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Abstract

The use of condition monitoring and fault diagnosis (CMFD) in marine power systems
signi�cantly in�uences ship safety. This study divides the development of CMFD for marine power
systems into three periods and reviews the content, state and limitations of CMFD research for
each period. According to the research achievements and engineering experience of the authors’
team, typical application cases are introduced for CMFD in ships, including CMFD platforms on
engineering ships, salvage ships, container ships and ro-ro ships powered by solar photovoltaic
systems. Finally, prospective research directions are proposed for CMFD in marine power systems,
considering the research status of CMFD and the trend toward intelligent and eco-friendly ships.
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1. Introduction

As the main vehicles for global freight, ships
play an important role in international trade.
At present, the 55000 merchant ships exist-
ing worldwide account for over 90% of word
trade [1]. A marine power system is the heart
of a ship, and consists of equipment for gen-
erating, transferring and consuming various

energies. The energies provided by marine power
systems ensure the safety of ship navigation
[2].

Currently, over 99% of large merchant ships
use marine diesel engines as the main power
source; this is because the technologies for diesel
engines are so mature that the reliability of the
engines is essentially guaranteed. Additionally,
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diesel engines start quickly, and have a wide
power range and high ef�ciency [3].

The operating conditions of marine power sys-
tems are complicated and changeable, as the
sailing conditions of ships are harsh, and ships
must enter and leave ports frequently. When a
marine power system works over a long term
in high temperatures, high humidity, and/or cor-
rosive and/or vibrational environments, various
faults and damages will occur in the equipment
of the system, with negative effects on the per-
formance of the entire power system. Accord-
ing to a study on main engine damage published
by the Swedish Club, claims caused by mechani-
cal faults in ships accounted for 47% of the total
ship damage claims, generating nearly 384 mil-
lion USD of �nancial loss. More speci�cally, 28%
of the claims for mechanical faults were from
marine diesel engine faults, leading to damages of
approximately 13 million USD [4]. The study indi-
cated that marine power system faults can reduce
navigation safety, lead to serious maritime acci-
dents, and cause massive personal and property
losses. Consequently, it is necessary to study con-
dition monitoring and fault diagnosis (CMFD) for
marine power systems.

The signi�cance of CMFD techniques is as fol-
lows. First, they can effectively improve the safety
and reliability of ships, so as to avoid severe acci-
dents. Second, they can reduce the working load
of the crew on board, and decrease the number
of false negatives and false positives caused by
crew fatigue and limited experience. Third, they
can increase the operational ef�ciency of ships,
and reduce unnecessary wastes of parts andman-
power. Fourth, they can improve the limits of tra-
ditional ship maintenance, and promote changes
on maintenance methods, such as from correc-
tive maintenance and predictive maintenance to
condition-based maintenance. Fifth, they provide
the foundation for smart ships, including support
for intelligent operations, maintenance and man-
agement [5].

Hundreds of articles on machinery CMFD tech-
niques are published in academic journals, confer-
ence proceedings and technical reports every year.
Many researchers have studied CMFD for marine
power systems from both theoretical and applied
perspectives. This study reviews the research on
CMFD for marine power systems. The theoret-
ical research on CMFD for marine power sys-
tems is divided into three stages: of�ine condition
monitoring, online condition monitoring/remote
fault diagnosis and intelligent fault diagnosis.
As for applied research, this study describes

the construction and functions of CMFD plat-
forms for various ships. Furthermore, consider-
ing that ship construction is developing toward
green and/or smart ships, the corresponding chal-
lenges in CMFD for marine power systems are
proposed. With this review, readers can obtain a
clear and comprehensive understanding of CMFD
for marine power systems, and the application
cases can be used as references for practice.
Future research directions in this area could help
researchers conduct additional studies.

In Section 2, the research progress on CMFD
for marine power systems is reviewed. Based on
the research achievements and engineering expe-
rience of the authors’ team, typical application
cases for CMFD on ships are described in detail
in Section 3. Section 4 discusses future research
directions and challenges in CMFD for marine
power systems. Finally, in Section 5, the review is
concluded.

2. Research progress on CMFD

With the developments in automation, reliability
engineering andmaintenance theory, the research
progress on CMFD for a marine power system can
be divided into three generations, as shown in
Fig. 1. The �rst generation of research is mainly
based on all types of �eld-testing techniques; the
second generation is mainly based on online con-
dition monitoring and remote fault diagnosis; and
the third generation has mainly been based on
intelligent fault diagnosis and intelligent patrol
robots.

2.1 First generation of CMFD

In the �rst generation of CMFD, various tech-
niques for signal acquisition are used to develop
a variety of �eld-testing techniques, including
performance-parameter monitoring, oil monitor-
ing and vibration monitoring. These techniques
quickly detect the operating conditions of equip-
ment, and are suitable for periodic examinations
of marine machinery. To realize accurate fault
diagnosis, these acquired signals should be
further processed to extract appropriate fault
features.

2.1.1 Signal acquisition.

Performance parameters acquisition. In marine
power systems, performance parameters are
mainly applied in fault diagnoses for marine
diesel engines. The performance parameters
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Fig. 1. Development of condition monitoring and fault diagnosis (CMFD) for marine power systems

mainly include the temperature and pressure
of the media in the engines (e.g. air, fuel gas,
lubricating oil and coolant) and engine power.
An engine condition can be reasonably evaluated
by comparing observed performance parameter
values with standard values (i.e. the parameter
values in the normal state).

Based on performance parameters, Kyrtatos
et al. built a program library for simulating the
faults of a two-stroke marine diesel engine, and
used these programs to diagnose engine faults
[6]. Hountalas et al. developed a fault simula-
tion model based on performance parameters
for monitoring the condition of a marine diesel
engine, and identi�ed the fault modes of the
engine [7]. Zhao established a universal fault sim-
ulation model for marine diesel engines using
performance parameters, and identi�ed engine
faults using a simulation model [8]. Xu et al.
used ten performance parameters as fault fea-
tures (including the exhaust manifold temper-
ature and fuel consumption), and constructed
a fault-diagnostic model for the exhaust tur-
bocharging system of a diesel engine [9]. From the
above references, it can be seen that fault diagno-
sis based on performance parameters for marine
diesel engines is mainly conducted with simula-
tion models. Using these simulation models, we
could further explore how different faults affect
the performance parameters. However, there are
also several dif�culties when performance param-
eters are used in fault diagnosis: (i) the perfor-
mance parameters strongly in�uence the simu-
lation results, and are dif�cult to verify through
experiments; (ii) it is dif�cult to determine how
the performance parameters will vary when

concurrent faults occur in diesel engines; and
(iii) it is dif�cult to directly acquire certain per-
formance parameters from engines, such as the
maximum temperature in the cylinder, single-
cylinder cyclic oil volume and compressor �ow.
Currently, some commercial fault-diagnostic sys-
tems for marine power systems based on perfor-
mance parameters have been applied in engineer-
ing practice, such as the pressure mean indica-
tor system, and the ‘Computer Controlled Surveil-
lance’ system developed by MAN B&W [10].

