 360	4
4	Guangzhou Humen Bridge	Suspension bridge	888	7
5	Guangzhou Pearl River Huangpu Bridge	Suspension bridge, Cable-stayed bridge	South branch: 290+1108+350, North branch: 383+197+63+62	14
6	Jinan Yellow River Bridge	Suspension bridge	40+94+220+94+40	1
7	Zhanjiang Bay Bridge	Suspension bridge	840	3
8	Jiangyin Yangtze River Highway Bridge	Suspension bridge	Main span: 1092	8
9	Hubei Jingyue Yangtze River Bridge	Cable-stayed bridge	(100+298)+816+(80+2×100)	5
0	Wuhan Junshan Yangtze River Bridge	Cable-stayed bridge	40+204+460+204+48	3
1	Maanshan Yangtze River Highway Bridge	Suspension bridge, Cable-stayed bridge	Left branch (Suspension bridge) 2×1080, Right branch (Cable-stayed bridge) 2×260	9
22	Ningbo Mingzhou Bridge	Arch bridge	450	3
3	Jiajiang Bridge, Nanjing Crossing River Tunnel	Suspension bridge	Main span: 248	11
4	Nanjing Second Yangtze River Bridge	Cable-stayed bridge	Main span: 628	4
5	Nanjing Fourth Yangtze River Bridge	Suspension bridge	(160+410.2)+1418+(363.4+118.4)	21
6	Chongqing Qingcaobei Yangtze River Bridge	Suspension bridge	18.867+245+788+245+17.831	2
7	Qingdao Bay Bridge	Suspension bridge	1300	3
8	Ningbo Qinglin Bay Bridge	Cable-stayed bridge	380	2
9	Ningbo Qingshuipu Bridge	Cable-stayed bridge	468	1
0	Runyang Yangtze River Bridge	Cable-stayed bridge	1490+406	16
1	Shanghai Yangtze River Bridge	Cable-stayed bridge	350+730+350	12
2	Shaoxing Binhai Bridge	Cable-stayed bridge	77.8+188+77.8	19
3	Shenzhen Bay Bridge	Suspension bridge	180	4
4	Sutong Yangtze River Bridge	Suspension bridge	1088	14
5	Taizhou Yangtze River Bridge	Cable-stayed bridge	2 x1080	10
6	Taohuayu Yellow River Bridge	Suspension bridge	Main span: 406	6
7	Tianjin Seaside Express Haihe Bridge	Suspension bridge	310+190	3
8	Tianjin Nancang Marshalling Station Bridge	Cable-stayed bridge	150+150	1
9	Xiangshan Port Bridge	Suspension bridge	688	1
0	Pearl River Xinguang Bridge	Arch bridge	177+428+177	16
1	Guizhou Yachi River Bridge	Cable-stayed bridge	Main span: 800	5
2	Wuhan Yangluo Bridge	Suspension bridge	125+1280+440	5

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

EEEACCESS' Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

43	Qingyuan Yingde River Bay Bridge	Arch bridge	3x45+8x70+4x45	4
44	Nanning Yonghe Bridge	Cable-stayed bridge	25.15+99.85+260+99.85+25.15	10

effectively weaken the noise and appropriately extract the characteristic information of bridge vibration. Lu [207] proposed the EMD-WP method that integrates EMD and wavelet packet to denoise the GNSS structure monitoring data, and it can also weaken the multipath effect. Li et al. [208] proposed an adaptive filtering method, EEMD-Wavelet-SSA, which combined EEMD, wavelet threshold and SSA. This can significantly reduce the root mean square error under the condition of low SNR of GNSS monitoring data.

Due to the continuous development of GNSS measurement time series denoising methods, the obtained "pure" monitoring information can accurately describe the dynamic characteristics of the bridge and provide a scientific basis for the operation of the bridge.

In view of the advantages of GNSS and the aforementioned developments (as FIGURE 1), more and more bridges in Mainland China adopt GNSS measurement as an important and commonly used monitoring method for structural deformation monitoring (TABLE I) [37]. Nevertheless, two-thirds of bridges have not yet adopted the GNSS monitoring technology according to [37]. The reason is that sometimes the accuracy of GNSS measurement is not as high as expected, the complexity of its solution is high, the sampling rate is not as high as that of other equipment such as accelerometers, so the main vibration frequency of the bridge structure cannot be extracted well from the GNSS monitoring data. It is also related to characteristics of GNSS monitoring data which is nonstationary nonlinearity, and contain certain amount of noise. Obviously, it is urgent to develop suitable dynamic characteristics identification methods to process the bridge monitoring data.

IV. SUMMARY OF CHARACTERISTIC RECOGNITION METHODS AND THEIR APPLICATION IN GNSS BRIDGE DYNAMIC MONITORING DATA

Signal processing of the vibration dynamic response obtained by bridge monitoring, detection, positioning, quantification and evaluation of the degree of structural damage to the vibration signal are the key issues in bridge structural monitoring. Exploring the signal processing technology that can extract subtle changes (if there are) in vibration response is crucial for detecting, locating and quantifying the degree of damage to the bridge structure. With the development of various forms of structural condition monitoring after several bridge projects emerged, many dynamic feature analytical methods, especially frequency identification (or extraction) methods, are used in a large number of structural condition monitoring practices. The dynamic displacement and frequency changes of bridges are affected by various environmental incentives. The large deformation or frequency change will certainly draw monitoring engineers' special attention. Timely maintenance or reinforcement measures are observed to ensure the safe operation of the bridge.

However, the deformation and natural frequency of the bridge may gradually change with the accumulated load of the bridge and the silent material aging. It might be so long a period before failure or accident occurs that some deformation or frequency changes (if there are) is as weak as submerged in the noise of measurement equipment. Dynamic feature analysis on ceaseless monitoring data is the top priority of the bridge structure vibration analysis under environmental excitation.

This mechanism mainly focuses on extracting dynamic features from the monitored time series analytical data to determine the existence of structural damage and determine the damage location and its degree [209,210]. Over the years, the analysis of dynamic characteristics of bridge monitoring has gone through the stages of bridge natural frequency monitoring, bridge dynamic deformation monitoring, and fusion monitoring analysis of the two. Therefore, progress in these three areas will be introduced in this section.

A. BRIDGE NATURAL FREQUENCY MONITORING

Since Adams et al. proposed the concept of detecting structural damage through changes in the natural frequency of the structure [211] and conducted experimental verification with their collaborators [212], the vibration frequency of the structure has been an important modal parameter in the structural health monitoring of bridges. This aspect has made considerable progress.

Cawley and Adams [8] calculated the natural vibration frequency of the structure by using the finite element method to detect damage, determine the location of the damage, and quantify the damage. Rytter [9] divided the damage identification of structural health monitoring into the aforementioned four progressive levels in his doctoral thesis. The first level is particularly critical and is the basis for all subsequent work, and carrying out the subsequent three levels of work for the structure without damage detection is meaningless.

Such work will also bring great safety risks to the normal operation of the engineering structure if the structure actually has damage, and the structural health monitoring system fails to detect damage due to the lack of equipment, monitoring methods, and data analytical methods. The internal modifications in engineering structures will cause changes in the vibration frequency of the structure. This view has prompted scientists and engineers to insistently explore methods for structural damage identification and health monitoring.

Gardner-Morse and Huston estimated the cable tension by the natural frequency change of cable-stayed bridge cables, and verified the bridge cable tension loss when the actual frequency is less than the design value [213]. Salawu This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

EEEACCESS Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

comprehensively reviewed the means and analytical methods of damage monitoring by using frequency changes, and believed that the detection of engineering structural damage requires comprehensive consideration of changes in natural frequency, modal shape and damping ratio [214]. The damage identification method based on the change of natural frequency is widely used because it is easy to obtain in the structural mode, and the identification accuracy is high [215].

Accelerometers and fiber bragg grating (FBG) sensors are often used to measure natural frequencies. Li et al. [216] established a bridge monitoring system via these techniques on the Yellow River Highway Bridge in Binzhou, Shandong, and analysed the frequency response of the traffic load to the bridge. Magalhaes et al. [217] established a dynamic monitoring system by using accelerometers on a concrete arch bridge in Bordeaux, Portugal. They studied the impact of environmental variables and operating variables on the modal parameters by the time series of the natural frequency evolution of the bridge within two years. Historical data are used as a reference to provide high reference accuracy for health monitoring. Then enough data are collected before an abnormal event occurs, and the health monitoring system can have sensitive abnormality detection capabilities [217].

Scholars have their own opinions on whether the vibration frequency change of the bridge under traffic load truly reflects the dynamic characteristics of the bridge structure under damage. Apaydin et al. [218] conducted dynamic monitoring on the Fatih Sultan Mehmet Bridge with a main span of 1090 m in Turkey. They believed that the amplitude of the bridge vibration response caused by traffic congestion on the bridge deck was significantly more severe than that under no traffic conditions. The frequency obtained by the accelerometer is similar. However, Magalhaes [217] pointed out that the measured frequency has a 0.2% change compared with the simulated data after removing the environmental and traffic factors when bridge damage occurs. Such different viewpoints make the subsequent researchers wonder about the scientific accuracy of bridge health monitoring based on the frequency changes. The frequency response is the overall dynamic characteristic of the structure, and the local damage of the structure is difficult to reflect [219]. However, this situation is also related to the accelerometer's shortcomings, such as insensitivity to low-frequency vibration [219, 220] and difficulty in removing integral errors of the accumulation [221, 222]. Therefore, the development and application of the dynamic displacement monitoring methods and technologies such as GNSS and the extraction or identification of dynamic characteristics from them is beneficial. First, the method can make up for the shortcomings of accelerometers. Second, the method can verify the scientific reliability of its dynamic characteristic recognition, thereby eliminating the aforementioned doubts.

The structural frequency changes caused by damage are not sensitive, which means that engineers will either leave it alone and wait until the damage is severe enough, especially to the extent that it can be identified with existing technology, and then immediately take measures; or they will try to find more accurate and sensitive methods to detect damage in the early stage of damage or failure, and take reinforcement measures in advance. The latter is a more sensible choice for property and life safety considerations. Similar to the quality control in machinery manufacturing, bridge health monitoring needs to adopt more appropriate strategies and methods to monitor frequency changes to detect the existence of damage in a controlled environment, which is just the meaning of the first level of structural health monitoring [9].

B. SUMMARY OF CHARACTERISTIC RECOGNITION METHOD

From the foregoing, the dynamics of bridge monitoring by GNSS has achieved certain results in geometric deformation monitoring in view of the unremitting efforts of researchers and engineers from GNSS positioning solution strategy, high sampling rate, multi-frequency multi-system GNSS, multipath impact reduction, noise characteristic analysis and signal denoising. In addition, the GNSS dynamic monitoring time series of bridges often show nonlinear and unstable characteristics, and contain imperfect noise that is weakened to a certain extent due to various environmental stimulus factors, such as load, ship impact, temperature and wind. Therefore, the research progress of dynamic characteristic identification methods must be introduced in this section.

The probability density of stationary random signals does not change with time and frequency shift, whilst the distribution parameters or distribution laws of nonlinear non-stationary signals will change with time.

