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Abstract 

Background: Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large  range of control 

methods. The goal of this paper is to review and classify these control strategies, that determine how these devices 

interact with the user.

Methods: In addition to covering the recent publications on the control of lower-limb  exoskeletons for gait assis-

tance, an effort has been made to review the controllers independently of the hardware and implementation aspects. 

The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-

level) from the implementation of position/torque control (low-level) and the detection of the terrain or user’s inten-

tion (high-level). Within these levels, different approaches (functional units) have been identified and combined to 

describe each considered controller.

Results: 291 references have been considered and sorted by the proposed classification. The methods identified 

in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user’s 

movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events 

(followed by state machines or time-based progression), or continuous estimations using state variables. The desired 

action is determined based on position/torque profiles, model-based calculations, or other custom functions of the 

sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to 

a more detailed description of these methods, the variants of implementation within each one are also compared and 

discussed in the paper.

Conclusions: By listing and comparing the features of the reviewed controllers, this work can help in understanding 

the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories 

for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial 

assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect 

terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. 

An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further 

studies are discussed.
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Introduction
Powered lower-limb orthotic devices, also called powered 

exoskeletons, are often considered as tools in rehabilita-

tion and the assistance of the human gait. A significant 

amount of research in different fields has been dedicated 

to developing and improving the performance of these 

devices, and there are many challenges in this area of 
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research due to inherent requirements of portability and 

safe interaction with the user and the environment. One 

of the most important aspects for improving the perfor-

mance of these devices is their control [1].

Currently, there are two main types of exoskeletons 

for gait assistance: the ones for full mobilization, and 

the ones for partial assistance. Full mobilization exoskel-

etons are designed to move the legs of people suffering 

from a severe loss of motor control or motor disorders, 

typically in people with spinal cord injury SCI. �e actua-

tors must have a high torque capability because they pro-

vide the entire torque required for the movement. Such 

devices are available commercially since 2011, when the 

ReWalk (ReWalk Robotics, Israel) was released on the 

market. �ey could be developed quickly because their 

control strategy can be simply position control over time. 

�ere is no need to collaborate with an existing voluntary 

movement of the legs, because there is none (or it is very 

weak) and thus the user’s legs are assumed to be passive. 

�e start of the gait is often triggered by the upper body 

movements or buttons pressed by the fingers, which is 

simple to implement. �ese exoskeletons seem more suc-

cessful because they dramatically improve the bipedal 

ambulation capability (from no gait at all to some slow 

gait).

Partial assistance devices are generally lighter, targeting 

various less severe handicaps. �ese could be the loss of 

stamina because of aging [2], the loss of strength or coor-

dination because of incomplete spinal cord injury SCI, 

stroke, neurodegenerative diseases, etc. �ese devices 

can also assist the gait of healthy people, which can be 

useful for endurance augmentation purposes. �is is 

more challenging because the device has to assist more 

than it is hindering its user, given the complex nature 

of the interaction with the user. People who can already 

walk independently also have higher expectations for the 

performance (e.g. higher gait speed). A major subcat-

egory of partial assistance exoskeletons are the devices 

that are intended for rehabilitation purposes.1 Here, the 

ultimate purpose is to train the users to become inde-

pendent of the assistance offered by the device. A funda-

mental distinction can thus be made between the desired 

outcomes of these exoskeletons versus the ones that are 

used to directly assist the mobility only when wearing 

the device. Actually, a training strategy for rehabilitation 

may consist in resisting the user movement [3]. Notwith-

standing this difference in the end goals, there is a lot of 

commonality between the two applications in terms of 

the techniques used for control.

Several reviews already exist on different aspects of 

exoskeletons and gait assistance devices, but very few are 

focused on control. �e two most exhaustive reviews of 

control strategies to date are the ones of Tucker et al. [4] 

and Yan et al. [5]. However, these are already 5 years old 

at the time of writing this paper, and many new develop-

ments deserve to be mentioned, since this field is evolv-

ing fast. More than 190 new publications addressing 

control strategies have been identified since the publica-

tion of the two previous reviews in 2015, and advance-

ments have been  made with new control methods and 

device designs, resulting in major performance improve-

ments in terms of metrics such as metabolic cost reduc-

tion and capabilities such as crutch-less dynamic walking. 

�e review of Tucker et al. is broad and considered both 

orthoses and prostheses. A “generalized control frame-

work” was proposed with a 3-layer hierarchical control-

ler, and also the environment, the user and the hardware 

of the device. But this review did not provide much detail 

on the mid-level layer of control. �e article by Yan et al. 

focuses on the control of exoskeletons and orthoses, but 

it is mostly organized around the devices themselves, and 

how they are built (e.g. single/multi joints).

Some reviews have also been recently published on 

gait assistance devices [6–9], but none of them compre-

hensively address the control aspect. A recent review by 

Sawicki et al. [7] focused on comparing the results of par-

tial assistance for the gait, and only considered the suc-

cessful orthoses with respect to metabolic cost reduction. 

�is excludes all the devices that did not undergo such 

testing and also full mobilization exoskeletons. Also in 

this article, few details are given on the details of the con-

trol part. A more broad review by Kalita et al. [8] studied 

the existing exoskeletons and orthoses in the literature, 

categorizing them according to joint structure, actua-

tion and control strategy. Control strategies are roughly 

divided into 9 categories, each one only briefly explained 

without going into the details.

In this review, the various control approaches of gait 

assistance devices are thoroughly addressed, focusing 

on the lower-limb exoskeletons designed to enhance the 

locomotion of disabled or healthy people. Compared to 

the existing reviews, a stronger emphasis is placed on 

the control methods and separating them from the hard-

ware and implementation details as much as possible. 

Based on the existing control methods in the literature, 

a modular classification framework consisting of 3 layers 

is proposed. �e purpose of the framework is to enable 

describing all of the existing control strategies with the 

minimum number of functional elements. �is paper 

also shortly reviews the metrics used to characterize the 

1 Although for severely disabled patients, full mobilization is also used in the 

early stages of rehabilitation, most rehabilitation devices fit in the partial assis-

tance category better.
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performance of these robots when worn by a user. How-

ever, the assessment of the performance of the cited con-

trollers and their comparison are beyond the scope of 

this review.

Assistive strategies
From the control perspective, the main challenge for gait 

assistance is to contribute to the intended movement, 

since the device cannot directly communicate with the 

wearer to clearly recognize the intention and collaborate 

effectively. Effective collaboration can be interpreted in 

different ways, depending on the context and application. 

In general, for partial assistance it would mean synergy 

in forces or torques between the user and the device, and 

for full mobilization it would be coordination between 

the movements of the exoskeleton and those of the user’s 

upper body. Many strategies are used to identify the 

user’s intent, and apply an appropriate torque or motion 

accordingly. In the rest of this section, the existing strate-

gies will be reviewed and discussed. Before getting into 

the review of these strategies, the rationale behind the 

criteria that were used for screening the literature and 

the proposed classification method will be explained, and 

the methodological steps will be described.

Methods

Scope and methodological steps

�e main question to be addressed in this part is: what 

approaches have been used in the literature up to now 

for controlling lower-limb exoskeletons with the purpose 

of directly assisting the wearer’s gait? Target devices for 

the controllers in this review do not need to provide an 

improvement of the user’s health. Although the devices 

are typically anthropomorphic, exceptions also exist 

(such as [10–13]). �e so-called “soft exoskeletons” (exo-

suits) are included too, even if these are not really stiff 

“skeletons”, but closer to “tendons and muscles”. �e 

papers that do not deal directly with an exoskeleton, but 

suggest a sensing method that could be useful for them 

are included as well. As explained previously, many gait 

assistance devices are presented in the context of reha-

bilitation. In light of the similarities from the control 

perspective, we did not limit the scope of this review to 

a specific application; as long as the described controller 

is supposed to assist the user during gait, the method was 

included in this review regardless of the long-term goal.

�is review aims to address wearable gait assisting exo-

skeletons, because they have the potential to be used for 

real-life applications out of the laboratory. However, the 

articles involving fixed-frame devices designed to explore 

such control strategies (e.g. LOPES [14], ALEX [15], the 

exoskeleton emulator of Collins et al. [16], etc.) are also 

included in this review. In addition, if at least part of the 

control strategy proposed for a fixed-frame rehabilita-

tion device also assists the user’s gait and is applicable to 

assistive exoskeletons, it is included (for example [17]). 

�e strength augmentation devices are excluded because 

they are not designed to enhance the walking mobil-

ity. �e main consequence is that they are of no use for 

people affected with gait deficiencies, or healthy people 

willing to improve their ability to walk (higher speed 

and/or endurance) with no load. �ey also mainly focus 

on load lifting so the control strategies may be different, 

and may also involve upper limbs. �e task of carrying 

a load while walking (e.g. [18]) is closer to the topic of 

this article, but such devices still do not assist in moving 

the user’s legs or relieve the user from the bodyweight. 

In addition, it makes comparing the performance even 

more difficult, because the assistance benefit depends on 

the amount of payload. However, a strength augmenta-

tion device that would enable its wearer to jump higher 

or run faster would have been included, but such refer-

ence could not be found. Similarly to the fixed-frame 

rehabilitation devices, a strength augmentation device 

can be still be included if at least part of the control strat-

egy could be applicable to the assistance of the gait with 

no carried load (e.g. [19]). �e inclusion and exclusion 

criteria used in the screening process of this review are 

summarized in Table 1.

Most of the publications were found using the follow-

ing Google Scholar query:robot* assist* con-

trol* (exoskele* OR orthosis) and a similar 

query on Scopus: “robot* assist*” “control*” 

AND ( exoskele* OR orthosis ) AND NOT ( 

“upper limb*” OR “upper-limb*” OR “hand 

exoskelet*” ) among the records published since 

January 2000 up to the end of August 2020. �e refer-

ences cited in the two previous review papers by Yan 

et al. [5] and Tucker et al. [4] were also included.

First, the references were screened with the title, then 

the abstract, and finally the full-text to check if they fit 

the inclusion/exclusion criteria. �en, they were read 

entirely and entered in a database. �e relevant articles 

cited by the ones already in the database were also added. 

A flowchart of the methodology is shown in Fig.  1. For 

each entry in the database, the following fields (as long 

as they were relevant/applicable) were entered: high-

level control method, mid-level control method, low-

level control method, type of actuator, short controller 

description, intended application, assisted joints, device 

name, and remarks.

Proposed classi�cation

�is review is centered on control strategies, being hard-

ware-agnostic as much as possible. To be accurate enough 

in describing the different control strategies features, but 
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with no redundancy in the descriptions, it was chosen to 

break the behavior into smaller functional units. Indeed, 

an initial assessment of the literature revealed that even 

among different control strategies, shared elements exist. 

Compared to describing each control strategy as an 

atomic entity, this classification method allows for reus-

ing the same elements to represent several strategies.

�e literature shows a considerable number of differ-

ent controllers, with different structures, designs and 

actuation methods. However, the ultimate requirements 

in terms of performance and desired behavior are mostly 

similar. In an attempt to classify them, we will separate 

the controllers into smaller functional units that are 

comparable. Each functional unit can be used in sev-

eral different combinations to form various controllers. 

�erefore, these functional units can be considered as the 

building “blocks” of the controllers. Based on their role 

in the hierarchy of the control system, all of these blocks 

can be classified into three categories: high-level, mid-

level and low-level control (see Fig. 2). �is hierarchical 

classification is similar to the one used in [4].