Oil parameters acquisition. Oil monitoring was con-
ducted in the 1940s, including physicochemical
analyses of lubricating oils andwear particle anal-
yses. Testing methods for oil monitoring include
routine physicochemical analysis, ferrographic
analysis, spectrum analysis, particle counting and
magnetic plugmonitoring [11]. A physicochemical
analysis can re�ect the faults caused by poor lubri-
cation, based on indicators such as the lubricat-
ing oil viscosity, density, acid value, antioxidation
stability and wear resistance [12]. A wear-particle
analysis can be used to evaluate the wear state
of machinery, by analysing the characteristics of
wear particles in the lubricating oil.

In the early development of oil monitoring, the
methods for acquiring oil parameters weremainly
of�ine and portable. Of�ine methods have high
detection precision based on using testing instru-
ments in laboratories, but the testing time is quite
long. Therefore, they cannot monitor the condi-
tions of the lubricating oil in real time. As a con-
sequence, the best time for changing the failing
lubricants will be missed. In contrast, portable
methods have a short testing period, and can
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quickly evaluate oil conditions in the �eld. Peng
et al. analysed the number, distribution and mor-
phology of wear particles using instruments in a
laboratory, and detected faults in rolling bearings
[13]. Du et al. designed a portable oil-monitoring
device for measuring the physicochemical proper-
ties of oil. The device contained a four-in-one sen-
sor, a moisture sensor and a ferroelectric sensor.
The four-in-one sensor measured the oil viscos-
ity, density, dielectric constant and temperature.
Using this device, they quantitatively explored the
ageing process of lubricating oil from different
perspectives [14]. Agoston et al. used a thickness-
shear-mode microacoustic resonator to develop a
sensor for monitoring the viscosity of engine oil.
The sensor was suitable for detecting oil viscosity
changes caused by thermal deterioration [15]. The
MiniLab oil-monitoring system produced by Spec-
tro can monitor the key parameters of wear par-
ticles and physicochemical parameters of lubri-
cating oil. The device can achieve high monitor-
ing precision in the �eld, as well as in the labora-
tory [16]. However, with the development of sensor
technologies, the general trend is toward online oil
monitoring [17].

Vibration parameters acquisition. In the equipment
of a marine power system, structural gaps are
caused by installation errors, manufacturing devi-
ations and abrasions. These gaps can cause the
mass of themoving components to becomeunbal-
anced, leading to the generation of centrifugal
force. The centrifugal force can cause vibrations
in the moving components. Features describing
the vibration include the displacement, veloc-
ity, acceleration, frequency and phase. Different
vibration features are generally selected for dif-
ferent application scenarios. For example, the
displacement is generally collected by a dis-
placement sensor for low-frequency vibrations,
whereas the acceleration is collected for high-
frequency vibrations.

In recent years, research has indicated that the
internal faults of diesel engines in marine power
systems can be located accurately and diagnosed
quickly using the acquired vibration parameters
acquired. Guo et al. successfully collected vibra-
tion signals from an engine body, and used them
to successfully detect a wear fault in a cylinder
linear-piston ring [18]. Nag et al. added hydro-
gen into the fuel of a diesel engine to explore
how hydrogen affects the operation of the engine,
and collected the vibration signals under dif-
ferent rotating speeds and frequencies [19]. Xu

et al. studied the correlations between the inher-
ent vibrationmodes of a cylinder head and excita-
tion frequency of a diesel engine, providing a theo-
retical basis for determining the installation loca-
tions for vibration sensors [20].

2.1.2 Fault feature extraction.

Feature extraction from wear particles. The charac-
teristics of the wear particles in lubricating oil
are mainly extracted by processing wear-particle
images, which are further used to determine
the wear states and wear faults of the equip-
ment in marine power systems. Thomas et al.
(Swansea University) proposed a boundary chain
code for digitally representing the characteristics
of wear particles [21]. Uedelhoven et al. took two-
dimensional pictures of particles with an opti-
cal microscope, and explored the relationships
between these wear particle pictures and differ-
entwear states [22]. Beddowanalysed typical wear
particles, and used a Fourier series to extract the
characteristics of wear particles, such as their
roundness, long axis, short axis and irregularity
[23]. Podsiadlo et al. studied the fractal features
of wear particles, digital characterization meth-
ods, and the variable-scale properties of particle
images [24]. Peng et al. used a confocal laser scan-
ning microscope to collect wear particle images,
and extracted the surface roughness and tex-
ture parameters of the wear particles to describe
their three-dimensional morphology [25]. Wu et
al. proposed a new method for describing wear
states using online ferrographic images, and stud-
ied the colours of different wear particles in online
images. Three common metal wear debris types
were distinguished based on colour [26].

Feature extraction from vibration signals. The three
main feature extraction methods for vibration
signals are a time domain analysis, frequency
domain analysis and time-frequency domain
analysis. Time domain features include dimen-
sional parameters (e.g. standard deviation, vari-
ance, maximum and minimum amplitudes, root
mean square value and mean square error) and
non-dimensional parameters (e.g. skewness, kur-
tosis, crest factor and corrugation factor). A fre-
quency domain analysis can re�ect the cor-
relations between the operating conditions of
machines and their vibration signals through a
visualized spectrum analysis. A time-frequency
domain analysis can include, for example, a short-
time Fourier transform, Wigner-Ville distribution,
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wavelet transform or empirical mode decomposi-
tion (EMD). Time-frequency domain analyses can
process non-linear and non-stationary vibration
signals, thereby conforming to the actual work-
ing conditions of marine power systems. Con-
sidering the reciprocating and rotating charac-
teristics of marine power systems, many stud-
ies have been conducted on extracting fault fea-
tures from vibration signals. In Ref. [27], vibra-
tion signals were decomposed into wavelet pack-
age components; then, time-domain fault fea-
tures were extracted from the reconstructed time
series and used to diagnose faults in reciprocat-
ing machinery. Nikula et al. �ltered the vibra-
tion signals of a low-speed bearing and divided
the signals into short time windows, from which
the time-domain features were extracted [28]. Liu
et al. proposed a new fault detection method
based on the time-domain features of vibration
signals, and located a failing gear in a gearbox
based on these fault features [29]. He et al. com-
bined singular value decomposition with wavelet
package decomposition to extract energy features
of different frequency bands from reconstructed
vibration signals, and the newly proposedmethod
was successfully applied in a fault diagnosis of
pumps [30]. Cheng et al. used EMD to decompose
vibration signals into several intrinsic mode func-
tions, and extracted fault features based on the
Hilbert marginal spectrum, intrinsic mode func-
tions (IMFs) and IMF envelope spectrum [31].

