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The Scheimpflug camera offers a wide range of applications in the field of typical close-range photogrammetry, particle image
velocity, and digital image correlation due to the fact that the depth-of-view of Scheimpflug camera can be greatly extended
according to the Scheimpflug condition. Yet, the conventional calibration methods are not applicable in this case because the
assumptions used by classical calibration methodologies are not valid anymore for cameras undergoing Scheimpflug condition.
Therefore, various methods have been investigated to solve the problem over the last few years. However, no comprehensive
review exists that provides an insight into recent calibration methods of Scheimpflug cameras. This paper presents a survey of
recent calibration methods of Scheimpflug cameras with perspective lens, including the general nonparametric imaging model,
and analyzes in detail the advantages and drawbacks of the mainstream calibration models with respect to each other. Real data
experiments including calibrations, reconstructions, and measurements are performed to assess the performance of the models.
The results reveal that the accuracies of the RMM, PLVM, PCIM, and GNIM are basically equal, while the accuracy of GNIM is
slightly lower compared with the other three parametric models. Moreover, the experimental results reveal that the parameters
of the tangential distortion are likely coupled with the tilt angle of the sensor in Scheimpflug calibration models. The work of
this paper lays the foundation of further research of Scheimpflug cameras.

1. Introduction

The Scheimpflug camera, adopting the Scheimpflug condi-
tion by tilting the lens with respect to the sensor [1, 2],
can optimize the distribution of depth of field (DOF)
without zooming the aperture, which has been widely used
in the field of PIV [3–5], line structured light [6], and por-
table 3D laser scanner [7, 8]. At the same time, it has also
been introduced into the medical field, greatly facilitating
cataract and other ophthalmic surgery [9, 10]. So far, more
and more scholars have also devoted themselves to the
related research [6, 7, 11–18].

The Scheimpflug principle, traditionally credited to
Theodor Scheimpflug in 1902, states that the object plane
(the plane that is in focus), the thin lens’s plane, and the
image plane must all meet in a single line, Scheimpflug line.
The principle is applicable to both thin prism and thick prism

models, which only needs to be modified accordingly [1, 2].
As for the case of a real optical system, it is likely to find that
for different object points, the optical system have different f-
numbers and different aberrations; thus, the image generated
by the real optical system will not be completely sharp [7].
Yet, this influence usually can be ignored in the Scheimpflug
camera research.

Scheimpflug camera calibration is a necessary prelimi-
nary step to ensure its further high-quality measurement.
The conventional calibration methods are not valid in this
case because the assumptions used by classical calibration
methodologies are not valid anymore for cameras undergo-
ing Scheimpflug condition [19–22]. Although Legarda et al.
[23], Nocerino et al. [16], and Cornic et al. [17] point out that
when the lens-tilted angle is small (≤6°), the existing calibra-
tion methods can compensate, to a certain extent, the error
generated by tilting the sensor via tangential distortion
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parameters to solve the calibration of Scheimpflug cameras.
However, when the tilted angle is greater, the conventional
camera calibration methods are weak.

Therefore, more and more researchers have carried out
related researches [14, 17, 18, 23–33]. Up to now, a variety
of methods has been proposed to accommodate various
applications. Generally, these calibration methods can be
classified into parametric (defined by several intrinsic param-
eters) [14, 17, 18, 23–33] and general nonparametric calibra-
tion methods according to the imaging model [33–35]. In
fact, the kernels of the parametric methods are basically iden-
tical, which firstly develop an ideal image plane parallel to the
lens plane as a bridge, then the different form of relationships
between the ideal and actual image plane can be established
according to different models. As the projection between
the ideal image plane and calibration checkerboard can be
easily obtained via conventional imaging model, the projec-
tion between the tilted image plane and calibration checker-
board is established, on the basis of which the calibration
algorithm is developed [14, 17, 18, 23–31].

Generally, the parametric calibration methods of
Scheimpflug camera fall into two categories according to
the dimension of the tilted angle, the literature [11, 24, 25]
as the representative of the one-dimensional angle calibra-
tion model and the literature [13–15, 17, 18, 23, 27, 28, 30,
31] as the two-dimensional angle calibration model. Further,
as the lens is supposed to be planar and symmetric about
optical axis, two-angle parameters should be sufficient to
express the homography between the tilted image plane and
ideal image plane [23, 27].

Furthermore, the parametric calibration methods with
two-dimensional angles are supposed to be divided into two
main categories: (1) modified pinhole imaging model
(MPIM), as the name implies, is developed on the basis of
the conventional pinhole imaging model and taking the
imaging characteristics of Scheimpflug camera into account,
see literature [14, 15, 17, 23, 27, 28, 30, 31] to cite a few. (2)
Pupil centric imaging model (PCIM) modeled the different
ray angles in object and image space, and the actual projec-
tion center are the center of the exit and entrance pupils.
There is a new mapping from pupil centric imaging to a geo-
metrically equivalent pinhole imaging; thus, the Scheimpflug
camera calibration can be carried out in a conventional
framework, see literature [13, 18, 29, 36] to cite a few.

In general, the mainstream parametric camera calibra-
tion algorithms can be attributed to the nonlinear parameter
optimization problem and the appropriate initialization is
the key to the fast convergence and global minimum. The ini-
tialization acquisitionmethods can be classified into the three
categories: (1) taking the nominal parameters of the camera
as the initial values of the optimization algorithm [14, 25],
(2) adopting the results of Zhang et al.’s calibration algorithm
as initial values [17, 23, 27, 30], (3) obtaining initialization
intrinsic parameters of the Scheimpflug camera by means
of auxiliary tools, for example, adopts a collimator to obtain
the principal point [31], and (4) initializing by complex ana-
lytic solution, as illustrated in literature [13, 29, 32, 33].

While perspective projection serves as the dominant
imaging model in nowadays’ computer vision, conventional

camera calibration techniques are taylor made for specific
camera model which may not suffice for an unknown imag-
ing system (a black box). Thus, the general imaging models
accommodating a wide range of devices have been proposed
[33–35]. The mentality of the general imaging model is that
all types of imaging systems perform a mapping from the
scene rays to a set of associated image pixels and the image
pixels measure light traveling along the associated half-rays
from the scene in various directions. As illustrated in litera-
ture [33–35], the calibration undergoing general imaging
models simply refers to the computation of the projection
between the pixels and associated 3D rays.