Within each level, various methods and approaches 

thus form the different blocks. Some of the blocks within 

the same level perform the same function (in terms of 

outputs) using different methods, while others have a dis-

similar functionality. Hence, even though the blocks in 

different levels may be used together, they are not always 

compatible. All of these blocks are shown in Fig.  3 and 

will be explained in detail later in the paper. It should 

also be noted that the reviewed control strategies do not 

necessarily cover all the three levels, with most of the 

research being focused on mid-level control. �is review 

will then focus on mid-level control mostly.

Our analysis of the high- and mid-level layers is also 

implementation-agnostic, which means it focuses on 

the external behavior of the device rather than the way 

to program it or make the hardware design. Most of the 

Table 1 Summary of the inclusion and exclusion criteria used for screening the articles

Inclusion criteria Exclusion criteria

• Includes description of controller(s) applicable to lower-limb exoskel-
etons with the purpose of helping wearer’s gait, or detection methods 
applicable to such controllers

• Describes a controller that is specific to other devices such as prosthet-
ics, upper-limb exoskeletons, fixed-frame rehabilitation devices (such as 
Lokomat [326] and MotionMaker [327]) or portable devices that operate 
as external units rather than wearable robots (e.g. WalkTrainer [328]) or 
devices that were designed only for animals

• Date of publication: January 2000 to August 2020 • Describes a controller for devices that assist locomotion by using another 
movement than the natural movement of the human leg (such as rolling 
devices, jumping stilts in which the blade moves below the foot, jet-
packs [329] and portable inertial devices [330, 331])

• Language of publication: English • Describes a controller that is intended for assisting load-carrying or 
strength augmentation without significantly affecting the gait itself

• Type of publication: peer-reviewed journal or conference article, patent • Describes a controller that is impossible to apply outside of a simulated 
environment

• Does not give enough details about the control method to fully describe 
it (typically the case for papers reporting clinical trial outcomes)

• Gives inconsistent information about the controller and/or the device

• Only reviews control methods

Fig. 1 Flowchart of the methodology used for the search and 

screening process
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hardware-specific aspects will be separately discussed in 

the low-level layer.

�e results obtained by all these controllers are not 

compared, because the target users are different (healthy, 

elderly, paraplegic, stroke, etc.), the tasks are different 

(walking, running, ascending stairs, etc.), and even for 

the same task, the experimental protocol is often differ-

ent. Such comparison is possible, but only with a nar-

rower scope. For example, the review of Sawicki et al. [7] 

focuses on the partial assistance for the gait, to decrease 

the metabolic cost of locomotion for healthy people.

High-level control

�e high-level control determines the general behavior of 

the exoskeleton. Exoskeletons can usually switch between 

several operating modes, depending on the desired type 

of activity, and the environment (e.g. walking on flat ter-

rain, climbing stairs, and sit-to-stand transitions). Often, 

this change of mode does not occur frequently, and there 

is typically a gap of at least several seconds between two 

consecutive changes. �is makes it possible to be selected 

by the user.

Relatively few papers are dedicated to high-level con-

trol. For most research purposes, the focus is on a cer-

tain mode of operation, and the experiments take place 

in controlled lab settings and are based on well-defined 

scenarios. However, reliable high-level control is crucial 

for the usability of exoskeletons for people in real-world 

situations and everyday life, where a variety of move-

ments and gaits in different environments and ter-

rain types are required and short transition  times are 

necessary.

�e inputs to the high-level controllers can come from 

the user (via input devices and/or sensors), the environ-

ment, or a combination of both. �e output is usually a 

mode of operation. Artificial intelligence and machine 

learning methods are being increasingly used as a sub-

stitution for the user choice. �e main motivation is to 

make the operation more automatic for the user, and pos-

sibly faster than manual input. Fundamental criteria for 

the usability of such methods are the real-time operation 

and short processing times, since decisions need to be 

made fairly quickly to allow enough reaction time for the 

lower-level controllers. Existing high-level control strate-

gies are discussed in more detail below.

Explicit/manual user input (MUI)

�e user directly determines the mode of operation of the 

exoskeleton, using input devices such as buttons [20–34] 

or voice commands [35, 36]. �ese methods are currently 

the most common due to their ease of implementation, 

higher predictability, and lower risk of errors. However, 

these advantages come at the cost of additional participa-

tion required from the user, which makes the user expe-

rience less natural, increases the cognitive load, and can 

slow down the operation. Moreover, this method is also 

prone to human errors which are more likely to happen 

during demanding tasks, long operation times, or  with 

novice/distracted users. In this case, the challenge is both 

to make the user interface easy to use to minimize the 

learning time and the risk of manipulation errors, and 

also quick to use to avoid losing time in transitions. �is 

is not trivial since the interface has to be used in a stand-

ing position, and the hands often have to hold crutches at 

the same time.

�e explicit user input is commonly used in full-mobi-

lization exoskeletons for complete spinal cord injury 

(SCI) patients, because no input can be obtained from 

the legs. It is also the most predictable for the user, which 

is important for trusting the device. In this case, but-

tons on the crutch handle, or a special wristwatch can be 

used. Voice command is not common because it requires 

speaking, which may feel awkward in public spaces. It is 

also more error-prone in noisy environments.

Brain-computer interface (BCI)

�e user’s brain activity is measured using electrodes, 

amplified and analyzed to determine the mode of opera-

tion [37–39]. Among the different brain signal record-

ing methods, currently electroencephalography (EEG) is 

predominantly used since it is non-invasive and therefore 

Fig. 2 Simplified diagram of the proposed classification
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Fig. 3 Block diagram of the proposed classification of the control strategies subparts. The idea of this classification is that any controller in the 

literature can be represented by a path that joins the used control blocks. The path does not have to start from the high-level layer, and may start 

directly in the mid-level. A controller can have several parallel paths if the controller combines several strategies at the same time, or successively 

during the gait. Connecting lines show the common paths identified in the literature. However, it should be noted that the lack of a line between 

two blocks does not mean they cannot be related. For instance, the outcome of the high-level layer, the “operation mode”, could affect any of the 

blocks of the middle-level, but it is not connected to them for the sake of readability
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safer and easier to use. Despite the promising features of 

these methods, there are many practical challenges asso-

ciated with them, including high levels of concentration 

required from the user (and therefore limiting simul-

taneous cognitive activities such as speech), artifacts 

with muscular activation (EEG signals at the surface of 

the scalp have an amplitude close to 100 μV [40], while 

electromyography (EMG) signals are several millivolts), 

rather lengthy procedures for electrodes placement, the 

need of training for the user and the algorithm, and being 

very slow (in the order of seconds) or limited to very few 

commands [39, 41–44]. A thorough review of brain-

computer interfaces BCIs for lower-limb gait assistance 

devices in general can be found in [45], and an in-depth 

review of methods based on EEG in [46].

Movements recognition (MOV)

�is type of controller changes the behavior automati-

cally depending on how the user moves or is intending 

to move. �e main advantage of this method is that it 

does not require any cognitive load or direct input from 

the user, making the interaction more intuitive and nat-

ural. For this method, generally joint sensors and IMU 

data (often from the upper body in persons with paraple-

gia) are processed by a machine learning or fuzzy logic 

algorithm to recognize the situation [47–64], although 

simpler threshold-based methods have also been pro-

posed [65]. Sometimes, other types of signals such as 

the ground reaction forces or electromyography (EMG) 

are also used to infer the movement or the intention of 

the user [66–71]. Capacitive electromyography was also 

investigated [53]. In practice, often additional inputs are 

also required to complement these controllers (e.g. to dis-

able them when the user needs to perform other activities 

while standing still in the device) since the movements of 

the user are not always sufficient to correctly determine 

the intention. In [72], the discrimination between walk-

ing and jumping is performed with a threshold on the 

phase difference between the two legs (shank segment), 

computed with the angle-speed diagram. Moreover, 

standing is detected if the magnitude of the phase vectors 

for the two legs is below a certain threshold.

Terrain identi�cation (TER)

Generally, the most decisive factor in determining the 

mode of operation and high-level behavior of gait assis-

tance devices is the terrain. Information about the terrain 

can hence be used to construct a high-level controller for 

such devices. In these controllers, embedded sensors are 

used to recognize the terrain type or obstacles in front of 

the user, in order to plan the steps accordingly [73].2 Sen-

sors used for these high-level controllers are most often 

cameras (either usual visible-light cameras [74, 75] or 

3D depth-sensing [41, 76–82]), but other sensors such as 

infrared distance sensors [83] or fusion of laser distance 

sensors and inertial measurement unit (IMU) [73, 84, 85] 

have also been utilized.

Terrain identification has recently gained attention in 

the fields of orthotics and prosthetics, and the body of lit-

erature exploring it is relatively small. Even the existing 

papers are limited to proof of concept implementations, 

demonstrating the performance of terrain identification 

algorithms without actually integrating them into the 

high-level controller of a device [73, 75, 79, 80, 83–85]. 

�ese techniques are usually computationally expensive 

because of the image or point-cloud processing. How-

ever, promising results have been demonstrated and with 

the advances in pattern recognition and machine learn-

ing methods, successful implementations of such con-

trollers are to be expected in future research.

Mid-level control

�e mid-level is defined here as the continuous behavior 

of the robot, which computes the joints target torque or 

position, at each timestep of the main control loop. �e 

mid-level controller plays the most important role in 

shaping the interaction of the device with the user, and 

the majority of the research on the control of exoskel-

etons is dedicated to this level. Although the output of 

the high-level controller also affects the behavior, it often 

only changes some parameters of the mid-level controller 

without fundamentally altering the essence of the inter-

action with the user.

In the proposed classification, the mid-level control 

blocks have been separated in two sublayers. As shown in 

Fig. 2, the “detection/synchronization” sublayer estimates 

the gait phase or gait state, which is a piece of informa-

tion commonly needed by the “action” sublayer that actu-

ally computes the motor command. �e first sublayer 

uses external inputs (from sensors and/or user interface) 

to determine the continuous phase or discrete state of 

gait. In the second sublayer, the desired physical output 

of the device is decided.

An exoskeleton controller can have a different con-

trol scheme for each joint. �is is for example the case 

in [19], in which a simple spring is used for the ankle, an 

active damper for the knee, and torque control on the hip 

joint. Another example in [86] is an adaptive-frequency 

2 Many of the papers cited in this section are taken from prosthetics litera-

ture, but the fact that the terrain identification systems have been designed 

with a prosthesis in mind does not affect the outcome and all of the results are 

equally applicable for orthoses as well.
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oscillator AFO-based impedance control for the hip, 

fixed position or zero torque control for the knee 

(depending on stance/swing), and event-triggered torque 

sequence for the ankle.

Detection/synchronization sublayer

�e desired outcome of this sublayer is either the accu-

rate gait phase (0–100%), or the gait state. Gait states are 

generally subphases of the gait cycle (e.g. stance/swing or 

finer divisions such as loading response/foot-flat/push-

off), the kind and the number of which depend on each 

controller.

Manual trigger by user (MAN) �is lets the user explic-

itly trigger the movement. �is block is usually followed 

by the “Linear increase of the gait phase” and “Position 

profile”. �is method is simple and used frequently to 

trigger the steps of a full mobilization exoskeleton. �e 

trigger is generally a button ([20, 24, 26–28, 31, 87, 88]), 

but steps can also be triggered by EEG [42], although very 

slowly. It is worth mentioning that controllers in which 

the user manually triggers the start and stop of locomo-

tion (and not the individual steps) such as [89, 90] do not 

belong in this category.

