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1. Introduction

Cosmic phase transitions [1–4] are macroscopic cosmic events 

so dramatic that they are capable of leaving imprint via non-

adiabatic vacuum fluctuations and creation of particles [5–7], 

formation of defects [4, 8–10], generation of magnetic field 

[11, 12], generation of baryonic asymmetry [13–17], and the 

gravitational wave background [18], and yet their properties 

are determined by particle physics. Indeed all the macroscopic 

properties such as the order of the phase transition [1, 2], the 

length of the phase transition [19], the latent heat [20], and the 

amount of supercooling that occurs [19–21] are all controlled 

by the quantum properties such as effective mass, effective 

coupling, finite temperature effects whose masses are near the 

temperature scale at which the phase transition occurs, for an 

extensive reviews on these topics, see [17].

Furthermore, the particle physics responsible for a cosmic 

phase transition can potentially occur at any scale: from the 

QCD scale  ∼10−1 GeV [22] right up to the GUT scale  ∼1015 

GeV [23]. Thus, any cosmic phase transition might shed light 

on particle physics occurring at scales that are potentially out 

of reach to both present and future particle colliders. Besides, 

thermal phase transitions, non-thermal phase transitions can 

also occur. Usually, they occur after the end of inflation, 

prompted by the inflationary sector or some hidden sector 

[5–7]. Such phase transitions do not require initial conditions 

to be set by thermal initial conditions.

It is likely that at least two transitions have occurred: the 

QCD transition between a quark gluon plasma and a had-

ron gas [22], and the electroweak transition [24] in which 
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Abstract

The study of cosmic phase transitions are of central interest in modern cosmology. In the 

standard model of cosmology the Universe begins in a very hot state, right after at the end 

of inflation via the process of reheating/preheating, and cools to its present temperature as 

the Universe expands. Both new and existing physics at any scale can be responsible for 
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or non-thermal with a potential observable imprints. Thus this field prompts a rich dialogue 

between gravity, particle physics and cosmology. It is all but certain that at least two cosmic 

phase transitions have occurred—the electroweak and the QCD phase transitions. The focus 

of this review will be primarily on phase transitions above such scales, We review different 

types of phase transitions that can appear in our cosmic history, and their applications and 

experimental signatures in particular in the context of exciting gravitational waves, which 

could be potentially be constrained by LIGO/VIRGO, Kagra, LISA, and Decigo.
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electroweak symmetry was spontaneously broken allowing for 

the standard model (SM) particles to acquire gauge invariant 

masses [25, 26]. The latter phase transition may be involved 

in generating baryon asymmetry of the Universe via the elec-

troweak (EW) baryogenesis mechanism [13, 16, 27–29]. Both 

of these phase transitions can leave an observable signature in 

the gravitational wave background [30–32] as well as affect-

ing both the cold and hot dark matter backgrounds [33]. Other 

phase transitions are also possible: examples of which include 

the spontaneously breaking of gauge symmetry of Grand 

Unified Theory (GUT) giving rise to inflation [34–36], and 

the production of dark matter through a strongly first order 

phase transition [37].

The nature of these phase transitions not only affect any 

observable relic footprints they might leave, but also their 

utility. For example, if a relic gravitational background sug-

gests that the electroweak phase transition occurred through 

bubble nucleation then that could be a sign that the baryon 

asymmetry of the Universe was produced during this phase 

transition. First order phase transitions also generate primor-

dial magnetic field during the turbulence phase of the plasma 

and bubble collision [38], see a very nice review [12], and 

in some cases they may generate domain walls and strings 

[4, 5, 39, 40], as it happens in the case of Next to Minimal 

Supersymmetric standard model (NMSSM) [9, 41].

Furthermore the ingredients behind cosmic phase trans-

itions have many discovery avenues. Observation of proto n 

decay would give strong evidence of grand unification  

[42, 43] which is an ingredient in a GUT phase transition, 

discovery of new scalar particles would give more informa-

tion about the electroweak phase transition or new massive 

gauge bosons could indicate a dark phase transition. Finally 

the principles behind cosmic phase transitions can in principle 

be tested in condensed matter systems which can imitate cos-

mological situations for a given Lagrangian [44].

2. Basic cosmological overview

Let us briefly summarize the early Universe cosmology in 

chronological order. How the Universe began remains a pro-

found question, for which we do not have direct experimental 

evidence yet. Nonetheless, we can speculate based on sound 

physical arguments and the observations confirmed by the 

detection of cosmic microwave background (CMB) radiation 

[45, 46].

2.1. How did the Universe begin?

Einstein’s theory of gravity (GR) is extremely successful in 

the infrared (IR) matching of all possible observables [47], 

including the recent discovery of gravitational waves from 

mergers of two blackholes [48], and binary neutron star merg-

ers [49]. However at short distances and small time scales, i.e. 

in the ultraviolet (UV), GR has pathologies, besides being a 

non-renormalizable theory, GR introduces cosmological and 

blackhole singularities, see [50], and in some cases naked sin-

gularities, see [51]. In GR, our Universe has a distinct start-

ing point, a singular spacetime—as long as all the standard 

energy conditions are always satisfied, i.e. strong, weak, and 

null energy conditions, see [50]. It is possible to address the 

cosmological singularity problem without violating the matter 

energy conditions by weakening the gravitational interaction 

in the UV. This can happen in ghost free infinite derivative 

gravity inspired from string field theory [52, 53]. There could 

be two consequences for such study; one could be a realiza-

tion of a non-singular bounce [54, 55], and the other scenario 

would be that Universe could be frozen in time in the UV, such 

that the Universe becomes conformal as t → 0 [56]. Bouncing 

cosmologies and cosmological density perturbations have 

been reviewed in this nice review [57, 58]. There is a strong 

indication that this non-singular initial phase of the Universe 

has a key role to play towards understanding the subsequent 

phases of the Universe such as cosmic inflation, horizon, 

homogeneity and isotropy of the Universe, to create appropri-

ate initial conditions for the Universe. In this review we will 

not discuss any further the very genesis of the Universe, we 

will merely assume that Universe is homogeneous and iso-

tropic from the very beginning. We will discuss inflationary 

cosmology very briefly, but inflationary cosmology has its 

own limitations, when it comes to explaining the initial condi-

tion problem—it cannot solve or address the initial singularity 

problem [59].

2.2. Cosmic inflation to reheating

2.2.1. Primordial inflation. A phase of primordial inflation 

addresses some of the key challenges of the hot big bang cos-

mology, such as the flatness and the horizon problems, i.e. gen-

erating the large scale structures on roughly 4000 Mpc scale, 

and the age of the Universe  ∼13.8 Gyrs [34–36, 60–62]. Cos-

mic inflation is a very successful paradigm, and we know lot 

more about inflationary predictions than the pre-inflationary 

phase of the Universe, such as big bounce or freeze-in phase 

of the Universe. Within the inflationary paradigm, with the 

help of Planck satellite we could see only the eight e-folding 

of inflation around the pivot scale 0.05Mpc−1 [46].

One of the key predictions of inflation remains that of 

stretching the long wavelength quantum fluctuations on dark 

matter on scales larger than the size of the Hubble patch dur-

ing inflation [63–66], in order to match the current observa-

tions, in the temperature anisotropy in CMB, which has been 

observed quite precisely by number of space based missions, 

starting from COBE [67], WMAP [45], and now by Planck 

[46]. The other key predictions for inflation is that by inflating 

the scale factor of the Universe, it makes the spatial curva-

ture of the Universe flatter and flatter. As a consequence the 

quantum fluctuations in the scalar field becomes very close to 

the Gaussian random fluctuations, with almost scale invari-

ant perturbations. Indeed, the epoch of inflation has to come 

to an end, and this yields a slight departure from the scale 

invariant perturbations, which we we have inferred from flat-

ΛCDM  paradigm, where flat signifies the spatial flatness of 

the Universe, Ωk, see [36]. Note that Λ stands for late cosmo-

logical constant—the fact that the current Universe appears 

to be accelerating, as it is evident from dark energy surveys 
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[68], and CDM stands for the cold dark matter paradigm, 

which is a non-relativistic, potentially non-baryonic form of 

matter. The CDM is required to form the very first stars and 

structures in the Universe, effectively with zero equation of 

state parameter, i.e. pressure-less fluid. There are compelling 

paradigms other than ΛCDM , such as modified Newtonian 

gravity [69], which might as well lead to structure formation 

[70] and explain some of the outstanding observations of the 

baryonic physics in the neighborhood of our galaxy, but here 

in this review we will limit ourselves to CDM paradigm, other 

variants of CDM are warm dark matter (WDM) [71], or fuzzy 

dark matter scenarios [72], which can ameliorate some of the 

problems related to CDM in the structure formation simula-

tions versus observations, see [73].

Cosmic inflation within GR can be explained in a very sim-

ple manner. Inflation happens along a flat direction with a non-

negligible slope of the potential, given by the order parameter, 

φ, as an inflaton, and its potential, V(φ). Inflation could last 

eternally in future due to stochastic fluctuations of the scalar 

field in almost deSitter background [74, 75], nevertheless, in 

a given observable Hubble patch, it has to come to an end. 

Note that inflation cannot be past eternal unless the singularity 

problem can be resolved [76]. The current data, from Planck 

[77], at best can probe the second derivative of the potential 

and not beyond that. The inflationary predictions [77] are 

compatible with slow-roll inflation, which assumes that the 

potential dominates over the kinetic energy φ̇2
≪ V(φ), and 

φ̈ ≪ V ′(φ), where dots are w.r.t physical time, t, therefore the 

Friedmann and the Klein–Gordon equations are approximated 

as:

H2
≈

V(φ)

3M2
P

, 3Hφ̇ ≈ −V ′(φ), (1)

where prime denotes derivative with respect to φ. The slow-

roll conditions, which parametrize the shape of the potential, 

are give by:

ǫ(φ) ≡
M2

P

2

(

V ′

V

)2

≪ 1, |η(φ)| ≡ M2
P

∣

∣

∣

∣

V ′′

V

∣

∣

∣

∣

≪ 1. (2)

Note that the slow-roll conditions are violated when ǫ ∼ 1, 

and η ∼ 1, which marks the end of inflation. The number of 

e-foldings can be defined between, t, and the end of inflation, 

tend:

N ≡ ln
a(tend)

a(t)
=

∫ tend

t

Hdt ≈
1

M2
P

∫ φ

φend

V

V ′
dφ, (3)

where φend is defined by ǫ(φend) ∼ 1, provided inflation comes 

to an end via a violation of the slow-roll conditions. The num-

ber of e-foldings can be related to the Hubble crossing mode 

k = akHk by comparing with the present Hubble length a0H0. 

The final result is [78, 79]

N(k) = 62 − ln
k

a0H0

− ln
1016 GeV

V
1/4

k

+ ln
V

1/4

k

V
1/4

end

−
1

3
ln

V
1/4

end

ρ
1/4

R

,

 (4)

where the subscripts end (R) refer to the end of inflation (end 

of reheating). Today’s Hubble length would correspond to 

NQ ≡ N(k = a0H0) number of e-foldings, whose actual value 

would depend on the equation of state, i.e. ω = p/ρ (p  denotes 

the pressure, ρ  denotes the energy density), from the end of 

inflation to radiation and matter dominated epochs. A high 

scale inflation with a prompt reheating with relativistic spe-

cies would yield approximately, NQ ≈ 50–60. A significant 

modification in the number of e-foldings can take place. If 

the scale of inflation is low, and if the reheat temperature is as 

low as that of 1 MeV, roughly the temperature before the Big 

Bang Nucleosynthesis (BBN), for a review [80], the number 

of e-foldings to explain the horizon and the flatness problem 

could be as low as  ∼25, see [81–85].

For a single field slow-roll inflation there exists a late time 

attractor behaviour, such that the evolution of a scalar field 

after sufficient e-foldings become independent of the initial 

conditions [86, 87]. This particular initial condition is solely 

related to the homogeneous inflaton and its initial velocity, and 

has nothing to do with the initial homogeneity and isotropy of 

the Universe. Inflation as such does not solve these problems, 

there are obstructions to that within GR due to focusing theo-

rems due to Raychaudhury [88], and Hawking–Penrose sin-

gularity theorems [50, 89]. The initial patch of the Universe 

should be homogeneous on scales larger than the inflating 

Hubble patch [11], similarly, in order to inflate such a patch, 

the patch should be already isotropic. In this regard inflation 

assumes homogeneity and isotropy of spacetime within GR 

[90, 91].