Aiming to offer a comprehensive review that provides an
insight into recent calibration methods of Scheimpflug cam-
eras with perspective lens, this paper presents a survey of
recent calibration methods of Scheimpflug cameras and
analyzes in detail the advantages and drawbacks of the
mainstream calibration models with respect to each other.
Besides, the general nonparametric imaging model is novelly
introduced to solve the problem. Furthermore, Real data
experiments are performed to validate the performance of
different calibration models which therefore lays the founda-
tion of further research of the Scheimpflug cameras.

2. Modified Pinhole Imaging Model

Modified pinhole imaging model [14, 17, 23, 26–31, 37],
as the name implies, is developed on the basis of the con-
ventional pinhole imaging model, and the imaging charac-
teristics of Scheimpflug camera is taken into account.
Generally, the projection center of MPIM is supposed to be
the optical center.

According to the different ways of describing the tilt
effect of the lens, the MPIM can be simply divided into three
categories: (1) extended distortion model (EDM), which
extends the pinhole imaging model by considering the incli-
nation of the sensor as an additional distortion [14, 26, 29];
(2) rotation matrix model (RMM), which models the lens-
sensor configuration by an explicit rotation matrix about
the optic axis and includes it as a part of intrinsic calibration
parameter set [17, 30, 31, 38]; (3) and point-line vector model
(PLVM), in which the transformation between the tilted and
ideal image plane is established by the intersection of the light
ray, determined by the optical center, the spatial point, and
two image planes [23, 27, 28].

2.1. Extended Distortion Model (EDM). Extended distortion
model considers the inclination of the sensor as an additional
distortion and develops a Scheimpflug camera calibration
model based on the classical pinhole imaging model
[14, 26]. As the work of Wang et al. [26] is only useful for
very small tilt angles, Peng et al. [14] extend their studies to
the condition with greater tilt angles based on the geometric
optics theory. As illustrated in Figure 1, OXCYCZC is the
camera coordinate frame with the origin at the aperture stop.
ZC is the optical axis of the lens, and I0 and IS denote the ideal
and real tilted image plane, respectively. The symbols α
and β indicate the angles between the image plane IS and
the x-axis and y-axis, respectively, while symbol d represents
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the distance from the origin OC to the image plane I0. The 3D
world point PW(XW,YW,ZW) projects on the I0 at point pi, and
the light ray intersects the IS at point pS.

The section views of the camera geometry when the
image plane, respectively, tilts α with respect to the x-
and y-axis are illustrated in Figure 2, where A(x,y) is an
arbitrary point on I0 while point B is the back projection
of A on the IS. The symbols θx and θy, respectively, denote
the projection angle of the angle between the light ray and
the optical axis.

According to the derivation of the literature [14], the
increment (Δxα,Δyα) and (Δxβ,Δyβ) along the x-axis or y-
axis caused by rotating the angles α and β can be expressed
as follows,

Δxα = −
xy

d
tan α,

Δyα = −
y2

d
tan α,

Δxβ =
x2

d
tan β,

Δyβ =
xy

d
tan β

1

Then, on the basis of conventional distortion model [39],
the extended distortion model can be obtained as follows,

Δx = x k1r
2 + k2r4 + x

tan β

d
x −

tan α

d
y ,

Δy = y k1r
2 + k2r4 + y

tan β

d
x −

tan α

d
y ,

2

where (Δx,Δy) are the total distortions caused by the
Scheimpflug camera, (xn,yn)

T are the normalized image coor-
dinates and r2 = xn

2 + yn
2. (k1,k2) are the radial distortion

coefficients. And it deserves noting that the tangential distor-
tion coefficients are ignored here, as in many of the Scheimp-
flug camera calibration methods [11, 13, 23, 25, 27–29, 40].

The tangential distortion mainly consists of decentering
distortion and thin prism distortion. The thin prism distor-
tion usually results from the defects of lens design and man-
ufacture and the slight tilt of sensor plane [26]. It also
implicitly confirms the conclusions in literature [16, 17, 23]

that the conventional calibration methods can compensate
the error generated by tilting the sensor via tangential distor-
tion parameters, to a certain extent.

In conclusion, the calibration method based on EDM
is logically explicit, and the model is simple and easy to
operate which can completely inherit the existing calibra-
tion process of the standard camera [21]. However, in
spite of the fact that Peng et al. [14] have extended the
model to suit larger tilt angles, the range of application
of the model is still limited within a relatively small tilt
angle. Also, the model described in this section is mainly
based on the assumptions of the telecentric lens [14],
which cannot be applied directly to the standard perspective
lens condition.

Moreover, the model illustrated here requires that the
length of the lens should be provided in advanced [14], which
in practice is not easy to obtain and the nominal parameters
of the lens might not be accurate enough. Thus, the method
needs to be further improved.

2.2. Rotation Matrix Model (RMM). Rotation matrix model
models the lens-sensor configuration by an explicit rota-
tion matrix about the optic axis and includes it as a part
of intrinsic calibration parameter set [17, 30, 31, 38]. One
of the most representative methods is that Kumar and
Ahuja [29] introduce the rotation transformation between
the lens and image plane and extends the RAC (radial
alignment constraint) [19] to accommodate the Scheimpflug
camera, which is defined as the gRAC (generalized radial
alignment constraint).

As illustrated in Figure 3(a), OWXWYWZW, OLXLYLZL,
and OSXSYSZS denote the world, lens, and imaging plane
coordinate frames, respectively. The lens coordinate frame
is assumed to be parallel to the image plane coordinate
frame with a common Z-axis. OS is the principal point,
and Pu(xu,yu), and Pd(xd,yd) indicate the ideal and the dis-
torted image points of the 3D spatial point PW, respec-
tively. The RAC [29] points out that, assuming only

radial lens distortion exists, the position vector OSPd

determined by the ideal image point and the distorted
image point should be aligned with the position vector

POZPW, which is the vertical line from the point PW to
the optical axis, and there is a relationship between two

position vectors as OSPd × POZPW = 0.
Nevertheless, as shown in Figure 3(b), the triplet OS,

Pu, and Pd might not be collinear due to lens misalign-
ment or intentional sensor tilt, which makes RAC difficult
to be directly applied to Scheimpflug condition [29]. Thus, a
more generic imaging model is proposed where the non-
alignment of lens and image plane is explicitly modeled via
a rotation matrix.