Impose the movement (IMP) Instead of synchronizing 

to the user, the robot imposes the movement continu-

ously. So, it is the user’s responsibility to stay synchro-

nized with the robot. �is is sometimes the case with 

early-stage full-mobilization exoskeletons that test the 

continuous gait without providing a user interface to 

use them in real-use conditions [91–95]. Other common 

cases are brain-computer interface (BCI)-controlled exo-

skeletons that do not need crutches, with start and stop 

commands instead of having to trigger each step [41, 43, 

44]. As opposed to the rest of the blocks, this one does 

not represent an actual function in the controller, nor 

does it have an output for its following block. Rather, 

this block is only used to emphasize the lack of synchro-

nization. It is always followed by “Simple linear increase 

of the gait phase”, which then usually feeds the “Position 

profile” or “Torque profile” blocks.

Event trigger (EVT) �is method can be found in many 

exoskeletons for partial assistance and full mobilization. 

It consists in using an event of the gait to start a step, a 

torque profile or to transition a state machine. �e most 

common event is the heel strike, detected with a foot 

switch at the heel or (rarely) with an instrumented tread-

mill [96–107]. If the pressure sensor is located under the 

forefoot, the late stance can be detected instead of the 

heel strike [108]. �e reference instant can also be rec-

ognized with an inertial measurement unit (IMU) on 

the shank, when crossing the zero angular speed [109]. 

A variant is to detect the point of “negative-to-positive 

power” of the ankle by looking at the ankle speed (one 

IMU on the foot, one IMU on the shank) [110], or with a 

classifier [111]. An alternative is to use an inertial meas-

urement unit (IMU) in the foot sole [112–114]. Simi-

larly, it is possible to detect the lift-off [48, 115]. A set of 

thresholds on the “analog” ground reaction force can also 

be used to discriminate several phases in the gait cycle 

[116–118].

Events in the kinematics can also be used. �e peak 

value of the hip angle is used in [119–124], or simi-

larly the peak ankle dorsiflexion angle [125]. In [126] 

the state machine is transitioned with thresholds on 

the knee angle and velocity. In [10], there is a thresh-

old on the time-derivative of the pressure of the passive 

pneumatic actuator, which relates to the joint speed. In 

[127], a hidden Markov model is used to detect the gait 

phases from trunk and segment angles measured with 

an inertial measurement unit (IMU).

For full-mobilization exoskeletons, the steps can be 

triggered by weight shifting measured by the load cells 

under the feet [21, 128–130], by leaning toward the front 

or on the sides which is measured by the inertial meas-

urement unit (IMU) [30, 128, 131], with a combination 

of the crutches load cells and the feet load cells [32], or a 

combination of the trunk tilt and the feet load [29].

Adaptive frequency oscillators (AFO) AFOs are dynam-

ical systems with an oscillatory behavior that are capable 

of learning the features of a periodic input signal [132]. 

Due to the periodic nature of the gait, they can be used 

to determine the gait frequency and the phase. �ey can 

adapt quickly to a change of cadence, and do not need 

any prior knowledge on the shape of the gait pattern, 

except the fact that it is periodic. �is makes them robust 

and makes the controller suitable for almost any user 

without the need for extensive parameter tuning or gait 

pre-recording. AFOs are usually fed with joints angles, 

but can also be used with any other periodic signal, such 

as the muscular activity, estimated using capacitive sens-

ing [133] or interaction forces between the device and the 

user [134, 135].

AFOs can produce several useful pieces of information: 

the current progress in the gait cycle (0-100%), the fre-

quency, and a filtered version of the input signal with no 

lag. Actually, the whole trajectory over the full gait cycle 

is modeled by the adaptive-frequency oscillator (AFO). 

�ese can be used in further action blocks, typically 

“Torque profile”, or “Impedance control”. �e output has 

occasionally been directly used as a position reference as 

well [134, 135].

While AFOs are able to compute precisely the fre-

quency and the joint angle value function over the gait 

cycle, the reference moment (usually the heel strike 

at 0%) is unknown so the absolute gait cycle progress 
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cannot be determined. Several techniques exist to solve 

this issue:

• Foot switches can measure the instant of the heel 

strike [51, 136, 137]. �is method is accurate, needs 

no heuristics, but requires an additional sensor. An 

inertial measurement unit (IMU) can also be used 

instead [138].

• A special feature in the joint trajectory (e.g. mini-

mum or maximum value, or maximum slope) at a 

known gait phase can also be recognized, but this is 

subject-dependant and less reliable [122] (and prob-

ably [50]).

• Instead of a sine wave as the first harmonic, a known 

average human gait trajectory can be used [139–141]. 

�is is less accurate if the user is walking in a non-

typical way. Such an oscillator is called “PSAO” (par-

ticularly shaped adaptive oscillator) by the develop-

ment team of the GEMS exoskeleton [139].

• Finally, strategies that do not use the absolute gait 

cycle progress can be selected, so that there is no 

need to obtain this information. �is is the case for 

force fields that attract the joint towards its predicted 

position [56, 86], or compensation from a physical 

model (weight, inertia) [142].3 Note that “attracting 

toward the predicted position” is equivalent to using 

an impedance controller with the AFO-identified 

movement with a time offset (to follow the future) as 

the reference.

In [143], AFOs are also used, but the reference deter-

mination method is not explained. �e Honda Stride 

Management Assist is also using a special AFO method 

according to a patent [144], but the details are not clearly 

documented.

�e AFOs strategy is limited to the partial assistance 

paradigm, since the user needs to be able to initiate the 

gait and maintain it at least for a few steps.

Simple linear increase of the gait phase (LNP) �is is 

the simplest way to determine or impose the gait phase. 

It consists of increasing linearly the gait phase over time, 

knowing in advance the step duration. If the movement 

is imposed all the time (IMP), the gait phase is looping 

continuously [38, 90, 91, 145]. If triggered manually [26, 

35, 87] or with an event such as foot contact with the 

ground [97, 101, 146], lateral weight shifting [89], tilt-

ing the trunk [30, 147], or muscle activation (sensed via 

electromyography (EMG)) [82], it only runs once per 

trigger. �e output of this block then feeds a position or 

torque profile.

Time-interpolated gait phase (TBP) �is is the same 

as LNP, except that the gait cycle duration is determined 

automatically from the duration of the previous steps. 

�is is very accurate if the gait is periodic and with a 

small inter-step variability. �is method is very common 

for partial assistance [16, 96, 98–100, 102, 103, 105, 106, 

108, 110, 113–115, 121, 123, 125, 148–155]. An extension 

of this method is to use a Gaussian probability density to 

reject outliers [156].

Angle-speed plot phase (ASP) �is technique consists in 

determining the gait phase from the angle and speed of 

a single joint. Intuitively, the function that maps a joint 

angle to the gait phase is surjective but not injective, 

because there are at least two solutions, due to the back-

and-forth movement. So at best, if the joint trajectory 

is not bouncing, there are two possible gait phases for a 

given joint angle. However, the speed has the opposite 

sign for the way back, so it gives enough information to 

disambiguate the gait phase. In practice, these states are 

plotted on an angle-speed graph, and the phase angle can 

be extracted (Fig.  4). �e center of the trajectory must 

be defined by prior calibration. �e main advantage of 

this method is that it keeps its accuracy even if the gait 

cadence changes rapidly. However, it is very sensitive to 

bouncing, and is inaccurate if a joint moves little during 

part of the gait cycle. �is is why it is not used with the 

knee joint. �is method is used in [72, 157].

Machine learning phase (MLP) �e gait phase can also 

be estimated using machine learning, with techniques 

such as support vector machine (SVM) or neural net-

works. �e machine learning methods are diverse and 

complex, so they will not be explained here. All the found 

Fig. 4 Example of angle-speed phase diagram. The data plotted 

is the hip angle during a few gait cycles of a test session with the 

exoskeleton SPRIINT (see [325])

3 �is second variant should technically not be part of this review, because 

it was proposed for an upper-limb exoskeleton, even though the paper also 

addressed lower-limb assistance with another controller. It could probably be 

applicable to lower-limbs also, but no publication could be found with this 

principle.
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references used a different machine learning method and 

different inputs. A neural network fed with the trunk 

IMU data and hip encoder angles is used in [158].

An online Gaussian process regression is fed with the 

joints angles and interaction forces with the thigh cuffs 

in [59]. In [159], the gait phase is estimated with a deci-

sion tree, from the segments IMU data and the feet 

loads. In [160], deep learning is used on the shank and 

thigh IMU data and feet loads. In [111], a SVM is used 

with the shank IMU data. In [53], a quadratic discrimi-

nant analysis allows to get the gait phase from capacitive 

sensors measuring the thigh muscles contraction. Finally, 

in [161], a computer vision classifier can estimate the 

gait phase from the data of depth cameras located on the 

crutches.

Other gait phase estimator (OTP) �e gait phase can 

also be estimated by other less common methods. One 

of the controllers proposed in [162] (“State Estimation” 

controller in the paper) estimates the gait phase by fit-

ting the recorded joint angles and the foot loads to a ref-

erence model, using least-square regression based on the 

method from [163]. In addition to this method, another 

variant is also suggested for comparison in [163], which 

determines the gait phase based on minimizing the 

squared error between the instantaneous ankle angle and 

contact forces at toe and heel with those of a reference 

model (the first method is called “cross-correlation” and 

the second “k-nearest neighbors” in the original paper). 

However, the estimated gait phases have not been used in 

a controller, but have only been compared to evaluate the 

estimation accuracy.

State machine (FSM) Controllers can switch behav-

ior depending on transitions triggered by events. �is 

may be useful because some states of the gait are non-

continuous. �e best example is the foot contact, which 

is binary (swing/stance) and changes the dynamics of the 

leg. Many controllers use a state machine and different 

criteria have been utilized for transitioning between the 

states.

Most commonly, the ground contact state of the feet, 

or equivalently the ground reaction force (GRF), is used 

either for the entire foot to only distinguish between 

stance/swing [164–169] or considering local components 

(e.g. at the heel and under the toes) to further differenti-

ate between stance subphases [48, 67, 86, 117, 148, 162, 

163, 170–174]. �e gait state can also be determined by 

computing the center of pressure (CoP) position of the 

stance leg with four load cells per foot, then applying a 

threshold to identify four states [175, 176]. In one paper, 

the subphases of stance were detected only based on the 

total ground reaction force (GRF) [116]. For some state 

machines, the ground contact status has been used as the 

only factor for transitioning the states [67, 117, 162–166, 

171, 172], but it has also been used in combination with 

joint angle(s) [116, 167, 170], joint angular velocities 

[173], segment angles and angular velocities [48, 168], 

or the relative position of the feet [177]. In [148], the 

linear acceleration of the shank is also used in addition 

to ground contact data to improve the accuracy of heel-

strike detection. �e amount of time elapsed since the 

onset of swing has also been used in addition to ground 

reaction force (GRF) data to further detect subphases of 

swing [169].

Joint angles and angular velocities have also been used 

without the ground contact information to transition 

states [126, 178–182]. In [47], in addition to the angle 

and angular velocity of the knee joint, the moment at the 

joint and the angular velocity of the leg are involved in 

state transitioning. �e authors in [19] have augmented 

joint angles with the forces and moments sensed in the 

exoskeleton segments to transition the state machine. 

In an alternative method, the difference between left 

and right joint angles (hip and knee) are used along with 

zero-crossing events of hip angular velocity to transition 

between the states [151, 152].