To identify the vibration modal parameters in the nonlinear and stationary data series, scholars have successively developed Kalman filtering [223], SSA [224], Natural Excitation Technique (NExT) [225], autoregressive moving average (ARMA) [226], Stochastic Subspace Identification (SSI) [227,228], ICA [229] and other time domain identification methods. In the frequency domain, people often use fast Fourier Transform (FFT) [230] for vibration frequency identification. These methods are basically effective for the identification of modal parameters with low sampling rate that can be regarded as linear or steady, and each method has its own advantages and disadvantages. However, these methods cannot effectively identify the modal parameters of unsteady and nonlinear systems, especially vibration, for example, inevitable leakage and aliasing phenomena occur in the FT spectrum.

To identify the dynamic characteristics of non-stationary signals, researchers and engineers have made long-term unremitting efforts. The methods applied and developed include Short Time Fourier Transform (STFT) [231], Wigner-Ville Distribution (WVD) [232], wavelet analysis

[233-237] and empirical mode decomposition (EMD) [238] and its related improvements [239-242].

When analysing non-stationary signals based on FT, the STFT method needs to select an appropriate window function: a narrow window is often used for high frequency signals, whilst a wide window is required for low frequency signals. However, this phenomenon is a big puzzle for the analysis of non-stationary signals with unknown frequency states. After a series of development [234-237], wavelet transform developed into a decomposition method with different window lengths that can reflect the multi-scale detailed changes of the signal [242]. The selection of different wavelet bases is suitable for different example applications. An appropriate wavelet base is difficult to determine for specific applications, which had become a limitation for expanding its applications. Therefore, Huang et al. [238] proposed HHT with EMD and Hilbert Translation (HT) as the core, which can adaptively process non-linear and nonstationary signals. However, this method also has problems, such as end effect an, modal aliasing. When this method is applied in signal processing, it sometimes obtains results without specific physical meanings. For this reason, Wu and Huang [239] proposed an EEMD method based on adding white noise to the signal for multiple times and decomposing and averaging it. This method effectively improves the modal aliasing, but it also leads to large residual noise in signal reconstruction. Yeh et al. [240] proposed a complete empirical mode decomposition (CEEMD) method by adding positive and negative pairs of auxiliary white noise to the signal for multiple times and decomposing and averaging it. This method can efficiently weaken the residual auxiliary noise in the reconstructed signal.

Torres et al. [241] considered that the amplitude of the positive and negative paired white noise added for multiple times was related to the original signal in a certain way, and the amplitude gradually reduced. They also proposed CEEMD with Adaptive Noise (CEEMDAN). This method provides accurate reconstruction of the original signal. Zheng et al. [242] detected the abnormal components of CEEMD decomposition based on the permutation entropy of the signal randomness detection and discarded them. Then, they performed the EMD process, and proposed partial EEMD (PEEMD) method, which has better decomposition effect and, has a certain inhibitory effect on modal aliasing.

The stochastic resonance (SR) proposed by Benzi et al. to explain the palaeometeoro-logical problem of the glacier period [243] is different from the aforementioned frequency extraction method to separate noisy signals. This approach is a new method of using non-linear system to realise transferring noise energy to signal energy. The Adaptive SR (ASR) method proposed by Mitaim et al. [244] can seek the best amongst the signal, noise and driving force and generate stochastic resonance effects, which can also effectively detect or highlight useful frequencies and eliminate noise in low signal-to-noise ratio situations. In recent years, the application and research of stochastic resonance in mechanical vibration fault detection and signal noise processing have rapidly developed [245-251], and the achievements are encouraging. However, the research of applying this approach to the coordinate time series analysis of GNSS monitoring bridge dynamic deformation is rarely seen in the newspaper, except for the research and application in dynamic characteristic identification of bridge GNSS monitoring data [252].

Dragomiretskiy and Zosso [253] proposed a new adaptive signal decomposition method - variational mode decomposition (VMD) - in 2014. In contrast with the recursive mode decomposition method of EMD, VMD can simultaneously decompose the signal into a set of bandlimited intrinsic mode functions, estimate its centre frequency online in the function and extract all modes. They verified through experiments that VMD is superior to EMD in terms of tone detection, tone separation and noise robustness [253]. Wang and Markert [254,255] further proved the superior performance of VMD. The VMD-based vibration signal analytical method has been widely applied in the field of mechanical fault diagnosis [256-260]. However, the VMD parameters used in these applications, such as the number of modal layers K and the modal frequency band control parameter (or penalty coefficient), are determined on the basis of experience or convenience. The large number of non-linear and non-stationary signals in practice (such as bridge GNSS monitoring data) are susceptible to various factors, and the changes in the signal frequency band are complicated.

This part introduces a variety of different characteristics identification methods and their development, which are not only applied to the identification of bridge vibration characteristics.

C. APPLICATION OF CHARACTERISTIC RECOGNITION METHOD IN THE GNSS BRIDGE DYNAMIC MONITORING DATA

In the massive coordinate time series obtained by the GNSS monitoring system, selection of appropriate data processing methods to extract valuable bridge vibration frequency information and its characteristics that slightly change with environmental excitation factors, identification of the bridge structural mode, and analysation of the safety state of the bridge structure are the major goals that many researchers and engineers in the field of structural health monitoring constantly strive to pursue.

The analysis of natural frequencies of bridge structures based on non-GNSS monitoring time series has been running through the development of bridge health monitoring to date. Owen et al. [261] employed autoregressive time series modelling to analyse the nonlinear and non-stationary vibration signals of bridge monitoring. Ruzzene et al. [262] conducted wavelet analysis on the vibration information of the Queensboro Bridge in Vancouver, Canada under environmental excitation, and the frequencies obtained were consistent with previous research results. Huang et al. [263] applied this mechanism to the data analysis of bridge health monitoring soon after proposing the HHT method. Guo et al. [264] and Zhu et al. [265] reviewed the advantages of wavelet analysis in signal denoising, signal detection, feature extraction, and data compression in health monitoring systems. Wald et al. [266] and Chen et al. [267] reviewed the application of FT and HHT respectively in structural monitoring, including bridge engineering. Amezquita-Sanchez et al. [268] reviewed a variety of signal processing methods used in structural monitoring. Goyal et al. [2] reviewed the instruments and dynamic feature analysis analytical methods used in the monitoring of engineering structures, including bridges.

The research on the dynamic characteristic identification method of GNSS measurement that can obtain the dynamic deformation information of the bridge structure has also been continuously developed since the high sampling rate GNSS receiver was applied to the bridge monitoring. These recognition methods have also achieved considerable success. In terms of frequency extraction by using FT, Nakamura et al. [58] performed FT analysis on the monitoring coordinate time series of a Japanese suspension bridge structure acquired by a GNSS receiver with a sampling interval of 1 s as early as 2000, and obtained a vibration frequency of 0. 98 Hz. Xu and Guo et al. [23, 62] used FFT to identify the dynamic characteristics of the GNSS monitoring vertical coordinate time series of Humen Bridge, and obtained the main vibration frequencies of 0.134 and 0.170 Hz. Huang et al. [24, 25] analysed the time series obtained by the GNSS monitoring of Wuhan Second Yangtze River Bridge and Sutong Bridge by using the FT spectral analytical method. The former obtained the vibration frequency of 0.2698 Hz, and the latter achieved 0.166 and 0.500 Hz. Many researchers and engineers have continuously performed FT analysis on the time series obtained by GNSS monitoring of bridge vibration to identify the dynamic characteristics [25, 39, 66, 68, 75-78, 80-84, 86-89, 103, 104, 106, 109, 113, 115, 118-120, 126, 138, 140, 146, 147, 173, 181, 269-272]. The details have not been repeated here due to space limitations.

Recently, Kaloop et al. [125] used neural network adaptive filtering methods to denoise the time series of GNSS monitoring of the Huangpu Bridge over the Pearl River, and then identified the dynamic characteristics of the bridge by using FT. Park et al. [273] compared the frequency processed by FT on the time series of GNSS monitoring of a steel suspension bridge in Incheon, South Korea with the that calculated by the finite element method and verified the effectiveness of GNSS monitoring. Xin et al. [274] comprehensively applied Kalman Filtering (KF), AutoRegressive Integrated Moving Average (ARIMA) and Generalised AutoRegressive Condition Heteroskedasticity (GARCH) models to the monitoring data on Jialing River Bridge, Caijia by GNSS. The time series information was analysed, and better bridge vibration information was obtained by using FT.

Given that wavelet analysis is superior to FFT in frequency identification, Huang et al. [53], Ogaja et al. [275, 276], Huang et al. [116], and Li et al. [277] applied WT to the deformation analysis of high-rise buildings and other engineering structures. Later, Meo et al. [65] extracted the natural frequency of the bridge structure by using wavelet analysis, and verified that it is basically consistent with the frequency obtained by the existing method. Xu et al. [278] used wavelet multi-scale analysis to denoise the GNSS-RTK time series signals obtained by GNSS monitoring on a cable-stayed bridge's high tower and obtained the main frequency via FFT analysis. The results are consistent with those from finite element analysis. Kaloop et al. [279] verified the sensitivity of GNSS monitoring signals to bridge damage monitoring on the basis of the time series of GNSS monitoring of Yonghe Bridge, Tianjin by using STFT and wavelet analysis. Cao et al. [280] applied SSA on the time series of the pylons of Sutong Bridge monitored by GNSS and effectively extracted the vibration frequency of the pylons via wavelet analysis. Elbeltagi et al. [281] filtered GNSS monitoring data via moving average filtering and wavelet transform and extracted low-frequency bridge vibration information by using FT. Han et al. [282] conducted wavelet and FFT analysis on the data sequence obtained by the GNSS-based monitoring equipment on the Wuhan Yangtze River Second Bridge under typhoon load. The obtained main frequency of vibration of the bridge was 0.172 Hz. Kaloop et al. [90] analysed the GNSS dynamic monitoring time series obtained on the Mansoura Bridge in El-Mansoura, Egypt by combining wavelet transform and PCA methods, and obtained reliable vibration frequencies. Hussan et al. [283] analysed the GNSS monitoring information of a suspension bridge in Incheon by wavelet transform and other methods and obtained useful conclusions. Kaloop et al. [284] processed bridge monitoring data by GNSS by using wavelet spectrum and ARMA methods to detect significant changes in the bridge frequency and bridge stiffness performance. In view of the advantages of wavelet analysis, scholars often broadened it to structural deformation monitoring and its related applications, such as reducing of multipath errors [183, 189] and signal noise reduction [203-207, 285].

With the continuous development of EMD, which is superior to wavelet analysis in terms of nonlinear data decomposition, it has gradually been applied to the extraction of wind vibration monitoring features of tall buildings monitored by GNSS [286-290], the weakening of GNSS multipath effects [185, 186, 208], the attenuation of signal noise [207] and some other aspects. Xu et al. [291] analysed the GNSS monitoring time series obtained on the Wuhan Baishazhou Yangtze River Bridge by combining EEMD with random decrement technique (RDT) and obtained a clean bridge vibration mode. Liu et al. [292] processed the experimental results of the vibration monitoring of the Nanjing Third Yangtze River Bridge by using the single-frequency GNSS dynamic three-difference method, and, accurately extracted the natural frequency of This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749. IEEE Access

EEEACCESS Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

0.25 Hz at the first vertical bend of the bridge on the basis of the time series combined with FT and EMD. Yu et al. [121] also used the EEMD method when processing multimode GNSS monitoring data for mid-span suspension bridges.