As illustrated in Figure 4, Kumar and Ahuja [29] derive a
rotation matrix R(ρ,σ) which aligns the coordinate frame of
the image plane with the lens’s by two dimensional angles
(ρ,σ) indicating clockwise rotation about its x- and y-axis,
respectively. Consider the coordinate frames described in
Figure 3, the 3D world point PW is projected on the image
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Figure 1: Schematic of imaging system applied with Scheimpflug
condition.
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plane at point PS, and the ray of light intersects the ideal
image plane at point PN. Let the rotation matrix as

R ρ, σ =

cos σ sin ρ sin σ cos ρ sin σ

0 cos ρ −sin ρ

−sin σ sin ρ cos σ cos ρ cos σ

=

r11 r12 r13

r21 r22 r23

r31 r32 r33

,

3

wherein rij represents the ith row and jth column entry of
R. Given that the relative rotation between two planes is
known, the relationship between image points in tilted
image plane and ideal image plane can be obtained according
to the derivation in literature [29]:

xN

yN

=

− r11xS + r21yS λ

r13xS + r23yS − λ

− r12xS + r22yS λ

r13xS + r23yS − λ

, 4

where (xN,yN)
T and (xS,yS)

T denote the image point in ideal
image plane and tilted image plane, respectively, and λ indi-
cates the distance between the lens and ideal image plane.

The world point PW is projected on the optical axis with
the coordinate POZ = 0, 0, Zl . And it is supposed that the
projected ideal image point PN aligns with the world point

PW, which means the location vectors OPPN and POZPW

should be coplanar and also parallel to each other. Thus, we
can obtain the radial alignment constraint as follows:

OPPN × POZPW = 0 5

The gRAC with the rotation matrix can be established by
combining formulas (4) and (5), on the basis of which a two-
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Figure 3: Schematic of imaging system applied with Scheimpflug condition [29]. (a) Standard camera; (b) Scheimpflug camera.
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step calibration algorithm is developed. The algorithm pro-
poses a new analytical solution to solve the gRAC for a subset
of calibration parameters, followed by the nonlinear refine-
ment of calibration parameters [29].

As far as the paper is concerned, the calibration method
based on RMM is flexible, accurate, and robust, which is also
easy to operate and initialize. Inevitably, there are still some
drawbacks of the method. The analytical solution, as pro-
posed in literature [29], is tedious and involving more sign
ambiguous estimation, and the computational efficiency of
the calibration algorithm should make further efforts.

2.3. Point-Line Vector Model (PLVM). Point-line vector
model shows that the transformation between the tilted
image plane and ideal image plane is established on the basis
of the intersections of the light ray and two image planes
(ideal image plane and real tilted image plane) (see literature
[23, 27, 28] to cite a few).

As illustrated in Figure 5, the symbol O represents the
optical center and OXCYCZC is the coordinate frame of
the Scheimpflug camera. The image planes S and P denote
the tilted image plane and ideal image plane, respectively.
The origins of the ideal and real tilted image planes are
assumed to be same, as the ideal image plane can be arbi-
trarily placed [23, 27].

The symbol r indicates a straight ray which goes from
the 3D world point PW(XW,YW,ZW) to the optical center
O. r intersect with the tilted image plane S and the ideal
image plane P at the points PS and PP, respectively. (m,n)
are the base vectors in the plane S, and the vectors m and
n, respectively, lie in the planes XOZ and YOZ. Further,
according to the definition in the literature [23], m= (cosβ,
0, sinβ) and the vector n is perpendicular to the m and has
an angle with the Y-axis; hence, the vector n= (−sinαsinβ,
cosα, sinαcosβ).The formula of the line r is

r λPW = λ XW , YW , ZW
T 6

And the symbolAT denotes the transpose of the vectorA.
The following transposed vectors are noted the same way.
And λ here is an arbitrary nonzero scale factor. The intersec-
tions of r and two image planes can be expressed as

PP = PPx, PPy, f
T
,

PS = 0, 0, f ′ + PSxm + PSyn

7

Substituting formula (7) into (6) yields

PPx = λ PSx cos β − PSy sin α cos β ,

PPy = λPSycos α,
8

wherein λ = f / PPxsin β + PPysin α cos β + f , assuming that

the (CPx,CPy) and (CSx,CSy) represent the principal points in
planes P and S, respectively, and (dx,dy) denote the pixel sizes
on the image plane while (Fx,Fy) are the equivalent focal
length in pixel units. Then, the formula (6) can be converted
to (9) as

u v 1 T =
λ

f
KRSK

−1
S uS vS 1 T , 9

where (u,v) and (uS,vS), respectively, denote the image points
on planes P and S and

K =

f

dx
0 CPx

0
f

dy
CPy

0 0 1

,

KS =

1

dx
0 CSx

0
1

dy
CSy

0 0 1

,

RS =

cos β −sin α sin β 0

0 cos α 0

sin β sin α cos β f

10
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Figure 5: Schematic of imaging system applied with Scheimpflug
condition.
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Without a loss of generality, assuming that the calibra-
tion target plane is on Z≡ 0 of the world coordinate frame,
we have

u v 1 T = sK r1 r2 T X Y 1 T , 11

where s is an arbitrary scale factor, (R,T) represent the
rotation and transformation which relate the world coordi-
nate frame to the ideal image plane coordinate frame, and
r1 and r2 are the first two columns of the rotation matrix R.
The homography between the tilted image plane and the
calibration target plane can be obtained by combining the
formulas (9) and (11).

To summarise, the calibration method based on PLVM
has the advantage of a robust and simple model, as well as
convenient calibration process. However, the application of
the model in literature [27] still strongly depends on the qual-
ity of the calibration target. In addition, the initial estimation
of the calibration parameters is obtained using Zhang’s
method [21] directly rather than taking the unique imaging
characteristics of Scheimpflug camera into account.