2.2 Second generation of CMFD

Owing to the progress in sensor, computer and
network communication technologies, the CMFD
for marine power systems has developed toward
online and networked systems. Many research
institutions and scholars emphasize online con-
dition monitoring and remote fault diagnosis; in
this context, the second generation of CMFD has
emerged.

2.2.1 Online condition monitoring. Online condi-
tion monitoring meets the demands for real-time
fault diagnosis. The monitoring and alarm sys-
tem in a marine engine room is an important
part of engine room automation. Using the mon-
itoring system, the operational parameters of the
equipment in the engine room are monitored in
real time, and abnormal states in the equipment
can be detected during the intervals between

two checks. Many companies from France, Ger-
many, the United States and Norway have devel-
oped fault-diagnostic systems for marine diesel
engines based on performance parameters. For
example, theMarine PerformanceMonitoring sys-
tem developed by the Norwegian company KYMA
has been applied in marine diesel engines, and
has achieved satisfactory diagnostic performance
[32]. The engine condition and diagnostic sys-
tem produced by KONGSBERG monitors the fuel-
injection and combustion processes persistently,
and allows an expert system in the diagnos-
tic system to detect engine faults remotely [33].
Fault diagnosis formarine diesel engines based on
vibration signals started in the 1970s; presently,
many advanced countries participating in the
shipping industry have applied vibration signals
for online condition monitoring in main engines.
Speci�cally, using the vibration signals collected
from an engine body, the pressure diagrams of the
cylinders can be identi�ed. Using a combination
of the pressure diagrams and the instantaneous
angular speed, the in-cylinder pressure variations
can be calculated. Hu et al. designed a monitoring
and diagnostic system for a marine diesel engine
that integratedmultiplemethods and parameters.
The system contained six sub-monitoring sys-
tems, including thermal parameter-monitoring
systems, instantaneous speed-monitoring sys-
tems and cylinder pressure-monitoring systems
[34].

Online oil monitoring has attracted signi�cant
attention in the �eld of tribology, owing to its out-
standing application effects. Research on online
oil monitoring has mainly focused on the design
of online wear particle sensors and oil physico-
chemical sensors. Many companies have devoted
efforts to the development of new sensors. In par-
ticular, the Gill sensor company invented a sen-
sor for monitoring the volume of ferrograph wear
particles, and a viscosity sensor company from
Germany developed an ‘AS-series’ moisture sen-
sor. Kittiwake (from the UK) developed an ‘FG-
series’ online wear particle sensor, whereas MEAS
(from America) proposed a new online viscosity
sensor, the FPS2800B12C4 [35–39]. Many universi-
ties have also conducted relevant research. Specif-
ically, Murali et al. designed a sensor for count-
ing the number of wear particles at different sizes.
This sensor was designed according to the prin-
ciple that the capacitance changes when a par-
ticle passes through a sensor [40]. Hamilton et
al. and Wu et al. developed online ferrographic
sensors for monitoring the number of wear
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particles in lubricating oil, and further evalu-
ated the wear conditions of mechanical equip-
ment [41, 42]. Markova et al. and Heinisch et al.
designed online viscosity sensors based on acous-
tic vibration signals and a magnetoelastic princi-
ple, respectively [43, 44]. Raadnui et al., Schullerh
et al. andMoon et al. designed resistance-type vis-
cosity sensors and capacitance-type viscosity sen-
sors [45–47]. The Reliability Institute at theWuhan
University of Technology developed an online oil-
monitoring system for the marine power system
of an 8 000 m3 drag-suction dredger, and the vis-
cosity, moisture and abrasion losses were moni-
tored online using the system [48].

2.2.2 Remote CMFD. Developments in the Inter-
net and mobile communications have promoted
the application of remote CMFDs. Wärtsilä estab-
lished a condition-based maintenance (CBM)
system for monitoring the mechanical, per-
formance, and thermo-technical parameters of
diesel engines. With the CBM system, technicians
could monitor and analyse the technical parame-
ters of engines to determine a full life-cycle main-
tenance plan, so that the normal operating time
of the engines could be maximally prolonged [49].
The COSCO Group and Shanghai Maritime Uni-
versity developed a remote monitoring system for
an engine room that used Inmarsat communi-
cation to realize information exchanges between
the ship side and shore side. Inmarsat-C sent the
parameters of the equipment in the engine room
to the onshore company regularly for analysis, and
engineers could control the ship inland accord-
ing to the analysis results [50]. The Wuhan Uni-
versity of Technology built a ship remote fault-
diagnostic system denoted IRDS V1.0 in February
1999; after 20 years of development, the system
has developed into an intelligent remote CMFD
system using 4G/5G/GPS/Big Dipper/high broad-
band/Inmarsat for remote data transmission,
memory management, intelligent monitoring,
emergency decision-making and maintenance
management [51]. Chen designed a remote mon-
itoring system for dredger machinery based
on wireless networks. The system comprised
an onboard monitoring system, ship-to-shore
communication system and shore-based remote
condition-monitoring system. In the system, gen-
eral packet radio service messages and short mes-
sages were used to transmit data between ships
and shores [52]. Li et al. acquired the instanta-
neous angular speed of a marine diesel engine
using an online condition-monitoring system, and

passed the data back to a data centre on land
through compressed sensing technology. In the
data centre, the instantaneous angular speed was
uncompressed and processed to remotely diag-
nose combustion faults [53]. Yan et al. used an
online oil condition-monitoring system to collect
oil information, and sent the data to a shore-
based maintenance centre and laboratories sepa-
rately through a remote fault-diagnostic system.
The wear characteristics were extracted from the
oil information in the laboratories, and the wear
states and wear modes were identi�ed in the
maintenance centre [54].