2.3. Primordial perturbations

2.3.1. Scalar perturbations. The small inhomogeneities in 

the inflaton field can be recast as, φ(�x, t) = φ(t) + δφ(�x, t), 
where δφ ≪ φ, is the inflaton perturbations in the background 

metric. During inflation δφ are stretched outside the Hubble 

patch, because m2
∼ V

′′

≪ H2. These fluctuations can then 

be tracked from a sub-Hubble to that of a super-Hubble length 

scales right when the wave numbers have crossed the Hubble 

patch, these fluctuations are random Gaussian, and can be 

given by:

〈|δφk|
2〉 = (H(t∗)

2/2k3), (5)

where t∗ denotes the instance of Hubble crossing. One can 

define a power spectrum for the perturbed scalar field

Pφ(k) =
k3

2π2
〈|δφk|

2〉 =

[

H(t∗)

2π

]2

≡

[

H

2π

]2
∣

∣

∣

∣

∣

k=aH

. (6)

Note that the phase of δφk can be arbitrary, and therefore, 

inflation has generated a Gaussian perturbation. We can cal-

culate the power spectrum for the metric perturbations, this 

is what we observe in the CMB, translated into temperature 

aniso tropy. Since, the separation between the background 

metric and a perturbed metric is not unique, a choice of 

gauge, or a choice of a particular coordinate system becomes 
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necessary to simplify the metric perturbations. One par-

ticular choice would be to fix the gauge where the non-rel-

ativistic limit of the full perturbed Einstein equation can be 

recast as a Poisson equation with a Newtonian gravitational 

potential, Φ. The induced metric perturbations can be written 

in GR as, e.g. [63]:

ds2 = a2(τ)
[

(1 + 2Φ)dτ 2
− (1 − 2Ψ)δikdxidxk

]

, (7)

and when the spatial part of the energy momentum tensor is 

diagonal, i.e. δT i
j = δi

j , it follows that Φ = Ψ. For a critical 

density Universe, i.e. for a flat Universe, δk ≡
δρ
ρ

∣

∣

∣

k
, the power 

spectrum is given by; 

δ2
k ≡

4

9
PΦ(k) =

4

9

9

25

(

H

φ̇

)2 (
H

2π

)2

, (8)

where the right hand side can be evaluated at the time of hori-

zon exit k  =  aH. It is convenient for the observers to express 

the perturbations in a different gauge, known as the comoving 

gauge, where on the comoving hypersurface the energy flux 

vanishes, and the amplitude is denoted by ζk [63, 92]. The 

comoving curvature perturbation, ζk is a conserved quanti ty 

for the super-Hubble modes, k → 0, and ζk = −(5/3)Φk . 

Therefore, δk can also be expressed in terms of the curvature 

perturbations [93] δk =
2
5

(

k
aH

)

2ζk. The corresponding power 

spectrum δ2
k = (4/25)Pζ(k) = (4/25)(H/φ̇)2(H/2π)2. With 

the help of the slow-roll equation 3Hφ̇ = −V ′, and the critical 

density formula 3H2M2
P = V , one obtains

δ2
k ≈

1

75π2M6
P

V3

V ′2
=

1

150π2M4
P

V

ǫ
,Pζ(k) =

1

24π2M4
P

V

ǫ
,

 (9)

where we have used the slow-roll parameter 

ǫ ≡ (M2
P/2)(V ′/V)2. If we assume that the primordial spec-

trum can be approximated by a power law, see [77]

Pζ(k) ≃ (3.044 ± 0.014)× 10−10

(

k

k0

)ns−1

, (10)

where ns is called the spectral index (or spectral tilt), the ref-

erence scale is: k0 = 7.5a0H0 ∼ 0.002 Mpc−1, and the error 

bar on the normalization is given by the characterization of 

polarization at low and high multipoles, Planck temperature, 

polarization, and lensing data yields at 68% CL [77]

ns(k0) = 0.9649 ± 0.0042. (11)

In the slow-roll approximation, this tilt can be expressed in 

terms of the slow-roll parameters and at first order:

ns − 1 = −6ǫ+ 2η +O(ǫ2, η2, ǫη, ξ2), (12)

where

ξ2 ≡ M4
P

V ′(d3V/dφ3)

V2
, σ3 ≡ M6

P

V ′2(d4V/dφ4)

V3
. (13)

The running of these parameters are given by [86]. Since 

the slow-roll inflation requires that ǫ ≪ 1, |η| ≪ 1, therefore 

naturally predicts small variation in the spectral index within 

∆ ln k ≈ 1 [94]

dn(k)

d ln k
= −16ǫη + 24ǫ2

+ 2ξ2. (14)

There is no evidence of scale dependence of ns has been found 

by the latest Planck data [77].

2.3.2. Tensor perturbations. Like scalar field induced met-

ric perturbations during inflation, we would also expect pure 

stochastic gravitational waves [95–99]. For reviews on gravi-

tational waves, see [63, 100]. The gravitational wave perturba-

tions are described by a line element ds2 + δds2 , where

ds2 = a2(τ)(dτ 2
− dxidxi), δds2 = −a2(τ)hijdxidx j. (15)

The 3-tensor hij is symmetric, traceless δijhij = 0, and diver-

genceless ∇ihij = 0 (∇i is a covariant derivative), and also 

gauge and conformally invariant. Massless spin 2 gravi-

tons have two transverse degrees of freedom (d.o.f) For the 

Einstein’s GR, the gravitational wave equation  of motion 

follows that of a massless Klein Gordon equation  [63]. 

Especially, for a flat Universe

ḧi
j + 3Hḣi

j +
(

k2/a2
)

hi
j = 0. (16)

As any massless field, the gravitational waves also feel the 

quantum fluctuations in an expanding background. The spec-

trum mimics that of equation (6)

Pgrav(k) =
2

M2
P

(

H

2π

)2
∣

∣

∣

∣

∣

k=aH

. (17)

The corresponding spectral index can be expanded in terms of 

the slow-roll parameters at first order as

r ≡
Pgrav

Pζ

= 16ǫ, nt =
d lnPgrav(k)

d ln k
≃ −2ǫ, . (18)

Note that the tensor spectral index is negative, in some 

sense gravitational waves spectrum is solely determined by 

the the Hubble expansion rate during inflation and the initial 

vacuum condition. Relaxing the initial vacuum condition 

may lead to different predictions in the value of tensor-to-

scalar ratio, r, see [101, 102]. A classical initial condition 

can also produce r, albeit the magnitude will be very tiny 

[101]. So, non detection of primordial gravitational waves 

does not confirm the quantum nature of gravitons in CMB 

base experiments. The latest constraint on the tensor to 

scalar ratio is given by the Planck upper limit 95%CL is 

r  <  0.1, which is further tightened by BICEP2/Keck Arracy 

BK14 data r  <  0.064 [77].

2.4. Reheating phase

There is no dearth of models of inflation which can poten-

tially match the current set of observations in CMB, for a 

review see [103]. Within particle physics, typically inflation is 

assumed to be driven by SM gauge singlets, either driven by 

a single or multiple fields, such as hybrid [104], or infinitely 

many, assisted inflation [105, 106]. However, well motivated 

particle physics models are SM driven Higgs inflation [107], 

which requires unnatural coupling between the SM Higgs 
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and the Ricci scalar, which leaves the model very similar to 

the Starobisnky’s model of inflation of R + αR2 [62], after 

one-loop computation [108]. Note that in the original paper 

the relative sign difference was negative, and the motif was 

to obtain a bouncing Universe, but with a ghost in the spin-2 

sector. Amongst the well-motivated models of inflation, 

Starobinsky’s model remains very minimal in content and 

driven purely within the gravitational sector. Its UV comple-

tion has been given in [52, 109, 110]. There are also other 

well-motivated models of inflation within particle physics, 

where the inflaton can be recognized by the supersymmetric 

partners of quarks and leptons, namely the gauge invariant 

combination of squarks and sleptons carrying the SM gauge 

charges within minimal supersymmetric standard model 

(MSSM) [111, 112], for a review of MSSM see [113, 114]. 

However, there has been no evidence of supersymmetric part-

ners at the LHC, which has constrained the scale of inflation 

above the 3–4 TeV scale [115]. These models, i.e. MSSM and 

Higgs inflation, are also known as visible sector models of 

inflation, because the inflaton directly decays into visible sec-

tor d.o.f. All the Yukawas and gauge couplings are well known 

in these models. In this review we will not delve into model 

building of inflation any further, as this is not so relevant for 

this discussions below, but we will now divert to how the infla-

ton decays and thermalizes the Universe.

Typically, inflation ends via smooth phase transition as 

we had discussed, i.e. by violation of slow roll conditions. 

Inflation could also end with tachyonic instability [104], in 

some cases inflation can be driven by tachyons as well [116], 

or via tunneling from the inflationary vacuum to the SM type 

vacuum [36]. Unfortunately, in the Guth’s model the bubble 

never thermalizes, the bubble wall is still expanding in the 

deSitter background, and inside the bubble the SM Universe 

is super cooled. The SM vacuum needs to be thermalized by 

the collision of 2 or more bubbles, which never takes place if 

the bubble nucleation rate is smaller than the Hubble expan-

sion rate of the deSitter. Depending on the gauge group, the 

phase where inflation comes to an end can create topological 

defects, see [3, 10, 117], such as cosmic strings, or domain 

walls, etc., however, these are very much model dependent. 

The phase after inflation leads to reheating and preheating. 

Non-peturbative preheating can give rise to 1st order phase 

transitions [5, 7], gravitational waves [118–126], magnetic 

fields [127], topological defects [6, 8, 9, 39], and non-topo-

logical solitons [128, 129].

Topological defects are another consequences of phase 

transitions, it was Kibble [2, 130] and Zurek [131] who inde-

pendently postulated the formation of topological defects 

during cosmic phase transition. The topological defect is also 

known as a solitonic solution in quantum field theory which 

are homotopically distinct from the vacuum solution. In topol-

ogy, two continuous functions if they can be continuously 

deformed into each other, then such deformations are known 

as homotopy between the two functions. If not, then they are 

homotopically distinct functions. The latter produces defects, 

kinks, cosmic strings, cosmic textures, and also Dirac mono-

poles, for a review see [4, 10]. Besides, topological solitons, 

there are also non-topological solutions in any interacting 

field theory where the boundary conditions at infinite are the 

same as that of the vacuum state [132], for example Q-ball, a 

detailed review of Q-balls, see [133, 134].

2.4.1. Perturbative decay and thermalization phase. Dur-

ing inflation, the Universe is cold and devoid of any thermal 

entropy. It is thus paramount to create a thermal bath, which 

can at least achieve local thermodynamical equilibrium (LTE), 

means that the species can be in thermal equilibrium as long 

as Γ � H(t), where Γ denotes the interaction rate and H(t) is 

the Hubble expansion rate. Note that Γ is solely determined by 

the particle physics interaction rate at a given energy, temper-

ature, while H(t) is the Hubble expansion rate of the Uni-

verse. For the species in LTE, the energy density, ρ , and the 

number density, n, for relativistic particles are given by [135]

ρ =
(

π
2/30

)

T4, n =
(

ζ(3)/π2
)

T3, (Boson) ,

ρ = (7/8)
(

π2/30
)

T4, n = (3/4)
(

ζ(3)/π2
)

T3, (Fermion) ,
 (19)

where T is the temperature of an ambient bath, shared by all 

the species present in the bath. Typically, the average energy 

of every species will be shared 〈E〉 ∼ ρ
1/4, and n ∼ ρ

3/4 hold, 

with 〈E〉 = (ρ/n) ≃ 3T  being the average particle energy.

On the other hand, right after the inflaton has decayed, 

the energy density of the Universe is determined by the total 

decay width, Γd, of the inflaton to the relativistic species, 

ρ ≈ 3 (ΓdMP)
2. The ambient plasma has a thermal entropy, 

given by: 〈E〉 ≈ mφ ≫ ρ1/4. Then, the total number density 

is roughly given by n ≈ (ρ/mφ) ≪ ρ3/4. Note that the initial 

energy density ρ  is always bounded below the energy density 

of the inflaton energy, i.e. ρ � 3H2M2
p . Therefore, the decay 

products which creates the ambient plasma results in a very 

dilute plasma, the number density of the decayed products is 

very tiny, though the energy of the decayed particles can be as 

large as that of the inflaton mass, i.e. mφ. This suggests that 

the initial plasma is far from full thermal equilibrium initially 

[136–143].

Reaching full equilibrium requires re-distribution of the 

energy among different particles, kinetic equilibrium, as well 

as increasing the total number of particles, chemical equilib-

rium. Therefore, both the number-conserving and the num-

ber-violating reactions must be taken into account. Kinetic 

equilibrium can be achieved by 2 → 2 scatterings with gauge 

boson exchange in the t-channel [137, 138]. While the chemi-

cal equilibrium is achieved by changing the number of parti-

cles in the reheat plasma. It was recognized in [137], see also 

[138], that the most relevant processes are 2 → 3 scatterings 

with gauge-boson exchange in the t-channel. The latter is the 

inelastic scattering, when this become efficient, the scatter-

ing rate exceeds that of the Hubble expansion rate, and the 

number of particles also increases very rapidly [144], due to 

the fact that the produced gauge bosons subsequently partici-

pate in similar 2 → 3 scatterings. During this phase, decays 

of particles can also be considered, but they do not play an 

important role, they cannot increase the number of particles to 
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the required level. The full thermal LTE is established shortly 

after 2 → 3 scatterings become efficient. For this reason, to 

a very good approximation, one can use the rate for inelas-

tic scatterings as a thermalization rate of the Universe Γthr . If 

the inflaton decay products have SM like gauge interactions, 

i.e. relatively large gauge interactions, then the Universe 

reaches full thermal equilibrium quite quickly, the main rea-

son is that the 2 → 3 scatterings with gauge boson exchange 

in the t-channel are indeed very efficient, see [137, 138, 145]. 