3. Pupil Centric Imaging Model (PCIM)

The imaging models as described above assume that the
angle of the chief ray in object space and the angle of the chief
ray in image space are identical, which is incorrect. And this
difference employs a significant influence on the Scheimpflug
camera, which in general can be ignored in pinhole imaging
model. So Kumar and Ahuja [13] propose a generalized
PCIM which models the exact relationship between these
rays. Besides, Steger [18] reduces the number of the model
parameters and develops a simpler PCIM.

Figure 6 shows a classical geometry of a thick lens, a
ray that enters the principal plane P and exits the princi-

pal plane P′ at the same position with respect to the optical
axis (however, generally not at the same angle) [18]. The ray
geometry of the real Scheimpflug camera model is illustrated
in Figure 7.

First, the object points are projected to the ideal image
plane lying at a distance c from the projection center O,
where the ray angles in object space and image space are

identical ω=ω″. Then, move the ideal image plane to a dis-

tance d, resulting in the difference of angles ω≠ω′. Next,
the real tilted image plane can be obtained by tilting the ideal
image plane at the correct distance d by the angle τ.

Consider the definition of coordinate frames in literature
[18], as shown in Figure 8. Oxuyuzu and Oxtytzt denote the
coordinate frame of ideal image plane and tilted image plane,
respectively. n is the rotation axis in a plane orthogonal to the
optical axis which forms an angle ρ with axis xu. And a new
coordinate frame OxSySzS is constructed in the tilted image
plane parallel to coordinate frame Oxtytzt which lies at the
perpendicular projection of the projection center. The coor-
dinate frames of Oxuyuzu and OxSySzS can be considered as
two cameras that are rotated around their common projec-
tion center O. Hence, the transformation from Oxuyuzu to
OxSySzS can be given by KSRKu

−1, in which KS and Ku

are the calibration matrices corresponding to two cameras,
respectively, and R denotes the rotation matrix that relates
to the two cameras [18]. It is apparent that there is a rela-
tionship between the OxSySzS and Oxtytzt defined by a
translation matrix T. Thus, the complete projection can be
expressed as follows:

HP = TKSRK
−1
u , 12

where

Ku =

d 0 0

0 d 0

0 0 1

,

KS =

dr33 0 0

0 dr33 0

0 0 1

,

Object

P P’
a a’

f f’

y

y1F N
N’ F’ image

Figure 6: The geometry of standard thick lens [18].

�′

τ

� O

�″

c

d

Figure 7: The ray geometry of the real Scheimpflug camera model
[18].

d

dS

zS

xS

yS
zt

xu
xt
yu

yt

zu

pu

pt

	




z′uz′t

x′u
x′t
y′u

y′t

n

O

Figure 8: The projection model of the Scheimpflug camera [18].

6 Journal of Sensors



T =

1 0 −dr31

0 1 −dr32

0 0 1

, 13

and rij indicates the ith row and jth column entry ofR defined
as

Rt =

r11 r12 r13

r21 r22 r23

r31 r32 r33

=

c2ρ 1 − cτ cρsρ 1 − cτ sρsτ

cρsρ 1 − cτ s2ρ 1 − cτ + cτ −cρsτ

−sρsτ cρsτ cτ

,

14

where cθ=cosθ, sθ= sinθ, and τ(0≤ τ<π/2). Thus, the pro-
jection relation between coordinate frame Oxuyuzu and
Oxtytzt can be expressed as

HP =

r11r33 − r13r31 r21r33 − r23r31 0

r12r33 − r13r32 r22r33 − r23r32 0

r13
d

r23
d

r33

15

Furthermore, the projection from the world coordinate
frame to the Oxuyuzu can be easily obtained via perspective
projection, so that the complete projection from the world
frame to Oxtytzt is established.

In comparison with the aforementioned three calibration
models, PCIM proposed in literature [13, 18] gives full con-
sideration to the difference of the ray angles in object space
and image space, which is more closely related to the actual
imaging. In addition, the model allows the lens to be tilted
in an arbitrary direction which is much more flexible and
has more explicit physical meaning than the above three.
The calibration method base on the PCIM in literature [18]
is accurate, easy to initialize, and as well as fast convergence.
However, the model also inevitably has some imperfections
that the PCIM cannot be directly applied to the situation
where the tilt is in the horizontal or vertical direction, which
requires the pixel aspect ratio to be known in advance [18].

4. General Nonparametric Imaging
Model (GNIM)

Great progress has been made during last decade in
exploiting the general nonparametric imaging model for
camera calibration [32, 33, 35, 41–43]. In comparison with
the perspective imaging model, the GNIM is rather flexible
and accommodates a wide range of imaging devices. More-
over, as has been demonstrated, given that the distortion is
quite high, the GNIM may offer better calibration results
than the parametric methods [44].

As proposed in literature [33], Ramalingam and Sturm
model any camera as a set of image pixels and their associ-
ated camera rays in space, and the image pixels measure light
traveling along the associated half-rays from the scene in var-
ious directions. Therefore, the calibration undergoing GNIM
simply refers to the computation of the projection between
the pixels and their associated 3D rays. The mentality of
GNIM calibration is quite simple, as illustrated in Figure 9,
and three (or more) different points P1

i , P
2
i , P

3
i corresponding

to the same single pixel pi(u,v) on the image plane, as sam-
pled on three (or more) different calibration checkerboards
with unknown relative position, must be collinear. Hence,
the relative position among the calibration checkerboards
can be obtained on the basis of the collinearity constraint of
the checkerboard points. Then, the calibration can be com-
pleted by computing rays going through the associated sam-
pled checkerboard points.