Given that wavelet analysis, EMD and its derivative calculations still have certain shortcomings, researchers have begun to integrate different methods to process GNSS monitoring data of bridges. Xiong et al. [293] proposed a filtering algorithm combining EMD and Chebyshev hybrid filtering based on autocorrelation function, and applied it to the real displacement of bridge structural vibration, which further effectively identified bridge modal parameters. Niu et al. [105] analysed the time series of GNSS monitoring on Tianjin Fumin Bridge by combining EEMD and wavelet packet technology. The obtained frequency was in good agreement with the calculation result from the finite element. Rao et al. [294] proposed a data decomposition method that combines EMD, WT and FFT, which can effectively reduce the impact of ultra-low frequency components and noise when processing GNSS monitoring time series and extract clearer bridge vibration frequencies. Xiong et al. [295] proposed a new method by combining CEEMDAN and wavelet package (WP), which effectively weakened the high and low frequency noises of the time

series monitored by GNSS-RTK on the Rainbow Bridge in Tianjin, and obtained clear bridge vibration frequency.

The Huang's team has long been committed to the GNSS dynamic monitoring and safety warning processing of large structures, such as bridges and dam. They have not only established structural dynamic monitoring systems for some buildings and structures, but also carried out a series of innovations and applications of data processing methods. A series of results has been obtained. Huang and Wang et al. [296] proposed a data decomposition method that combines EMD, permutation entropy (PE) and spectral substitution, which can effectively weaken the noise and retain the original signal when processing noisy bridge GNSS monitoring data sequences. With this method, they obtained clearer dynamic characteristics of the Wuhan Baishazhou Yangtze River Bridge. Wang et al. [297] proposed a time frequency analysis method based on the combination of wavelet threshold denoising and HHT. The Hilbert spectrum analysis of the denoised data clearly reflected the spectral value of the bridge structure, and the numerical results agreed well with the theoretical calculations [297]. Wang et al. [252] also proposed an adaptive stochastic resonance method on the basis of quantum genetic algorithm, which can also detect clear and reliable dynamic characteristic bridge monitoring information by GNSS that has a great impact on noise.

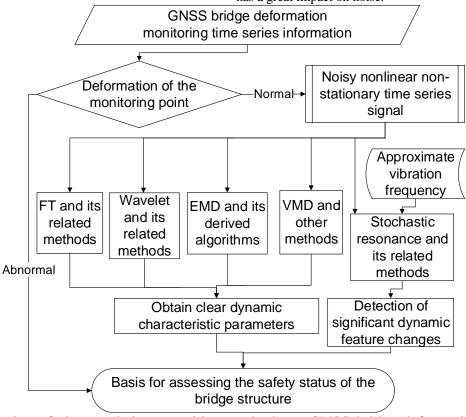


FIGURE 2. Application of characteristic recognition methods on GNSS bridge deformation monitoring data

On the basis of the unity of the sampling rate, time system, and coordinate system between GNSS and the

speedometer, the displacement, including low-frequency displacement and high-frequency vibration information of

bridges, was obtained with high precision by Zhang et al. [298]. By a time series analysis and spectrum analysis on the decomposed signal, it is found that the VMD algorithm can extract the low-frequency trend term in the GNSS time series with high precision. Yu et al [299] summarized different innovative data processing techniques for processing GNSS data in structural health monitoring.

This section reviews the application of characteristic recognition method in the GNSS bridge dynamic monitoring data.

With more and more characteristic recognition methods available (FIGURE 2), the use of GNSS receivers is not limited only to the dynamic displacement monitoring of bridges structure, but also to their dynamic characteristic identification such as main frequencies.

V. CONCLUSION

In summary, with the continuous development and progress of GNSS technology, monitoring the deformation of the bridge structure by using GNSS can not only obtain highprecision and high-sampling rate bridge dynamic deformation characteristic information, but also obtain scientific and reliable natural frequencies (and its changes, if any) and dynamic characteristics. Although the GNSS monitoring is subject to various environmental factors and its own limitations and contains certain noise, the vibration frequency and changes of the bridge structure in a specific environment can still be obtained by adopting or developing

REFERENCES

- Amezquita-Sanchez J. P., Adeli H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures [J]. Archives of Computational Methods in Engineering, 2016, 23(1):1-15.
- [2] Goyal D., Pabla B. S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review [J]. Archives of Computational Methods in Engineering, 2016, 23(4): 585-594.
- [3] Moughty J. J., Casas J. R. A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions [J]. Applied Sciences, 2017, 7(5): 510-.
- [4] Yang Y. B., Yang J. P. State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(02): 1850025.
- [5] He H. X., Wang W., Zhang X. F. Frequency modification of continuous beam bridges based on co-integration theory under effects of temperature and humidity [J]. Structural Health Monitoring, 2019, 18(2): 376-389.
- [6] Limongelli M. P. Frequency response function interpolation for damage detection under changing environment [J]. Mechanical Systems and Signal Processing, 2010, 24(8): 2898-2913.
- [7] Housner G. W., Bergman L. A., Caughey T. K. Structural control: Past, present, and future [J]. Journal of Engineering Mechanics, 1997, 123(2): 897-971.
- [8] Cawley P., Adams R. D. The location of defects in structures from measurements of natural frequencies [J]. Journal of Strain Analysis, 1979, 14(2): 49-57.
- [9] Rytter A. Vibration based inspection of civil engineering structures [D]. Denmark: Aallborg University, 1993.

an effective dynamic characteristic analytical method for the non-linear and non-stationary state time series data of the monitoring.

This study summarizes application progress of GNSS monitoring dynamic deformation of bridge structures, GNSS deformation measurement technology for bridge structural health monitoring and characteristic recognition methods and their application in GNSS bridge dynamic monitoring data. It is critical to obtain continuous, real-time, high-sampling microdeformation information of major engineering structure by developing or improving GNSS positioning solution methods for monitoring, high sampling rate GNSS receiver for monitoring, multi-frequency and multi-system GNSS monitoring, weakening of multipath effect of GNSS monitoring, analysis of noise characteristics of GNSS monitoring and its signal denoising. Meanwhile, developing and improving the appropriate dynamic characteristic identification method for structural health status analysis and early warning of bridge monitoring data, is the goal of researchers to pursue.

To date, the structural health monitoring of bridges by GNSS has evolved from continuous displacement monitoring to dynamic feature identification and monitoring or both. Such research and review have great application value for early detecting and warning bridge failures as early as possible.

- [10] Limongelli M. P. Frequency response function interpolation for damage detection under changing environment [J]. Mechanical Systems and Signal Processing, 2010, 24(8): 2898-2913.
- [11] Yang Y. B., Yang J. P. State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(02): 1850025.
- [12] Shen N., Chen L., Liu J., Wang L., Tao T., Wu D., Chen R. A Review of Global Navigation Satellite System (GNSS)-Based Dynamic Monitoring Technologies for Structural Health Monitoring. Remote Sensing. 2019; 11(9): 1001.
- [13] Psimoulis P. A., Stiros S. C. Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS) [J]. Engineering Structures, 2007, 29(12): 3312-3324.
- [14] Psimoulis P. A., Stiros S. C. Experimental Assessment of the Accuracy of GPS and RTS for the Determination of the Parameters of Oscillation of Major Structures [J]. Computer-Aided Civil and Infrastructure Engineering, 2008, 23(5): 389-403.
- [15] Cross E. J., Koo K. Y., Brownjohn J. M. W., et al. Longterm monitoring and data analysis of the Tamar Bridge [J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 16-34.
- [16] Psimoulis P. A., Stiros S. C. Measuring Deflections of a Short-Span Railway Bridge Using a Robotic Total Station [J]. Journal of Bridge Engineering, 2013, 18(2): 182-185.
- [17] Erdoğan H., Gülal E. Ambient Vibration Measurements of the Bosphorus Suspension Bridge by Total Station and GPS [J]. Experimental Techniques, 2013, 37(3):16-23.
- [18] Járegui D. V., White K. R., Woodward C. B., Leitch K. R. Noncontact Photogrammetric Measurement of

Vertical Bridge Deflection. Journal of Bridge Engineering, 2003, 8(4): 212–222.

- [19] Jahanshahi M. R., Masri S. F. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation [J]. Smart Material Structures, 2013, 22(3):035019.
- [20] Riveiro B., Gonz dez-Jorge H., Varela M., Jauregui D.V. Validation of terrestrial laser scanning and photogrammetry techniques for the measurement of vertical underclearance and beam geometry in structural inspection of bridges [J]. Measurement, 2013, 46(1): 784-794.
- [21] Zhao X. F., Liu H., Yu Y., Xu X. D., Hu W. T., Li M. C., Ou J. P. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology [J]. Sensors, 2015, 15(4): 8444-8463.
- [22] Park H. S., Lee H. M., Adeli H. A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning [J]. Computer-aided Civil and Infrastructure Engineering, 2010, 22(1):19-.
- [23] Xu L., Guo J. J., Jiang J. J. Time-frequency analysis of a suspension bridge based on GPS [J]. Journal of Sound and Vibration, 2002, 254(1): 105-116.
- [24] Huang S. X., Liu X., Yang Y. B., Zhang Y. Experiment and Result for Measuring Dynamic Characteristics of Large Bridge Using GPS [J]. Geomatics and Information Science of Wuhan University (in Chinese), 2004, 29(3): 198-200.
- [25] Huang S. X., Yang B. C., You X. P. Applications of GPS Dynamic Geometric Deformation Monitoring System to Sutong Bridge [J]. Geomatics and Information Science of Wuhan University (in Chinese), 2009, 34(9): 1072-1075.
- [26] Meng X. L., Roberts G. W., Dodson A. H. Impact of GPS satellite and pseudolite geometry on structural deformation monitoring: analytical and empirical studies [J]. Journal of Geodesy, 2004, 77: 809–822.
- [27] Meng X. L., Dodson A. H., Roberts G. W., et al. Prototype Internet RTK GPS for Bridge Deformation Monitoring [J]. Survey Review, 2006, 38(299): 348-357.
- [28] Elnabwy M. T., Kaloop M. R., Elbeltagi E. Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique [J]. Measurement, 2013, 46(10): 4282-4292.
- [29] Im S. B., Hurlebaus S., Kang Y. J. Summary Review of GPS Technology for Structural Health Monitoring [J]. Journal of Structural Engineering, 2013, 139(10): 1653– 1664.
- [30] Yu J. Y., Yan B. F., Meng X. L., Shao X. D., Ye H. Measurement of Bridge Dynamic Responses Using Network-Based Real-Time Kinematic GNSS Technique [J]. Journal of Surveying Engineering, 2016, 142(3): 04015013.
- [31] Pieraccini M., Fratini M., Parrini F., Atzenia C., Bartoli G. Interferometric radar vs. accelerometer for dynamic monitoring of large structures: An experimental comparison [J]. NDT and E International, 2008, 41(4):258-264.
- [32] Gentile C. Deflection measurement on vibrating stay cables by non-contact microwave interferometer [J]. NDT and E International, 2010, 43(3):231-240.
- [33] Gentile C., Bernardini G. Radar-based measurement of deflections on bridges and large structures [J]. European Journal of Environmental and Civil Engineering, 2010, 14(4): 495-516.
- [34] Huang S. X., Luo L., He C. Comparative Test Analysis for Determining Bridge Deflection by Using Ground-Based SAR and GPS [J]. Geomatics and Information Science of Wuhan University (in Chinese), 2012, 37(10): 1173-1176.
- [35] Negulescu C., Luzi G., Crosetto M., et al. Comparison of seismometer and radar measurements for the modal

identification of civil engineering structures [J]. Engineering Structures, 2013, 51(2): 10-22.