In [10], thresholds on the derivative of the pneumatic 

actuator pressure (which indicates the direction of move-

ment intended by the user) are used for the transition-

ing. Surface electromyography (EMG) has also been used 

as another indicator of user’s intention to transition the 

states [66]. In [89], the estimated projection of the center 

of mass (CoM) on the ground relative to the feet is mostly 

used to transition between the states, but direct user 

input (via buttons) is required for transitioning in and out 

of the initial and final states, while transitioning between 

others (e.g. between shifting the weight to the stance leg 

and swing of the opposite leg) is initiated automatically.

Different states may only change the parameters and/

or inputs to a controller (for example [48, 89, 117, 172, 

183, 184]) or change the control strategy completely (for 

example [19, 61, 66, 86, 173, 185, 185]). It is also worth 

mentioning that sometimes the state machine does 

not involve any electronics, and is implemented using 

mechanical components only [164, 178, 179].

Action sublayer

�e goal of this second sublayer is to generate a motor 

command, that can either be kinematic (angle or speed), 

or kinetic (torque or force).

Position profile (PPR) �e goal of the position profile is 

to assist the user to move according to a predefined tra-

jectory, supposed to be the intended one. �e trajectories 

can be described in joint space or Cartesian space, often 

called “foot locus” for this second case. �ese trajecto-

ries are usually completely predefined based on recorded 

gait data from healthy people [48, 89, 91, 145, 186–188]. 
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Databases of recorded trajectories from different healthy 

people have also been used in some strategies, where the 

controller chooses which trajectory to use depending on 

the situation [67]. In another approach, the trajectories 

have been recorded as a therapist manually guided the 

subject’s legs to achieve a desired gait pattern [187]. In 

[189], recorded trajectories from each subject walking in 

the exoskeleton in passive mode are averaged and used as 

reference. Some small modifications are generally neces-

sary to account for user-specific and device-specific dif-

ferences before actually using the trajectories recorded 

from healthy people for patients.

In many cases, the trajectories are significantly changed 

or fully generated at runtime, and some papers are 

completely dedicated to the problem of optimization/

generation of trajectories [190–193]. In some studies, 

model-based computations [194–197] or polynomial 

minimum jerk trajectory generation methods [94] have 

been used to generate the trajectories offline. Trajectories 

can be generated so as to reach a certain target position/

orientation in task space as well [191, 198]. For simpler 

implementations, the trajectory may also be defined 

approximately by a final target angle and a speed limita-

tion instead of the complete path, and has been used for 

pneumatically actuated exoskeletons [88, 174].

However, the trajectories are not necessarily fixed or 

predefined. Online modifications can be applied to the 

baseline trajectories, as is the case in [199] and for the 

hip trajectories in [20] and [89] (only abduction/adduc-

tion angle in the latter). In [181], the user is free to move 

the legs during stance, and the baseline swing trajectory 

(from healthy subjects) is adapted at every step to match 

the leg configuration at the end of stance. More advanced 

methods have recently been proposed to automatically 

adapt the recorded gait trajectories from healthy people 

to the environment, and generate new trajectories for dif-

ferent types of terrain [82].

�e trajectories could also be generated online, for 

example synthetic and parametrized trajectories can be 

used to adapt the foot clearance, step length and dura-

tion, peak joint flexion, etc. [77, 200]. �e authors in 

[130] have proposed to generate the leg movement online 

to match the step length measured by a walker which 

is moved manually by the subject. In [192], a method 

is proposed to calculate the joint trajectories as a func-

tion of the movement of the crutches by the user’s arms, 

based on synergies extracted from the data of healthy 

subjects walking with crutches. Some controllers that are 

based on AFOs predict the joint trajectories online based 

on the estimated gait frequency and phase [190], and the 

future positions could be used as the reference for the 

actual joint [13, 56, 142]. Phase information estimated by 

AFOs has also been used to generate a custom trajectory 

in order to approximately achieve the desired power out-

put [137]. In a different approach, the trajectory is gener-

ated online before each step based on the spring-loaded 

inverted pendulum (SLIP) model, taking the dimensions 

of possible obstacles into account [201]. For exoskeletons 

targeted at hemiplegic people, the movement of the non-

paretic side at each step has also been recorded and used 

as the reference trajectory for the paretic leg [202, 203]. 

In a similar approach, kernel-based nonlinear filters have 

been used to learn the movements of the nonparetic leg 

as a function of gait phase online, and the learned func-

tions are then used to generate the reference trajectory 

for the paretic leg [204].

Using position profiles is often associated with rigid 

position control in the full mobilization case. �en, the 

position profile is simply played back over time [27, 32, 

33, 131]. �e challenge is then to generate a set of gait 

trajectories that are comfortable, stable and able to over-

come obstacles. For partial assistance, it is associated 

with impedance control [13, 145, 182, 205–207]. �ese 

trajectories can be played back over time [89, 205], or 

may be time-invariant (a tunnel or force field around 

the nominal path) [17, 181, 197, 208–211]. In [137], the 

reference profile is artificially generated and tuned to 

achieve a certain pattern of assistance. A combination of 

rigid trajectory tracking for some degrees of freedom and 

partial assistance around a trajectory for others has also 

been used [196].

�e major drawback of the fixed-position-profile-based 

methods is their lack of flexibility, especially in the case of 

full mobilization. Even with many of the online modified 

or generated trajectories, the user is still forced to walk 

with the given gait pattern, which may not be suitable, 

and the trajectories are often specific to a particular ter-

rain. For the partial assistance paradigm, even though the 

user has the freedom to diverge from the profile, it is still 

imposed and the controller will try to push in that direc-

tion, which might not necessarily help the user.

Torque profile (TPR) Using a torque profile is the most 

simple and common method for partial assistance. A 

torque profile can be played back over time when it is trig-

gered by an event [48, 96–100, 104, 111, 115, 119, 121, 

123, 125, 151, 154, 165]. As the timing is very important, 

the torque profile may have (possibly online) tunable delay 

at the beginning of the torque profile. �e torque profile 

itself may change over time, and be optimized online 

[105]. �e torque profile can be as simple as a square pulse 

[103]. In some studies, the torque profiles are fine-tuned 

offline based on subjective feedback from the users [136, 

212] or previous measurements from the users [169]. 

In others, they are optimized online for metabolic cost 
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reduction [105, 213, 214]. �e gait phase can also be esti-

mated continuously, so the torque is applied as a direct 

function of the phase, independently of the time [50, 122, 

136, 138–140, 143, 215–217], or combined with other 

inputs [51, 137, 141].

Probably the simplest case is the constant extension 

torque profile applied to the knee joint, when the leg is in 

single stance [176].

Impedance controller (ZCT) Impedance control is a 

widely used method in rehabilitation robotics and many 

other fields where the mechanical interactions with 

the user and the environment are significant [218]. As 

already mentioned, this method is used mostly in par-

tial assistance paradigms where the human limbs are 

considered as active elements. Impedance control is 

often implemented such that the user gets the assistance 

torque only in case of a large deviation from the intended 

movement. �is is usually called “assist-as-needed” and is 

mainly used for rehabilitation training, since it is believed 

to induce more active participation from the user com-

pared to constant assistance or full mobilization, thus 

improving the learning and recovery.

In practice, impedance control can be implemented 

as an M/K/B (inertia/stiffness/damping) based dynami-

cal system relating joint angles to torques [47, 49, 89, 

127, 137, 153, 210, 219–223]. Either a reference target 

trajectory is played back over time [38, 145, 206], or the 

target is fixed and changes (also the stiffness and damp-

ing) only when the gait state changes [137, 166, 172, 180, 

224–226]. In both cases, the target trajectory is generally 

in joint-space.

Another type of implementation is to use a force field 

with the joint states (angle, speed, acceleration, etc.) as 

inputs [181, 204, 227, 228]. A variation of the force field is 

the flow field controller proposed by Martinez et al. [229], 

which can also use the “state” given by several joints, 

while applying torque only at one [168]. A combination 

of both the force field and the flow field is suggested by 

Jabbari Asl et  al. [230]. Note that using a multi-dimen-

sional force-field in foot-locus-space to assist the leg to 

follow a pre-defined trajectory (such as the strategy used 

in [211]) is time-invariant, and is not the same as playing 

back a reference trajectory, even if both are classified as 

impedance control.

�e impedance controller is usually implemented in 

software by changing the motor torque depending on 

the position and movement of the joint, but it can also 

be implemented using mechanical elements only (see 

"Torque control"). In [231], a negative impedance is 

tuned to compensate that of the leg to make walking less 

demanding for the user, since less effort is required to 

generate the same movement of the legs.

Finally, another possible strategy is to “attract” the 

joint to its future position with a virtual stiffness field 

[86, 142]. �e future position can be predicted by 

exploiting the periodicity of the gait. �e trajectory is 

typically identified online with an adaptive-frequency 

oscillator (AFO). �is is equivalent to impedance con-

trol with the time-shifted identified trajectory as a 

target.

Muscles activity amplification (MYO) A joint torque 

that depends directly on the measured muscular activ-

ity is simple and can be very effective, since it can detect 

the intention of the user before the movement starts. 

However, it is usually limited by the fact that electro-

myography (EMG) sensors are time-consuming to set 

up, the signal amplitude may change because of changes 

of skin conductivity and muscles fatigue, and that some 

muscles are not accessible with surface electrodes. In 

addition, this technique becomes even more difficult in 

case of neurologic impairment. In fact, the muscles may 

have a lower contraction which reduces the amplitude 

of the measured voltage and hence the signal-to-noise 

ratio (SNR). �is method is simply not usable with peo-

ple affected with complete paraplegia because there is no 

voluntary stimulation of the muscles. It also cannot help 

people affected with coordination troubles, which would 

just be amplified by the device.

In this method, generally the calculated torque is 

directly applied to the joint [96, 116, 232–234, 234–236], 

but in some papers the torque is fed to an admittance 

model to generate position commands for the low-level 

controller [237, 238]. In terms of the approach to calcu-

lating the intended torque from muscle activity, several 

variants can be distinguished:

• �e amplification of independent muscles activities is 

typically implemented with one artificial muscle per 

biologic muscle [239]. Its advantage is that the co-

contraction of the biologic muscles also produces co-

contraction of the artificial muscles, which allows to 

amplify both the torque and stiffness of the muscles. 

�is can also be implemented with a single muscle; 

however, in this case, the biologic co-contraction will 

make the orthosis produce net torque. �is approach 

has also been used in ankle exoskeletons with only 

unidirectional actuation (e.g. plantarflexion assis-

tance only) [239, 240]

• �e differential amplification of muscular activity 

computes the assistive torque by computing the dif-

ference of the activations [241]. Co-contraction just 

results in less torque. However, it may be approxima-

tive because of the non-linear activity/torque rela-

tionship.
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• A variant is to let one activation inhibit the other 

[242].

• Instead of assuming the joint torque proportional to 

the raw measured activation, an alternative is using 

a calibrated musculoskeletal model to compute the 

joints torques from the measured activation [243].

In some approaches, muscle activity amplification is 

guided by a gait phase estimation method, where the 

activity of a certain muscle causes assistance only during 

a specific period of the gait cycle [116, 233]. A thorough 

review of these techniques can be found in [244].

In [245], the EMG-torque relation is estimated online 

during swing using a physical model. In [133], capacitive 

sensing is used instead of electromyography (EMG).

Direct joint torque estimation (JTE) �e biological joint 

torques required for performing a certain movement can 

be estimated approximately using a simplified model 

with several weighted segments, and then (completely or 

partially) applied with an exoskeleton. Such a method has 

been used to assist squatting [92, 246, 247] or stair ascent 

[248] assuming quasi-static movement (neglecting iner-

tia terms and only compensating the weight). A similar 

approach has been used in [49] to assist gait in different 

terrains (level ground, stairs, ramp) in conjunction with 

other strategies. In [249] the authors have used inverse 

dynamics (4 sets of equations depending on the contact 

point(s) with the ground) to estimate the joints torque. 