2.3 Third generation of CMFD

The third generation of CMFD has emerged
based on developments in automation, arti�-
cial intelligence and big data, and focuses on
intelligent fault-diagnosis methods. With multi-
ple sources of information and data, the third-
generation CMFD uses intelligent algorithms to
imitate the inference processes of human beings,
and to realize man/machine diagnoses. Conse-
quently, engineers can evaluate the health con-
ditions of marine power systems without over-
hauling, and can make appropriate and smart
maintenance plans. At present, intelligent fault-
diagnosis approaches for marine power systems
include fault diagnoses based on quantitative
models, data-driven fault diagnoses and fault
diagnoses based on expert systems.

2.3.1 Fault diagnosis based on quantitative models.

In quantitative fault-diagnostic models, accurate
and reliable physicalmodels and/ormathematical
models are built, and faults are forecasted accord-
ing to the deviations between the outputs given by
the diagnostic models and observed values given
by the sensors. Precise physical models of marine
power systems can signi�cantly in�uence the
performance of the diagnostic models; therefore,
Hountalas et al. and Kimmich et al. built physi-
cal models for the key systems of diesel engines,
such as the intake, exhaust and fuel-injection sys-
tems. They found that fault-diagnostic models
developed based on the above physical models
could quickly identify incipient faults in the early
stages [7, 55]. The fault-diagnostic methods based
on quantitative models include the parametric
estimation method, state-estimation method and
parity-space method. In Ref. [56], the state equa-
tions were built for a rudder servo system (RSS)
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in a marine power system, according to the work-
ing principle of the RSS. By calculating the state
deviations under different fault modes, the RSS
faults were identi�ed. Oleksiy et al. introduced
a non-linear engine-dynamic model for captur-
ing internal engine states, and an unscented
Kalman �lter for concurrently performing distur-
bance and state estimations [57]. Considering that
the parameters of the diagnostic models vary sig-
ni�cantly with the changes in engine working
conditions, Han et al. proposed an enhanced inter-
mittent unknown input Kalman �lter for predict-
ing the faults in a marine diesel engine. The diag-
nostic model performed well in a complicated
working environment, and under varying work-
ing conditions [58]. As the parity space method
is mostly applied in linear systems, it is not suit-
able for complex and non-linear marine power
systems [59]. Quantitative models can accurately
identify faults with the support of precise physi-
cal or mathematical models. However, an exces-
sive number of characteristic parameters must
be estimated for the physical or mathematical
models; thus, the quantitative models are dif�-
cult to apply in fault diagnosis for marine power
systems.

2.3.2 Data-driven fault diagnosis. With advance-
ments in various data-mining technologies, data-
driven fault-diagnostic models have been built to
explore the information hidden in data, and to dis-
tinguish between the normal and fault states of
marine power systems. Currently, this is a practi-
cal technique for fault diagnosis.

Fault diagnosis based on statistical analysis. Statis-
tical analyses can be divided into univariate and
multivariate statistical analyses. Generally, a uni-
variate statistical analysis ignores the relevance
among variables (i.e. fault features), and is there-
fore appropriate for diagnosing faults with small
feature dimensions, such as in a statistical con-
trol process (SPC). Zhou et al. used an SPC to pre-
dict faults in marine diesel engines based on oil
information [60]. Conversely, a multivariate sta-
tistical analysis is effective at describing the rel-
evance among variables, and can therefore eas-
ily be applied for fault diagnosis with high fea-
ture dimensions. Principal component analysis
(PCA) is the most widely used multivariate statis-
tical method. Li et al. used PCA to extract princi-
pal components from vibration signals collected
from a gearbox.With these principle components,
the fault modes of the gearbox were identi�ed

[61]. To enhance the performance of PCA in non-
linear fault diagnosis, Wang et al. combined a ker-
nel density estimation (KDE) with PCA, and used
the KDE to estimate the probability density func-
tions of Hotelling’s T2 and Q statistics. With this
method, the incipient faults in a marine diesel
engine were diagnosed [62]. A PCA assumes that
data should obey a Gaussian distribution, but not
all data from marine power systems can meet
this demand. Independent component analysis
(ICA) has been proposed to solve this problem.
Loutas used an ICA to comprehensively extract
independent components from vibration signals,
acoustic emission signals and oil information, and
then built a relationship between the indepen-
dent components and fault modes of a gearbox
[63]. Comparedwith PCAapproaches, the informa-
tion entropy retained the physicalmeanings of the
fault features better. Gao used aminimumentropy
deconvolution method to extract clear fault fea-
tures from vibration signals, and used them accu-
rately diagnose bearing faults in a diesel engine
[64].

Fault diagnosis based on signal processing. When
equipment is in a fault state, the features of
the signals collected from the equipment will
change correspondingly, such as the amplitude,
phase position and frequency. By processing and
analysing the signals, we can comprehensively
evaluate theworking conditions of the equipment.
The signal-processing methods used in fault diag-
nosis include wavelet transforms, EMD and spec-
tral analysis. Silva et al. proposed a method for
extracting useful features in the wavelet domain,
and applied this method to diagnose the faults
of electric drives in an electric ship. The diag-
nostic results showed that the proposed method
could enhance the accuracy of fault classi�cation
[65]. Notably, spurious signals can easily exist in a
wavelet transform, as Fourier analysis has some
limitations in processing non-linear and non-
stationary signals. Moreover, signals with small
amplitudes are easily �ltered through a wavelet
transform. To solve this problem, Bi et al. com-
prehensively used wavelet denoising and EMD to
extract fault features from vibration signals, aim-
ing to identify cylinder knocking in diesel engines
[66]. Although EMD can be used to decompose any
signal, it lacks the support of mathematical mod-
els; thus, there is some blindnesswhen processing
signals with EMD. In marine power systems, the
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signals generated by different faults generate dif-
ferent spectral characteristics. A spectrum analy-
sis can determine the fault modes by comparing
the results of a modal analysis with known spec-
tra. Omar et al. used a power spectrum to process
pressure signals acquired from the fuel-injection
system of a diesel engine, and accurately evalu-
ated the combustion ef�ciency of the engine based
on features extracted from the pressure signals
[67]. In practice, one signal-processing method is
generally combined with other signal-processing
methods, so as to generate a more accurate diag-
nostic result.