- [36] Hu J., Guo J., Xu Y , Zhou L., Zhang S. Fan K. Differential Ground-Based Radar Interferometry for Slope and Civil Structures Monitoring: Two Case Studies of Landslide and Bridge [J]. Remote Sensing, 2019, 11(24): 2887.
- [37] Li H. N., Li D.S., Ren L., Yi T. H., Jia Z. G., Li K. P. Structural health monitoring of innovative civil engineering structures in mainland China [J]. Structural Monitoring and Maintenance, 2016, 3: 1–32.
- [38] Xi R., He Q., Meng X. Bridge monitoring using multi-GNSS observations with high cutoff elevations: a case study [J]. Measurement, 2021,168: 108303.
- [39] Kaloop M. R., Li H. Multi input-single output models identification of tower bridge movements using GPS monitoring system [J]. Measurement, 2014, 47: 531-539.
- [40] Han H. Z., Wang J., Meng X. L., Liu H. Analysis of the dynamic response of a long span bridge using GPS/accelerometer/anemometer under typhoon loading [J]. Engineering Structures, 2016, 122: 238-250.
- [41] Yang Y. C., Nagarajaiah S. Time-Frequency Blind Source Separation Using Independent Component Analysis for Output-Only Modal Identification of Highly Damped Structures [J]. Journal of Structural Engineering, 2013, 139(10): 1780-1793.
- [42] James W. C., Peter A. W. L., Peter D. W. The fast Fourier transform and its applications [J]. IEEE Transactions on Education, 1969, 12(1): 27-34.
- [43] Meyer Y. Orthonormal Wavelets [J]. Wavelets, 1990, 21-37.
- [44] Cohen A., Daubechies I., Feauveau J. C. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, 45(5): 485-560.
- [45] Huang N. E., Shen Z., Long S. R. The Empirical Mode Decomposition and the Hilbert Spectrum for Non-linear and Non-stationary Time Series Analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903–995.
- [46] Wu Z. H., Huang N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis. 2009, 1: 1-41.
- [47] Lovse J. W., Teskey W. F., Lachapelle G., Cannon M. E. Dynamic Deformation Monitoring of Tall Structure Using GPS Technology [J]. Journal of Surveying Engineering, 1995, 121(1): 35-40.
- [48] Leroy E. Real-time monitoring of the longest cablestayed bridge in the world with GPS [J]. Bulletin of Surveying and Mapping (In Chinese), 1996(6): 46-48.
- [49] Ashkenazi V., Dodson A. H., Moore T., Roberts G. W. Real-time OTF GPS monitoring of the Humber bridge [J] .Surveying Word, 1996(4): 26–28.
- [50] Qian J. R., Guo J. J., Chen Z. P. Measurement Researches on Dynamic Property and on Top Displacement and Acceleration During Large Wind for Di Wang Plaza [J]. China Civil Engineering Journal, 1998(6): 30-39.
- [51] Luo Z. C., Chen Y. Q., Liu Y. X. Application of GPS in the Simulation Study of Dynamic Characteristics of Tall Buildings [J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(2): 100-104.
- [52] Ogaja C., Rizos C. Wang J. L. A dynamic GPS system for on-line structural monitoring [C]. The 10th FIG International Symposium on Deformation Measurements. Orange, California, USA, 2001.3.
- [53] Huang D. F., Chen Y. Q., Ding X. L., Zhu J. J., Yang X. Z., Liu G. X. Wavelet-based analysis technique for the monitoring of tall structure under normal loading using GPS [J]. Journal of Vibration and Shock, 2001, 20(1): 12-15.

- [54] Ashkenazi V., Dodson A. H., Moore T., Roberts G. W. Real-time OTF GPS monitoring of the Humber bridge [J].Surveying Word, 1996(4): 26–28.
- [55] Ashkenazi V., Roberts G. W. Experimental monitoring of the Humber Bridge using GPS [J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 1997, 120(4): 177-182.
- [56] Roberts G. W., Dodson A. H., Ashkenazi V. Twist and deflect: monitoring motion of the Humber Bridge [J]. GPS World, 1999, 10(10): 24–34.
- [57] Roberts G. W., Dodson A. H., Brown C. J., Karunar R., Evans A.. Monitoring the height deflections of the Humber Bridge by GPS, GLONASS and finite element modelling [C]. International Association of Geodesy Symposia, 2000: 355–360.
- [58] Nakamura S. P. E. GPS measurement of wind-induced suspension bridge girder displacements [J]. Journal of Structural Engineering, 2000, 10: 1413-1419.
- [59] Kashima S., Yanaka Y., Suzuki S., Mori, K. Monitoring the Akashi Kaikyo Bridge: First Experiences [J]. Structural Engineering International, 2001, 11(2): 120– 123.
- [60] Xu, L., Jiang J. J., Guo J. J. Model Analysis of Humen Suspension Bridge [J]. Civil Engineering Journal (In Chinese), 2002, 35(1): 25-27, 34.
- [61] Jiang J. J., Lu X, Z., Guo J. J. Study for Real-time Monitoring of Large-Span Bridge using GPS [C]// International Symposium on Safety Science and Technology, 2002.
- [62] Guo J. J., Xu L., Dai L. J., McDonald M., Wu J. P., Li Y. Y. Application of the Real-Time Kinematic Global Positioning System in Bridge Safety Monitoring [J]. Journal of Bridge Engineering, 2005, 10(2): 163-168.
- [63] Meng X. L. Real-time deformation monitoring of bridges using GPS/accelerometers [D]. Nottingham: The University of Nottingham, 2002.
- [64] Meo M., Zumpano G., Meng X. L., Roberts G., Cosser E., Dodson A. Identification of Nottingham Wilford Bridge modal parameters using wavelet transforms [C]// Smart Structures and Materials. International Society for Optics and Photonics. Modeling, Signal Processing, and Control. San Diego, 2004, 561-570.
- [65] Meo M., Zumpano G., Meng X. L., Cosser E., Roberts G., Dodson A. Measurements of dynamic properties of a medium span suspension bridge by using the wavelet transforms [J]. Mechanical Systems and Signal Processing, 2006, 20(5): 1112-1133.
- [66] Roberts G. W., Brown C., Meng X. L. Bridge deflection monitoring: Tracking millimeters across the Firth of Forth [J]. GPS World, 2006, 17(2): 26–32.
- [67] Pytharouli S., Meng X. L., Stiros S., Roberts G. Analysis of the GPS monitoring record of the forth road bridge in Scotland [C]. 3rd IAG / 12th FIG Symposium. Baden, 2006, 1-7.
- [68] Roberts G., Atkins C., Brown C. J., Meng X. L. Further Results from Using GPS to Monitor the Deflections of the Forth Road Bridge [C]. Proceedings of FIG Working Week, Hong Kong, 2007, 1-11.
- [69] Roberts G. W., Meng X. L., Brown C. J., Dallard P. GPS measurements on the London Millennium Bridge [C]. Proceedings of the ICE-Bridge Engineering, 2006, 159(BE4): 153-161.
- [70] Wong K. Y. Instrumentation and health monitoring of cable - supported bridges [J]. Structural Control and Health Monitoring, 2004, 11(2): 91-124.
- [71] Miao C. Q., Li A. Q., Han X. L., Li Z. X., Ji L., Yang Y. D. Monitor strategy for the structural health monitoring system of Runyang Bridge [J]. Journal of Southeast University (Natural Science Edition), 2005, 35(5): 780-785.
- [72] Li Z. J., Li A. Q., Han X. L., Miao C. Q. Displacement Monitoring and Analysis of Suspension Bridge of

Runyang Bridge Based On Global Positioning System [J]. World Bridges (In Chinese), 2008, (1): 53-56.

- [73] Li H., Ou J. P., Zhao X. F., Zhou W. S. Li H. W., Zhou Z. Structural Health Monitoring System for the Shandong Binzhou Yellow River Highway Bridge [J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(4): 306-317.
- [74] Yi T. H. Structural Health Monitoring Based on GPS Technology under Ambient Excitation (In Chinese) [D]. Dalian, China: Dalian University of Technology, 2006.
- [75] Larocca A. P. C. Using high-rate GPS data to monitor the dynamic behavior of a cable-stayed bridge [C]. Proceedings 17th International Technical Meeting of the Satellite Division of the U.S. Institute of Navigation, ION GPS/GNSS 2004. California, 2004, 21-24.
- [76] Larocca A. P. C., Schaal R. E., Sim ões E. F. J. Structure oscillations monitoring with global positioning system and adaptive filtering techniques [J]. Structural Survey, 2010, 28(3):197-206.
- [77] Lekidis V., Tsakiri M., Makra K., Karakostas C., Klimisb N., Sous I. Evaluation of dynamic response and local soil effects of the Evripos cable-stayed bridge using multisensor monitoring systems [J]. Engineering Geology, 2005, 79(1-2): 43-59.
- [78] Erdogan H., Akpinar B., Gulal E., Ata E. Monitoring the dynamic behaviors of the Bosporus Bridge by GPS during Eurasia Marathon [J]. Nonlinear Processes in Geophysics, 2007, 14(4): 513-523.
- [79] Raziq N., Collier P. GPS deflection monitoring of the West Gate Bridge [J]. Journal of Applied Geodesy, 2007, 1(1): 35-44.
- [80] Watson C., Watson T., Coleman R. Structural Monitoring of Cable-Stayed Bridge: Analysis of GPS versus Modeled Deflections [J]. Journal of Surveying Engineering, 2007, 133(1): 23-28.
- [81] Yao L. B, Yao P., Wang R. P, Meng X. L. GPS-Based Dynamic Monitoring and Analysis of Nanpu Bridge Deformation [J]. Journal of Tongji University (Natural Science) (In Chinese), 2008, 36(12): 1633-1636.
- [82] Wang R. P, Yao L. B, Meng X. L. Research on structural health monitoring (SHM) system based on RTK GPS system [J]. Chinese Engineering Sciences (In Chinese), 2011, 13(3): 63-70.
- [83] Huang S. X., Yang B. C., Zhang H., Mei W. S. Realtime Dynamic Monitoring with GPS and Georobot During Sutong Bridge Construction [J]. Acta Geodaetica Et Cartographic Sinica (In Chinese), 2009, 38(1): 66-72.
- [84] Kaloop M. R., Li H. Tower bridge movement analysis with GPS and accelerometer techniques: case study Yonghe tower bridge [J]. Information Technology Journal, 2009, 8(8): 1213-1220.
- [85] Yi T. H., Li H. N., Gu M. Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology [J]. Science in China Series E: Technological Sciences, 2010, 53(2): 469-479.
- [86] Meng X. L., Nguyen D. T., Xie Y. L., Owen J. S., Psimoulis P., Ince S., Chen Q. S., Ye J., Bhatia P. Design and Implementation of a New System for Large Bridge Monitoring—GeoSHM [J]. Sensors, 2018, 18(3): 775-.
- [87] Chen Q. S., Jiang W. P., Meng X. L., Jiang P., Wang K. H., Xie Y. L., Ye J. Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK [J]. Remote Sensing, 2018, 10(3):364.
- [88] Moschas F., Stiros S. C. Three-dimensional dynamic deflections and natural frequencies of a stiff footbridge based on measurements of collocated sensors [J]. Structural Control and Health Monitoring, 2014, 21(1): 23-42.