Another method that does not rely on an accurate model, 

is using ground reaction forces, shank angle, and shank 

length [250, 251]. It has also been proposed to use a 

spring-loaded inverted pendulum (SLIP) model to esti-

mate the required biological hip and knee torques [252]. 

�e point foot approximation is made, and the controller 

requires hip/knee joints angles, ground reaction forces, 

and center of pressure (CoP) position obtained with an 

instrumented treadmill. Similarly, in [253] the required 

stance ankle torque to compensate the effect of grav-

ity has been derived based on a simple 2-DoF compass 

gait model. A mass model and ground reaction forces are 

used in [254] to estimate the hip and knee torques during 

gait, but the exoskeleton is actually not actuated.

Model-computed action to keep balance (BAL) Some 

control strategies address the issue of balance during 

gait based on different mathematical models of walking. 

For full mobilization exoskeletons, provided they have 

enough actuated degree of freedoms (DoFs) and that the 

user does not interfere, walking controllers developed for 

humanoids have been used [20, 194, 255, 256]. In [89] 

hip abd/adduction trajectories during swing are adapted 

online to improve lateral balance based on the “extrapo-

lated center of mass” concept. In another approach, the 

difference between model-computed and actual GRFs 

have been fed to an admittance model to update the pre-

defined trajectories online [198]. In the partial assistance 

paradigm, Zha et  al. [257] have developed a controller 

only assisting in case of loss of balance, which is detected 

based on a quantitative balance metric. A model-based 

assistive torque is then calculated as the weighted sum of 

gravity, Coriolis, and inertial terms with weights deter-

mined using fuzzy logic.

Neuromuscular model (NMM) A class of bio-inspired 

controllers attempt to mimic the human neuromuscular 

system, consisting of virtual neurons and muscles. �ese 

virtual muscles are mathematical models based on the 

Hill-type muscle model [258] that generate torques as a 

function of the activation signal and the current muscle 

states (which are in turn a function of joint angles and 

angular velocities). �e torque applied to each joint is 

then obtained as the algebraic sum of the torques gener-

ated by the virtual muscles acting on that joint. Some of 

these controllers are based on the neuromuscular reflex 

model from Geyer and Herr [259]. �is bio-inspired 

model works based on feedback loops, or “reflexes”, that 

receive joint position information, ground contact and 

virtual muscle lengths as inputs, and generate activation 

signals for the virtual muscles. �is concept was initially 

proposed as a model that can reproduce gait patterns 

similar to the natural human gait.

�e reflex model has often been used to control pros-

theses, but implementations can also be found in the 

exoskeleton literature. In some modified versions, the 

activation signals of the muscles generated based on the 

reflexes are augmented with central signals generated 

by AFOs [51, 260], although in [260] and similar stud-

ies [261, 262] only the reflex-based controller has been 

tested with subjects. �e activation can also be a function 

of electromyography (EMG) signals measured from the 

user’s biological muscles [243, 263]. In addition to joint 

torques, the neuromuscular model has also been used to 

determine stiffness [264]. In another work, the use of a 

neuromuscular model (which is explained in [265] and is 

different from the one used by the rest of the papers) has 

been mentioned, although it is not clear how it affects the 

proposed controller [266].

�e main advantage of the neuromuscular model 

method is that it does not require a predetermined tra-

jectory, and therefore does not impose the motion on the 

user. It rather follows the movements of the limbs and 

adapts to them, while being able to reject external per-

turbations. However, to operate properly, many parame-

ters need to be tuned which can make the tuning process 

lengthy. Automated optimization with simulation tools is 

efficient, but such a process is difficult to implement with 

the actual hardware and user. Moreover, this method by 
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itself is not suitable for complete spinal cord injury SCI 

patients since the user needs to at least initiate walking.

�e neuromuscular reflex model has also been used 

in simulations of other assistive controllers to model 

the behavior of the human limb [152, 267]. In these 

papers, the neuromuscular model is simulated in paral-

lel with the controller, receiving the torques generated 

by the controller as input and producing joint angles and 

speeds, which are fed back to the controller.

Body weight support (BWS) Body weight support was 

initially proposed as an augmentation to gait rehabilita-

tion training, using stationary over-treadmill suspension 

systems [268]. �e same idea can also be implemented 

using wearable lower-limb devices. Instead of provid-

ing assistance at the joints to move the legs, the idea is 

to relieve the user from a part of his/her weight, by hav-

ing the exoskeleton pushing the trunk upward [11, 12]. 

�is mainly works for the knee joint, because in stance, 

the partial gravity compensation consists simply in apply-

ing an extension torque. Note that this method is dif-

ferent from model-based gravity compensation which 

calculates joint torques required to resist gravity (e.g. the 

“gravity compensation control approach” in [92]). �e lat-

ter approach has been categorized as “Direct joint torque 

estimation” in this review.

Direct joint control by the user (DJU) �e joint torque 

can be directly controlled by a user (the wearer of the 

device or an external person such as a physical thera-

pist), but this requires high cognitive load and prior 

training. �is method has rarely been used, an example 

being [269] in which the pressure supplied to an artificial 

pneumatic muscle is proportional to the press of a but-

ton, controlled by a physical therapist or by the wearer. 

�e actuator is used in an ankle exoskeleton to provide 

plantar flexion torque. In this study, the therapists could 

learn to properly activate the device to provide effective 

assistance, but most of the subjects could not successfully 

do it over 2 sessions.

An equivalent method for position-control also exists 

[270]. In this case, a pole is linking each foot the ipsilat-

eral hand, with a multi-axis force sensor. Using an admit-

tance controller, the position-controlled joints move 

according to the interaction force exerted by the hands, 

so that the feet “follow” the hands.

Other function of feet/joints instant states (FJI) �e 

instantaneous values of the sensors such as joint angle or 

ground reaction force can be provided as inputs to a cus-

tom memory-less function, that directly computes joint 

torques [165, 234, 271] or positions [272–274]. Occa-

sionally, electromyography (EMG) signals have also been 

used [275]. �is information can also be supplemented 

with an estimate of the gait frequency [276]. Note that 

the type of functions used in this category does not fit 

into common strategies such as model-based torque esti-

mations or virtual impedance functions. In [72], jump-

ing is assisted at the ankle level by an impedance-like 

function producing an ankle torque proportional to the 

angular speed of the shank. In [116], the actuator pres-

sure is proportional to the hip angle or the ground reac-

tion force, depending on the current state (state machine 

triggered by a threshold on the ground reaction force 

value). In [277, 278] a passive mechanism using springs 

has been designed to compensate the gravitational forces 

such that the leg is approximately in static equilibrium in 

all configurations.

�is method can also make the paretic leg follow the 

motion of the healthy limb in people with asymmetric 

pathologies [272], but this method is usable only if the 

movements of both legs should be symmetric, which is 

the case for sit/stand transitions (or jumping with joined 

feet) but not walking. A similar but more sophisticated 

method is estimating the desired trajectory of the paretic 

leg as a function of the instantaneous movements of the 

healthy side, based on inter-joint synergies derived from 

healthy gait [279–281].

Other dynamical function of feet/joints instant states 

(FJD) In a similar manner to the FJI category, although 

much less common, custom dynamical functions can 

also be used to calculate the desired action. In [282] the 

hip torque is computed as proportional to the difference 

of the sine of the hip angles, delayed by approximately 

0.25  s. �is makes the assistance torque adapt almost 

instantly to the variations in the gait cadence. In [227], 

gait-cycle-iterative corrections (as a function of the posi-

tioning errors in the previous steps) are applied to the 

baseline torque which is calculated using an impedance 

controller.

Low-level control

�is last layer is the closest to the actuators and there-

fore inevitably device-dependent. Most of the methods 

are not limited to exoskeletons but rather shared between 

many robotic applications, and the fact that they are 

being used in a gait assistance device does not affect the 

desired behavior (i.e. tracking of a reference input accu-

rately while remaining stable). �erefore, papers focused 

only on low-level methods for exoskeletons and gait 

assistance devices are rare. Hence, we will limit this sec-

tion to an overview of the existing methods and their rel-

evant characteristics for gait assistance devices, without 

an exhaustive discussion about each method.

Actuators used in robotics are generally direct-current 

motors that are current-driven, and the field of wearable 

robotics is no exception. �is current regulation is per-

formed by a high-frequency (typically ≥ 10 kHz ) inner 

control loop. �e target current is determined depending 
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on the type of low-level controller. �e motor then trans-

mits its torque to the load via a transmission system. Tra-

ditionally, rigid transmission systems such as gearboxes, 

ball screws, and belt drives were most prevalent, but 

introducing compliant elements into the transmission 

is becoming increasingly common in the applications 

involving interaction and force control. �is added com-

pliance improves the safety of interaction and the fidel-

ity of force control. Bowden cables are also frequently 

used in exoskeletons, since they allow the transmission 

of forces over longer distances, making it possible to 

place the actuators more proximally or even off-board to 

decrease the burden of added inertia on the user. Devices 

with off-board actuators (also known as tethered) have 

been proposed as research test benches to compare the 

effectiveness of different control strategies independently 

of the device [283, 284]. Another category of compliant 

actuators frequently used in exoskeletons is pneumatic 

actuators, most often in the form of artificial muscles, 

which offer advantages such as low weight (neglecting the 

weight of the off-board compressor) and desirable pas-

sive properties. Finally, some assistive devices do not use 

any actuators but rather rely on passive elements that can 

store and release energy. Hybrid actuators have also been 

proposed, combining more than one actuator type per 

joint [285]. �e distribution of the actuator types in the 

reviewed articles is shown in Fig. 5. For a detailed review 

of the different actuation technologies and particularly 

the compliant ones, the reader is referred to [286, 287].

While actuators with compliant properties are often 

used in partial assistance devices, actuators with rigid 

transmission are still the standard in full mobilization 

exoskeletons. Accordingly, in the low-level control, full 

mobilization exoskeletons use position controllers but 

partial assistance devices mostly rely on force/torque 

control schemes. In our classification of low-level con-

trollers, we make a general distinction between posi-

tion or speed controllers against torque controllers. �e 

torque control category is then further divided into dif-

ferent methods.

Position/speed controller (POS)

�e rigid position control is usually performed with a 

proportional-integral-derivative (PID) regulator. As most 

actuators have a large gear ratio and significant damp-

ing, the position control is usually straightforward. More 

advanced techniques exist [288–292], although such high 

positioning accuracy is generally not required for exo-

skeletons, because the structure is often slightly flexible 

and makes the legs movement less precise anyway. More-

over, relying on highly precise movements is not practical 

when there is some level of variability in the environment 

and the user can also affect the movement (e.g. using the 

upper-body) in unpredictable ways. Some of the more 

advanced controllers have focused on adding more com-

pliant behavior to the position controller, such as the so-

called “proxy-based sliding mode controller” [189, 293, 

294], which offers smooth and gradual recovery in case of 

large errors. An iterative (over several gait cycles) online 

optimization of the torque profile to get the desired joint 

trajectory is presented in [227].

Torque control

�e torque control is more challenging, because it 

requires a high bandwidth. A review of many low-level 

torque controllers can be found in [295]. For the case 

they tested (regular gait on a treadmill, Bowden cable 

transmission), they found that a proportional-derivative 

(PD) controller with iterative learning compensation was 

the best performing.

Open-loop feedforward torque control (OLT) Open-

loop torque control is often chosen because it requires 

no torque sensor, which makes the hardware simpler. 