Fault diagnosis based on machine learning. Machine
learning-based fault-diagnosticmethods aremore
appropriate for establishing non-linear relation-
ships between fault features and fault modes.
Manymachine learning algorithmshave been suc-
cessfully applied for fault diagnoses of marine
power systems, such as arti�cial neural networks
(ANNs) and support vector machines (SVMs). The
back propagation ANN (BP-ANN), as a typical
machine learning algorithm, has been widely
applied to detect faults in marine diesel engines,
such as faults in cylinders and wear faults [68–70].
However, the structure of the BP-ANN is dif�cult
to determine, and the convergence rate is slow.
To overcome these problems, ANNs with different
hidden-layer functions have been applied in the
fault diagnosis ofmarine diesel engines, including
networks based on the radial basis function, prob-
abilistic neural networks and fuzzy neural net-
works [71–73]. An ANN needs to be trained by a
large number of training samples, so it may not
perform well when the training data set is small.
An SVM is superior for non-linear fault identi�-
cation with small samples and high-dimensional
features. In Refs. [74, 75], fault features were
extracted from vibration signals and the instanta-
neous angular speed, respectively, and both stud-
ies developed SVM models for identifying com-
mon faults in marine diesel engines. Additionally,
Zhu et al. proposed a fuzzy SVM for diagnosing the
faults in amain engine in a ship power station [76].
Hu et al. proposed a multi-regression least-square
SVMmodel for identifying concurrent faults in the
cooling system of a main engine [77].

With advancements in the data-collection
capacities of multi-source information-
acquisition systems, the resultant massive
amount of data has brought new opportunities
and challenges to fault diagnosis. Deep learning
is an effective method for big data analysis and

mining. Zhang et al. used the vibration signals
collected from a cylinder head as direct inputs
to a convolutional neural network-based diag-
nostic model. The feature signals were processed
through the convolutional layers, and then a
mis�re fault was diagnosed based on a multi-
classi�cation function [78]. Zhang et al. developed
a long short-term memory network for identify-
ing bearing degeneration, based on information
re�ecting the evolution of bearing faults. The
model was optimized by using a particle �lter
algorithm to improve the diagnostic accuracy [79].
Deep learning has a strong representation learn-
ing ability, but also has problems in processing
the associated data, missing data and imbalanced
samples; these issues should be solved in the
future.

Fault diagnosis based on information fusion. Gener-
ally, the information from a single sensor cannot
re�ect the overall working conditions of marine
power systems. Information fusion can integrate
multi-source information, so as to describe the
states of marine power systems more compre-
hensively. Song et al. used the Dempster–Shafer
(D-S) theory to fuse performance parameters col-
lected by multiple sensors, and then used them
to diagnose faults in a ship diesel engine [80].
Unlike D-S theory, an evidential reasoning (ER)
rule clearly distinguishes between the reliability
and importance of evidence [81]. Xu et al. com-
prehensively used two-dimensional and three-
dimensional characteristics of wear particles to
identify the wear modes of a marine diesel engine
[82]. In practice, to improve the performance of
fault-diagnostic models, the results given by sev-
eral diagnostic models can be fused at the deci-
sion level. Xu et al. developed three wear fault-
diagnosticmodels formarine diesel engines based
on a belief rule-based (BRB) inference methodol-
ogy, ER rule and BP-ANN. By considering the diag-
nostic accuracy and stability of every diagnostic
model, a reliability factor was calculated for every
model. Finally, the outputs of the three models
were fused with an ER rule at the decision level,
to generate a more robust diagnostic result [83].

2.3.3 Fault diagnosis based on expert systems.

Expert domain knowledge is essential in fault
diagnosis for marine power system due to the lack
of high-quality fault data [84]. Current research
on expert systems mainly focuses on system
optimization and combinations with other algo-
rithms. The fuzzy expert system is one of the
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Fig. 2. CMFD platform for engineering ships

most widely applied expert systems. Tasdemir et
al. used experimental data on engines and domain
expert experience simultaneously to build a fuzzy
expert system, which was applied to estimate and
predict the power, torque and combustion perfor-
mance of an engine [85]. Although a fuzzy expert
system can process information uncertainty to
a certain degree, its capability for learning and
knowledge acquisition requires further enhance-
ment. A BRB inference methodology can address
different types of information uncertainties, such
as ignorance, fuzzy information, incomplete infor-
mation and probabilistic uncertainties [86]. BRB
approaches have been successfully applied in the
fault diagnoses of marine power systems. Consid-
ering that the materials of each wear part in a
diesel engine were different, Xu used the contents
of the different elements in the lubricating oil as
fault features, and proposed a diagnostic model in
a parallel structure for locating the wear parts in
a diesel engine. The diagnostic model comprised
several sub-BRB systems corresponding to the key
wear parts of the engine. More importantly, the
model was appropriate for concurrent fault diag-
nosis [87]. In Ref. [88], a bi-level BRB model was
established to identify the wear modes of a diesel
engine step by step, simultaneously increasing the
diagnostic accuracy and reducing the model com-
plexity. Additionally, BRB is also combined with
other algorithms, such as Bayesian network, to
improve the diagnostic accuracy with high uncer-
tain data [89].

In third-generation CMFD, in addition to the
above intelligent diagnostic methods, a patrol
robot is another potential approach that should
be further applied in CMFD for marine power sys-
tems. A patrol robot synthesizes robotics, auto-
matic control and image processing to realize
intelligent patrols for key equipment in marine

power systems, regardless of whether it is in a
conventional or dangerous environment. It can
also help evaluate the operating conditions of
marine power systems and identify faults. The
patrol robot is a further expansion of IntelliSense.
It will play an important role in the construction
of an unmanned engine room, and will promote
the further development of smart ships.

3. Application cases of CMFD in marine
power systems

Since the 1980s, Wuhan University of Tech-
nology has conducted research on CMFD for
marine power systems. They have developed sev-
eral CMFD systems for various ships, including
dredgers, salvage ships, container ships and a
solar photovoltaic ro-ro ship.