We consider here a Scheimpflug camera with perspec-
tive lens, to validate the performance of GNIM in the
Scheimpflug camera calibration. As shown in Figure 9, let
us denote several points on different planar calibration
checkerboards corresponding to the same image pixel by
homogeneous coordinates Pk

i Xk
i , Y

k
i , 0,W

k
i , for checker-

boards k = 1, 2,… , n. The unknown poses with respect to
different girds can be expressed as rotation matrices RK and
translation vectors TK. Thus, the point P

k
i relative to the cor-

responding local coordinate frame can be projected to the
global reference frame via

Rk Tk

0T 1
Xk
i , Y

k
i , 0,W

k
i 16

Furthermore, the optical center of the camera is defined
as O(O1, O2, O3, 1). And without the loss of generality, the

Scheimp�ug camera Calibration grids

R1,T1

R2,T2

pi(i,j)

P1
i(X,Y,Z )

P3
i(X,Y,Z )

P2
i(X,Y,Z )

Figure 9: Schematic of general nonparametric imaging model.
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first calibration checkerboard is adopted as the global coordi-
nate reference frame.

As the collinearity constraint proposed in literature
[32, 33], the checkerboard points corresponding to the one
single pixel, after transforming into the global reference coor-
dinate frame via formula (16), must be collinear. Thus, the
4 × n + 1 matrix including the coordinates of collinear
checkerboard points as follows should be of rank smaller
than 3.

O1 X1
1 R2

11X
2
1 + R2

12Y
2
1 + T2

1W
2
4 ⋯

O2 Y1
2 R2

21X
2
1 + R2

22Y
2
1 + T2

2W
2
4 ⋯

O3 0 R2
31X

2
1 + R2

32Y
2
1 + T2

3W
2
4 ⋯

1 W1
4 W2

4 ⋯

, 17

where Rij indicates the ith row and jth column entry of
R. Therefore, the determinants of all the 3× 3 submatrix of
formula (17) must vanish. Hence, a new submatrix is con-
structed by selecting the first column and any other two
columns, and the bilinear equations in accordance with

checkerboard points P
j
i and Pk

i can be obtained as follows’

P
j
i

T
MjkPk

i = 0, 18

where M
jk represents the bifocal matching tensor with

respect to the specific 3 × 3 submatrix associated with the
optical center and checkerboard pose. Referring to the
approach proposed in literature [32, 33], the optical center
and checkerboards’ poses can be determined with at least
three different views. Then, we must fit the camera rays

to the single optical center O. Let Λj denotes the direc-
tion of the camera ray passing through the checkerboard

point P
j
i and λi represents the parameter corresponding

to the closest point on the camera ray to the given checker-

board point P
j
i . Thus, the vector Λj can be calculated by

minimizing the following cost function through nonlinear
optimization algorithms.

min  〠
n

i

O + λiΛ
j
− P

j
i

2
,  Λ

j T
Λ

j = 1 19

On the whole, as has been noted, the general nonpara-
metric imaging model is rather flexible and accommodates
a wider range of imaging devices than the specific paramet-
ric imaging model. As in the case of Scheimpflug camera
calibration, no matter whether the lens is tilted or not,
the Scheimpflug camera can be regarded as the same with
the ordinary camera in the general nonparametric imaging
model. And the concise GNIM avoids the problem that the
parameters in the conventional camera calibration methods
easily converge to the local optimums.

Nonetheless, the nonparametric nature of GNIM results
in the obscure physical meaning of the model. Moreover,
the major drawback in generic calibration model, as pre-
sented in literature [32, 33, 35], is that the same motion
variables can be computed from two different coupled

variables, which leads to discrepancies in the computation
of motion variables and some way of averaging should be
used to obtain a consistent solution. Besides, the calibration
method involves solving a large number of linear equa-
tions which is much more complicated than the former
calibration methods.

5. Experiment

5.1. Experimental Apparatus. Two Scheimpflug imaging sys-
tems are calibrated to demonstrate the performance of differ-
ent calibration models. One imaging system is a DSRL
camera (Nikon D300s, 4288 × 2848 pixels, pixel size of
5.5μm) with a tilt-shift lens (Nikon PC-E Micro NIKKOR
45mm f/2.8D ED). Owing to the fact that the tilt range of
first imaging system is limited within ±8.5°, we construct a
custom-made Scheimpflug imaging system on the basis of a
MVI-D2048 camera (2048 × 2048 pixels) with a perspective
lens (kowa-LM25JC5M2 25mm/f), and the sensor is inten-
tionally tilted with respect to the lens by ≈10°. A ceramic
checkerboard with 9 × 12 squares, each having dimension
of 10 × 10mm, is employed to model known control points,
and 15 calibration images are taken at different locations,
from different angles.

As for the first imaging system, two sets of experiments
are carried out to quantify the performance of calibration
models. One set is to adjust the tilt-shift lens to the angle
approximate 0°, in the case of which the Scheimpflug camera
model reduces to standard camera model. The other set
rotates the tilt-shift lens to the angle approximate 7°. In view
of the fact that both Scheimpflug imaging systems employed
here just simply rotate around one single axis, the tilt angle
rotating around the other axis is assumed to be 0°.

5.2. Results and Discussion. Tables 1 and 2 show the calibra-
tion results of the first imaging system’s intrinsic parameters
and reprojection errors using different calibration models
with tilt angles of 0° and 7°, respectively. The calibration
results of the second imaging system are illustrated in
Table 3. In calibration model (1), only the first two order
radial distortion coefficients (k1,k2) are considered, while cal-
ibration model (2) includes both the radial and tangential
distortion coefficients (k1,k2,k3,k4). As illustrated in the fol-
lowing tables, (α,β) represent the two dimensional tilt angles
corresponding to the specific calibration models, (Cx,Cy) and
(fx,fy), respectively, denote the principal point and focal
length, and the reprojection error, denoted by RMSE, is indi-
cated via the root of mean squared error in pixels, between
the detected image corners and the projected ones.

From the calibration results of conventional pinhole
model in the above three tables, it can be seen that pinhole
model works well with the tilt angle of approximate 0°,
yet when the tilt angle increases several degrees (such as
7° and 10°), the reprojection errors increase significantly
whereas the aforementioned models almost remain constant.
This is also consistent with the conclusion made in literature
[23] that when the lens-tilted angle is greater than 7°, the
tangential distortion cannot compensate the error generated
by tilting the sensor.
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In terms of tilt angles in above tables, the calibration
results of RMM (1), PLVM (1), and PCIM (1) are quite
close to corresponding tilt angles measured manually in
the adapter, in spite of minor deviations resulting from
measurement noise. Furthermore, comparing the calibra-
tion results of models (1) and models (2), respectively, it
is obvious to find that the formers give better results and

smaller angle errors than the latters. More comprehensive
distortion model in RMM (2), PLVM (2), and PCIM (2)
does not necessarily result in better calibration results,
and together with the previous analysis, it can be concluded
that the parameters of tangential distortion are likely
coupled with the tilt angles of the image plane in RMM,
PLVM, and PCIM.