Two ways exist for its implementation. �e first way is 

to set the motor current using a model of the actuator, 

including rotor inertia, dry friction, and damping [122]. 

�is method is intended for stiff exoskeletons. Unfortu-

nately, the inertia is hard to cancel because the accelera-

tion is estimated from the position, which amplifies the 

Fig. 5 Distribution of actuator types in the reviewed articles. Studies 

in which the controller was not actually implemented in a real device 

or the actuator type was not mentioned were excluded for this 

analysis



Page 16 of 34Baud et al. J NeuroEngineering Rehabil          (2021) 18:119 

measurement noise. �e friction is also difficult to com-

pensate because of its complex modeling. �e second 

way, suitable for soft exosuits, is to run position control 

with a model of the stiffness of the system [112, 113, 143]. 

In [296], an admittance controller (force-to-speed) is fol-

lowed by a speed control loop, to control the force. How-

ever, the cable-driven soft exosuit has a behavior that is 

too non-linear to get a consistent performance with the 

closed-loop control only. A feedforward component is 

then added, using a model that includes the suit stiffness, 

the actuator dynamics, and a thigh motion model (hip 

angle to cable retraction).

Fast closed-loop torque control (CLT) �e closed-loop 

torque control is the classical way of controlling an accu-

rate torque. It requires a torque sensor for feedback. 

�e motor can be rigidly coupled to the joint (possi-

bly through gears) or via a spring. �e latter is called a 

series elastic actuator (SEA) and trades off some tracking 

bandwidth to get a better perturbation rejection perfor-

mance. In other words, the softer the spring, the higher 

the torque regulation capability (a larger movement is 

necessary to achieve the torque perturbation), but the 

lower the ability to change torque fast (the motor has to 

spin more to achieve the torque variation). An advanced 

method to control the torque of a series elastic actuator 

(SEA) can be found in [297].

Gait-cycle iterative torque control (ITT) Instead of con-

trolling directly the joint torque with conventional fast 

closed-loop control, a position or speed sequence can 

be played back with a compliant actuator, which can do 

approximate torque control based on the actuator’s force-

length relationship. �is is well suited to systems that 

are soft and difficult to control. At the end of each step 

of the gait, corrections are made according to the com-

parison between the achieved and desired torques. Since 

the reaction time is one step, this is only accurate if the 

gait is periodic and regular, which is typically the case on 

a treadmill. �e displacement/torque relationship can be 

estimated before the experiment, and a constant motor 

speed control results in the desired force profile [113, 

114]. In [101], position-control is used on a Bowden cable 

to follow a trajectory, which translates to a torque at the 

ankle as a result of the elasticity of the exosuit. �e tra-

jectory is manually adjusted online to get the right force 

profile. In [109], a fixed voltage profile is triggered some 

time after the heel strike. It is also possible to tune the 

target trajectory online to get the desired work or average 

positive power [16, 102, 137]. In [16], a target trajectory is 

tuned online to get the desired average torque. In [298], a 

speed profile is tuned online instead. In [112], the speed/

position profile is tuned online over several gait cycles, to 

get the desired torque profile.

Special passive mechanical properties (PME) It is pos-

sible to exploit the passive mechanical properties of 

the actuator, to benefit from some control properties 

that would require a larger and more complex actua-

tor to emulate them with conventional force control, or 

additional sensors. A first example are the pneumatic 

actuators, that are compliant and with a limited tracking 

bandwidth. �is is exploited in [234], where the “bang-

bang” pressure controller does not result in a square 

torque profile, because of the smoothing by the limited 

actuator dynamics. In [226], the compliance of the locked 

actuator is used during stance. Actuation does not have 

to be bi-directional (e.g. pneumatic artificial muscles and 

Bowden cables can pull but not push), and this property 

is used to temporarily “disconnect” the actuator from 

the exoskeleton mechanically, to get a passive high-

performance “transparency” (zero torque) without the 

need for a torque sensor [114]. In [26], the knee is posi-

tion-controlled, but also features passive variable stiff-

ness thanks to an additional actuator that controls the 

pre-tension of a spring. Achieving such compliance with 

a single actuator would not be possible, because of the 

high gear ratio and high inertia of the motor. A magne-

torheological damper is used in [65] to vary the damping 

around the joint in different gait phases. �e exoskel-

eton described in [72] uses a magnetorheological clutch, 

linked to a motor always running at full speed. �is also 

makes it possible to mechanically “disconnect” the joint 

from the motor and get transparency, when the clutch 

is off. A similar system was presented in [299], but using 

a dual conventional clutch able to apply torque in both 

directions. In [300], the supply pressure of the pneumatic 

actuators is calculated so as to achieve a desired com-

pliance (or equivalently, stiffness). In another study, a 

clutch is used to connect and disconnect a spring and a 

DC motor which is running during 85% of the gait cycle 

to stretch the spring, and is disengaged during the push-

off period to let the spring release the stored energy and 

assist the ankle [178]. In a similar but simpler approach, 

a DC motor is used to compress a spring during stance 

(and this compression is also augmented by the dorsiflex-

ion of the human ankle), and the stored energy is released 

at push-off [301]. �us, using the spring as a passive ele-

ment allows using a lighter motor with a lower power 

output.

Fully passive system (PAS) A fully passive system does 

not use an actuator and relies solely on passive mechani-

cal elements, such as springs and dampers. A small actua-

tor may be present to control the state of the system, but 

will not exchange power with the joint [171, 173]. �e net 

work of such systems can only be negative, but positive 

power can momentarily be provided if energy has been 
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stored previously. �e control behavior is more difficult 

to design and adjust, because of the mechanical changes 

required. However, passive mechanical elements have a 

very high power-to-weight ratio, and do not need a bat-

tery. �erefore, such exoskeletons can be significantly 

lighter to decrease the added effort and metabolic cost of 

carrying the weight of the device. �e full actuator can 

be as simple as just a spring [213, 302–306] (hip joint 

only), [19] (ankle joint only). In [164], the spring is linked 

to a ratchet and a clutch to disconnect the spring from 

the ankle during the swing phase. A similar approach 

was described in [11]. In [171], the clutch is active, but 

the rest (a spring) is passive. In [19], the knee is linked to 

a damper via a clutch that is controllable from the soft-

ware. A spring can also connect (indirectly) several joints 

together to perform power transfer [179, 307–309] (but 

this last one is an exotendon that does not really qualify 

as an exoskeleton). In [310], a rigid six-bar linkage with 1 

degree of freedom (DoF) has been used to link the move-

ments of knee and ankle joints and constrain the walking 

trajectory to that of a healthy person.

Evaluation metrics
Evaluation metrics are necessary to assess the perfor-

mance of an exoskeleton and compare it to others. As 

a human being is involved, they are unfortunately often 

inaccurate and not repeatable between subjects, and 

even between different trials with the same subject. A 

complete benchmarking scheme for bipedal locomo-

tion was proposed by Torricelli et al. [311], summarizing 

many desired abilities, test cases, and metrics. �is sec-

tion briefly outlines the most common metrics that can 

be found in the literature to evaluate the exoskeleton-

assisted gait. However, this is by no means an in-depth 

review of the evaluation metrics. For an in-depth review 

of the evaluation metrics, the reader is referred to Pinto-

Fernandez et al.’s recently published review paper on this 

subject [9].

Functional performance of the human-exoskeleton system

�e performance can first be evaluated in terms of func-

tional performance, which is the ability of the subject to 

complete a desired task. �e scores obtained in Olympic 

sports (time to sprint 100m, maximum jumping height, 

etc.) are mainstream metrics but are not suitable for 

easier tasks such as walking. Other well-known methods 

are the 10-meter walk test (10MWT), the 6-min walk 

test (6MWT), the timed up and go (TUG) test [312], or 

the Fugl-Meyer assessment (FMA) [313]. �ese are often 

used with highly disabled patients and full mobilization 

exoskeletons [30, 314–316].

�ese metrics suffer from low repeatability, and the 

outcome depends on the subject’s motivation and effort 

as well.

Metabolic cost

�e metabolic cost is the amount of energy consumed 

by a subject to complete a task. �ese methods are use-

ful because they capture the power exerted by the user, 

which relates closely to the required “effort”. However, the 

human body adapts slowly (with response times on the 

order of 1min [317]) and these methods are only usable 

for an exercise that lasts at least a few minutes.

Heartbeat rate Electrically-measured electrocardiogra-

phy (ECG) or optical methods are used to measure this 

metric [122, 138, 315]. Electrocardiography (ECG) is usu-

ally preferred because of its better accuracy and robust-

ness [318], although this distinction has recently been 

called into question [319]. �e heartbeat rate measure-

ment devices are easily wearable, compact and cheap.

Gas exchange Typically, the O2 consumption is meas-

ured to estimate the metabolic rate [72, 303, 309, 320]. 

For these measurements, the exercise is performed 

continuously for 1–2 min until the steady-state value is 

reached. Another possible approach is to fit an exponen-

tial function [105] or a first-order function [214] on the 

transient part of the data.

Muscular activity

�ere are various methods to approximately detect the 

level of activation of the muscles, which is another meas-

ure of the required effort from the user. However, these 

methods cannot measure the resulting joint torque, 

which is affected by other factors such as muscle fatigue, 

co-contraction of antagonist muscles, etc. �ese methods 

have a short response time, as opposed to the methods 

aiming to measure the metabolic cost.

Electromyography �e most common method for mon-

itoring muscular activity is the surface electromyography 

(EMG), with adhesive electrodes placed on the skin, over 

the muscles of interest [16, 321]. Implanted electromyo-

graphy (EMG) sensors also exist to allow for monitoring 

internal muscles that are not accessible near the surface 

of the skin, but this technique is rarely used due to its 

invasive nature. electromyography (EMG) readings can 

be biased by the change of conductivity of the skin (as 

a result of sweating or migration of the conductive gel), 

and movement of the electrodes.
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Mechanomyography In this method, muscular activa-

tion is measured by the change of volume or the vibration 

intensity of the muscles [322]. It typically gives the aver-

age muscle activity at a specific leg section.

Joints mechanical power

By measuring the position of user’s body segments with 

a motion capture system, and the ground reaction forces 

with a force plate, it is possible to compute the move-

ment and torque of each joint, and thereby its mechanical 

power. For this method, the knowledge of the user’s seg-

ment lengths and weights is needed as well. However, the 

joint mechanical power is not necessarily related to the 

muscle power [323].

Discussion
�e selected classification approach made it possible to 

describe 285 control strategies presented in 291 reviewed 

papers.4 A total of 31 blocks have been used. It should 

however be noted that the implementation details and 

the differences between various possible realizations of 

each block could be important and might even affect the 

performance outcome considerably. Comparing the per-

formances was not intended in this review, and indeed 

it is practically impossible due to the differences in the 

target populations and tasks, testing procedures, and the 

reported outcomes in each study.

Selected controllers representing various possible com-

binations of the blocks are given in Table  2, along with 

their classification, actuator type, and a brief description 

of the control strategy. �is table shows how the different 

blocks could be combined in numerous ways to form a 

controller.

In the high-level layer, the mode of operation of the 

device is determined, typically based on the type of gait 

or activity (e.g. normal walking, climbing stairs or, sit/

stand transitioning). Currently few studies are address-

ing high-level control, mainly because in laboratory 

or clinical settings the mode of operation is often con-

stant. In fact, only about 20% of the reviewed controllers 

addressed high-level control, many of which only briefly 

mentioned the method without focusing on it. 27 con-

trollers were based on movement recognition, 15 based 

on explicit/manual user input, 13 based on terrain detec-

tion, and 5 based on brain-computer interfaces. 2 con-

trollers combined brain-computer interfaces with terrain 

detection, and 1 controller combined terrain detection 

and movement recognition.