3.1 CMFD platform for dredgers

The equipment in dredgers generally operates in
harsh environments, and wear faults can easily
occur. Considering the operating characteristics
of dredgers, an innovative philosophy was pro-
posed regarding the management of the machin-
ery in dredgers, involving remote wireless con-
dition monitoring, fault diagnosis and mainte-
nance. Different types of dredgers were selected
as application objects; most of them belonged
to the Changjiang Waterway Bureau. A modu-
larized and distributed machinery management
platform was developed, and provided functions
for remote monitoring, fault diagnosis, machin-
ery management and maintenance-decision sup-
port. As shown in Fig. 2, the CMFD platform cov-
ered ships, inshore diagnostic centres and inshore
maintenance centres [12].
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Fig. 3. CMFD platform on the dredger Xipan 2

The remote platform mainly monitored the
key electromechanical equipment (such as diesel
engines and electric generators), key dredging
equipment (such as dredge pumps and gearboxes)
andhydraulic systems. The platform fused instan-
taneous angular speed, performance parameters,
vibration signals and oil information to detect
faults and predict the health states of dredgers.
The dredger, maintenance centre and diagnostic
centre communicated with each other through
remote wireless communication. By analysing
the maintenance data of the equipment in the
dredgers, a network-based database, model base
and knowledge base were built. Visual Basic was
used as the software platform for developing
a remote maintenance-decision tool; this soft-
ware was able to determine maintenance modes,
makemaintenance plans, optimizemaintenance-
process routes and support emergency mainte-
nance.

The CMFD platform was successfully applied
in several dredgers, such as the Hangjun 20, the
Changjing 2 and the Xipan 2. Taking the Xipan 2
as an example, the CMFD platform for the dredger
is shown in Fig. 3. The CMFD platform could
detect abnormal states of the main engine and
hydraulic system, and then could send alarms to
engineers on board. Meanwhile, with the intelli-
gent diagnostic models integrated into the plat-
form, the potential wear faults in the marine
power system could be diagnosed. The online oil-
monitoring system of the CMFD platform on the
Xipan 2 contained an online ferrographic sensor,
an online viscosity sensor and a moisture sensor,
by which the wear particle content and particle
images were acquired. With the particle content

and particle images, a system was built incorpo-
rating wear-state monitoring, wear fault-feature
extraction and wear-trend prediction [90]. Addi-
tionally, a particle contaminant-monitoring sys-
tem in the CMFD platform monitored and evalu-
ated the degree of contamination of the hydraulic
oil. Speci�cally, the particle counter calculated the
number of particles with sizes > 4 µm, > 6 µm,
> 14 µm and > 21 µm. Based on the correspon-
dence between the number of particles and Inter-
national Standards Organization cleanness codes,
the contaminant degree could be determined [91].
Based on the evaluation results, severely polluted
hydraulic oil was able to be replaced in time,
enhancing the service lives of the hydraulic com-
ponents. Meanwhile, the oil information acquired
on board was sent to the diagnostic and mainte-
nance centres through the wireless network. In
these centres, the data was used to study the fault
mechanisms, and to develop more accurate diag-
nostic models.

With the use of CMFD platforms, the failure fre-
quency andmean time to repair are both reduced.
Compared with a dredger without the CMFD plat-
form, the working hours per month of the dredger
with the CMFD platform increase by 3.4%, and the
maintenance cost is reduced by 5%. The public ser-
vice capability of dredgers is improved with CMFD
platforms; this is signi�cant for the maintenance
of the Yangtze River waterway.

3.2 CMFD platform for salvage ships

Salvage ships are the most reliable safeguards
for human lives and property security. A team
fromWuhanUniversity of Technology installed an
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Fig. 4. Positions of sensor installation and measurement principle for instantaneous angular speed

online CMFD platform on several ocean salvage
ships. The CMFD platform monitored the condi-
tions of themain engine, auxiliary engine, gearbox
and hydraulic system. The platform comprised
monitoring modules for performance parameters,
such as the instantaneous angular speed, vibra-
tion, lubricating oil, particle contaminants and
telecommunication. Among these modules, the
module for the instantaneous angular speed is
an essential part of the CMFD platform, as it can
monitor the combustion states in cylinders. In
addition, it can be used to rapidly diagnose com-
bustion faults [92].

A magneto-electric sensor was used to collect
the instantaneous angular speed signals. Fig. 4
shows the installation positions of the sensors
and the measurement principle for the instanta-
neous angular speed. As shown in Fig. 3, a TDC
sensor was installed on the wedge opposite to
the head face of an engine �ywheel, and the
instantaneous angular speed sensor was installed
above the �ywheel. The signals collected by the
two sensors were transformed from analogue sig-
nals to digital signals by a data-acquisition card,
and were stored in an industrial control computer
for further analysis. Wang illustrated how to �l-
ter noise and extract features from the instan-
taneous angular speed based on EMD and varia-
tional mode decomposition methods [93]. Based
on a multi-harmonic phase theory, combustion
faults such as mis�res, uneven power and abnor-
mal fuel-supply advance angles could be identi-
�ed by comparing the amplitudes and phase posi-
tions of the instantaneous angular speed in differ-
ent harmonic phases [94].

Salvage ships are regarded as aquatic �re sta-
tions, and are used to save lives. CMFD plat-
forms ensure the safe and reliable operation of sal-
vage ships, so that the ships can work ef�ciently.
CMFD platforms have been applied in many of the
salvage ships af�liatedwith China Rescue and Sal-
vage. These salvage ships have rescued thousands

of lives and ships, along with safeguarding per-
sonal safety and property.

3.3 CMFD platform for screw shafts in container

ships

CMFD systems for marine power systems have
been applied in the 13500TEU and 21000TEU con-
tainer ships of the COSCO Shipping Group. Based
on the platform, the condition of the stern bear-
ing oil is monitored online, and time series are
acquired re�ecting the physicochemical proper-
ties of the lubricating oil and content of the wear
particles. All online monitoring data are centrally
managed on board, and can be accessed and pro-
cessed remotely through satellite data transmis-
sion. Fig. 5 shows the stern bearing in a real con-
tainer ship, and an online monitoring device for
the stern bearing oil. The online motoring sys-
tem comprises an electromagnetic inductionwear
particle counter, viscosity sensor, moisture sen-
sor and electromagnetic oil pump. The device col-
lects oil samples from an oil circuit in the stern
bearing, and the oil samples return to the oil cir-
cuit again after being tested by the sensors in the
device.With this device, various indicators re�ect-
ing the lubricating oil condition can be monitored
in real time.