- [89] Ogundipe O., Roberts G., Brown C. GPS monitoring of a steel box girder viaduct [J]. Structure and Infrastructure Engineering, 2014, 10(1): 25-40.
- [90] Kaloop M. R., Elbeltagi E., Elnabwy M. T. Bridge Monitoring with Wavelet Principal Component and Spectrum Analysis Based on GPS Measurements: Case Study of the Mansoura Bridge in Egypt [J]. Journal of Performance of Constructed Facilities, 2015, 29(3): 04014071.
- [91] Kaloop M. R., Hu J. W., Elbeltagi E. Adjustment and Assessment of the Measurements of Low and High Sampling Frequencies of GPS Real-Time Monitoring of Structural Movement [J]. ISPRS International Journal of Geo-Information, 2016, 5(12): 222-.
- [92] Yu S., Ou J. P. Structural Health Monitoring and Model Updating of Aizhai Suspension Bridge [J]. Journal of Aerospace Engineering, 2017, 30(2): B4016009.
- [93] Roberts G. W. Kinematic GPS [D]. Nottingham, The University of Nottingham, UK, 1997.
- [94] Li Z. H., Huang J. S. GPS Surveying and Data Processing (In Chinese) [M]. Wuhan, China: Wuhan University Press, 2013.
- [95] Huang S. X., Yin H., Jiang Z. Deformation monitoring data processing (In Chinese) [M]. Wuhan, China: Wuhan University Press, 2010.
- [96] Dai W. J. A Study of Data Processing for Precise Dynamic Deformation Monitoring Using GPS (In Chinese) [D]. Changsha, China: Central South University, 2007.
- [97] Janssen V., Rizos C. A Mixed-mode GPS Network Processing Approach for Deformation Monitoring Applications [J]. Survey Review, 2003, 37(287): 2-19.
- [98] Roberts G. W., Meng X. L., Brown C. The Use of GPS for Disaster Monitoring of Suspension Bridges [M] // Dynamic Planet. Springer Berlin Heidelberg, 2007.
- [99] Meng X. L., Dodson A. H., Roberts G. W. Detecting bridge dynamics with GPS and triaxial accelerometers [J]. Engineering Structures, 2007, 29(11): 3178-3184.
- [100] Nordin Z., Yahya M. H., Akib W. M., Aziz W., Amin Z. M. The utilization of RTK-GPS for real-time structural health detection [C]// International Conference on Challenges in Facing Hazards for Future Engineering Practice, Pahang, Malaysia, 2008.
- [101] Wang Y. Q., Zhai C. R., Zhang Y. H., Gao W. A new GPS deformation monitoring algorithm applied to Donghai Bridge [J]. Journal of Shanghai Jiaotong University (English Edition), 2008, 13(2): 216-220.
- [102] Kim K., Choi J., Chung J., Koo G., Bae I. H., Sohn H. Structural Displacement Estimation through Multi-rate Fusion of Accelerometer and RTK-GPS Displacement and Velocity Measurements [J]. Measurement, 2018(130): 223–235.
- [103] Xiong C. B., Niu Y. B., Li Z. An investigation of the dynamic characteristics of super high-rise buildings using real-time kinematic–global navigation satellite system technology [J]. Advances in Structural Engineering, 2018, 21(5): 783–792.
- [104] Xiong C. B., Niu Y. B. Investigation of the Dynamic Behavior of a Super High-rise Structure using RTK-GNSS Technique [J]. KSCE Journal of Civil Engineering, 2018: 1-12.
- [105] Niu Y. B., Xiong C. B. Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and wavelet packet technique [J]. Measurement Science and Technology, 2018, 085103.
- [106] Xi R. J., Jiang W. P., Meng X. L., Chen H., Chen Q. S. Bridge monitoring using BDS-RTK and GPS-RTK techniques [J]. Measurement, 2018, 120: 128-139.
- [107] Zhang X. H, L X. X., Li P. Review of GNSS PPP and Its Application [J]. Acta Geodaetica Et Cartographica Sinica (In Chinese), 2017, 46(10): 1399-1407.

- [108]Zumberge J. F., Heflin M. B., Jefferson D. C., Watkins M. M., Webb F. H. Precise point positioning for the efficient and robust analysis of GPS data from large networks [J]. Journal of Geophysical Research Solid Earth, 1997, 102(B3): 5005-5017.
- [109] Kuang C. L., Yi Z. H., Dai W. J., Zeng F. H. Measuring wind-induced response characteristics of tall building based on GPS PPP method [J]. Journal of Central South University, 2013, 44(11): 4588-4596.
- [110] Mart ń A., Anquela A. B., Dimas-Pag ś A., Cos-Gay ón F. Validation of performance of real-time kinematic PPP: A possible tool for deformation monitoring [J]. Measurement, 2015, 69: 95-108.
- [111] Yigit C. O., Coskun M. Z., Yavasoglu H., Arslan A., Kalkan Y. The Potential of GPS Precise Point Positioning Method for Point Displacement Monitoring: A Case Study [J]. Measurement, 2016(91): 398–404.
- [112] Yigit C. O., Gurlek E. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures [J]. Geomatics, Natural Hazards and Risk, 2017, 8(2), 893-904.
- [113] Kaloop M. R., Yigit C. O., Dindar A. A., Elsharawy M., Hu J. W. Evaluation of the high-rate GNSS-PPP method for vertical structural motion [J]. Survey Review, 2018, 52(371): 1-13.
- [114] Paziewski J. D., Sieradzki R., Baryla R. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacements detection [J]. Measurement Science and Technology, 2018, 29, 035002.
- [115] Tang X., Li X. X., Roberts G. W., Hancock C. M., Ligt H., Guo F. 1 Hz GPS satellites clock correction estimations to support high-rate dynamic PPP GPS applied on the Severn suspension bridge for deflection detection [J]. GPS Solutions, 2019, 23(2): 28-.
- [116] Huang S. X., Liu J. N., Liu X. L. Deformation Analysis Based on Wavelet and Its Applicationin Dynamic Monitoring for High-rise Buildings [J]. Acta Geodaetica Et Cartographic Sinica (In Chinese), 2003, 32(2): 153-157.
- [117] Zhong P., Ding X. L., Zheng D. W., Chen W., Xu Y. L. Filter based GPS structural vibration monitoring methods and comparison of their performances [J]. Acta Geodaetica Et Cartographic Sinica (In Chinese), 2007, 36(1): 31-36, 42.
- [118] Moschas F., Stiros S. Measurement of the dynamic displacements and of the modal frequencies of a shortspan pedestrian bridge using GPS and an accelerometer [J]. Engineering Structures, 2011, 33(1): 10-17.
- [119] Roberts G. W., Brown C. J., Meng X. L., Ogundipe O., Atkins C., Colford B. Deflection and Frequency Monitoring of the Forth Road Bridge, Scotland, by GPS [J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2012, 165(2): 105-123.
- [120] Wang J, Meng X. L., Qin C. B., Yi J. H. Vibration frequencies extraction of the forth road bridge using high sampling GPS data [J]. Shock and Vibration, 2016(2): 1-18.
- [121] Yu J. Y., Meng X. L., Shao X. D., Yan B. F. Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing [J]. Engineering Structures, 2014, 81: 432-443.
- [122] Moschas F., Avallone A., Saltogianni V., Stiros S. Strong motion displacement waveforms using 10-Hz precise point positioning GPS: an assessment based on free oscillation experiments [J]. Earthquake Engineering and Structural Dynamics, 2014, 43(12): 1853-1866.
- [123] Roberts G. W., Brown C. J., Meng X. L., Ogundipe O., Atkins C., Colford B. Deflection and Frequency Monitoring of the Forth Road Bridge, Scotland, by GPS

[J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2012, 165(2): 105-123.

- [124] Wang J, Meng X. L., Qin C. B., Yi J. H. Vibration frequencies extraction of the forth road bridge using high sampling GPS data [J]. Shock and Vibration, 2016(2): 1-18.
- [125] Kaloop M. R., Kim D. GPS-structural health monitoring of a long span bridge using neural network adaptive filter [J]. Survey Review, 2014, 46(334): 7-14.
- [126] Yi T. H., Li H. N., Gu M. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge [J]. Measurement, 2013, 46(1): 420-432.
- [127] Moschas F., Stiros S. Dynamic deflections of a stiff footbridge using 100-Hz GNSS and accelerometer data [J]. Journal of Surveying Engineering, 2015, 141(4): 04015003.
- [128] Wieser A., Brunner F. K. Analysis of Bridge Deformations using Continuous GPS Measurements [C] // 2nd Conference of Engineering Surveying, Bratislava, Slovakia, 2002, 45-52.
- [129] Zhang X. L., Liu G., Guo F., Li X. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning [J]. Geomatics and Information Science of Wuhan University (In Chinese), 2018, 43 (12): 2124-2130.
- [130] Cosser E., Roberts G. W., Meng X. L., Dodson A. H. The comparison of single frequency and dual frequency GPS for bridge deflection and vibration monitoring [C] // Proceedings: 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003.
- [131] Yi T. H., Li H. N., Gu M. Recent research and applications of GPS based technology for bridge health monitoring [J]. Science in China Series E: Technological Sciences, 2010, 53(10): 2597-2610.
- [132]Zou X., Deng Z., Ge M., Dick D., Jiang W., Liu J. GPS data processing of networks with mixed single- and dualfrequency receivers for deformation monitoring [J]. Advances in Space Research, 2010, 46(2): 130-135.
- [133]Feng Y. M., Rizos C., Higgins M. Impact of Multiple Frequency GNSS Signals on Future Regional GNSS Services [C]. IGNSS Symposium, Sydney, Australia, 2007.
- [134] Xi R. J., Jiang W. P., Meng X. L., Zhou X. H., He Q. Y. Rapid initialization method in real-time deformation monitoring of bridges with triple-frequency BDS and GPS measurements [J]. Advances in Space Research, 2018(62): 976-989.
- [135] Cosser E. Bridge deformation monitoring with single frequency GPS augmented by pseudolites [D]. Nottingham: The University of Nottingham, 2005.
- [136] Hedgecock W., Maroti M., Ledeczi. A., Banalagay R. Accurate Real-Time Relative Localization Using Single-Frequency GPS [C]// Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, New York, USA: ACM Press, 2007: 87-93.
- [137] Hedgecock W., Maroti M., Sallai J. Sallai J., Volgyesi P., Ledeczi A. High-Accuracy Differential Tracking of Low-Cost GPS Receivers [C]// Proceeding of the International Conference on Mobile Systems, ACM, 2013.
- [138] Azar M., Shafri H. Mass Structure Deformation Monitoring using Low Cost Differential Global Positioning System Device [J]. American Journal of Applied Sciences, 2009, 6(1): 152-156.
- [139] Schaal R. E., Larocca A. P. C., Guimar ães G. N. Use of a Single L1 GPS Receiver for Monitoring Structures: First Results of the Detection of Millimetric Dynamic Oscillations [J]. Journal of Surveying Engineering, 2012, 138(2): 92-95.
- [140]Carcanague S. Real-Time Geometry-Based Cycle Slip Resolution Technique for Single Frequency PPP and RTK [C]// ION GNSS 2012, Proceedings of the 25th

International Technical Meeting of The Satellite Division of the Institute of Navigation, Nashville, United States, 2012: 1136-1148.