While high-level control can be ignored in applications 

such as rehabilitation, reliable high-level control is essen-

tial for devices that are ultimately intended to be used in 

everyday environments, particularly for full mobiliza-

tion. Most commercial exoskeletons for full mobiliza-

tion still rely on simple high-level control methods that 

require direct input from the user. Advanced methods 

such as terrain recognition and intent detection have 

recently received more attention, but most of the articles 

are in the preliminary testing and feasibility study phases. 

However, promising results have been demonstrated and 

these methods can be expected to be implemented in 

more devices in the near future.

�e mid-level layer dictates the continuous behavior of 

the device in each operation mode (or in general, if there 

is only one mode of operation). �is layer is central to the 

performance of assistive devices and consequently, the 

existing studies in exoskeleton literature are predomi-

nantly focused on this part. �is layer is also usually more 

heavily affected by the fact that the controller is intended 

for an exoskeleton, whereas many of the high- and low-

level controllers could be directly applied to other kinds 

of devices as well (e.g. prostheses and wheeled robots).

Mid-level control is further divided into two parts: (1) 

detection/synchronization and (2) action. While most 

control strategies found in the literature include both 

sublayers, some controllers operate directly on the raw 

sensory data (e.g. joint angles) and the synchronization 

is implicit (e.g. in muscle activity amplification) or non-

existent (the user has to synchronize with the device). 

Control strategies used in some papers consist of more 

than one set of functional blocks. Different sets of blocks 

could either be used simultaneously to complement each 

other, or separately based on the gait state or ambulation 

mode (switched by the high-level controller or a state 

machine in the mid-level layer itself ).

Out of the 285 reviewed control strategies, 265 

addressed mid-level control. �e number of possible 

strategies in the mid-level layer is much higher than the 

others, with more than 40 possible variants identified in 

the reviewed articles, and many articles using more than 

one strategy.

In the synchronization level, 98 papers used event trig-

ger, 35 imposed the timing, and 11 used manual trig-

ger. Following these triggers, 72 papers used a simple 

linear increase of the gait phase and 52 used finite-state 

machines to switch between discrete gait states, while 31 

carried out time-based interpolation to calculate the gait 

phase. For direct gait phase estimation, 26 papers used 

adaptive frequency oscillators, 9 used machine learning, 

4 Some of the reviewed papers included more than one controller, and some 

papers —by the same research group— used the exact same controller several 

times, therefore the number of control approaches does not exactly match the 

number of papers.
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Table 2 A selection of the reviewed controllers and their classification

Most of the references were chosen from the most cited papers (based on the number of citations in Google Scholar), and some were manually added to typify other 

possible combinations of blocks not covered among the most cited papers. Actuator abbreviations: EM: Electric Motor, OT: Other, PA: Passive, PN: Pneumatic, SEA: 

Series Elastic Actuator

References High-level Mid-level Low-level Actuator Description

[170] None EVT-FSM-ZCT CLT SEA From heel strike to mid-stance, the stiffness is incremented if foot slap is 

detected from GRF analysis. From mid-stance to toe off, zero impedance 

is applied to let the user perform powered plantarflexion. During swing, 

desired stiffness and damping are set based on the gait speed range

[332] None FJI CLT SEA Required knee torque is estimated as the static torque resulting from the GRF, 

then it is applied with an amplification factor

[208] None PPR-ZCT CLT EM A time-invariant tunnel is defined around a desired path, which is obtained 

from interpolation between the patient’s pre-training gait and that of a 

healthy subject. A virtual spring guides the leg back toward the tunnel 

when diverged. When inside the tunnel, an assisting force tangent to the 

path is applied

[30] MUI EVT-LNP-PPR POS EM A watch is used to select the operation mode, then the fixed-trajectory steps 

are triggered with the trunk tilt

[241] None MYO OLT EM Proportional EMG control; the applied torque is calculated based on the dif-

ference between flexor and extensor muscle activities

[103] None EVT-TBP-TPR PME PN Uses an “algorithm” to predict stride time from heel switch data, then turns 

plantarflexion assistance on and off (applying constant pressure to pneu-

matic muscles) at pre-defined gait cycle percentages

[89] None EVT-LNP-PPR +BAL-ZCT CLT SEA A state machine applies joint trajectories (fixed trajectories in the sagittal 

plane, online adaptation in the frontal plane based on XCoM to improve 

balance) and changes the impedances of the joints. Lateral weight-shifting 

triggers the steps

[44] BCI IMP-LNP-PPR POS EM BCI control with 4 actions: “stand”, “walk”, “stop”, and “kick”. In one paradigm the 

subject triggers the walking and the steps are performed automatically. In 

another, the subject triggers each step

[117] None EVT-FSM-TPR OLT PN State machine. Transitions using threshold on the feet pressure sensors (two 

per foot, one in front and one in back). Dorsiflexion torque applied at heel 

strike and toe-off, no assistance during foot flat, plantarflexion torque 

applied at heel off

[142] None AFO-ZCT? CLT SEA AFO is used to estimate the gait frequency and joint angle, then the joint is 

attracted toward its predicted future position (equivalent to impedance 

control with the time-shifted, AFO-identified trajectory, as the target)

[150] None EVT-TBP-TPR +ZCT+BWS OLT EM Torque sequence triggered by EMG. Also damping to limit the movement 

speed, and gravity compensation

[164] None EVT-FSM-ZCT PAS PA A spring is only engaged during stance using clutch and ratchet mechanism 

(no electronics involved), to assist ankle plantarflexion

[256] None BAL OLT EM Full mobilization with balance, resulting in crutch-less walking. Human and 

exoskeleton are considered as a single bipedal walker, and advanced 

control methods for bipedal robots are used. The details are out of scope 

for this review

[252] None JTE CLT EM Estimates approximately the hip/knee torque using a spring-loaded inverted 

pendulum model, assuming point foot. Requires GRF and CoP position 

obtained from instrumented treadmill

[111] None MLP-ZCT+TPR OLT EM Gait event detected with IMU and support vector machine: heel strike, heel 

off and toe off. Each event triggers a damping profile (HS) or torque profile 

(HO and TO)

[72] MOV ASP-TPR+IMP PME OT Uses angle-speed diagram to get the phase. Discriminates between walking 

and jumping using the phase difference between the two legs. Walking: 

torque profile. Jumping: impedance control

[260] None EVT-FSM-NMM CLT SEA Based on the reflex model by [259] which uses different reflex loops depend-

ing on stance/swing, but muscle activation signals also include another 

component simulating the input from central pattern generators (CPG) 

using adaptive-frequency oscillator (AFO). The CPG component has not 

been used in experimental tests

[41] BCI+TER IMP-LNP-PPR POS EM BCI-controlled FSM decides 3 actions (turn left/right, walk front), and an 

obstacle detection system (3D camera + ultrasonic sensors) blocks the 

actions that result in hitting obstacles
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2 used angle-speed plot phase and 2 used other gait 

phase estimation methods.

In the action sublayer, impedance control was used 85 

times, torque profile 64 times, trajectory-based position 

control 51 times, myoelectric amplification 22 times, 

function of foot/joint instant states 19 times, direct joint 

torque estimation 14 times, model-computed movement 

to keep balance and neuromuscular model 8 times each, 

and finally dynamical function of foot/joint states, body-

weight support and direct joint control by the user were 

used 2 times each.

�e low-level layer is responsible for carrying out the 

desired “action” determined in the mid-level layer. �e 

type of descending command (position or force/torque) 

from the mid-level layer determines the nature of the 

low-level controller. Typically the low-level control strat-

egy can be a simple proportional-integral-derivative 

(PID) position regulator in full mobilization exoskele-

tons, or a torque controller (either open- or closed-loop) 

for partial assistance. Besides these methods which are 

very common in robotics, alternative methods also exist 

that can be applied to control the torque in actuators 

with mechanical compliance. Furthermore, simple forms 

of torque control have also been realized using only pas-

sive elements through storing and releasing energy. 

Clearly, the choice of the low-level control strategy is 

heavily influenced by the hardware of the device, which 

is in turn affected by trade-offs between wearability (e.g. 

weight and volume) and performance (e.g. power output 

and bandwidth).

249 out of the 285 reviewed control strategies included 

low-level controllers, although in some cases the type 

was not clearly mentioned. 60 control strategies were 

Fig. 6 Number of references for each functional block (top: high-level, middle: mid-level, bottom: low-level)

Fig. 7 Percentage of the considered publications that addressed 

high/mid/low level, per year of publication



Page 21 of 34Baud et al. J NeuroEngineering Rehabil          (2021) 18:119  

based on position control and 186 based on torque con-

trol. Among the torque-controlled devices, 57 had an 

open-loop torque controller, 55 a closed-loop torque 

controller, 36 used special passive mechanical properties, 

18 were passive devices and 16 used gait-cycle iterative 

torque control.

Figures 3 and 6 show that some control blocks are more 

popular than the others. For the high-level, it can be seen 

that in absolute terms, the high-level control method 

is not addressed often in the literature, although it is 

increasing over time (Fig. 7). �e popularity of the man-

ual user input (MUI) can be explained by the fact that 

the full mobilization exoskeletons are responsible for the 

full movements of the limbs, which should be adapted to 

many situations, and MUI is the most reliable and prac-

tical method today in this regard. For partial assistance, 

the movement recognition is more common because 

MUI and brain-computer interface (BCI) are not fast or 

convenient enough to use (the users have less impair-

ments and higher expectations for usability), and the ter-

rain detection is still in an early stage of development. 

For middle level, the leading blocks for partial assistance 

are event-trigger, impedance control and torque profile, 

probably because these are simple to understand and 

implement, and are able to cope with simple sensors 

(encoders, switches, etc.). �e majority of the full mobi-

lization exoskeletons use an imposed position profile 

(linear increase of the gait phase (LNP) + position pro-

file (PPR)). For low-level, almost all the full mobiliza-

tion devices use a position profile, because it is easy to 

implement with traditional actuators with high gear ratio, 

and because the mid-level associated blocks are mostly 

designed around reference kinematics, instead of joint 

torques or GRFs. For partial assistance, torque control is 

preferred, and open-loop (OLT) and closed-loop torque 

control (CLT) are the most common, because they are 

the traditional ways of torque control in robotic applica-

tions. Although CLT should be the most versatile (it does 

not require tuning to a specific movement, as opposed to 

exploiting special passive mechanical properties (PME) 

and gait-cycle iterative torque control), accurate and 

high-bandwidth torque control, it requires torque sens-

ing and a careful design. OLT is simpler but less accurate, 

and less stable over time (e.g. due to changes in friction 

with temperature and wear). Generally, the most popular 

techniques are on one hand usable on simple hardware, 

so not requiring delicate sensing (e.g. muscles activity 

amplification) or special mechanics (e.g. PME, or even 

a fully passive actuator), and on the other hand easy to 

understand and implement. Typically, machine learn-

ing and neuro-muscular models are harder to imple-

ment because of the complex algorithms involved and 

the need for training data, so they are rarely used out 

of a simulated environment. It is remarkable that apart 

from the blocks related to imposing a position profile 

(continuously imposed movement, linear increase of the 

gait phase, position profile), the blocks are used almost 

only for full mobilization, or only for partial assistance, 

but there is little sharing. Manual user input, BCI, terrain 

detection, manual trigger, model-computed movement to 

keep balance, and position control can be associated to 

full mobilization, whereas movement recognition, event-

trigger, adaptive-frequency oscillators, angle-speed plot 

phase, machine learning, time-based gait phase inter-

polation, other gait phase estimators, state machine, 

neuro-muscular model, torque profile, direct joint torque 

estimation, direct joint control by the user, model-com-

puted movement to keep balance, impedance control, 

function of feet/joints instant states, dynamical function 

of feet/joints states, bodyweight support, muscles activ-

ity amplification, open-loop torque control, closed-loop 

torque control, gait-cycle iterative torque control, special 

passive mechanical properties, and fully passive system 

are associated to partial assistance.