During this phase of thermalization one can produce mas-

sive long–lived or stable weakly interacting massive particles 

(WIMPS), or long lived feebly interacting massive particles 

(FIMPS) [146–153].

A rough estimate of the reheat temperature can be 

made. The release of the inflaton energy density into 

the thermal bath of relativistic particles take place when 

H(a) =
√

(1/3M2
P)ρi(ai/a)3/2

≈ Γφ. The energy density of 

the thermal bath is determined by the reheat temperature TR, 

or the temperature of the relativistic bath is given by:

TR =

(

90

π2g∗

)1/4
√

ΓφMP = 0.3

(

200

g∗

)1/4
√

ΓφMP, (20)

where g∗ denotes the effective relativistic degrees of freedom 

in the plasma. However the inflaton might not decay instan-

taneously. In such a case there might already exist a thermal 

plasma of some relativistic species at a temperature higher 

than the reheat temperature already before the end of reheat-

ing [135]. If the inflaton decays with a rate Γφ, then the instan-

taneous plasma temperature is found to be [135]:

Tinst(a) ∼
(

g
−1/2
∗ HΓφM2

P

)1/4

. (21)

The temperature of the Universe reaches its maximum Tmax 

soon after the inflaton field starts oscillating around the 

minimum. Once the maximum temperature is reached, then 

ρψ ∼ a−3/2, and T ∼ a−3/8 until reheating and thermaliza-

tion is completely over. Thermalization is achieved when both 

kinetic and chemical equilibrium are reached.

For a successful cosmology one needs to ask how the infla-

ton energy gets converted into the SM degrees of freedom. 

For large reheat temperatures, TR ∼ 109 GeV, the Universe 

could abundantly create thermal relics of unstable gravitinos 

with a mass of order 100–1000 GeV, which could spoil the 

success of BBN [154–159] (for the effects of lighter unstable 

relics see [160]). For extremely low reheat temperatures, i.e. 

TR ∼ O(1 − 10) MeV, it becomes a great challenge to obtain 

matter-anti-matter asymmetry and the right abundance for the 

dark matter. Only a few particle physics scenarios can suc-

cessfully create baryons and dark matter at such a low temper-

ature, see for instance [161].

2.5. Non-thermal phase and reheating

The Universe after inflation could be reheated in a much 

violent fashion via non-perturbative, non-thermal way. The 

Universe in this epoch prior to the attaining LTE could be 

completely out of equilibrium. This could lead to rapid and 

efficient transfer of inflaton energy, the process is also dubbed 

as preheating. Indeed, preheating is model dependent, but in 

a wide class of inflationary models preheating criteria can be 

satisfied with ease. One of the key ingredients is that the infla-

ton couples to essentially massless field χ, through interaction 

term like φ2
χ

2. The quantum modes of χ can then be excited 

during the inflaton oscillations via a parametric resonance [5, 

139–142, 162], for a review see [163]. During preheating, fer-

mions can also be excited, but their occupation number can 

not grow arbitrarily large due to Pauli blocking [164–171]. 

Also, one can excite the gauge fields which may have appli-

cations for cold electroweak baryogenesis [172–174], and 

magn etic fields as well [127]. The epoch of preheating has 

been performed on lattice, see [175–177].

2.5.1. Parametric resonance. Let us briefly discuss preheat-

ing in the simplest but most general setup. Let us consider the 

relevant renormalizable couplings between the inflaton φ and 

a scalar field χ, for which the potential will be give by:

V =
1

2
m2

φφ
2 +

1

2
m2

χχ
2 + σφχ2 + h2φ2χ2 + κχ4, (22)

where we have considered φ and χ to be real, and the kinetic 

terms are all canonical. Furthermore, φ is a gauge singlet infla-

ton. Preheating with non-canonical terms has been studied in 

[178]. Note that σ has a (mass) dimension. The only scalar 

field in the SM is the Higgs doublet. Therefore χ denotes the 

real and imaginary parts of the Higgs components. The cubic 

interaction term is needed for the inflaton to decay even for the 

preheating. The quartic self-coupling of χ is required to bound 

the potential from below along the χ direction. The dimen-

sionless couplings σ/mφ and h (as well as κ) are not related to 

each other, hence either of the cubic or the quartic terms can 

dominate at the beginning of inflaton oscillations (i.e. when 

the Hubble expansion rate is H(t) ≃ mφ. Preheating typically 

occurs within a narrow window for h; 3 × 10−4 � h � 10−3. 

The h2φ2χ2 term also yields a quartic self-coupling for the 

inflaton at a one-loop level which is typically constrained by 

the temperature anisotropy of the CMB perturbations, i.e. 

κ � 10−12 . Neglecting the self interaction for χ field, the 

equation of motion for χk quanta is given by:

χ̈k + 3
ȧ

a
χ̇k +

(

k2

a2
+ m2

χ + 2(σφ+ h2φ2)

)

χk = 0. (23)

It is assumed that the inflaton oscillations are homogeneous, 

φ(t) = φ̂(t) sin(mφt), where φ̂(t) ≈ (MP/
√

3πmφt), for the 

inflation mass mφ. The occupation number of the excited χk 

is given by:

nk =
ωk

2

(

|χ̇k|
2

ω2
k

+ |χk|
2

)

−
1

2
. (24)

There exists a possibility of a narrow resonance production 

of χk ∝ exp(µn
kz), where µn

k  is set by the instability band ∆n
k 

labeled by an integer n, and z = mφt. quanta, see [139–142], 

when expansion of the Universe and the trilinear interaction are 

small. The resonance occurs for k = 0.5mφ(1 ± q/2), where µk  

takes the maximum value µk = q/2, where q = g2(φ̂2/4m2
φ). 
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When the expansion rate of the Universe is taken into account, 

then the evolution of the oscillating inflaton field also modifies 

to a damped oscillator:

φ(t) ≃
MP
√

3π

cos (mφt)

mφt
, (25)

where t is the physical time. During this period the stochastic 

resonance becomes important [139], where there are resonance 

bands which keep shifting from stability to instability bands. 

The resonant particle production and re-scatterings of interact-

ing quanta lead to the formation of a plasma consisting of both 

φ and χ quanta with typical energies  ∼10−1 (hmφMP)
1/2, see 

[139]. This plasma attains the kinetic equilibrium first, but the 

full thermal equilibrium, including both kinetic and chemi-

cal, is established over a much longer time scale [176, 177]. 

The occupation number of particles in the preheated plasma 

is ≫ 1 (which is opposite to the situation after the perturba-

tive decay). This implies that the number density of particles 

is larger than its value in full equilibrium, while the average 

energy of particles is smaller than the equilibrium value. It 

gives rise to large effective masses for particles which, right 

after preheating, is similar to their typical momenta [139]. 

Large occupation numbers also lead to important quantum 

effects due to identical particles and significant off-shell 

effects in the preheat plasma [176, 177, 179]. In the course 

of evolution towards full equilibrium, however, the occupa-

tion numbers decrease. Therefore a proper (non-equilibrium) 

quantum field theory treatment will be inevitably required at 

late stages when occupation numbers are close to one [162].

Preheating ends due to back reaction as well as the expan-

sion of the Universe. Preheating does not destroy the zero 

mode of the inflaton condensate completely. The amplitude 

of the inflaton oscillations diminish, but the inflaton decay is 

completed when the zero mode perturbatively decays into the 

SM or some other degrees of freedom, see [139–142].

During preheating it is possible to excite particles which 

have a mass greater than the inflaton mass mφ. One of the 

applications is the creation of cosmologically stable dark 

matter candidate. Such processes are impossible in perturba-

tion theory and in the theory of narrow parametric resonance. 

Superheavy χ-particles with mass M ≫ mφ can be produced 

in the broad resonance. During the coherent oscillations of 

φ(t), the adiabaticity condition is violated [139]

dω(t)

dt
� ω2(t). (26)

The momentum dependent frequency, ωk(t) =
√

k2 + m2
χ + 2h2φ2(t)  violates the above condition when

k2 + m2
χ � (h2φmφφ̂)

2/3
− h2φ̂2 . (27)

The maximal range of momenta for which particle produc-

tion occurs corresponds to φ(t) = φ∗, where φ∗ ≈
1
2

√

mφφ̂
h

. 

The maximal value of momentum for particles produced at 

that epoch can be estimated by k2
max + m2

χ =
hmφφ̂

2
. The reso-

nance becomes efficient for hmφφ̂ � 4m2
χ. Thus, the inflaton 

oscillations may lead to a copious production of superheavy 

particles with mχ ≫ m if the amplitude of the field φ is large 

enough, hφ̂ � 4m2
χ/mφ. Besides narrow and broad reso-

nances, there are other variants of preheating, such as instant 

[180], and tachyonic preheating triggered via tachyonic insta-

bility, where at the classical level the zero mode develops 

exponential enhancement [181, 182].

2.5.2. Fermionic and gauge preheating. The Dirac equa-

tion (in conformal time η, where dη =
∫

dt/a(t)) for a fermi-

onic field is given by [165, 166]:
(

i

a
γµ ∂µ + i

3

2
Hγ0

− m(η)

)

ψ = 0, (28)

where m(η) = mψ + hφ(η), where mψ is the bare mass of the 

fermion. a is the scale factor of the Universe, H = a′/a2 is the 

Hubble rate and ′ denotes derivative w.r.t. η. The particle den-

sity per physical volume V ∼ a3 at time η is given by:

n(η) ≡ 〈0|
N

V
|0〉 =

1

π2 a3

∫

dk k2 |βk|
2

, (29)

where αk,βk  are the Bugolyubov’s coefficients satisfying: 

|αk|
2 + |βk|

2 = 1. The occupation number of fermions created 

is thus given by nk = |βk|
2, and the above condition ensures 

that the Pauli limit nk  <  1 is respected. One important physi-

cal quantity is the scaling of the total energy

ρψ ∝ mψNψ ∝ qm
1/2

ψ , (30)

which is linear in q = h2φ̂2/m2
φ [165, 166, 168, 169]. Note 

that mψ(η) ∝ q1/2. Note that the SM fermions are chiral, if 

the inflaton is a SM gauge singlet, then it can only couple via 

dimension-5 operators, i.e.

λ

MP

φ(Hq̄l)qR, (31)

where λ ∼ O(1), H is the SM Higgs doublet and ql, qR are 

the SU(2)l doublet and the right handed SM fermions, respec-

tively. As a result, preheating of SM fermions from a gauge 

singlet inflaton becomes less important due to weak coupling. 

In [166], it was shown that an inflaton coupling to the right 

handed neutrino, hφN̄N , where N is the right handed neu-

trino, could induce non-thermal leptogenesis, where the right 

handed neutrinos were treated as gauge singlets. Similar argu-

ments would hold for the inflaton coupling to the SM gauge 

bosons, where the inflaton can only couple via non-renormal-

izable operator, i.e.

λ

MP

φFµνFµν , (32)

where λ ∼ O(1). Therefore, exciting the SM gauge bosons 

and the SM fermions through parametric resonance of a gauge 

singlet inflaton is a daunting task. Inflaton would rather prefer 

perturbative decay. The only way one can excite SM fermions 

and gauge fields copiously, if they are directly excited by the 

oscillations of the SM Higgs boson. This can happen in low 

scale electroweak baryogenesis [172–174], or in the context 

of SM Higgs inflation [183]. During the Higgs oscillations the 
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SM degrees of freedom can be excited via parametric reso-

nance, instant preheating and also via tachyonic preheating. 

All three phases of preheating are present. The other nota-

ble example is the MSSM inflation [184] where gluons and 

MSSM fermions are excited via instant preheating.

2.5.3. Fragmentation of the inflaton. An intriguing conse-

quence of inflaton coupling to the fermions is the fragmenta-

tion of the inflaton as a condensate [128, 129, 185]. This leads 

to non-thermal phase where the inflaton condensate can frag-

ment to form non-topological solitons, known as Q-balls. The 

Q-balls can evaporate from their surface, see for a review [133], 

therefore suppressing the reheating and thermalization time 

scale. Let us illustrate this idea by studying a simple scenario 

of an oscillating complex scalar field around its minimum. 