- [141] Jo H., Sim S. H., Tatkowski A., Jr B. F. S., Nekson M. E. Feasibility of displacement monitoring using low-cost GPS receivers [J]. Structural Control and Health Monitoring, 2013, 20(9):1240-1254.
- [142]Zheng Y. L., Zhang R., Gu S. F. A new PPP algorithm for deformation monitoring with single-frequency receiver [J]. Journal of Earth System Science, 2014, 123(8): 1919-1926.
- [143] Huang S. Q., Wang J. X. New data processing strategy for single frequency GPS deformation monitoring [J]. Survey Review, 2015, 47(344): 379-385.
- [144] Bakker D. P. F., Tiberius C. C. J. M. Real-time multi-GNSS single-frequency precise point positioning [J]. GPS Solutions, 2017, 21: 1791–1803.
- [145] Xi R. J. Research on Data Processing Method of Multimode GNSS Bridge Deformation Real-time Monitoring (In Chinese) [D]. Wuhan, China: Wuhan University. 2018.
- [146] Tu R., Liu J. H., Lu C. X., Zhang R., Zhang P. F., Lu X. C. Cooperating the BDS, GPS, GLONASS and strongmotion observations for real-time deformation monitoring [J]. Geophysical Journal International, 2017, 209(3): 1408-1417.
- [147] Xi R. J., Meng X. L., Jiang W. P., An X. D., Chen Q. S. GPS/GLONASS carrier phase elevation-dependent stochastic modelling estimation and its application in bridge monitoring [J]. Advances in Space Research, 2018(62): 2566-2585.
- [148]Xi R. J., Chen H., Meng X. L., Jiang W. P. Reliable Dynamic Monitoring of Bridges with Integrated GPS and BeiDou [J]. Journal of Surveying Engineering, 2018, 144(4): 04018008.
- [149] Ge L., Han S., Rizos C. GPS multipath change detection in permanent GPS stations [J]. Survey Review, 2002, 36(283): 306-322.
- [150] Xia L. Y. Multipath in GPS Navigation and Positioning [C]. GPS Solutions. 2004, 8: 49-50.
- [151]Krantz E., Riley S., Large P. The Design and Performance of the Zephyr Geodetic Antenna. In Proceedings of the ION-GPS-2001, Institute of Navigation, Portland, OR, USA, 11–14 September 2001, 1942–1951.
- [152] Kerkhoff A., Harris R., Petersen C. Modifications to GPS reference station antennas to reduce multipath. In Proceedings of the ION-GNSS-2010, Institute of Navigation, Portland, OR, USA, 21–24, September 2010, 866–878.
- [153] Aerts W., Bruyninx C., Defraigne P., Vandenbosch G. A. E., Zeimetz P. On the influence of RF absorbing material on the GNSS position [J]. GPS Solutions, 2014, 20 (1): 1–7.
- [154] Yang H. Y., Yang X. H., Sun B. Q., Su H. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield [J]. Sensors, 2016, 16(8): 1332-.
- [155] Yi T. H., Zhang Y. H., Li H. N., Gu M. Study progress of multipath effect in structural health monitoring based on GPS [J]. Journal of Vibration and Shock (in Chinese), 2009, 28(9): 102-108.
- [156] Ogaja C., Satirapod C. Analysis of high-frequency multipath in 1-Hz GPS kinematic solutions [J]. GPS Solutions, 2007, 11(4): 269-280.
- [157] Moradi R., Schuster W., Feng S., Jokinen A., Ochieng W. The carrier-multipath observable: a new carrier- phase multipath mitigation technique [J]. GPS Solutions, 2015, 19(1): 73-82.
- [158] Wang G. X., Jong K. D., Zhao Q. L., Hu Z. G., Guo J. Multipath analysis of code measurements for BeiDou

geostationary satellites [J]. GPS Solutions, 2015, 19(1): 129-139.

- [159] Ye S. R., Chen D. Z., Liu Y. Y., Jiang P., Tang W. M., Xia P. F. Carrier phase multipath mitigation for BeiDou navigation satellite system [J]. GPS Solutions, 2015, 19(4): 545-557.
- [160] Strode P. R. R., Groves P. D. GNSS multipath detection using three-frequency signal-to-noise measurements [J]. GPS Solutions, 2016, 20(3): 399-412.
- [161] Dai W. J., Shi Q., Cai C. S. Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning [J]. Sensors, 2017, 17(4): 796-.
- [162] Gao W., Meng X. L., Gao C. F., Pan S. G., Zhu Z. S. Analysis of the carrier-phase multipath in GNSS triplefrequency observation combinations [J]. Advances in Space Research, 2019, 63: 2735-2744.
- [163] Brunner F. K., Hartinger H., Troyer L. GPS signal diffraction modelling: the stochastic SIGMA-δ model [J]. Journal of Geodesy, 1999, 73(5): 259-267.
- [164] Bilich A., Larson K. M. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR) [J]. Radio Science, 2007, 42(6): RS6003.
- [165] Bilich A., Larson K. M., Axelrad P. Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva [J]. Journal of Geophysical Research, 2008, 113(B4): B04401.
- [166] Luo X., Mayer M., Heck B. Improving the Stochastic Model of GNSS Observations by Means of SNR-based Weighting [M]. Observing our changing earth. Berlin, Heidelberg, 2009: 725-734.
- [167] Benton C. J., Mitchell C. N. Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects [J]. Radio Science, 2011, 46(6): RS6002.
- [168] Choi K., Bilich A., Larson K. M., et al. Modified sidereal filtering: Implications for high - rate GPS positioning [J]. Geophysical Research Letters, 2004, 31(22): L22608.
- [169] Agnew D. C., Larson K. M. Finding the repeat times of the GPS constellation [J]. GPS Solutions, 2007, 11(1): 71-76.
- [170] Larson K. M., Bilich A., Axelrad P. Improving the precision of high-rate GPS [J]. Journal of Geophysical Research Solid Earth, 2007, 112(B5): 422.
- [171] Ragheb A. E., Clarke P. J., Edwards S. J. GPS sidereal filtering: coordinate- and carrier-phase-level strategies [J]. Journal of Geodesy, 2007, 81(5): 325-335.
- [172] Zhong P., Ding X. L., Yuan L. G., Xu Y. L., Kwok K., Chen Y. Q. Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines [J]. Journal of Geodesy, 2010, 84(2): 145-158.
- [173] Atkins C., Ziebart M. Effectiveness of observationdomain sidereal filtering for GPS precise point positioning [J]. GPS Solutions, 2016, 20(1): 111-122.
- [174] Wang D. H., Meng X. L., Gao C. F., Pan S. G., Chen Q. S. Multipath extraction and mitigation for bridge deformation monitoring using a single-difference model [J]. Advances in Space Research, 2017, 60: 2882-2895.
- [175] Lau L., Cross P. Development and testing of a new raytracing approach to GNSS carrier-phase multipath modelling [J]. Journal of Geodesy, 2007, 81(11): 713-732.
- [176] Yi T. H., Li H. N., Gu M. Effect of different construction materials on propagation of GPS monitoring signals [J]. Measurement, 2012, 45(5): 1126-1139.
- [177] Groves P. D., Jiang Z., Rudi M., Strode P. A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas. In: Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2013). 2013: 3231 -3247. The Institute of Navigation: Manassas, US.
- [178]Zimmermann F., Eling C., Kuhlmann H. Empirical assessment of obstruction adaptive elevation masks to

mitigate site-dependent effects [J]. GPS Solutions, 2017, 21(1): 1-12.

- [179]Zimmermann F., Schmitz B., Klingbei L., Kuhlmann H. GPS Multipath Analysis Using Fresnel Zones [J]. Sensors, 2019, 19(25): 829-847.
- [180] Roberts G. W., Meng X. L., Dodson A. H. Data processing and multipath mitigation for GPS/accelerometer based hybrid structural deflection monitoring system //[C]. ION GPS, Salt Lake City, 2001, 473-481.
- [181] Roberts G. W., Meng X. L., Dodson A. H., Cosser E. Multipath mitigation for bridge deformation monitoring [J]. Journal of Global Positioning Systems, 2002, 1(1): 25–33.
- [182] Roberts G. W., Meng X. L., Dodson A. H. Using adaptive filtering to detect multipath and cycle slips in GPS/accelerometer bridge deflection monitoring data// [C]. FIG XXII Int. Congress, Washington, DC, 2002.
- [183] Satirapod C., Rizos C. Multipath mitigation by wavelet analysis for GPS base station applications [J]. Survey Review, 2005, 38(295): 2–10.
- [184]Zhong P., Ding X. L., Zheng D. W. Study of GPS Multipath Effects with Method of CVVF [J]. Acta Geodaetica Et Cartographic Sinica, 2005, 34(2): 161-167.
- [185] Huang S. X., Li P. H., Yang B. C., Xiang D. Characteristics of multipath effects in GPS dynamic deformation monitoring [J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 877-880.
- [186] Huang S. X., Jin X. S, Yang B. C. Characteristics of multipath effects in GPS dynamic deformation monitoring [J]. Geo-Spatial Information Science, 2006, 9(2): 79-83.
- [187] Dai W. J., Ding X. L., Zhu J. J., Chen Y. Q., Li Z. W. EMD Filter Method and Its Application in GPS Multipath [J]. Acta Geodaetica Et Cartographic Sinica (in Chinese), 2006, 35(4): 321-327.
- [188] Kijewski-Correa T., Kochly M. Monitoring the windinduced response of tall buildings: GPS performance and the issue of multipath effects [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9-11): 1176-1198.
- [189] Aram M., El-Rabbany A., Krishnan S., Anpalagan A. Single Frequency Multipath Mitigation Based On Wavelet Analysis [J]. Journal of Navigation, 2007, 60(02): 281-290.
- [190] Wang S., Liu C., Gao J. X. EEMD Filter and Its Application in GPS Multi-path Errors[C]// Proceedings of the 2011 International Conference on Information Security and Intelligence Control. IEEE Computer Society, 2011.
- [191]Cui B. B., Chen X. Y. Multipath mitigation of GPS signal based on improved EMD algorithm [J]. Journal of Chinese Inertial Technology (in Chinese), 2014, 3: 346-351.
- [192] Dai W. J., Huang D. W., Cai C. S. Multipath mitigation via component analysis methods for GPS dynamic deformation monitoring [J]. GPS Solutions, 2014, 18(3): 417-428.
- [193] Lu C. L., Kuang C. L., Y Z. H., Zhang Z. T. Singular spectrum analysis filter method for mitigation of GPS multipath error [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University (in Chinese), 2015, 40(7): 924-931.
- [194] Chan W. S, Xu Y. L., Ding X. L., Xiong Y. L., Dai W. J. Assessment of dynamic measurement accuracy of GPS in three directions [J]. Journal of Surveying Engineering, 2006, 132(3): 108-117.
- [195] Genrich J. F., Bock Y. Instantaneous geodetic positioning with 10-50 Hz GPS measurements: Noise characteristics and implications for monitoring networks [J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B03403.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3083749, IEEE Access