Although objectively comparing the performance of 

the controllers is not possible (different target users, dif-

ferent tasks, different metrics, etc.), ten successful pub-

lications have been selected here, and have been used 

to highlight effective control features. In the context 

of the full mobilization, the four best performers to the 

CYBATHLON 2016 [324] have been selected [27, 28, 30, 

90], because they proved that their system is fast and can 

overcome many obstacles. �ey are all using manual user 

input (MAN), because this is the most reliable method 

today. BCI is slow, limited to a small set of commands, 

and requires focus. Terrain detection is currently lim-

ited to over-simplified obstacles scenarios, but has a high 

potential because it will benefit from the current devel-

opment of humanoids. Movement recognition is rarely 

used because the user has not enough voluntary control 

of the legs. For the lower layers, pre-defined gait trajec-

tories with position-control (LNP+PPR+POS) are suc-

cessful in practise, because they are simple to implement 

and reliable, and it is possible to tune them for different 

types of gait and obstacles. �is imposed gait pattern can 

be triggered manually with the hands (MAN) or from the 

body movements (EVT). �e exoskeleton in [195] is also 

remarkable because it is the first one truly able of hands-

free dynamic walking. �is new control technique, based 

on the balance control of humanoids (BAL) is promis-

ing, although less reliable (failure of the device cannot 

be recovered by the user, since there are no crutches) 

and currently slower. In the context of partial assistance, 

three passive [164, 307, 309] and two active controllers 

[123, 141] have been selected because they had the great-

est results in lowering the metabolic cost of walking or 
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running. �e high-level control layer is rarely considered 

because most studies focus on steady-state walking or 

running. However, the transition between these two can 

be performed automatically using movements recogni-

tion (e.g. [123]). �e most successful powered exoskele-

tons implement a torque profile, which can be made very 

efficient if the torque profile is tuned to the user. �e syn-

chronisation is done with an event trigger [123] or AFO 

[141]. �ere is no clear trend for the low-level torque 

control. Simpler, fully passive exosuits could also suc-

cessfully break the “metabolic cost barrier” (as expressed 

in [7]), mostly with a variant of impedance control [164, 

307, 309]. While the control can bring less power to the 

user, the ability to implement it on a dramatically lighter 

equipment makes the assistance outcome (assistance 

minus burden) beneficial.

Several full mobilization exoskeletons are already com-

mercialized and the existing devices are reasonably suc-

cessful in assisting people with paraplegia or severe 

lower-limb weakness. However, there still exists consid-

erable room for improvement in their control strategies, 

particularly in the areas of balance, terrain adaptability, 

and walking speed. �ese potential areas of improve-

ment are generally addressed in high-level control and 

the “action” sublayer of mid-level control. Recent pre-

liminary studies in terrain detection methods have also 

demonstrated successful results, paving the way for more 

applied research on integrating these methods into actual 

exoskeletons. Investigating more generalizable online 

adaptive position profiles to decrease the reliance on 

fixed trajectories and terrain types also deserves more 

attention. For “crutched” exoskeletons, however, since 

the behavior of the device would become potentially 

unpredictable for the user, an advanced feedback system 

should be designed so that the crutches can be moved 

according to the expected movement of the legs. Finally, 

ensuring the safety and robustness of more sophisticated 

control strategies would be a major challenge in the tran-

sition from the laboratory to everyday use, because of the 

dramatically increased complexity. To achieve crutchless 

dynamic walking, recent advancements utilizing meth-

ods from the field of humanoid robotics have proven 

promising, and more progress in this direction is to be 

expected in the near future. Control strategies that effec-

tively address fall prevention and recovery from tripping 

could also substantially improve the safety of full mobili-

zation exoskeletons.

In the field of partial assistance, many encouraging 

results have been achieved as well, especially concern-

ing metabolic cost reduction which is arguably the most 

sought-after target in this field [7]. Several studies have 

investigated the effects of different factors such as magni-

tude [99, 113] and timing [102, 141] of assistive torques, 

power delivery [102], and adaptation of the subjects 

[115, 121] on the metabolic cost reduction. �is has led 

to a better understanding of the methods for effectively 

reducing the metabolic cost, and challenges such as com-

pensatory behaviors in unassisted joints [16, 115]. Con-

trary to full mobilization in which further improvements 

mostly can come from the “action” sublayer of mid-level 

control, for partial assistance the performance of the 

“detect/sync” sublayer is equally important. In many par-

tial assistance exoskeletons, the user has to bear the full 

weight of the device. �is can be a serious hindrance, 

especially for people with existing weaknesses. �ere-

fore, improving the design of partial assistance devices to 

reduce their weight could be as important as improving 

the control strategy. Controllers that can work with sim-

pler hardware are at an advantage. In the same vein, soft 

exoskeletons (exosuits) have received increased attention 

from the researchers and this trend is likely to continue.

For future research, more comparative studies testing 

different control strategies on the same hardware and in 

similar conditions could be valuable. �e developments 

in machine learning methods have successfully been uti-

lized in detection of the environment, locomotion mode, 

and also the gait phase. But these methods have not been 

integrated with subsequent action blocks frequently. In 

the future, controllers with machine-learning-based envi-

ronment/activity recognition and synchronization can 

become more common. Robust and reliable detection 

of the terrain or the activity mode using machine learn-

ing can make exoskeletons more autonomous and much 

easier to use in everyday situations. Accurate detection of 

the gait phase can on the other hand improve the effec-

tiveness of the assistance provided by the exoskeletons. 

For the latter purpose, however, simpler methods can 

also provide sufficient accuracy.

With a large scope, not limited to a specific applica-

tion or type of device, this review was intended to pro-

vide an organized overview, to help the new researchers 

in the field understand the vast range of control strate-

gies for lower-limb exoskeletons to assist the gait. �e 

proposed layers and blocks structure is well suited to 

sort and compare the existing controllers, and prob-

ably the future ones. Such organization work is essential 

because the topic of exoskeleton control tends to accel-

erate its expansion (Fig. 8), which makes understanding 

the existing methods increasingly difficult. However, it 

is not a practical tool for the inverse process, which is 

the synthesis of new controllers. In fact, the classifica-

tion is made so that it is independent of the target appli-

cation or device, but these are important for the design 

of a performant controller. For example, some blocks 

are irrelevant for the full mobilization of complete spi-

nal cord injury SCI users (e.g. body weight support and 
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muscles activity amplification), and some implementa-

tions require specific sensing which may not be available 

on the actual hardware (e.g. electromyography (EMG) 

sensors or foot pressure sensors). Also, this classification 

gives no guidance on how to choose the implementation 

of each selected block, because the performance of each 

implementation is not compared. In addition, there is no 

guarantee that the complete controller results in a useful 

behavior. Hence, choosing a path through the blocks is 

a complex task. Finally, the proposed blocks set empha-

sizes on the processing that leads to the desired behavior, 

but does not show the sources of information. For exam-

ple, it is not visible that a controller uses the movement 

of the sound leg to control the paretic leg, or that another 

uses the foot contact information to produce torque at 

the hip. �is can be considered as a limitation because 

intention detection is a key challenge for these control-

lers, and sources of information play a decisive role in 

intention detection. �e main reason is that in the litera-

ture, the techniques are designed for and tested with an 

actual device with fixed inputs (e.g. sensors locations), 

but these techniques may still be applicable to other exo-

skeleton topologies.

Conclusion
In this paper, an overview of the existing literature on the 

control of lower-limb orthotic devices for gait assistance 

was provided, plus a brief overview of the metrics com-

monly used to evaluate the performance of the control-

lers. An effort was made to focus on the core concepts 

used in each controller, and to separate them from dif-

ferent possible implementation methodologies and hard-

ware platforms, whenever possible. A 3-layer hierarchical 

structure was proposed for the classification of the con-

trollers, conceptually similar to the suggested framework 

in a previous review article [4].

�e different possible control approaches in each layer 

were then represented by atomic functional units in the 

form of blocks. While most of the blocks could be imple-

mented using various methods, the overall function 

remains largely the same. �is type of classification and 

decomposition facilitates the comparison of the different 

existing approaches in terms of control by abstracting out 

the basic idea regardless of the implementation details. 

It allows capturing not only the differences but also the 

similarities among different approaches.

A vast number of methods were identified showing 

considerable heterogeneity, each one being tailored to a 

specific kind of application, target population, and per-

formance objective. No comparison was made among 

these methods in terms of effectiveness and performance 

outcome, mainly because a general comparison would be 

pointless when the ultimate objectives and target popu-

lations are fundamentally different. Furthermore, even 

among the studies sharing these features, the protocols 

used for testing and the reported performance metrics 

(if any) often do not match and thus there is not enough 

information to make systematic comparisons. Regard-

less, it can be stated that many significant improvements 

in terms of performance outcomes have been achieved 

Fig. 8 Number of reference considered, per year of publication
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recently, as pointed out by other recent reviews as well 

[1, 7].

Currently, the most successful full-mobilization exo-

skeletons are controlled with manually selected modes 

(MUI), setting pre-defined trajectories that are manu-

ally (MAN) or automatically (EVT) triggered. �e main 

limitations are that the crutches prevent the use of the 

hands for other tasks, and switching from one mode 

to another is time-consuming. To address these issues, 

there are promising developments ongoing on dynami-

cal balance (BAL) and terrain awareness (TER), both 

supported by the recent advances in powerful, com-

pact, low-power, embedded computers. Nevertheless, 

these devices will be more complex, bulky and expen-

sive than the current crutched exoskeletons. Humans 

are already aware of the terrain and know what move-

ment to perform, they are just unable to command the 

exoskeleton accurately and quickly enough. Conse-

quently, more research work on efficient user interfaces 

could improve the current generation of exoskeletons 

and make them quicker in less structured environments 

(single step stair, short sideways slope, speed bump, 

etc.).

For partial assistance, the best results have been 

obtained with event-triggered (EVT+TPR) or AFO-

synchronised (AFO+TPR) torque profile, possibly 

tuned to each user with human-in-the-loop optimiza-

tion, and torque control. �ese techniques are exploit-

ing the periodicity of the gait to keep the torque 

pattern synchronized with the legs. �is is why it can 

be expected that they are less efficient in unstructured 

environments, where the gait pattern is less regular. 

State-less techniques (such as FJI) could solve this issue 

but they have not been addressed often in the litera-

ture. Hence they may deserve more research effort.

�ese improvements in controllers, along with other 

advancements in technology, hardware and design 

have taken gait assistance exoskeletons one step closer 

to becoming mainstream, although many challenges 

still need to be resolved before making the move from 

laboratories to real-world usage. �is would call for 

the research on exoskeleton control to start moving 

toward more comprehensive studies with more realistic  

scenarios and protocols in the near future. Such stud-

ies necessitate more interdisciplinary collaborations 

among control researchers and specialists from various 

other disciplines, from physiologists and clinicians to 

design engineers and conformity assessment bodies for 

medical device regulations in different countries and 

regions.
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