Typically, the fermionic loops (assuming that the fermions live 

in a larger representation than bosons) yields a Logarithmic 

correction to the inflaton mass. Similar corrections also arises 

within SUSY, in a gravity mediated scenarios [133]

V = m2|Φ|2
[

1 − K log

(

|Φ|2

M2

)]

, (33)

where the value of K is determined by the Yukawa coupling h 

with K = −C(h2/16π2), where C is some number. If K  <  0, 

the inflaton condensate feels a negative pressure for field val-

ues φ ≪ M , we find:

V(φ) ≃
1

2
m2

3/2φ
2

(

φ2

2M2

)K

∝ φ2+2K (34)

where we assume |K| ≪ 1. The average equation of state

〈 p〉 ≃
K

2 + K
〈ρ〉 ≃ −

|K|

2
〈ρ〉, (35)

where p  and ρ  is a pressure and energy density of the scalar 

field, respectively. The negative value of K corresponds to the 

negative pressure, which signals the instability of the conden-

sate. At the level of linear perturbations [128] one can show 

that the field fluctuations grow exponentially if the following 

condition is met

k2

a2

(

k2

a2
+ 2m2

3/2K

)

< 0. (36)

The instability band exists for negative K, as expected from 

the negative pressure arguments [133]. The instability band, k, 

is in the range [128] 0 < k2

a2 <
k2

max

a2 ≡ 2m2
3/2

|K|, where a is the 

expansion factor of the Universe. The most amplified mode 

lies in the middle of the band, and the maximum growth rate 

of the perturbations is determined by α̇ ∼ |K|m3/2/2 [133]. 

When δφ/φ0 ∼ O(1), the fluctuations become nonlinear. This 

is the time when the homogeneous condensate breaks down 

into Q-balls and anti-Q-balls. Such a phenomena can also 

yield gravitational waves due to the anisotropic stress created 

during the process of fragmentation of the inflaton, and this 

has been studied in [125, 126].

2.6. Radiation, dark matter, and dark energy

After the end of inflation, and the end of reheating/preheating 

yields the most important phase of the Universe, i.e. known as 

the radiation domination phase. See table 1 for known trans-

itions in the cosmic history. The exact transition from the 

reheating phase, as we have seen above, depends on lots of 

parameters and rather model dependent on a particular nature 

of the BSM physics. However, that the reheating phase must 

come to an end before the BBN [80, 186] at temperature of  ∼1 

MeV, when the hadrons have already formed. After reheating, 

the Universe is primarily dominated by relativistic species, 

assuming that they are all in LTE, the Hubble expansion rate 

is then determined by the ambient temperature,

H =

√

ρ

3M2
P

= 1.66 × g
1/2
∗

T2

MP

, (37)

where g∗ is the total number of relativistic degrees of freedom 

and it is given by

g∗(T) =
∑

i=b

gi

(

Ti

T

)4

+
7

8

∑

i=f

gi

(

Ti

T

)4

. (38)

Here, Ti denotes the effective temperature of the spe-

cies i, which has decoupled. During the radiation era when 

H = (1/2t), one finds

t

1 s
≈ 2.42g

−1/2
∗

(

1 MeV

T

)2

. (39)

The light elements, such as 2H, 3He, 4He, and 7Li are syn-

thesized during the first few hundred seconds [80, 186]. The 

abundances depend on the baryon-to-photon ratio [80, 187, 

188]

η ≡
nB

nγ
= 273.3036Ωbh2

(

1 + 7.6958 × 10−3Yp

)

(

2.7255k

T0
γ

)3

,

 (40)

where Yp = 2(n/p)/[1 + (n/p)] ∼ 0.25, and n/p  is the ratio 

of neutron-proton abundance at the temperature of  ∼0.1 

MeV [80]. The latest constraint on Ωb = ρb/ρc comes from 

the Planck data, where ρc is the critical energy density of the 

Universe, i.e. ρc = 3H2
0/8πG, where G is the Newton’s con-

stant, and H0 = 100 × h, and H0 = 67.4 ± 0.5 Km/s/Mpc 

at 68%CL, while Ωbh2 = 0.0224 ± 0.0001 at 68%CL [46]. 

Planck also gives constraint on the relativistic species which 

matches well with the constraints arising from the BBN, i.e. 

Neff = 2.99 ± 0.17.

The radiation domination ends when the non-relativistic 

matter starts dominating the Universe, the radiation-matter 

equality happens when

1 + zeq =
Ωm

Ωr

= 2.41Ωmh2
× 104

∼ 3.3 × 103, (41)

where Ωm = Ωc +Ωb is the total matter density. The bound on 

Ωch2 = 0.12 ± 0.001 at 68% CL, while Ωm = 0.315 ± 0.007 at 

68%CL [46]. The temperature of the Universe is roughly given 
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by Teq = T0(1 + zeq) = 6.57 × Ωmh2 × 104K ∼ 6.2 × 103K . 

The creation of non-relativistic cold dark matter has to hap-

pen some where deep inside the radiation epoch. There are 

number of dark matter candidates, which include both thermal 

and non-thermal candidates, see reviews [152, 189, 190].

Amongst thermal dark matter, the well-known candidate 

is hot neutrinos [135, 191]. In fact the neutrinos decouple 

roughly around when the temperature of the Universe falls 

below 1 MeV, the interaction rate per neutrino falls below 

the Hubble expansion rate, after which the neutrino number 

density is conserved and their momentum falls as 1/a. The 

neutrino has large free streaming length, which is detrimen-

tal to form large scale structures in the Universe. This is the 

prime reason they fall out of favour for the heavier cold dark 

matter candidate. The challenge remains is how to slow them 

down, lacking of any credible mechanism leads to postulating 

sterile neutrinos as a possible candidate for warm or cold dark 

matter, for a review see [192, 193]. From structure formation 

point of view, above 3 KeV sterile neutrino, which are ther-

mally decoupled from the plasma, can be regarded as virtually 

cold, see recent analysis [71, 194]. As per as cold dark mater is 

concerned, there are plethora of models [195], but their crea-

tion mechanism remains predominantly thermal decoupling, 

such as freeze out [135, 196–199] or freeze in [200], or non-

thermal processes via decay of some heavy particles, such as 

decay of the inflaton itself, or part of the inflaton itself [201].

The long wavelength CMB perturbations do not grow dur-

ing the radiation epoch, but once matter domination starts, 

the initially induced CMB perturbations get a chance to 

grow and seed density perturbations in matter sector, which 

includes DM, baryons and photons to form first structures in 

the Universe, for a review see [70, 202, 203].

From a particle physics perspective, the major phase occurs 

very late in the history of the Universe when the Universe 

seems to be accelerating, for a review, see [204, 205]. The 

latest data from Placnk constraints the dark energy abundance 

to be Ωd = 0.684 ± 0.007 at 68% CL [46]. This apparent 

acceleration can be explained by apparent domination of dark 

energy in its simplest form, i.e. the cosmological constant in 

the Einstein Hilbert gravity. Indeed, the challenge lies how to 

protect the apparently small cosmological constant from radia-

tive corrections, see [206, 207], which remains an outstanding 

unresolved problem. There are proposals to modify gravity in 

the infrared, however, without much observational or theor-

etical motivations in our opinion, for a review see [208].

3. Nature of phase transitions

In this chapter we are mostly concerned with thermal phase 

transition, preheating, fragmentation were clear examples of 

non-thermal phase transitions, which we had briefly discussed 

earlier. We will begin with the nature of phase transitions 

below.

3.1. First and second order transitions

In quantum field theory a phase transition is typically thought 

of as a transition between one vacuum state and another. For 

simplicity let us consider the case where the system is in the 

absolute ground state at some particular high temperature and 

as the Universe cools a new ground state becomes energeti-

cally favorable. If the ground state evolves continuously then 

this is what is known as a second order phase transition (or 

more generally a continuous phase transition). Alternatively 

if there is a discontinuous change in the ground state of the 

quantum field theory then this is a first order phase transition. 

There is also a discontinuity in the entropy during a first order 

phase transition. As such a first order phase transition releases 

a large amount of latent heat.

To illustrate the different types of phase transition we 

give a graphic illustration in figure 1 where the left and right 

panel demonstrate a second and first order phase transition 

respectively. In the case of a first order phase transition there 

is a barrier between a local minimum and the absolute ground 

state. As such the phase transition occurs through quantum 

tunneling and initially only occurs in regions of space called 

bubbles. These bubbles of new phase grow and coalesce in 

a background of the old phase. As the Universe cools until 

the new phase replaces the old one completing the phase 

transition.

In the case of first order phase transitions the size of the 

discontinuity can be compared to the temperature and in the 

case where the size of discontinuity is comparable or large 

compared to the temperature, the transition is referred to as a 

strongly first order phase transition. We spell this out in more 

detail in later sections. In general a strongly first order phase 

transition is of particular interest to particle cosmology as 

the violent process of bubble nucleation and the subsequent 

collisions can result in striking primordial gravitational wave 

signals. Furthermore a strongly first order phase transition is 

of particular interest for explaining the asymmetry between 

matter and anti-matter. It is also possible to produce magn-

etic field and defects during either first and 2nd order phase 

transitions.

Let us conclude this section with a final note. Our statement 

about the ground state continuously evolving being associated 

with a 2nd order phase transition is some what simplified. A 

crossover transition also exhibits this quality. For a second 

order phase transition the correlation length goes to infinity 

Table 1. List of key times in the early Universe in terms of 
temperature, redshift and time. We are assuming the reheating 
temperature was sufficiently high and that each phase transition 
occurred in a single step. A large baryon chemical potential in 
the early Universe can also change the time of the QCD phase 
transition slightly and the temperature at which the electroweak 
phase transition occurs has some model dependence.

T (GeV) t (s)

Electroweak transition ∼20–200 10−11

QCD transition 10−1 10−4

Big bang nucleosynthesis ×10−4 102

Recombination 10−10 1012
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and some masses as well as the specific heat becomes non-

analytic at the critical temperature. Conversely a crossover 

transition has no non-analytic properties and all correlation 

lengths remain finite.

3.2. Thermodynamical parameters

In this section  we will discuss the most important thermo-

dynamic parameters during a first order phase transition. We 

focus on a strongly first order phase transition since these are 

the main focus of particle cosmology, be it baryogensis, or 

gravitational wave production. A first order phase transition 

proceeds through bubble nucleation [209–211]. We will be 

interested in calculating the temperature at which these bub-

bles appear, the velocity at which they expand, the total num-

ber of bubbles, the fraction of new phase volume, the latent 

heat and the speed of the phase transition.

In this section  our discussion will be in broad strokes 

with the exception of the wall velocity which we leave to 

its own section. To perform calculations one needs to know 

in more detail the effective potential and action at finite 

temperature which we delay to later sections. Let us begin 

by describing qualitatively the process of nucleation. The 

nucleation of bubbles does not occur immediately after the 

critical temperature even though the new phase has become 

energetically favourable. Instead, since the transition occurs 

through tunneling one must wait until the tunnelling rate is 

fast compared to the Hubble time. Eventually the Universe 

cools to the point where there is at least one critical size 

bubble in the Hubble volume. This temperature is denoted 

as the nucleation temperature. Finally when the volume 

fraction of the old phase is negligible the phase transition 

completes at a temperature Tf .

The tunnelling of the field from the false vacuum to true 

vacuum can be described as a solution to the classical equa-

tions of motion for the field. Assuming spherical symmetry 

the equation of motion for a single scalar field with a potential 

that is bounded from below is [212]

d2φ

dr2
+

2

r

dφ

dr
=

dV

dφ
,

 

(42)

with boundary conditions φ′(0) = 0, φ(0) ∼ φtrue
4 and 

φ(∞) = φfalse. The is the tunnelling solution to the classical 

equations of motion, known as the bounce, is the one where 

the field starts near the true vacuum and continuously evolves 

to the new one. It is in general non-trivial to find the bounce 

solution as naive attempts to find a solution tend to find the 

static solution—which trivially satisfies the left hand side of 

the above equation—where the field is in its minimum—satis-

fying the right hand side. As such many different approaches 

have been proposed to solve for the bounce [213–217]. An 

approximate solution that is useful for illustrative purposes is 

the well known kink solution [215, 218]

φ(r) ≈ A(r) =
φ0

2

[

1 − tanh

(

r − δ

Lw

)]

− D[r, Lw, δ],
 (43)

where Lw defines the wall width, δ and offset and D a regu-

lating function to make the derivative vanish at zero. As an 

example consider the potential

V = 0.3φ2
− φ3 + 0.6φ4 . (44)

The kink solution that approximates the true solution is 

given by [213]

A(r) =
0.937

2

[

1 − tanh

(

r − 3.42

2.12

)]

−
1

2

∣

∣

∣

∣

∣

0.937Sech
(

3.42
2.12

)2

2.12

∣

∣

∣

∣

∣

e−r .

 (45)

The above compares remarkably well to the true bounce solu-

tion as can be shown in figure 2. An alternative Ansatz was 

proposed in [219] and takes the form

A(r) =
A0

1 + rγe
√

2(x−R)
 (46)

with the parameters given in the thick and thin wall limits in 

the above reference. Since all potentials with two minimum 

separated by a maximum can be approximated by a quartic 

function over the region of interested it is useful to generically 

solve general quartic potentials. Indeed since one can always 

make rescalings and shifts of the form φ → φ+ a, φ → bφ, 

Figure 1. Evolution of an example potential with temperature with a 2nd order phase transition given in the left panel and 1st order phase 
transition in the right. The point where a new minimum appears away from the origin is called T0. The critical temperature where the 
minima are degenerate is TC. The nucleation temperature defined as the time where there is at least one critical bubble per Hubble volume is 
given by TN and the temperature at which the phase transition completes is denoted Tf .