Based on this online condition-monitoring
device, a dynamicmesh �nite-elementmodel was
built to describe the �lm of the stern bearing oil
and the movement of the wear particles in the oil
�lm. The �nite-element model could calculate the
content of thewear particles in the oil-return pipe,
so that the distribution of wear particles in the
stern bearing could be inferred based on the mon-
itoring information. Through the �nite-element
model, the moving trajectories and dynamic dis-
tributions of the wear particles in the oil �lms of
the stern bearing under different rotating speeds
and oil �lm loads were determined. Consequently,
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Fig. 5. Stern bearing in a real container ship and online oil-monitoring device

the shafting dynamic model was coupled with
the lubrication model to explore the mapping
relationships between the monitoring parame-
ters (such as bearing bush temperature, vibra-
tion, �lm thickness andwear-particle content) and
the abnormal wear modes of the stern bearing.
All of these relationships constituted the knowl-
edge base for fault diagnosis. Fig. 6 describes
the detailed diagnostic- and model-calculation
processes. Currently, the CMFD platform is being
used by a shipping company to develop a smart
cabin system for a container ship, generating a
pro�t of over 3.2 million RMB.

3.4 CMFD platform for solar photovoltaic ro-ro

ships

To ensure the reliability of the solar photovoltaic
system in a large ro-ro ship named ‘COSCO
Tengfei’, a CMFD platform for the solar photo-
voltaic system was developed, as illustrated in
Fig. 7 [95]. The platform collected the data of
every module in the solar photovoltaic system in
real time, including environmental parameters,
photovoltaic controller data, battery data, grid/off-
grid inverter data and power-distribution cabi-
net data. The platform monitored the operating
conditions of the photovoltaic system, and dis-
played alarms when the system was in an abnor-
mal state. Under these circumstances, the con-
trol equipment was activated, and took protec-
tive actions. Through the 3G network, a data com-
munication interface was built between the CMFD
platform and land-based Internet. Moreover, a
browser/server (B/S) structure based on web tech-
nology was established, and the engineers in the
shore-based data centre could remotely watch the
operating conditions of the solar photovoltaic sys-
tem through the web explorer in real time. In the

platform, a FrameView operation stationwas used
as the human–machine interface in the upper
computers. The upper computers could display,
store and process data through the interface. The
data stored in the upper computers was analysed
to simulate the processes of solar power genera-
tion in large ocean ships, and to evaluate the fac-
tors in�uencing power generation. These studies,
based on historical data, have helped promote the
development of solar ships.

The software for the CMFD platform contained
modules for data input, data processing and data
output. Fig. 8 illustrates the design process of
the software. The software read data from the
solar charger controller, battery-management sys-
tem, inverter and monitoring system of the ship
power station, respectively, using the RS 485 pro-
tocol. The data included the voltage and current
of the photovoltaic batteries, voltage and cur-
rent output by the inverter, inverter frequency,
inverter power, and inversion ef�ciency. Once the
platform received the fault data, the solar con-
troller, inverter, battery-management system and
ship power station automatically took protective
actions, and the platform generated alarms. The
fault messages were sent to the remote terminals
via satellite communication, and then the termi-
nals informed the engineers to handle the fault in
suf�cient time. The software also stored the real-
time parameters of the solar photovoltaic system
and periodically cleared the historical data, mak-
ing it convenient for historical data queries.

The solar photovoltaic system in ‘COSCO
Tengfei’ was equal to a 143 kW solar generator,
and could work normally with the CMFD system.
Assuming that the photovoltaic system worked
16 h every day with suf�cient sunlight, the ship
could save 0.46 t of fuel oil; this is quite meaning-
ful for energy conservation and emissions reduc-
tion in the shipping industry.
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Fig. 6. Fault diagnostic process and model calculation for stern bearing

Fig. 7. Structure of the CMFD platform for the solar photovoltaic system in the ro-ro ship

4. Research trends and challenges

Nowadays, ships are developing toward green
and low-carbon approaches. Simultaneously,

advanced technologies such as arti�cial intelli-
gence, cloud computing, the Internet of Things
(IoT) and big data have promoted the develop-
ment of smart ships. With this background, the
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Fig. 8. Design process of the CMFD software for the solar

photovoltaic system

CMFD for marine power systems is expected to
develop in the following directions.

4.1 Development of remote shore-based driving

and control technologies for ships, and building

of ship-control centres on land

Weshould develop shore-based control centres for
ships, and combine them with autonomous navi-
gation systems and intelligent robots on board to
create a ‘shore-based driving and control + ship-
side attending’ navigation mode. With the new
navigation mode, the number of crew on board
can be reduced, and the navigation security can be
improved. In the future, the engine control room
on board will switch to a shore-based engine-
control centre (ECC). The ECC will be an important
part of the CMFD for marine equipment, and will
strengthen the collaboration between ships and
control centres on land, so that shipping enter-
prises can control their entire �eets remotely.
Remote fault diagnosis for ships will be con-
ducted based on cloud computing. Based on cyber-
physical systems, the remote fault-diagnostic sys-
tem will sample, store, analyse and mine the
big data collected from ships, and make deci-
sions and predictions based thereon. Further-
more, we should take full advantage of ship-
borne systems and shore-based control centres
to study a vessel–shore integrated maintenance
mode, including vessel–shore integrated main-
tenance resource planning, dynamic scheduling,
supply and distribution. Notably, however, there
are some challenges in the construction of shore-
based centres. First, the staff in shore-based cen-
tres should have a real perception of the situ-
ation at sea to manipulate ships in a reliable

and safe way. Therefore, we must further under-
stand the human factors in�uencing remote con-
dition monitoring and ship handling. In addi-
tion, smart sensing technologies, digital mod-
elling technologies and integratedmodelling tech-
nologies must be further developed. Then, driv-
ing and controlling ships from the shore can
propose higher demands for crew quality. The
crews should master essential skills, including
those concerning information sensing, communi-
cation, navigation and remote control, and should
expand their knowledge regarding operating and
maintaining intelligent systems in shore-based
centres.