Table 2: Calibration results of the first imaging system with tilt angle of 7° approximately.

Calibration model Pinhole (1) Pinhole (2) RMM (1) RMM (2) PLVM (1) PLVM (2) PCIM (1) PCIM (2)

α (°) — — 6.4126 5.5814 6.3463 5.1486 6.2329 5.4688

β (°) — — 0.9920 1.7603 0.8197 2.6659 1.2703 2.2456

Cx (pixel) 1986.0064 2099.2407 2055.3751 2098.9543 2058.8085 2121.2302 2049.6208 2140.7542

Cy (pixel) 1883.7801 1935.0271 1978.2631 1869.6842 1984.6398 1784.6398 1974.4682 1776.5569

fx (mm) 48.2265 48.2806 48.2024 48.5231 48.3472 48.4253 48.1954 48.1151

fy (mm) 48.4051 48.4798 48.1955 48.5018 48.3472 48.4253 48.1954 48.1151

k1 −0.0854 −0.0824 −0.0755 −0.0836 −0.0694 −0.0663 −0.0542 −0.0945

k2 0.2769 0.2271 0.0795 0.0725 0.0252 −0.0085 −0.0167 0.4497

k3 — 0.0022 — −0.0022 — 0.0107 — −0.9368

k4 — 0.0041 — 0.0098 — 0.0019 — 0.0023

RMSE (pixel) 0.2021 0.1928 0.1701 0.1697 0.1693 0.1690 0.1685 0.1683

Table 3: Calibration results of the second imaging system with tilt angle of 10° approximately.

Calibration model Pinhole (1) Pinhole (2) RMM (1) RMM (2) PLVM (1) PLVM (2) PCIM (1) PCIM (2)

α (°) — — 9.2544 3.0078 9.1981 2.9987 9.0974 4.6926

β (°) — — −0.9193 0.0248 1.0680 −0.0337 268.2745 261.3949

Cx (pixel) 1011.6078 1015.8023 1017.8545 1010.8408 1014.2669 1011.9323 1014.2182 1009.2238

Cy (pixel) 950.4627 373.6203 945.0634 439.4258 921.0598 684.9546 907.9720 424.2683

fx (mm) 25.2562 25.8743 26.3688 26.1073 26.4134 26.1090 26.4266 26.3146

fy (mm) 29.1527 27.1610 26.0862 26.1204 26.4134 26.1090 26.4266 26.3146

k1 −0.0643 −0.0023 −0.0695 0.0010 −0.0748 0.0003 −0.0454 0.0011

k2 0.8235 −1.2101 0.6203 −1.4850 0.8104 −1.4587 0.6705 −1.4361

k3 — 0.0046 — 0.0044 — 0.0044 — 0.0005

k4 — 0.0005 — 0.0004 — 0.0002 — 0.0089

RMSE (pixel) 0.1556 0.1548 0.1076 0.1071 0.1078 0.1076 0.1080 0.1078

Table 1: Calibration results of the first imaging system with tilt angle of 0° approximately.

Calibration model Pinhole (1) Pinhole (2) RMM (1) RMM (2) PLVM (1) PLVM (2) PCIM (1) PCIM (2)

α (°) — — 0.1928 0.1214 0.2149 0.7449 0.3175 0.2436

β (°) — — −0.5407 2.7449 0.7623 −3.1642 0.7844 0.6752

Cx (pixel) 1984.8581 2044.4909 2045.3706 2041.9526 2045.6208 2077.7127 2040.3889 2044.8924

Cy (pixel) 1499.5190 1461.1779 1461.8725 1446.3428 1462.4681 1447.5127 1458.2369 1462.3325

fx (mm) 48.0293 48.0073 48.0056 47.8958 47.9954 48.1980 48.1031 47.9975

fy (mm) 47.9819 47.9663 48.0024 47.9726 47.9954 48.1980 48.1031 47.9975

k1 −0.0777 −0.0785 −0.0837 −0.0793 −0.0852 −0.0806 −0.0798 −0.0802

k2 0.1294 0.1255 0.2126 0.1560 0.2329 0.0922 0.2330 0.1121

k3 — −0.0018 — 0.0022 — 0.0015 — 0.0019

k4 — 0.0025 — 0.0036 — 0.0028 — 0.0027

RMSE (pixel) 0.1896 0.1620 0.1623 0.1614 0.1630 0.1608 0.1622 0.1619
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It is difficult to obtain high accuracy ground truth that
serves as absolute reference for the Scheimpflug camera’s cal-
ibration results. Hence, this paper borrows the idea from the
literature [19–22] that assesses the accuracy of the calibration
results via the uncertainties of the calibration parameters.

Suppose m= f(P,Q) indicates the projection from the
point set Q(Xi,Yi,Zi) i = 1, 2,… ,M in the world to the

image feature pointsm uki , v
k
i , k = 1, 2,… , n from n differ-

ent views, where the parameter set P consists of the intrinsic
parameter set PA= {α,β,fx,fy,Cx,Cy,k1,k2} and extrinsic
parameter set PB= {om

k,Tk} of the Scheimpflug camera. Con-
sidering the fact that the nonlinear least square problem such
as camera calibration generally employs the iterative method
(e.g., Levenberg-Marquardt method), the linear iteration of
the parameters can be modeled as Pi+ 1=Pi+ΔPi. As for the
minor deviation ΔP, we have

Δm = JmPΔP, 20

where the Jacobian matrix is defined by JmP = ∂m/∂P .