4 This approximation will not hold if the potential is unbounded or the dis-

tance to the true vacuum is large compared to the height of the barrier.
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V → V + c and V → dV  it turns out to be sufficient to solve 

the class of potentials of the form

V(α) =
−4α+ 3

2
φ2

− φ3 + αφ4, (47)

for the parameter range α ∈ [0.5, 0.75]. Using the Ansatz 

[213, 215, 218]

A(r,α) =
x0(α)

2

[

1 − tanh

(

r − δ(α)

Lw(α)

)]

−
1

2

∣

∣

∣

∣

∣

∣

∣

φ0(α)Sech
(

δ(α)
Lw(α)

)2

Lw(α)

∣

∣

∣

∣

∣

∣

∣

e−r,

 (48)
where we plot the dependencies of the Ansatz parameters in fig-

ure 3. In principle if the path between the true and false vacuum 

can be approximated by a quartic one can use such an ansatz 

to approximate the bounce solution. The main source of error 

in this will be the fact that the true bounce solution follows a 

curved path in field space when multiple fields are involved.

Note that for α ∼ 0.5 one has degenerate minima and this 

is where the bubble wall is the thinnest. In practice the bubble 

wall width tends to be in the range 1/T to  ∼20/T for phenom-

enologically viable phase transitions. Denoting the bounce 

solution as φB, the decay rate of the old phase to the new phase 

is controlled by the Euclidean action

SE(φB) = 4π

∫

∞

0

drr2

[

1

2

(

dφB

dr

)2

+ V(φB)

]

, (49)

where V  is the effective potential at finite temperature which 

for now we leave unspecified. The lack of angular variables 

in the integration reflects the fact that we are considering a 

spherically symmetric solution. The decay rate per unit vol-

ume of the effective potential is given by [1]

Γ(T) ∼ T4

{

SE(φB)

2πT

}3/2

e−
SE(φB)

T . (50)

From the decay rate one can write the differential decay prob-

ability for a given temperature T as [20]

dP

d ln T
∼ Γ(T)

Mp

T2

(

tUT0

T

)3

, (51)

where tU is the age of the Universe and T0 is the temperature 

today.

Using the relationship between temperature and time

T2t =

√

45

16π3

Mp
√

g∗
, (52)

one can derive an approximate condition for when 1/e volume 

fraction is in the new phase

SE(φB)

T
= 170 − log[

T

GeV
]− 2 log[g∗] . (53)

The temperature which satisfies this equation is known as the 

nucleation temperature. A more precise way of calculating the 

nucleation temperature is through calculating the total number 

of bubbles in a Hubble volume at a given temperature, T, [20],

N =

∫ TC

T

H−1(T ′)

T ′
V(T ′)Γ(T ′)dT ′ (54)

where Tc is defined in figure 1. The nucleation temperature is 

defined when the above expression is equal to 1. At a given 

time the total volume fraction of space in the false vacuum 

is [20]

ffalse(t) = e−I(t), I(t) =

∫ t

tc

dt′p(T(t′))V(t′, t) . (55)

Here V(t′, t) is the volume of a bubble formed at time t′ evalu-

ated at time t. If one assumes spherical symmetry one can write 

V(t′, t) = 4π[r(t)− r(t′)]3/3. Taking r(t)− r(t′) ∼ vw(t − t′) 
for a constant wall velocity, vw, one can write the fraction of 

volume in the false vacuum as [20],

ffalse = exp

[

−
4π

3
v

3
w

∫ t

tc

dt′p(T(t′))(t − t′)3

]

. (56)

Dropping the time dependence of the temperature, the nucle-

ation probability per unit volume in the above equation  is 

given by [20, 210]

p(T) =
ω−

2π

(

SE(φB)

2πT

)3/2

A(T)e−
SE(φB)

T . (57)

In the above φB is the bounce solution to the classical equa-

tions of motion, ω− is the angular frequency of the unstable 

mode and A(T) is the fluctuation determinant. The phase 

transition completes when ffalse(t) becomes negligible. The 

Figure 2. An example of the bounce solution for a sample potential (left panel). Above is presented the solution calculated numerically 
compared to the Ansatz given in equation (43). Since the difference is invisible to the naked eye we also plot the residuals (right panel).
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duration of the phase transition can then determined by taking 

the difference between this time and the nucleation time. The 

speed of the phase transition is often parametrized in terms of 

the time rate of change of the effective action

β = −
dS

dt
≈ T

d(SE/T)

dT

∣

∣

∣

∣

TN

. (58)

The speed of the phase transition is a parameter which controls 

the frequency and amplitude of relic gravitational wave back-

grounds left by cosmic phase transitions. Other parameters 

that control the amplitude and frequency of relic gravitational 

waves are the Latent heat and the bubble wall velocity. The 

latent heat divided by the radiation energy density is given by

α =
∆ρ

ρN
 (59)

with

ρN =
π2g∗T4

N

30
, ∆ρ =

[

V −
dV

dT
TN

]

False

−

[

V −
dV

dT
TN

]

True

.

 
(60)

3.3. Bubble wall velocity

After a bubble nucleates it expands creating an ever larger 

region of the new vacuum. The act of expansion leads to more 

particles in the plasma either acquiring or receiving a mass. 

Furthermore the equilibrium distributions of particles in the 

plasma gets perturbed near the bubble wall. These processes 

costs energy and results in resistance to the bubble expansion. 

If such friction is large, the bubble may not necessarily go 

ultra relativistic.

Let us begin with the classical equations of motion for a 

scalar field interacting with fermions and gauge bosons [220]

�h −
∂V0

∂h
−

dm2
h

dh
〈δh2〉 −

∑ dm2
A

dh
〈A2〉+

∑ dmψ

dφ
〈ψ̄RψL〉 = 0,

 (61)

where A and ψ are gauge bosons and fermions that acquire 

a mass when h acquires a vacuum expectation value. Also 

the angular brackets denotes the vacuum distribution at finite 

temperature but not necessarily in equilibrium. If the particle 

distributions are their equilibrium functions then the above 

are the same equations of motion one solves when finding the 

bounce solution that describes the profile of a bubble wall dur-

ing nucleation. We will derive this fact in more detail when we 

review the fate of the effective potential at finite temperature 

in a later section. The expansion of the bubble wall however 

perturbs the plasma away from equilibrium and the energy 

required to perform such a perturbation resists the expansion 

of the bubble wall. The box operator contains a curvature 

Figure 3. Numerical fitting of a tanh Ansatz given in equation (48) to the bounce with the parameters as a function of α. The top panels are 
the bubble wall and offset respectively whereas the bottom panel is the prefactor.
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friction term, (2/r)dh/dr, which can be neglected when the 

bubble expands to a sufficiently large size that we can neglect 

the curvature of the bubble wall. In this case the box opera-

tor becomes � = (1 − v
2
w)∂

2
z  with the bubble moving along 

in the z direction. Such an approximation underestimates the 

total friction and therefore will provide a slight overestimate 

of the bubble wall velocity. The 2nd moments of the fields can 

be written in terms of their vacuum expectation values (which 

will be zero) and their distributions

〈δh2〉 = 〈δh2〉vac +

∫

d3k

(2π)3Ek

fδh(k, x),

〈A2〉 = 〈A2〉vac +

∫

d3k

(2π)3Ek

fA(k, x),

〈ψ̄RψL〉 = 〈ψ̄RψL〉vac +

∫

d3k

(2π)3Ek

fψ(k, x) .

 

(62)

Writing the distributions as fX = f 0
X + δfX, where the δfX  piece 

corresponds to the departure from equilibrium, and noting that

∂V(h, T)

∂h
=

∂V0

∂h
+

∑

j

∂mj

∂h

∫

d3p

(2π)3(2Ep)
f 0
j ( p, x), (63)

we can then rewrite the classical equations  of motion such 

they explicitly contain the wall velocity

−(1 − v
2
w)h

′′ +
∂V(h, T)

∂h
+

∑

j

∂mj

∂φ

∫

d3p

(2π)32Ej

δfj( p, x) = 0 .

 (64)

The sum in the above equation  represents the resistance to 

bubble expansion due to the new phase causing particles in 

the plasma to acquire a mass and depart from their equilib-

rium distributions. When the WKB condition of pj ≫ 1/Lw 

is satisfied [220], the particle distributions satisfy Botlzmann 

equations [221]

(∂t + ẋ∂x + ṗx∂x) fj = −C[ fj]. (65)

We can parametrize the distribution function as

fx =
1

e(E+δ)/T + x
, (66)

where the value of x = ±1 denotes fermions (+) or bosons 

(−). The various terms in the Boltzmann equation can be writ-

ten as

∂tf = f ′0(∂tE + ∂tδ) = f ′0(
1

2E
∂tm

2 + ∂tδ),

ẋ∂xf = f ′0
px

E
∂xδ,

ṗx∂px
f ∼ 0 .

 

(67)

The perturbations can be written as a sum of a perturbation in 

the chemical potential, the fluctuation in the temperature and 

the fluctuation in the velocity of each species. That is [220]

δi = −

[

δµi +
E

T
(δTi + δTbg) + px(δv + δvbg)

]

. (68)

To solve the Boltzmann equations  one takes the 

moments—
∫

d3p/(2π)3, 
∫

(E/T)d3p/(2π)3 and 
∫

( px/T)d3p/  

(2π)3- of the Boltzmann equations to acquire a set of linear 

equations

ci
2x∂tµi + ci

3x∂t(δTi + δTbg) + (ci
3x/3)T∂x(δvi + vbg)

+

∫

d3p

(2π)3T2
C( f )i =

ci
1x

2T

∂m2
i

∂t
,

ci
2x∂tµi + ci

3x∂t(δTi + δTbg) + (ci
3x/3)T∂x(δvi + vbg)

+

∫

E

T

d3p

(2π)3T2
C( f )i =

ci
2x

2T

∂m2
i

∂t
,

ci
2x∂tµi + ci

3x∂t(δTi + δTbg) + (ci
3x/3)T∂x(δvi + vbg)

+

∫

pz

T

d3p

(2π)3T2
C( f )i = 0

 

(69)

where we have defined

cnx =

∫

d3p

(2π)3

En−2

Tn+1
fx( p) . (70)

One can write the above set of equations in a matrix equa-

tion [220, 222, 223]

M�δ
′ + Γ�δ = ∂tm

2�F . (71)

In the above the matrix Γ is from the set of relevant collision 

integrals. If we assume that the derivatives of the fluctuations 

δ are small then one can invert the above matrix equation to 

obtain an expression for the fluctuations �δ ∼ Γ
−1

∂tm
2�F. For 

a single field undergoing a phase transition the equations of 

motion including these perturbations can be written [220]

−φ′′ +
∂V

∂φ
+

1

2
Tni

∂m2
j

∂φ
(c1xδµj + c2xδTj + c2xTδvj) = 0.

 (72)

Substituting the approximation for δ into our equations  of 

motions and taking the bubble wall velocity to be small gives

h′′
− ∂hV = ηvwγ

φ2

T
φ′, (73)

where η is given by

η =
T

4
GΓ−1�F, (74)

and isolates the part of the friction that is independent of the 

wall velocity. Here the term G is a vector that for a particle spe-

cies i has the form 2Nimi/v�c±, with �c± = (c1±, c2±, c3±), and 

we give the standard model friction terms in table 2 from [224].

A rule of thumb for whether bubble walls can run away 

was developed by Bodecker and Moore [225]. Assuming the 

bubble wall reaches ultra relativistic speeds, the pressure that 

resists expansion due to particles crossing the wall and chang-

ing its mass reaches an asymptotic value independent of the 

Lorentz factor γ . In the ultra relativistic regime, one needs 

to only consider particles crossing the wall from the false 

vacuum to the true. Since no particles enter the false vacuum 

phase either through reflecting off the wall all through exit-

ing the expanding bubble, the particle distributions can be 

assumed in the equilibrium distribution. Specifically the pres-

sure reaches the value [225]
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P1→1 =
∑

i

ni

∫

d3p

2E(2π)3
f0,n( p)(m2

i (hT)− m2
i (hF)), (75)

where h(t,f ) are the true and false vacuum respectively and the 

subscript 1 → 1 refers to the process where particles which 

cross the wall and acquire a contribution to their mass. If the 

minimum of the mean field potential

Ṽ = V|T=0 +
1

2
(h − ht)

2T2, (76)

either does not exist or is higher than the false vacuum of the 

full thermal potential, the bubble wall cannot run away. This 

criteria implies that phase transitions involving scalar singlets 

tend to runaway as they introduce additional expansion pres-

sure without introducing too much additional friction. Even 

still [224] found there are in fact some cases where the bubble 

wall in a singlet catalyzed electroweak phase transition can 

expand subsonically, that is the velocity of the bubble wall is 

slower than the speed of sound within the plasma.

3.4. Multistep phase transitions

Thus far we have been considering the case where the phase 

history of a system is the simple case where one has one phase 

at high temperature and a different one at low temperature. 