4.2 Developing monitoring and security

technologies for new energy ships

Nowadays, new energy ships such as solar, fuel
cell and hybrid ships are being more widely used.
Compared with traditional fossil fuel energy-
powered ships, new energy ships aremore compli-
cated and have more hidden safety hazards, such
as leakages of hydrogen and thermal runaways of
lithium batteries. Consequently, the CMFD plat-
form should be built for new energy ships based
on multiple analysis methods. For example, the
CMFD platform should comprise a marine IoT
platform and a big data platform, along with the
technical frameworks for the application of these
platforms. In the construction of CMFD platforms
for new energy ships, an IoT protocol should be
established while considering the characteristics
of the ships. The compatibility and expansibility
of the data format and content should be consid-
ered in the IoT protocol. Based on the CMFD plat-
form, intelligent fault-diagnostic models should
also be built for identifying the fault states of key
equipment in new energy ships, and for locat-
ing faulty components. Moreover, the fault trends
should be predicted using diagnostic models. As
ships powered by different new energies have
their own characteristics, developing an appropri-
ate CMFD system for a speci�c type of new energy
ship is a signi�cant challenge affecting ship secu-
rity. For example, in liquid natural gas (LNG) ships,
methane sensors, smoke sensors and optical sen-
sors should be installed in the LNG tanks and
pipe connections in the fuel-supply systems. All
of these sensors can monitor the condition of the
engine room, so as to avoid �re accidents. In solar
energy-powered ships, the energy systems are dis-
persed. Therefore, determining how to manage
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these energy systems centrally and how to mon-
itor photovoltaic power stations in real time are
particularly important for ensuring ship safety.

4.3 Combining energy-ef�ciency control for

marine power systems with CMFD techniques

To promote and optimize energy ef�ciency in
ships, researchers should study dynamic mod-
elling for the navigation environment and ship
energy ef�ciency, energy-ef�ciency monitoring
and evaluation, adaptive control of energy ef�-
ciency and loading optimization. Speci�cally, by
analysing the characteristics of the navigation
environment, ship-energy consumption, and nav-
igation speeds in different segments and sea-
sons, a dynamic response relationship can be
built between the navigation environments and
ship propulsive loads. We should study how to
monitor the fuel consumption, gas consump-
tion, electric consumption, power, rotating speed,
speed relative to water, speed relative to land
and other features used in energy-ef�ciency man-
agement. Monitoring data regarding energy ef�-
ciency should be preprocessed using machine
learning methods. With the features extracted
from the data, an evaluation model for the ship’s
energy ef�ciency should be developed to iden-
tify the sailing conditions of ships and evalu-
ate the energy ef�ciency. Based on the evalua-
tion results, the relationship between the accu-
mulated energy consumption and rotating speed
can be studied, and a speed-optimization model
can be established to realize self-adaptive con-
trol of the energy ef�ciency in ships. Based on
the results from the speed optimization and tak-
ing the navigation environment as the constraints,
we can explore how the speed and loading affect
the energy ef�ciency of the ships. Currently, most
studies on ship energy-ef�ciency control focus
on data acquisition; however, analysing and min-
ing the data to explore the information hidden
behind the data is the foundation for evaluating
and predicting energy ef�ciency. Thus, in-depth
studies on intelligent modelling approaches and
intelligent optimization algorithms will be the
keys to combining energy ef�ciency control with
CMFD.

4.4 Combining ship-motion control with CMFD

techniques

Presently, ship propellers are changing from
traditional propellers to shaft-less rim-driven
thrusters, as the new thrusters can decrease

the power loss in the energy-transfer process,
increase the energy-transfer ef�ciency and cargo
dead weight, and reduce the manufacturing dif-
�culty and cost. To promote the application of
shaft-less rim-driven thrusters in practice, in
addition to the technical issues of the shaft-less
thrusters themselves, establishing an appropri-
ate condition-monitoring system for the thrusters
is another key challenge. A shaft-less rim-driven
thruster has a tight structure, and every part is
produced with high precision. Meanwhile, the
thruster operates in a harsh environment with
high salinity. To ensure the safe and reliable oper-
ation of shaft-less rim-driven thrusters, control
methods and CMFD systems should be developed.
The CMFD platforms should monitor the condi-
tion of the thrusters without damaging or disturb-
ing the performance of the thrusters. Currently,
most permanent magnet synchronous motors
(PMSMs) in shaft-less rim-driven thrusters use
position-sensor-less control; however, when the
thruster operates at a low speed or starts fre-
quently, it is dif�cult to control the PMSM using
the position-sensor-less method. Therefore, we
should explore high-resolution online measure-
ment methods for measuring the rotor angu-
lar velocity, so that the PMSM rotating speed
can be precisely controlled. This research is
extremely signi�cant for improving the speed-
regulation performance of PMSMs. At the same
time, intelligent cooperative control for multiple
shaft-less rim-driven thrusters should be stud-
ied to enhance the manoeuvrability of ships.
With regard to CMFD, we should develop new
vibration-monitoringmethods to collect the struc-
tural vibration signals of thrusters. The vibration
is generally generated by the abnormal wear of
water-lubricated bearings, and the unsteady pul-
sating force of the propeller. With the new mon-
itoring methods, faults in key components in the
thrusters can be diagnosed, which is essential to
ensuring the safety and reliability of shaft-less
rim-driven thrusters.

5. Conclusions

In this study, we summarized the develop-
ments in CMFD for marine power systems. Var-
ious techniques, models and algorithms were
reviewed, based on the three periods of CMFD. The
CMFD systems applied on several typical ships
were illustrated in detail. These ships included
dredgers, salvages, container ships and solar pho-
tovoltaic radio ships.
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Although advanced CMFD techniques are avail-
able in the literature, there are still several dif-
�culties affecting their implementation in prac-
tice. The dif�culties include: (i) only a small
amount of data is highly quali�ed to be used
for developing the CMFD models directly, owing
to incorrect data-collection approaches or faulty
data collectors; (ii) the CMFD for the marine
power systems is ignored in the design phase of
ships, such that the essential interfaces for CMFD
systems are not reserved, or such that many addi-
tional sensors have to be installed to meet the
demands of the CMFD systems; (iii) theoretical
research on CMFD is divorced from practice (e.g.
the speed of some feature extraction methods or
diagnostic algorithms cannot meet actual appli-
cation demands); and (iv) with new energies and
new propellers being applied on ships, the mon-
itoring requirements, implementation plans and
standards of CMFD must be modi�ed.

The CMFD for the next generation of marine
power systems will focus more on how to serve
new energy ships and smart ships. We believe
that the CMFD will develop in the directions pro-
posed in Section 4. Meanwhile, additional atten-
tion should be paid to data acquisition, monitora-
bility design, and close combinations of CMFD the-
ories and applications, so as to ensure that the
CMFD systems for marine power systems can play
a role in the maintenance of ships.

Supplementary data

Supplementary data is available at Transportation
Safety and Environment online.
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