EEE Access Wang et al. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification

- [196] Hristopoulos D. T., Mertikas S. P., Arhontakis I., Brownjohn J. M. W. Using GPS for monitoring tallbuilding response to wind loading: filtering of abrupt changes and low-frequency noise, variography and spectral analysis of displacements [J]. GPS Solutions, 2007, 12(2): 85-87.
- [197] Moschas F., Stiros S. Noise characteristics of highfrequency, short-duration GPS records from analysis of identical, collocated instruments [J]. Measurement, 2013, 46(4): 1488-1506.
- [198] Moschas F., Stiros S. PLL bandwidth and noise in 100 Hz GPS measurements [J]. GPS Solutions, 2015, 19(2): 173-185.
- [199]Zhang H. Y., Ji S. Y., Wang Z. J., Chen W. Detailed assessment of GNSS observation noise based using zero baseline data [J]. Advances in Space Research, 2018, 62: 2454–2466.
- [200] Geng J. H., Pan Y. J., Li X. T., Guo J., Liu J.N., Chen X. C., Zhang Y. Noise Characteristics of High-Rate Multi-GNSS for Subdaily Crustal Deformation Monitoring [J]. Journal of Geophysical Research: Solid Earth, 2019, 123: 1987-2002.
- [201] Langbein J., Svarc J. L. Evaluation of Temporally Correlated Noise in Global Navigation Satellite System Time Series: Geodetic Monument Performance [J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 925–942.
- [202] He X., Bos M. S., Montillet J. P., Fernandes R. M. S. Investigation of the noise properties at low frequencies in long GNSS time series [J]. Journal of Geodesy, 2019, doi:10.1007/s00190-019-01244-y.
- [203] Huang S. X., Liu J. N. A novel method for reducing noises in GPS deformation monitoring system [J]. Acta Geodaetica et Cartographica Sinica (in Chinese), 2002, 31(2): 104-107.
- [204] Zhang Z. T., Zhu J. J., Kuang C. L., Zhou C. Multithreshold wavelet packet de-noising method and its application in deformation analysis [J]. Acta Geodaetica et Cartographica Sinica (in Chinese), 2014(1): 13-20.
- [205]Gao Y. D., Xu M. L., Yang F. Y., Mao Y. C., Sun S. Improved Wavelet Threshold De-noising Method Based On GNSS Deformation Monitoring Data [J]. Journal of engineering technology science, 2015, 47(4): 463-476.
- [206] Kaloop M. R., Kim D. De-noising of GPS structural monitoring observation error using wavelet analysis [J]. Geomatics, Natural Hazards and Risk, 2016, 7(2): 804-825.
- [207] Lu K. Denoising GPS-Based Structure Monitoring Data Using Hybrid EMD and Wavelet Packet [J]. Mathematical Problems in Engineering, 2017, 4920809.
- [208] Li B., Zhang L. X., Zhang Q. L., Yang S. M. An EEMD-Based Denoising Method for Seismic Signal of High Arch Dam Combining Wavelet with Singular Spectrum Analysis [J]. Shock and Vibration, 2019, 4937595.
- [209] Fan W., Qiao P. Z. Vibration-based Damage Identification Methods: A Review and Comparative Study [J]. Structural health monitoring, 2011, 10(1): 83-111.
- [210] Amezquita-Sanchez J. P., Adeli H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures [J]. Archives of Computational Methods in Engineering, 2016, 23(1):1-15.
- [211] Adams R. D., Walton D., Flitcroft J. E., and Short D., 1975, Vibration Testing as a Non-destructive Test Tool for Composite Materials [J]. Composite Reliability, ASTM STP 580, 159–175.
- [212] Adams R. D., Cawley P., Pye C. J., Stone B. J. A Vibration Technique for Non-Destructively Assessing the Integrity of Structures [J]. Journal of Mechanical Engineering Science, 1978, 20: 93–100.

- [213] Gardner-Morse M. G., Huston D. R. Modal identification of cable-stayed pedestrian bridge [J]. Journal of Structural Engineering, 1993, 119(11): 3384–3404.
- [214] Salawu O. S. Detection of structural damage through changes in frequency: A review [J]. Engineering Structures, 1997, 19(9): 718–723.
- [215] Zheng D. L., Li Z. F, Hua H. X. A summary review of structural initial damage identification methods [J]. Journal of Vibration and Shock (in Chinese), 2002, 21(2): 1-6.
- [216] Li H., Ou J. P., Zhao X. F., Zhou W. S., Li H. W., Zhou Z. Structural Health Monitoring System for the Shandong Binzhou Yellow River Highway Bridge.[J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 21(4):306-317.
- [217] Magalhaes F., Cunha A., Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection [J]. Mechanical Systems and Signal Processing, 2012, 28: 212-228.
- [218] Apaydin N. M., Kaya Y., Safak E., Alçık H. Vibration characteristics of a suspension bridge under traffic and no traffic conditions [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(12): 1717–1723.
- [219] Doebling S. W., Farrar C. R., Prime M. B. A summary review of vibration-based damage identification methods [J]. The Shock and Vibration Digest, 1998, 30(2): 92-105.
- [220] Yao R. G., Pakzad S. N. Time and frequency domain regression-based stiffness estimation and damage identification [J]. Structural Control and Health Monitoring, 2014, 21(3): 356-380.
- [221] Yu J. Y., Shao X. D., Yan B. F., Zhu P. Research and Development on Global Navigation Satellite System Technology for Bridge Health Monitoring[J]. China Journal of Highway and Transport (in Chinese), 2016, 29(4): 30-41.
- [222] Stiros S. C. Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation [J]. Soil Dynamics and Earthquake Engineering, 2008, 28(5): 415-420.
- [223] Kalman R. E. A New Approach to Linear Filtering and Prediction Problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
- [224] Vautard R., Yiou P., Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals [J]. Physica D: Nonlinear Phenomena, 1992, 58(1): 95-126.
- [225] James III G. H., Carne T. G., Laufer J. P. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating structures [J]. The International journal of analytical and experimental modal analysis, 1995, 93(4): 260-277.
- [226] Andersen P., Brincker R., Kirkegaard P. H. Theory of covariance equivalent ARMAV models of civil engineering structures [M]. Proceedings of IMAC14, 1996, 518-524.
- [227] Mevel L., Goursat M., Basseville M. Stochastic subspace-based structural identification and damage detection and localisation—application to the Z24 bridge benchmark [J]. Mechanical Systems and Signal Processing, 2003, 17(1): 143-151.
- [228] Brownjohn J. M. W., Magalhaes F., Caetano E., Cunha A. Ambient vibration re-testing and operational modal analysis of the Humber Bridge [J]. Engineering Structures, 2010, 32(8): 2003-2018.
- [229] Yang Y. C., Nagarajaiah S. Time-Frequency Blind Source Separation Using Independent Component Analysis for Output-Only Modal Identification of Highly Damped Structures [J]. Journal of Structural Engineering, 2013, 139(10): 1780-1793.
- [230] James W. C., Peter A. W. L., Peter D. W. The fast Fourier transform and its applications [J]. IEEE Transactions on Education, 1969, 12(1): 27-34.

- [231] Gabor, D. Theory of communication. Part 1: The analysis of information [J]. Part III: Radio and Communication Engineering, Journal of the Institution of Electrical Engineers, 1946, 93(26): 429-441.
- [232] Ville J. Theorie et applications de la notion de signal analytique [J]. Cables et Transmission, 1948, 2A: 61-74.
- [233] Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Communications on Pure and Applied Mathematics, 1988, 41(5): 909-996.
- [234] Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2(R) [J]. Translation of the American Mathematical Society, 1989, 315(1): 69-87.
- [235] Meyer Y. Orthonormal Wavelets [J]. Wavelets, 1990, 21-37.
- [236] Cohen A., Daubechies I., Feauveau J. C. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, 45(5): 485-560.
- [237] Sweldens W. The Lifting Scheme: A Construction of Second Generation Wavelets [J]. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511-546.
- [238] Huang N. E., Shen Z., Long S. R. The Empirical Mode Decomposition and the Hilbert Spectrum for Non-linear and Non-stationary Time Series Analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903–995.
- [239] Wu Z. H., Huang N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis. 2009, 1: 1-41.
- [240] Yeh J. R., Shieh J. S., Huang N. E. Complementary ensemble empirical mode decomposition: A noise enhanced data analysis method Advances in Adaptive Data Analysis, Advances in Adaptive Data Analysis [J]. 2010, 2: 135-156.
- [241] Torres M. E., Colominas M. A., Schlotthauer G., et al. A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise [C]. In: Proc. 36th IEEE Int. Conf. on Acoust, Speech and Signal Process, ICASSP 2011, Prague, Czech Republic, 2011, 4144-4147.
- [242]Zheng J. D., Cheng J. S., Yang Y. Partly ensemble empirical mode decomposition: An improved noiseassisted method for eliminating mode mixing [J]. Signal Processing, 2014, 96(B): 362-374.
- [243] Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance [J]. Journal of Physics A: Mathematical and General, 1981, 14(11): 453-457.
- [244] Mitaim S., Kosko B. Adaptive Stochastic Resonance [J]. Proceedings of the IEEE, 1999, 86(11):2152-2183.
- [245] Tan J. Y., Chen X. F., Wang J, et al. Study of frequencyshifted and re-scaling stochastic resonance and its application to fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 811-822.
- [246] Lu S. L., He Q. B., Kong F. R. Note: On-line weak signal detection via adaptive stochastic resonance [J]. Review of Scientific Instruments, 2014, 85(6):066111.
- [247] Lu S. L., He Q. B., Dai D. Y., Kong F. R. Periodic fault signal enhancement in rotating machine vibrations via stochastic resonance [J]. Journal of Vibration and Control, 2016, 22(20): 4227–4246.
- [248] Liu X. H., Liu H. G., Yang J. H., Litak G., Cheng G., Han S. Improving the bearing fault diagnosis efficiency by the adaptive stochastic resonance in a new nonlinear system [J]. Mechanical Systems and Signal Processing, 2017, 96:58-76.
- [249]Qiao Z. J., Lei Y. G., Lin J., Jia F. An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis [J]. Mechanical Systems and Signal Processing, 2017, 84: 731-746.
- [250] Lei Y. G., Qiao Z. J., Xu X. F., Lin J., Niu S. T. An underdamped stochastic resonance method with stablestate matching for incipient fault diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2017, 94:148-164.