Condensed matter systems teach us that things may not be so 

simple. Indeed there has been much recent interest in the case 

of multistep phase transitions and their application to baryo-

genesis [13–17, 226, 227] and gravitational waves [228]. In 

general there are four distinct cases of interest. The first where 

a symmetry is not broken in one of the phase transitions (for 

example a gauge singlet field may tunnel from one vacuum to 

another). The second case is where the same symmetry is bro-

ken in both phase transitions such as a two step electroweak 

phase transition. One can also break two different symmetries 

in subsequent transitions such as the case where the standard 

model is extended by a singlet field with a discrete Z2 sym-

metry where V(φ) = V(−φ). Such a model was considered 

in [229] in the context of gravitational waves. Finally, there 

is the case where one has a a symmetry at zero temperature 

is broken at an intermediate temperature (and then possibly 

restored at high temperature).

For the first case consider the example of a real singlet 

where the first phase transition proceeds as (0, ǫ) → (0, vs) 
where the first transition does not begin exactly at the origin as 

finite temperature effects generate a linear term that shifts the 

minimum away from v = 05. Second, the electroweak phase 

transition proceeds from (0, vs) → (vh, v
′

s) which can have a 

tree level barrier between the true and false vacuum catalyz-

ing a strongly first order phase transition. In principle such 

a scenario could lead to exotic gravitational wave effects. In 

the context of NMSSM, a phase transition where the singlet 

changes sharply during the electroweak phase transition can 

boost the efficiency of baryon production [230]. Detailed phe-

nomenological scans of a real singlet extension to the standard 

model have shown that a scalar as heavy as 800 GeV can still 

catalyze a SFOEWPT [21, 231]. Such a scenario would take a 

100 TeV collider to fully probe [232]. The requirement that a 

singlet must be no heavier than a 800 GeV sounds model spe-

cific leading to a question as to whether a more complicated 

scalar sector could push the scale of new physics even higher 

and still catalyze a SFOEWPT. However the result for the sin-

glet extension of the standard model seems to agree with the 

effective field theory result which also sets the scale of new 

physics at 800 GeV [233]. Recent work has stressed the diffi-

culties of using effective field theory during a phase transition 

so this result should be taken with a grain of salt [218].

Next let us consider the second possibility raised above. 

The idea of a symmetry being broken through multiple trans-

itions has been mainly of interest in the case of electroweak 

symmetry breaking. One can break electroweak symmetry in 

a multistep transition when the standard model is extended 

by at least an additional scalar SU(2)L multiplet. The simplest 

cast is when one adds a scalar SU(2)L triplet to the standard 

model along with a scalar gauge singlet to act as a catalyst. A 

component of the SU(2)L triple can acquire a vacuum expecta-

tion value at high temperature before the deepest minima is in 

the direction of the SU(2)L doublet fields. This situation was 

considered in [226] to catalyze electroweak baryogenesis at 

a higher scale and is illustrated in figure 4. A key attraction 

of this scenario is the physics that leads to the electroweak 

phase transition being strongly first order, a requirement for 

Table 2. Table of friction coefficients for relevant SM processes. 
Table contents taken from [224].

Coefficient

Γh
m1,h

(

1.1 × 10−3g2
3y2

t 1.4 × 10−3y4
t

)

T

Γh
T1,h = Γh

µ2,h

(

2.5 × 10−3g2
3y2

t + 1.4 × 10−3y4
t

)

T

Γh
T2,h

(

8.6 × 10−3g2
3y2

t + 1.8 × 10−3y4
t

)

T

Γh
v,h

(

3.5 × 10−3g2
3y2

t + 1.8 × 10−3y4
t

)

T

−Γh
µ1t

(

10−3g2
3y2

t + 5.8 × 10−4y4
t

)

T

−Γh
T1,t = −Γh

µ2,t

(

2.5 × 10−3g2
3y2

t + 1.5 × 10−3y4
t

)

T

−Γh
T2,t

(

8.5 × 10−3g2
3y2

t + 4.8 × 10−3y4
t

)

T

−Γh
v,t

(

2.8 × 10−3g2
3y2

t + 1.4 × 10−3y4
t

)

T

Γt
µ1,t

(

5.0 × 10−4g4
3 + 5.8 × 10−4g2

3y2
t + 1.5 × 10−4y4

t

)

T

Γt
t1,t

(

1.2 × 10−3g4
3 + 1.4 × 10−3g2

3y2
t + 3.6 × 10−4y4

t

)

T

Γt
T2,t

(

1.1 × 10−2g4
3 + 4.6 × 10−3g2

3y2
t + 1.1 × 10−3y4

t

)

T

Γt
v,t

(

2.0 × 10−2g4
3 + 1.7 × 10−3g2

3y2
t + 4.3 × 10−4y4

t

)

T

−Γt
µ1h

(

9.3 × 10−5g2
3y2

t + 1.3 × 10−4y4
t

)

T

−Γt
T1,h = −Γt

µ2,h

(

2.2 × 10−4g2
3y2

t + 1.3 × 10−4y4
t

)

T

−Γt
T2,h

(

7.2 × 10−4g2
3y2

t + 4.0 × 10−4y4
t

)

T

−Γt
v,h

(

2.4 × 10−4g2
3y2

t + 1.2 × 10−4y4
t

)

T

−Γµ2t
(

1.4 × 10−2g4
3 + 1.3 × 10−2g2

3y2
t + 2.6 × 10−3y4

t

)

T

−ΓT2,t
(

1.4 × 10−3g4
3 + 4.6 × 10−2g2

3y2
t + 8.7 × 10−3y4

t

)

T

−Γv,t
(

2.4 × 10−1g4
3 + 1.7 × 10−2g2

3y2
t + 3.4 × 10−3y4

t

)

T

−ΓT2,h
(

1.0 × 10−3g2
3y2

t + 9.8 × 10−5y4
t

)

T

−Γv,h
(

1.6 × 10−3g2
3y2

t + 4.6 × 10−3y4
t

)

T

5 Note that for this to work one needs some fields to couple to the scalar in 

such a way that the effective quadratic temperature correction can prevent a 

linear thermal correction from lifting the potential at the origin too quickly 

for a phase transition to be strongly first order.
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electroweak baryogenesis, can be above the electroweak scale 

avoiding current bounds.

Finally the last possibility raised above is arguably the most 

exotic. Weinberg demonstrated by example that counter to our 

intuition, symmetries can be broken at high temperature [24]. 

Indeed this is the case in some condensed matter systems such 

as Rochelle salt which prompts us to consider this scenario. It 

was shown in [234] that if one extends the scalar sector of the 

standard model by a colored scalar field, one can indeed gener-

ate a scenario where the colored scalar acquires a vacuum expec-

tation before losing it during the electroweak phase trans ition. 

If one also includes a gauge singlet the scale of both the color 

breaking and electroweak phase transitions can both be multi-

TeV. This scenario was recently considered as a mechanism for 

producing the baryon asymmetry of the Universe [227]. Note 

that the colored scalar cannot be a stop [235] as if one tunnels 

into a phase where the stop has a vacuum expectation value, one 

cannot efficiently tunnel back into the SU(3)C symmetric phase 

when the Universe cools. In addition to adding extra scalars to 

the effective potential, one can achieve symmetry breaking at 

high temeprature through modifying the effective potential with 

large chemical potentials [236–238].

4. Effective potentials at finite temperature

It is possible for a scalar field to acquire a vacuum expecta-

tion value. This vacuum expectation value can be space-time 

dependent so we can treat it like a field. It is however, a classi-

cal field rather than a quantum field as it does not have excita-

tions that correspond to particle states. To derive the effective 

potential the process is to shift the scalar fields by the expecta-

tion value such that the expectation value of the scalar fields 

are zero. The part of the shifted Lagrangian that is purely 

made up of the classical field we call the effective potential. 

The global minimum of the effective potential is the vacuum 

expectation value of the unshifted field. It is common to refer 

to local minima as false vacua as they can decay to the true 

vacuum through tunnelling.

Let us consider some examples. In the case of the standard 

model, the Higgs is complex SU(2)L doublet so it formally 

contains four scalar quantum fields. All four fields can acquire 

a vacuum expectation value so we can shift by a SU(2)L dou-

blet of four classical fields which are the vacuum expectation 

values for each field. However, gauge invariance then allows 

us to perform a rotation such that only a single classical field 

is necessary. It is customary to choose the shift to be in the 

following direction in the internal space

H →

(

φ1 + iφ2

φ3+iφ4
√

2

)

+
1
√

2

(

0

v

)

,

 

(77)

where v is the vacuum expectation value. For now we have 

omitted any possible space time dependence of v. The vacuum 

expectation value spontaneously breaks SU(2)L symmetry 

and its associated Noether current (as well as the associated 

charge) is no longer conserved. Instead the conserved charge 

is the one that returns zero when acting on the shifted classical 

fields. It is easy to see that if the Higgs has a hypercharge of 

Y  =  1/2, the linear combination QEM = τ3 + Y  satisfies this 

criteria and is then the conserved charge of the theory with 

broken symmetry.

Next let us consider the case where there are two Higgs 

doublets with the same hypercharge. In this case we have 

a total of eight scalar fields between the two SU(2)L dou-

blets. We can again shift all eight scalar fields with a classi-

cal field corresponding to their vacuum expectation values. 

Once again we can use gauge invariance to render some of 

the classical fields redundant. However, this time we are 

still left with five classical fields. If we use our freedom 

to rotate away all but one classical field on the first Higgs 

doublet one has

H1 →

(

φ1
1 + iφ1

2

φ1
3+iφ1

4
√

2

)

+
1
√

2

(

0

v
1

)

, (78)

H2 →
1
√

2

(

φ2
1 + iφ2

2

φ2
3 + iφ2

4

)

+
1
√

2

(

v
2
1 + iv2

2

v
2
3 + iv2

4

)

. (79)

In the above, the vacuum expectation value v
2
3 violates the 

same charge as the standard model case. In contrast, v2
1 and v2

2 

violate QEM and v2
4 is a CP odd vacuum. In zero temper ature 

equilibrium QFT, the vacuum expectation values are fixed 

and it is unnecessary to consider their space time dependent 

behaviour. During a cosmic phase transition however, the vac-

uum expectation value can evolve with space and time.

4.1. Coleman–Weinberg potential

The process for calculating temperature effects on the evo-

lution of the vacuum follows the same recipe as the process 

of calculating loop effects albeit with finite temperature ingre-

dients. Specifically, in the real time formalism the propaga-

tors are replaced by their finite temperature counterparts, the 

masses are corrected by a Debye term and the time contour 

changes (as will be discussed in the forth coming subsection). 

Therefore we first summarize the effects of zero temperature 

Figure 4. An example of a two step phase transition for a triplet 
Higgs extension of the standard model. In the first transition, 
denoted ‘step 1’, a singlet along with an SU(2)L triplet denoted Σ 
acquire a vacuum expectation value. In the second step these fields 
loose their vacuum expectation value while the Higgs fields acquire 
one. Reprinted figure with permission from [229], Copyright (2016) 
by the American Physical Society.
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loop interactions on the effective potential and, by extension, 

the vacuum expectation value.

The shifted Lagrangian contains interactions between the 

classical field and quantum fields. One can therefore consider 

diagrams such as shown in figure 5. Calculating the case of 

Higgs self interactions, λh4/4!, with the physical Higgs one 

has [239]

Vself,h = i

∞
∑

n=0

∫

d4p

(2π)4

1

2n

[

λv
2/2

p2 − m2
H + iǫ

]n

, (80)

whereas interactions between the classical field and the 

Goldstone modes at one loop gives a contribution to the effec-

tive potential

Vself,GM = i

∞
∑

n=0

∫

d4p

(2π)4

2

2n

[

λv
2/12

p2 − (m2
GB + ξm2

W) + iǫ

]n

,

+
1

2n

[

λv
2/12

p2 − (m2
GB + ξm2

Z) + iǫ

]n

,

 (81)

where refers to the Goldstone mode and ξ is the gauge fix-

ing parameter. One can see explicitly in the above that the one 

loop correction to the effective potential acquires both gauge 

and renormalization dependence. Indeed, the one loop correc-

tions even depend on the renormalization scheme. These issues 

we return to later. For now we can work in the Landau gauge 

(ξ = 0) as this conveniently hides the gauge dependence. We 

also use dimensional regularization in the MS renormaliza-

tion scheme. We can categorize the one loop corrections to the 

effective potential by the virtual state in the interaction the cor-

rection corresponds to. The one loop corrections due to scalar 

(including goldstone boson), gauge boson and scalar interac-

tions are respectively, with respect to the running energy µ

VCW
S =

m4

64π2

(

log

[

m2

µ2

]

−
3

2

)

, (82)

VCW
GB =

m4

64π2

(

log

[

m2

µ2

]

−
5

6

)

, (83)

Figure 5. 1PI diagrams contributing to one loop corrections to the effective potential including scalar contributions (top panel), fermion 
contributions (central panel) and gauge contributions (bottom panel). Reproduced from [243] with permission.
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VCW
f = −

m4

64π2

(

log

[

m2

µ2

]

−
3

2

)

, (84)

where CW stands for the Coleman–Weinberg potential and 

S, GB and f  refer to scalars, gauge bosons and fermions 

respectively. One then has the total one loop correction to the 

effective potential as

V1(T = 0) =
∑

b

nbVCW
b −

∑

f

nf V
CW
F ,

 (85)

where nb/f  is the number of bosonic/fermionic multiplicity  

factors nt  =  12, nW = 6 etc.