JmP =

JmPA1
JmPB1

0 ⋯ 0

JmPA2
0 JmPB2

⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮

JmPAn
0 ⋯ 0 JmPBn

21

And the sub-Jacobian matrix JmPAk
and JmPBk

are, respec-

tively, defined as follows:

JmPAk
=

∂uk1
∂α

∂uk1
∂β

∂uk1
∂f x

∂uk1
∂f y

⋯

∂vk1
∂α

∂vk1
∂β

∂vk1
∂f x

∂vk1
∂f y

⋯

⋮ ⋮ ⋮ ⋮ ⋯

∂ukM
∂α

∂ukM
∂β

∂ukM
∂f x

∂ukM
∂f y

⋯

∂vkM
∂α

∂vkM
∂β

∂vkM
∂f x

∂vkM
∂f y

⋯

,

JmPBk
=

∂uk1
∂om1

∂uk1
∂om2

∂uk1
∂om3

∂uk1
∂T1

⋯

∂vk1
∂om1

∂vk1
∂om2

∂vk1
∂om3

∂vk1
∂T1

⋯

⋮ ⋮ ⋮ ⋮ ⋯

∂ukM
∂om1

∂ukM
∂om2

∂ukM
∂om3

∂ukM
∂T1

⋯

∂vkM
∂om1

∂vkM
∂om2

∂vkM
∂om3

∂vkM
∂T1

⋯

22

Assuming that Λm refers to the covariance matrix of
m which can be defined as Λm=σ2I (σ2 is the standard
deviation of m, and in order to simplify the analysis, it
can be assumed that each feature point is independently

observed). Hence, the best linear unbiased estimate of ΔP
can be calculated via

ΔP = JTmPΛ
−1
m JmP

−1
JTmPΛ

−1
m Δm 23

Thus, we can calculate the covariance matrix of the
parameter set P by

ΛP = σ2
m JTmP JmP

−1
24

Therefore, the uncertainties of the second imaging sys-
tem’s calibration parameters using four kinds of models (1)
can be obtained by the formula (25), and the results are
shown in Table 4.

ΓP PA
= 3σ diag ΛP 25

As shown in Table 4, the uncertainties of the calibration
parameters recovered from RMM, PLVM, and PCIM are
obviously smaller than those from the conventional pinhole
imaging model. Besides, the uncertainties of recovered
parameters from RMM, PLVM, and PCIM are almost consis-
tent with each other, which mean the accuracies of the three
models are approximately equal.

Moreover, the experiments examine the performance of
different calibration models with respect to the number of
the planes utilized to recover the camera parameters. To
facilitate comparison, assuming that the tilt angles around
the two axes are 10° and 0°, respectively, the results of tilt
angles in different models are transformed into the devia-
tions with respect to the reference values. Figure 10 shows
the results of the second Scheimpflug imaging system’s
intrinsic parameters versus the number of images for differ-
ent calibration models.

From Figures 10(a) and 10(d), it can be seen that three
calibration models can quickly converge to the global opti-
mization and the tilt angles α recovered from the three
models are almost consistent with an accuracy of 1°, while
the tilt angles β vary from one model to another with the
accuracies of approximate 1°, 0.5°, and 1.5°, respectively. As
far as the experiment is concerned, the PCIM gives slightly
better results than the other two models with respect to the
tilt angles.

As the Figures 10(b) and 10(e) illustrated, the results of
focal length via the three Scheimpflug calibration models
are consistent with each other. Choosing the results of
conventional pinhole imaging model as the reference, it
is evident to find that the fx recovered from the three
Scheimpflug calibration models is larger, while the fy is

Table 4: The uncertainties of the intrinsic parameters of the second
imaging system using models (1).

Calibration
model

α (°) β (°)
Cx

(pixel)
Cy

(pixel)
fx

(mm)
fy

(mm)

Pinhole — — 2.4277 78.7451 0.0995 0.4525

RMM 0.0781 0.0126 0.7514 2.1001 0.0308 0.0649

PLVM 0.0776 0.0133 0.7766 2.1731 0.0462 0.0462

PCIM 0.0811 0.0135 0.7840 2.1417 0.0505 0.0505
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smaller. Besides, it is revealed that when the lens is tilted with
respect to the sensor, the effective focal length increases
accordingly, which is also in accord with the conclusion in
literature [1, 2].

Figures 10(c) and 10(f) show the results of principal
points using four different models. It is evident to observe
that the results of Cx and Cy via the three Scheimpflug cali-
bration models are quite similar with each other. And it is
worthy of noting that the Cx derived from the Scheimpflug
calibration models and pinhole imaging model almost has
the same results with little difference. However, the results
of Cy recovered from the two main types of calibration
models are quite different. Obviously, the principal points
are supposed to move in one direction on the image plane,
since the lens is only tilted with respect to one single axis.

In addition, as depicted in Figure 11, it can be seen that
the calibration models undergoing Scheimpflug condition
give smaller RMSE than the pinhole imaging model. In spite
of the fact that full calibration of Scheimpflug camera using a
checkerboard requires at least three different views mathe-
matically, four views at least are required to obtain accurate
and robust results in practice. Together with the above cali-
bration results, it can be concluded that calibration models
undergoing Scheimpflug condition are the better description
of Scheimpflug camera imaging.
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Figure 10: Intrinsic parameters results versus the number of the images for different calibration models.
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On account of the fact that the GNIM does not have
explicit intrinsic parameters used for comparison and the
limit of pages, we choose the calibration results of any two
checkerboards’ motion parameters, as illustrated in Table 5,
to verify the performance of the GNIM to a certain extent.
To facilitate comparison, the rotation matrix elements are
expressed as the Rodrigues parameter forms.

As shown in Table 5, the motion parameter calibration
results of GNIM are consistent with the other three models
despite of minor deviations, which indirectly prove the effec-
tiveness of the GNIM in Scheimpflug camera calibration.
That is, the GNIM accommodates a wide range of imaging
system including the Scheimpflug imaging system.