- [251]Lu S. L., He Q. B, Wang J. A review of stochastic resonance in rotating machine fault detection [J]. Mechanical Systems and Signal Processing, 2019, 116:230-260.
- [252] Wang X. P., Huang S. X., Li G. Q, Zhang W. Li C. F. Wang Y. R. Adaptive Stochastic Resonance Method Based on Quantum Genetic Algorithm and its Application in Dynamic Characteristic Identification of Bridge GNSS Monitoring Data[J]. IEEE Access, 2020, 8: 113994-114009.
- [253] Dragomiretskiy K., Zosso D. Variational Mode Decomposition [J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
- [254] Wang Y. X., Markert R. Filter bank property of variational mode decomposition and its applications [J]. Signal Processing, 2016, 120: 509–521.
- [255] Wang Y. X., Markert R., Xiang J. W., Zheng W. G. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system [J]. Mechanical Systems and Signal Processing, 2015, 60-61: 243-251.
- [256] Yang W. X., Peng Z. K., Wei K. X., Shi P., Tian W. Y. Superiorities of variational mode decomposition over empirical mode decomposition particularly in time– frequency feature extraction and wind turbine condition monitoring [J]. IET Renewable Power Generation, 2016, 11(4): 443-452.
- [257] Wang X., Yan W. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM [J]. Zhendong yu Chongji/Journal of Vibration and Shock (in Chinese), 2017, 36(18): 252-256.
- [258] Li Z. X., Jiang Y., Guo Q., Hu C. Peng Z. X. Multidimensional variational mode decomposition for bearingcrack detection in wind turbines with large driving-speed variations [J]. Renewable Energy, 2016, 116(B): 55-73.
- [259]Zhang M., Jiang Z. N., Feng K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump [J]. Mechanical Systems and Signal Processing, 2017, 93: 460-493.
- [260] Li Z. P., Chen J. L., Zi Y. Y., Pan J. Independenceoriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive [J]. Mechanical Systems and Signal Processing, 2017, 85: 512-529.
- [261] Owen J. S., Eccles B. J., Choo B. S., Woodings M. A. The application of auto-regressive time series modelling for the: Time-frequency analysis of civil engineering structures [J]. Engineering Structures, 2001, 23(5): 521-536.
- [262] Ruzzene M., Fasana A., Garibaldi L., Piombo B. Natural frequencies and dampings identification using wavelet transform: application to real data [J]. Mechanical Systems and Signal Processing, 1997, 11(2): 207-218.
- [263] Huang N. E., Chiang W. L., Busalacchi A. J. A Bridge Health Monitoring Method Using the Hilbert-Huang Transform: a Case Study [R]. Wahington: Nasa, 2000.
- [264] Guo J., Gu Z. W., Sun B. N., Chen Y. Method of bridge health monitoring based on wavelet analysis [J]. Engineering Mechanics (in Chinese), 2006, 23(12): 129-135.
- [265] Zhu X. Q., Law S. S. Wavelet-based crack identification of bridge beam from operational deflection time history
 [J]. International Journal of Solids and Structures, 2006, 43(7-8): 2299-2317.
- [266] Wald R., Khoshgoftaar T., Sloan J. C. Fourier transforms for vibration analysis: A review and case study [C] // IEEE International Conference on Information Reuse and Integration. IEEE, 2011.
- [267] Chen B., Zhao S. L., Li P. Y. Application of Hilbert-Huang Transform in Structural Health Monitoring: A State-of-the-Art Review [J]. Mathematical Problems in Engineering, 2014, 317954.

- [268] Amezquita-Sanchez J. P., Adeli H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures [J]. Archives of Computational Methods in Engineering, 2016, 23(1):1-15.
- [269]Xu L., Guo J. J. On-line monitoring of suspension bridges using the GPS and the random decrement technique [J]. Journal of Tsinghua University (Science and Technology) (in Chinese), 2002, 42(6): 822-824.
- [270] Ma Q. L., Zhou J. T., Ullah S., Wang Q. Operational modal analysis of rigid frame bridge with data from navigation satellite system measurements [J]. Cluster Computing, 2017, 10: 1- 11.
- [271] Bas S., Apaydinc N. M., Ilkid A., Catbas F. N. Structural health monitoring system of the long-span bridges in Turkey [J]. Structure and Infrastructure Engineering, 2018, 14(4): 425-444.
- [272] Pehlivan H. Frequency analysis of GPS data for structural health monitoring observations [J]. Structural Engineering and Mechanics, 2018, 66(2): 185-193.
- [273] Park K. J., Hwang E. S. Assessment of vibration serviceability for steel cable-stayed bridges using GNSS data [J]. International Journal of Steel Structures, 2016, 16(4): 1251-1262.
- [274] Xin J. Z., Zhou J. T., Yang S. X, Li X. Q., Wang Y. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model [J]. Sensors, 2018, 18(1): 298-.
- [275] Ogaja C., Wang J., Rizos C. Principal Component Analysis of Wavelet Transformed GPS Data for Deformation Monitoring[M]// Vistas for Geodesy in the New Millennium. Springer Berlin Heidelberg, 2002.
- [276] Ogaja C., Wang J. J., Rizos C. Detection of wind-induced response by wavelet transformed GPS solutions [J]. Journal of Surveying Engineering, 2003, 129(3): 99–104.
- [277] Li H. N., Yi T. H., Yi X. D., Wang G. X. Measurement of Wind-induced Response of Tall Building Based on RTK GPS Technology[J]. Engineering Mechanics (In Chinese), 2007, (8): 121-125.
- [278] Xu C., Yue D. J. Ambient vibration test of high pylon based on RTK-GPS technology [J]. Journal of Vibration and Shock (In Chinese), 2010, 29(3): 134 -136, 146.
- [279] Kaloop M. R., Li H. Sensitivity and analysis GPS signals based bridge damage using GPS observations and wavelet transform [J]. Measurement, 2011, 44(5): 927-937.
- [280] Cao Q., Yue D. J., Wang H., Zhang Y. C. Extraction and Analysis of Deformation Signals of Bridge Pylons Based on Singular Spectrum Analysis [J]. Journal of Geodesy and Geodynamics (In Chinese), 2014, 34(5): 144-150.
- [281]Elbeltagi E., Kaloop M. R., Elnabwy M. T. GPS-Monitoring and Assessment of Mansoura Railway Steel-Bridge Based on Filter and Wavelet Methods [J]. Asian Journal of Earth Sciences, 2015, 8(4): 114-126.
- [282] Han H. Z., Wang J., Meng X. L., Liu H. Analysis of the dynamic response of a long span bridge using GPS/accelerometer/anemometer under typhoon loading [J]. Engineering Structures, 2016, 122: 238-250.
- [283] Hussan M., Kaloop M. R., Sharmin F., Kim D. GPS Performance Assessment of Cable-Stayed Bridge using Wavelet Transform and Monte-Carlo Techniques [J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4385-4398.
- [284] Kaloop M. R., Hussan M., Kim D. Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques [J]. Advances in Space Research, 2019, 63(11): 3505-3521.
- [285] Lau L. Wavelet packets based denoising method for measurement domain repeat-time multipath filtering in GPS static high-precision positioning [J]. GPS Solution, 2017, 21:461-474.
- [286] Chan W. S, Xu Y. L., Ding X. L., Dai W. J. An integrated GPS-accelerometer data processing technique

for structural deformation monitoring [J]. Journal of Geodesy, 2006, 80(12): 705-719.

- [287]Guo H. Z., Cong P. J. Application of Hilbert-Huang Transform in Analysis on Monitoring Data of Dam [J]. Geomatics and Information Science of Wuhan University (In Chinese), 2007, 32(9): 774-777.
- [288] Li Q. S., Wu J. R. Time-frequency analysis of typhoon effects on a 79-storey tall building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95: 1648–1666.
- [289] Hwang J., Yun H., Park S. K., Lee D. H., Hong S. N. Optimal Methods of RTK-GPS/Accelerometer Integration to Monitor the Displacement of Structures [J]. Sensors, 2012, 12(12): 1014-1034.
- [290] Xiong C. B., Niu Y. B., Wang Z. L., Yuan L. L. Dynamic monitoring of a super high-rise structure based on GNSS-RTK technique combining CEEMDAN and wavelet threshold analysis [J]. European Journal of Environmental and Civil Engineering, 2019: 1-21.
- [291]Xu J., Huang S. X., Ma F. H. The Dynamic Characteristics Analysis for the Large Bridge Based on the Improved Hilbert-Huang Transformation [J]. Geomatics and Information Science of Wuhan University (In Chinese), 2010, 35: 801-805.
- [292] Liu Z. P., He X. F., Zhang S. B., Wang J. Dynamic Triple-difference Method for Single Frequency GPS Deformation Monitoring [J]. Journal of Tongji University (Natural Science) (In Chinese), 2011, 39(7): 1074-1078.
- [293]Xiong C. B., Lu H. L., Zhu J. S. Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements [J]. Sensors, 2017, 17(3): 436-.
- [294] Rao R., Li C. C., Huang Y. H., Zhen X. X., Wu L. Z. Method for Structural Frequency Extraction from GNSS Displacement Monitoring Signals [J]. Journal of Testing and Evaluation, 2019, 49(3): 2026-2043.
- [295] Xiong C. B., Yu L. N., Niu Y. B. Dynamic Parameter Identification of a Long-Span Arch Bridge Based on GNSS-RTK Combined with CEEMDAN-WP Analysis [J]. Applied Sciences, 2019, 9: 1301-.
- [296] Huang S. X., Wang X. P., Kang C. Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition [J]. Measurement, 2019, 139: 438-453.
- [297] Wang X. P., Huang S. X., Kang C., Li G. Q., Li C. F. Integration of Wavelet Denoising and HHT Applied to the Analysis of Bridge Dynamic Characteristics [J]. Applied Sciences, 2020, 10(10): 3605.
- [298] Zhang, M., Xu, F. Variational mode decomposition based modal parameter identification in civil engineering [J]. Frontiers of Structural and Civil Engineering, 2019, 13: 1082–1094.
- [299] Yu J., Meng X., Yan B., Xu B., Fan Q., Xie Y. Global navigation satellite system - based positioning technology for structural health monitoring: a review [J]. Structural Control and Health Monitoring, 2020, 27(1).

XINPENG WANG was born in Nanyang, Henan, China in 1982. He received the B.S. degree in surveying and mapping engineering from Henan Polytechnic University, in 2006, the M.S. degree in geodesy and surveying engineering from Hefei University of Technology, in 2012, and the Ph. D. degree in

geodesy and surveying engineering from Wuhan University, in 2020. Since 2020, he has been a Lecturer with the Department of Surveying and Mapping Engineering, College of Mining, Guizhou University. His research interests include precision engineering measurement, deformation monitoring, and disaster early warning.

GUANQING LI was born in 1990. He received the M.S. degree in Geodesy and Surveying Engineering from Wuhan University in 2016. He is a Ph.D. candidate of Geodesy and Surveying Engineering at Wuhan University, China. His research interests include precise engineering surveying, precise

integrated positioning and attitude determination system and deformation monitoring.

QINGZHI ZHAO is an associate professor with Xi'an University of Science and Technology. He received a B.Sc., Master's, and Ph.D. degrees in geodesy and surveying engineering from Shandong Agricultural University, Taian, China, China University of Mining and Technology, Xuzhou,

China and Wuhan University, Wuhan, China, in 2011, 2014, and 2017, respectively. His main research interests include global navigation satellite system atmospheric/meteorological studies, and GPS/MET, and high-precision GPS data processing.

RUIJIE XI was born in 1989. He is currently a post-doctorate jointly trained by Wuhan University and University of Nottingham. He received the M.S. degree in Geodesy and Surveying Engineering from Wuhan University in 2015, and the Ph. D. degree in Geodesy and surveying engineering from

Wuhan University, in 2018, China. His research interests include precision engineering measurement and GNSS measurement in deformation monitoring.

integrated positioning.

CHENFENG LI was born in 1990. He received the M.S. degree in Geodesy and Surveying Engineering from Jiangxi Polytechnic University in 2015, and the Ph. D. degree in Geodesy and surveying engineering from Wuhan University, in 2020, China. His research interests include crustal deformation and precise