4.2. Thermal corrections from scalars, fermions  

and gauge bosons

Calculating the finite temperature corrections to the effective 

potential essentially means repeating the previous analysis 

using finite temperature propagators, modifying the masses 

by temperature dependent ‘Debye’ corrections and modifying 

how we treat time. There are two commonly used treatments 

of time at finite temperature that give the same result for the 

corrections to the effective potential. One involves performing 

calculations in imaginary time; in this case the time domain 

is compactified to an interval p0 ∈ [0,β]. The other approach 

remains in real time formalism where the time contour is 

modified as shown in figure 6. This approach is slightly more 

complicated in its formalism, however a few features are more 

transparent. Therefore we will briefly summarize the closed 

time path formalism here.

The reason behind the different contour can be understood 

as follows. Suppose some system at a time t  =  0 is in equilib-

rium. The density matrix then has the familiar form [240, 241]

ρ0 =
e−βH

Tre−βH
. (86)

The time dependent density matrix can then be derived by 

evolving the equilibrium density matrix with time evolution 

operators,

ρ(t) = U(t, 0)ρ(0)U†(t, 0) . (87)

Note the explicit form of the time evolution operators

U(t′, t) = T
(

e−i
∫

t

t′
dt′′H(t′′)

)

. (88)

Here T refers to time. Both the equilibrium and time depen-

dent density matrices can be expressed in terms of the equi-

librium operators

ρ(0) =
U(T − iβ, T)

TrU(T − iβ, T)
, (89)

ρ(t) =
U(t, 0)U(T − iβ, T)U(0, t)

TrU(T − iβ, T)
. (90)

We can then calculate the time dependent expectation value 

of any operator, 〈A(t)〉 and express it purely in terms of time 

evolution operators and A [240, 241]

〈A(t)〉 = Tr[ρ(t)A〉], (91)

=
TrU(T − iβ, T)U(T , T ′)U(T ′, t)AU(t, T)

TrU(T − iβ, T)U(T , T ′)U(T ′, T)
. (92)

Taking T → −∞ and considering some n-point correlator for 

some source, J , we see that we can interpret the above as tak-

ing the time contour given in figure 6. As a result we have four 

distinct types of propagators depending on where the comp-

onents of the bilinears are on the time contour. It is convenient 

to represent these in matrix form. We will restrict ourselves to 

the scalar case [240, 241]

∆̃(x, y) =

(

∆++ −∆+−

∆−+ −∆−−

)

 

(93)

=

(

〈T
[

φ(x)φ†(y)
]

〉 −〈φ†(x)φ(y)〉

〈φ(x)φ†(y)〉 −〈T̄
[

φ(x)φ†(y)
]

〉

)

.

 

(94)

The four propagators in momentum space we give explicitly

i∆+−( p) = 2πδ
(

p2
− m(T)2

)

[Θ( p0)

f (�p +Θ(−p0))
(

1 + f̄ (−�p)
)]

,
 

(95)

i∆−+( p) = 2πδ
(

p2
− m(T)2

) [

Θ( p0) (1 + f (�p)) + Θ(−p0)f̄ (−�p)
]

,

 (96)

i∆++( p) =
1

p2 − m(T)2 + iǫ

+ 2πδ
(

p2
− m(T)2

) [

Θ( p0) f (�p) + Θ(−p0)f̄ (−�p)
]

,
 (97)

i∆−−( p) =
−1

p2 − m(T)2 − iǫ

+ 2πδ
(

p2
− m(T)2

) [

Θ( p0) f (�p) + Θ(−p0)f̄ (−�p)
]

.
 (98)

These propagators can be essentially derived from unitarity 

and causality [242]. Note that the first two propagators van-

ish at zero temperature. This is expected as they have no zero 

Figure 6. The closed time path contour. The contour begins above 
the real line far in the past, evolves to the present before dropping 
below the real line and evolving back into the past. At T = −∞ the 
contour evolves perpendicularly to the real line.
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temper ature counterpart. The last two operators (referred to as 

the time and anti time order propagators) contain a sum of zero 

temperature and finite temperature pieces. The finite temper-

ature pieces are Boltzmann suppressed when the temperature 

drops well below the masses so the time and anti-time ordered 

propagators reduce to their zero temperature counterparts as 

the temperature goes to zero.

The finite temperature corrections to the effective potential 

(apart from the Debye corrections to the mass) then are pro-

duced by recalculating the one loop corrections to the effec-

tive potential, but this time with the finite temperature versions 

of the propagator. As an example let us consider just the one 

loop corrections due to the interactions between the physical 

Higgs and the classical field. It is actually easier to calculate 

the derivative of this term with respect to the mass. In this case 

we just need to calculate a single bubble diagram [239, 241]

∂V1

∂m2(v)
=

1

2

∫

d4p

(2π)4
∆

++( p) . (99)

Note the appearance of the time orders propagator which, as 

we have stated, is a sum of the zero temperature and finite 

temperature pieces. Therefore we recover the zero temper-

ature loop correction but now have an additional finite temper-

ature piece given by [239, 241]

∆VB =
T4

2π2
nBJB

(

m2

T2

)

, (100)

JB(z
2) =

∫

∞

0

dxx2 log
[

1 − e

√
x2+z2

]

, (101)

where z  =  m/T has been implicitly defined. Note that the above 

function is complex for negative arguments. The imaginary 

parts of the effective potential corresponds to some decay which 

reflects an instability in the system. This issue we return to later 

in this section. Performing the same analysis with fermions as 

virtual states one then can derive the finite temperature contrib-

utions to the effective potential due to fermions [239, 241]

∆VF =
T4

2π2
nFJF

(

m2

T2

)

, (102)

JF(z
2) =

∫

∞

0

dxx2 log
[

1 + e

√

x2+z2
]

. (103)

The total contribution at one loop including finite temperature 

corrections we can then write as [239, 241]

V1(T) =
∑

b

nB(V
CW
b +∆VB)−

∑

f

nB(V
CW
F +∆VF). (104)

For the standard model one usually includes the thermal 

corrections due to the top quark, the physical Higgs and the 

Goldstone bosons as well as the massive gauge bosons with 

nf   =  12 and nB ≡ {nH, nGB, nW, nZ} = {1, 1, 6, 3}.

4.2.1. Debye masses and daisy diagrams. Hard thermal 

loops, p ∼ T , can cause perturbation theory to break down 

at finite temperature. One can delay the break down of 

perturbation theory by performing a resummation in figure 8 

which results in the shift of the pole mass by a temperature 

dependent Debye term. We will discuss different derivation 

schemes in this section as well as what limits different correc-

tions become important. The dangerous diagrams can be cat-

egorized as in figure 8: daisy diagrams, super daisy diagrams, 

lollipops and Sunsets. Note that the last two types of diagrams 

only exist in the case where you have a dimensionful trilin-

ear coupling. We will focus therefore on the first two. Daisy 

contributions of the form given in figure 7 become important 

when the mass of a particle is small compared to the temper-

ature [244]. Super-daisy diagrams such as the form given in 

figure 8 are important when the couplings are large and the 

masses are small compared to the temperature [243]. Consider 

the simplest possible model, a φ4 model.

L =
1

2
∂µ∂

µ
−

m2

2
φ2

−
λ

4!
φ4. (105)

Diagrams such as the one given in figure  7 contribute to a 

thermal correction to the mass. Let us explicitly calculate such 

a diagram in the imaginary time regime [240]

∆m2 =
λ

2β

∑

n

∫

d3k

(2π)3

1
(

2nπ
β

)2

+ k2 + m2
 (106)

=
λ

4

∫

d3k

(2π)3

1
√

k2 + m2
+

λ

2

∫

d3k

(2π)3

1
√

k2 + m2

1

eβ
√

k2+m2
− 1

.

 (107)

In the limit where the temperature is large compared to the 

mass one can write the high temperature expansion [240, 245].

∆m2
T =

λT2

24
.

 

(108)

This indeed is the typical form used for the Debye mass. If 

one takes the temperature dependent part of the potential 

evaluated at the thermally corrected mass, VT(m
2 +∆m2), 

and performs a high temperature expansion one encounters a 

common approximation for the daisy contributions [246]

T4

2π2
JB

(

m2 +∆m2

T2

)

∼
T4

2π2
JB

(

m2

T2

)

+ VDaisy, (109)

with

VDaisy =
T4

12π

∑

(

[

m2
i

T2

]

−

[

m2
i +∆m2

i

T2

]3/2
)

. (110)

Figure 7. An example of a self energy contributing to Debye mass 
through a scalar loop.
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The terms m2
i +∆m2

i  are the eigenvalues of m
ij
s,G +Πij

s,G 

where m
ij
s,G are the scalar and gauge boson mass matrices 

respectively and [247]

Πij =
T2

24
nk(−1)s+1

∂
kkijL̃ −

T2

48
nk∂

kkijLY (111)

Πab
G =

2

3
T2

(

ñH

8
+ 5

)

1

ñH

nHiggs
∑

m

δab∂
2
a∂

2
mL (112)

with nx the appropriate multiplicity factors, s = (0, 1) the 

spin of the boson and ñH is the number of Higgs that cou-

ple to a guage boson. Finally the derivatives ∂x are deriva-

tives with respect to field x, LY is the part of the Lagrangian 

that contain Yukawa interactions and L̃ = L − LY . Note 

that only longitudinal gauge bosons acquire thermal mass 

corrections. It was recently shown by [243] that the high 

temperature estimation of the daisy diagrams can become 

a poor approximation. As can be seen in figure 9 the high 

temperature approximation is quite poor for large values of 

the quartic coupling. More seriously, the high temperature 

expansion does not show how decoupling when the mass is 

large compared to the temper ature. A more accurate way of 

calculating the Debye mass is through the self consistency 

relation [243]

m2
0(φ)+∆m2

T =
∂2

∂φ2
[V0(φ) + VCW(φ)] +

∂2

∂φ2
VT(m

2
0(φ) + ∆m2

T),

∆m2
T =

∂2

∂φ2
VT(m

2
0(φ) + ∆m2

T).

 

(113)

Furthermore [243] developed a scheme for calculating the 

superdaisy contributions, by solving the equation [243]

Vsuper daisy =

∫

dφ
dVT(m

2(φ) + ∆m2
T)

dm2(φ)

dm2(φ)

dφ
. (114)

4.2.2. Gravitational corrections. Gravitational corrections to 

false vacuum decay suppress the decay rate slightly. Consider 

the action of a single scalar field coupled to gravity defined by 

the Euclidean action [248, 249]

S =

∫

d4x
√

g

[

1

2
∂µh∂µh + V(h)−

R

2κ
−

R

2
f (h)

]

,

 

(115)

where κ = 8πG = 8π/M2
P and the metric is given by 

ds2 = dr2 + ρ(r)2dΩ2, where dΩ2 contains the angular part of 

the metric. In this metric the Ricci scalar has the simple form

R =
−6(ρ2

ρ
′′ + ρρ

′2 − ρ)

ρ3
, (116)

where the prime is a derivative with respect to the radial coor-

dinate, r. The equations of motion are

h′′ + 3
ρ
′

ρ
h′ =

dV

dh
−

1

2

df

dh
R (117)

ρ
′2 = 1 +

κρ
2

2(1 + κf (h))

(

h′2

2
− V − 3

ρ
′

ρ

df

dh
h′

)

. (118)

One can find approximate solutions to the above equations of 

motion by expanding in the Planck mass,

h(r) ∼ h0(r) + κh1(r), (119)

ρ(r) ∼ r + κρ1(r), (120)

where κ =
√

8πG and h0 is the bounce solution without gravi-

tational corrections. The change in the action, S = S0 +∆S, 

where S0 corresonds to the action of the bounce has a formi-

dable form [249]

∆S =
48π2

M2
P

∫

dr

[

r2ρ1

(

1

2
h′

0
2 + V(h0)

)

+(rρ′1
2 + 2ρ1ρ

′

1 + 2ρ1rρ′′1 + rf (h0)(rρ
′′

1 + 2ρ′1))
]

.

 

(121)

Figure 8. Various contributions to the thermal mass for a general scalar potential including super daisy and daisy contributions which we 
cover in detail here. Note that the lollipop and sunset diagrams require a trilinear coupling. Reproduced from [248] with permission.
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One can greatly simplify the above expression by making 

the rescaling ρ1 → ρ1 × s where the value of s is chosen by 

requiring the derivative with respect to s to vanish at s  =  1. 