Furthermore, the 3D coordinates and structure of the
checkerboards are reconstructed with the help of calibrated
parameters and obtained image points. As far as the experi-
mental results indicate, the reconstruction results of the
checkerboard points using the four different Scheimpflug cal-
ibration models are basically in accord with each other, as
illustrated in Figure 12. Figure 12(a) depicts the recon-
structed 3D checkerboard points and the fitted plane while
the error distribution of reconstructed checkerboard points
is shown in Figure 12(b). Besides, the RMSEs of the distance
from the reconstructed points to the fitted plane using four
models are about 0.0300mm despite of slight fluctuations,
as given in Table 6.

According to the reconstruction results in Figure 12,
the reconstructed 3D points agree well with the fitted
plane in spite of minor deviations, which might result
from the following factors: (1) the distortion parameters
are not absolutely accurate to describe the lens distortion,
and (2) the image point coordinates obtained by corner
extraction also have errors inevitably. Consequently, the
error of image points will be enlarged in the process of
3D reconstruction.

As shown in Figure 12(b), the errors of reconstructed
points are approximately symmetrical about the plane center,
while the errors of the reconstructed points at the edge are
more significant. Nonetheless, the above reconstructed errors
(about 0.030mm) are still very small compared to the depth
of the checkerboard.

To further verify the accuracy, another two sets of
experiments are carried out with the help of two-axis elec-
tric rotary table (SLT-2MA) and three-axis electric transla-
tion table (ZG14TA) as shown in Figures 13 and 14,
respectively. The cooperated mark is successively mounted
on the two-axis electric rotary table and three-axis electric
translation table; therefore, the motions of cooperated mark
are pure rotations and translations, respectively, in the two
sets of experiments.

In the first experiment, the two-axis electric rotary table is
controlled to a rotation of no less than 5° around the two axes
for each rotation. As for the second experiment, we control
the three-axis electric translation table to a translation of
more than 10mm for each movement, and both the opera-
tions are repeated ten times.

Meanwhile, we estimate the pose change of the coopera-
ted mark via the first Scheimpflug imaging system with dif-
ferent imaging models. In this way, the spatial relationship

Table 5: Calibration results of motion parameters among calibration checkerboards using different calibration models.

Calibration model (R1
1, R2

1, R3
1) (T1

1, T2
1, T3

1) (R1
2, R2

2, R3
2) (T1

2, T2
2, T3

2)

RMM (1) (1.5067, 1.5080, −0.8159) (−54.7739, −45.2021, 442.8741) (1.9628, 0.7965, −0.3941) (−66.5666, −26.0286, 400.8027)

PLVM (1) (1.5392, 1.4766, −0.8186) (−53.7829, −48.3303, 441.7981) (1.9208, 0.7914, −0.4100) (−67.8423, −25.1659, 399.2397)

PCIM (1) (1.4928, 1.4434, −0.9046) (−52.5684, −44.1141, 441.0225) (1.8824, 0.7641, −0.4607) (−65.8903, −25.5468, 397.2328)

GNIM (1.5123, 1.4682, −0.8481) (−53.3728, −46.9573, 441.6816) (1.9031, 0.7725, −0.4432) (−66.7914, −25.6247, 398.4627)

0.1

3D reconstructed errors

0.05

0

120 100 80 60
Y (pixel) X (pixel)

40 20 0 0 20 40 60 80 100

Z
 (

m
m

)

−0.05

−0.1

(a)

−60

−65

−70

−75

−80
120

Z
 (

m
m

)

Y (mm)
X (mm)

100
80

60 40
20

0 0

�e error distribution of reconstructed checkerboard points

10 20 30 40 50 60 70 80

0.08

0.06

−0.08

−0.06

0.04

−0.04

0.02

−0.02

0

00
80 60 70 8

(b)

Figure 12: The reconstructed results and error distribution of the 3D checkerboard points. (a) The reconstructed 3D checkerboard points and
the fitted 3D plane. (b) The error distribution of reconstructed points with respect to the fitted plane.

Table 6: The RMSE of reconstructed points with respect to the
fitted plane.

Calibration model RMM PLVM PCIM GNIM

RMSE (mm) 0.0300 0.0287 0.0295 0.0311
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between the coordinate frames of the checkerboard and the
two-axis electric rotary table or three-axis electric translation
table can be converted into the hand-eye calibration problem
[45–48], which already has a very mature solution. Hence,
the reference pose of the cooperated mark can be obtained
via the two auxiliary equipment. And the pose estimation
errors with respect to the reference values of the two sets of
experiments are shown in Table 7.

It can be seen in Table 7 that the pose estimation errors
vary little in first three parametric Scheimpflug imaging
models, while they are slightly smaller than those in GNIM,
regardless of whether the cooperated mark is merely rotation
or translation. As revealed in Table 7, the measurement
results of rotation and translation can be obtained to an accu-
racy of about 0.040° and 1.5mm, respectively. Given that the
camera employed here is an ordinary DSRL camera, rather
than an industrial camera with high precision and robust-
ness, the pose estimation errors of the two sets of experiments
are relatively low, which also validates the accuracy and effec-
tiveness of the calibration models.

6. Conclusion

This paper presents a comprehensive survey of recent calibra-
tion methods of the Scheimpflug camera with perspective
lens. The general nonparametric imaging model is novelly
employed to deal with the problem as well. All the calibration
models are briefly recalled and compared in detail with
respect to each other, with some highlights on their respective
advantages and drawbacks. Real data experiments including
calibrations, reconstructions, and measurements are per-
formed to validate the performance of the calibration models.

As the experimental results indicated, compared with the
classic pinhole imaging model, the models undergoing
Scheimpflug condition are the better description of Scheimp-
flug camera imaging, especially when the tilt angle is greater
than 7°. Moreover, although the imaging models and the
parameter forms are various, the accuracies of the four cali-
bration models (RMM, PLVM, PCIM, and GNIM) are basi-
cally equal, while the accuracy of GNIM is slightly lower
compared with the other three parametric models in view
of the errors in reconstruction and pose estimation. Given
that the PLVM and PCIM require the pixel aspect ratio to
be known in advance, the calibrationmodel of RMM is rather
flexible. Besides, the experimental results reveal that the
parameters of tangential distortion are likely coupled with
the tilt angles of the image plane in the calibration models
of RMM, PLVM, and PCIM. In the actual calibration task,
the appropriate calibration model is supposed to be chosen
according to the specific implementation condition.
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