The change in the effective action then has the remarkably 

simple form

∆S =
48π2

M2
P

∫

drrρ′1
2
� 0 . (122)

Note that, as we indicate, this correction to the effective action 

from gravitational effects is always positive indicating that the 

tunneling rate in turn is suppressed by gravitational correc-

tions. Also it is useful to note that the first order correction to 

ρ  is independent of the gravitational corrections to the bounce 

action [249]

ρ
′

1 =
r2

6

[

1

2
h′0

2
− V −

3

r
f ′(h0)h

′

0

]

. (123)

The correction tends to be quite small for weak scale phase 

transitions, scaling as  ∼v
6/(Λ4M2

P) where v is the vacuum 

expectation value of the non trivial minimum (assuming the 

false vacuum is at the origin in field space) and Λ is the scale 

of the potential.

4.2.3. Finite number density contributions. Consider a scalar 

field, φ, with a Global U(1) symmetry which corresponds to a 

Noether charge Q. For a charge density n = Q/V  the effect of 

a non-zero charge density for T  >  m is [236, 250, 251]

V(n, T ,φ) ∼ V(φ, T)−
1

2
na(M−1)abnb

∼
n2

2λ(3|φ|2 + T2/2)
+

λ

4
T2|φ|2 +

λ

4
|φ|4,

 (124)

where we have indicated how to generalize to more com-

plicated models in the first line of the above equation. If the 

number density scales with the temperature cubed then the 

potential actually grows a minimum at high temper ature. 

In this case the symmetry breaking is not caused by the 

microphysics of the field’s couplings and mass, but is instead 

caused by the macroscopic conditions.

4.3. Topical theoretical issues

4.3.1. Gauge invariance. The gauge dependence of the effec-

tive potential has been the subject of much debate. Some have 

approached the issue by arguing for the benefits of a par ticular 

gauge (usually the Landau gauge because of the simplifica-

tions that there is no mixing between longitudinal vector boson 

and goldstone modes and that the gauge fixing param eter 

is not renormalized). Others have proposed novel solutions  

[252, 253]. A couple particularly creative ones involve cou-

pling the source to a composite field [252]. Unfortunately 

[254] argued that one cannot calculate a finite effective poten-

tial this way if there are more than three space time dimensions. 

Another approach was to demonstrate that a gauge indepen-

dent effective potential can be derived via a field redefinition 

[253]. While ingenious, this approach invites the criticism that 

an effective potential that is sensitive to field redefinitions is 

not an improvement on one that is sensitive to gauge trans-

formations. Recent work by Schwarz et al [255] argued that 

the effort to produce a gauge invariant version of the effec-

tive action was misguided. They argue that the effective action 

itself is unphysical as its construction involves a test of how 

the system responds to an external source, J. If J �= 0 this is a 

non-dynamical background charge density. This charge den-

sity does not couple to the gauge bosons which means Ward 

identities are violated [255]. The J  =  0 case means that φ0 

is extremal. They then argue that all physical quantities are 

gauge invariant, demonstrating that one can write the mini-

mum of the potential to two loops if one expresses things in a 

gauge invariant scale, µX. The trick is then to do an expansion 

in � rather than the usual loop expansion as such an expansion 

manifestly conserves gauge invariance order by order whereas 

the usual perturbative expansion fails in this regard. Explicitly 

one has in a � expansion [255, 256]

v = v0 + �v1 + �
2
v2 + · · · (125)

V = VLO + �VNLO + �
2VNNLO. (126)

One can then express the minimum of the potential, itself a 

physical quantity, in terms of a physically meaningful scale, 

µX by grouping terms together in a � expansion as follows 

[255, 256]

Vmin = VLO(µX) + �
(

VNLO(µX) + v1V ′NLO(µX)
)

+ �
2

(

VNNLO(µX) + v1V ′NLO(µX) + v2V ′LO(µX) +
v

2
1

2
V ′′LO(µX)

)

.

 (127)

At finite temperature, one is often interested in calculating the 

order parameter as a measure of the strength of the phase trans-

ition. Explicitly it is the ratio of the vev at the non-trivial min-

ima to the temperature at which the potential has degenerate 

minima, TC. One approach was to expand TC in a � expansion. 

Such an approach suffers from infrared divergences. Another 

approach, is to expand both the minima and the potential eval-

uated at the minima in a � expansion. Such an approach seems 

Figure 9. Thermal mass for a particle with mass λφ and 
units scaled such that T  =  1. The gold line represents the high 
temperature expansion whereas the blue line represents the 
numerical calculation of the integral. The discrepancy is remarkably 
large even for T ∼ φ. Furthermore the numerical result shows the 
expected decoupling behaviour.
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sufficient for calculating the physical sphaleron energy which 

is the true quantity controlling whether the yield of any par-

ticle produced during a phase transition is washed out.

4.3.2. Model dependence of the order parameter. A popu-

lar measure of the strength of the phase transition is through 

the order parameter φC/TC where the critical temperature, 

TC, is the temperature at which the minimum is degenerate 

and φC is the value of the non-trivial minimum at the critical 

temperature. The order parameter is not gauge invariant and a 

gauge invariant treatment is given in [256]. Generally many 

just use the Landau gauge to calculate the order parameter. In 

baryogenesis one needs the phase transition to be sufficiently 

strong such that the phase with broken electroweak symmetry 

has electroweak sphalerons sufficiently suppressed such that 

a sufficient percentage of any baryon asymmetry produced 

through CP violating interactions with the bubble wall is pre-

served and not washed out [256]. A rule of thumb that gets 

used in the literature is that the phase transition is sufficiently 

strong if φC/TC � 1 [239].

A more precise condition involves calculating how much 

initial baryon asymmetry is preserved during the transition. 

However, the sphaleron rate depends on the sphaleron energy 

and the fluctuation determinant. Both of these are very model 

dependent and even in the standard model with a variable higgs 

mass the true condition can range from φc/Tc > [0.7, 1.5] 
[256, 257].

4.3.3. Imaginary part of effective potential. At both zero and 

finite temperature the loop corrections to the effective poten-

tial is not real everywhere. This occurs when the mass squared 

for some values of the classical field the mass squared of the 

physical Higgs and goldstone bosons can be negative lead-

ing to complex logarithms in the Coleman Weinberg potential 

as well as complex contributions from the thermal functions. 

Furthermore daisy contributions also can be responsible for 

imaginary contributions. This leads to two related theoretical 

issues: first the effective potential is convex by construction 

and yet a negative mass squared appears to contradict this, 

second what is the physical interpretation of the imaginary 

components of the effective potential.

The first theoretical issue is known as the convexity prob-

lem where the effective potential is convex by construction 

and yet we frequently encounter effective potentials which 

are definitely not convex everywhere. The solution to this 

problem is found in merely bringing clarity to what it means 

to say the effective potential is convex by construction 

[258, 259]. The effective action is derived as the functional 

Legendre transform of W[J(x)] = − ln〈0+|0−〉J. This implies 

that the effective action is concave and the effective poten-

tial is convex. This follows from the definition of a Legendre 

transform, L( p) = min[xp − f (x)], which can be written 

as, x0p − f (x0( p)), where x0(p ) satisfies the conditions that 

∂xf (x0) = p and ∂2
x f (x0) � 0. In other words the Legendre 

transform of f  is concave by definition. Now the effective 

action is the Legendre transform, Γ[φ̄] = min[Jφ− W(J)], 
which is concave. When one calculates the effective action 

by summing 1PI diagrams one finds a non-convex effective 

potential. Γ[φ]. However one does not require, Γ[φ] = Γ[φ̄], 
the latter is the concave envelope of the former (and V(φ̄) is 

the convex envelope of V(φ)). The two are equivalent for a 

constant background evaluated at the absolute minimum.

The second issue is a little more subtle. It was shown by 

Weinberg and Wu [260] that the imaginary contributions to 

the effective potential have the interpretation of decay pro-

cesses. The decay in question is not the scalar fields decay-

ing into other particles. This can be demonstrated from the 

fact that even a theory with a single scalar field that has no 

decay modes still obtains imaginary contributions. The decay 

also is not the non-perturbative decay of the false vacuum 

as these imaginary contributions are perturbatively derived. 

In fact, the decay corresponds to an instability in the system 

where fluctuations around the classical field become large in 

a set of uncorrelated domains of size (V ′′)−1/2. Within each 

domain the fluctuations grow exponentially with time and the 

system becomes unstable. This instability becomes important 

when the false vacuum is decaying and one needs to expand 

around a space time varying background that includes regions 

of negative field curvature. If the imaginary part of the effec-

tive potential is large compared to the real part then the system 

is unstable and the usual process of calculating bubble nuclea-

tion may be invalid.

This is best understood in direct analogy with the Schwinger 

effect in electromagnetism6. If the electric field in some vol-

ume, V , is strong enough, electron anti-electron pairs will be 

spontaneously produced via interactions between the vacuum 

and the strong electric field. These electron anti-electron pairs 

will split, aligning themselves with the background electric 

field which lowers both the background and the energy of the 

system. The Schwinger effect can be formally understood in 

terms of effective actions. Defining the one loop correction to 

the Lagrangian density as L1 one can write the pair creation 

rate per unit volume and time as [261]

Γ = −2L1 =
1

4π3
(eE)

2
∞
∑

n=1

1

n2
exp

[

−n
πm2

e

|e|E

]

. (128)

Similarly the imaginary components of the effective poten-

tial correspond to spontaneous production of scalar quanta. 

This percolation serves to drive field to the inflection point 

lowering the total energy to a point that is higher than the 

minimum. Note that this lowering of the energy is a purely 

quantum mechanical effect that is different from a classical 

roll. Thermal corrections are also responsible for an imagi-

nary component to the finite temperature version of the effec-

tive potential. These components arise from the fact that we 

have calculated the effective potential under the assumption of 

equilibrium and if there is an imaginary component it means 

that you have a thermal instability to your equilibrium state. 

The thermal imaginary components will then proceed to take 

the system out of equilibrium.

It was recently shown that for the standard model 

case the imaginary parts of the ring sum term effectively 

cancel the imaginary parts of the one loop corrections 

6 We thank Hiren Patel for clarifying this issue.

Rep. Prog. Phys. 82 (2019) 076901



Review

22

guaranteeing the stability in this case. Explicitly one has in 

the high temper ature limit [262]

Im [V1(T)] →
∑

i∈{h,GB}

Θ
(

−m2
i

)

ni

[

−
|mi|

4

64π
+

|mi|
3T

12π

]

+
∑

i∈{h,GB}

Θ
(

−m2
i

)

ni

[

|mi|
4

64π

]

,

Im [VRing(T)] →
∑

i∈{h,GB}

Θ
(

−m2
i

)

ni

[

−
|mi|

3T

12π

]

.

 

(129)

At high temperature these contributions can cancel for the 

standard model case (apparently also do at m ∼ T  which is not 

much of a surprise since the high temperature limit holds very 

well until m ∼ 2T). So for the standard model case at least this 

presents no issue at least in terms of the stability of the system 

during a phase transition. However, one should note that the 

cancellation occurs only in the finite temperature expansion 

and small imaginary component remains even at the origin 

when electroweak symmetry is restored.

4.3.4. Back reaction of the soliton. To self consistently calcu-

late the tunneling rate which is relevant for calculating various 

thermodynamic parameters, one needs to include the correc-

tion that is due to the fact that one has a space time varying 

field configuration. Recent works [263–265] have addressed 

this issue and suggest the following recipe

 1.  find the approximate bounce solution to the classical 

equations of motion

 2.  Insert the bounce solution into the equation for the Greens 

function and find the new greens function that solves for 

the case of a φ4 theory with quartic term (λ/4!)

(−�+
λ

2
φ2)G(x, y) = δ(x − y), (130)

  where as before G is a propagator.

 3.  Calculate the tadpole corrections ΣR renormalizing in the 

homogeneous false vacuum

 4.  Insert tadpole into the equations of motion

−�φ+ΣRφ = 0, (131)

  where ΣR = λS(φ) + δΣ and δΣ is contains all the rel-

evant counter terms. Solve the bounce which now solves 

this corrected equation of motion.

 5.  Repeat steps 2–4 until one has convergence.

The corrections were found to be very small in the thin wall 

regime [264, 265] but are expected to be more relevant when 

one is beyond the thin wall limit.

5. Examples of phase transitions

5.1. Electroweak phase transition

No other phase transition gains as much attention as the  

electroweak phase transition [13–17, 20, 21, 223, 247, 256, 

267–273]. Reheating models generically tend to predict a 

reheating temperature high enough to restore electroweak 

symmetry7. Furthermore, if electroweak symmetry is bro-

ken during the cooling of the Universe after reheating via a 

strongly first order electroweak phase transition, the baryon 

asymmetry of the Universe can be generated during the phase 

trans ition (at the small cost of diluting thermal relics [275]). 

Let us begin with the standard model to understand why it 

does not accommodate a strongly first order phase transition 

and how to extend the SM to catalyze such a scenario. We 

will follow the conceptual organization of [266] which cat-

egorized the different classes of extensions to the Standard 

model that can successfully accommodate a strongly first 

order electroweak phase transition. The Higgs potential in the 

standard model in the high temperature expansion expressed 

in the Landau gauge is given by [239]

V = D(T2
− T2

0 )h
2
− ETh3 +

λ

4
h4, (132)

where [239]

D =
g2

1 + 3g2
2 + 4y2

t + 8λ

32
,

T0 =
m2

H

4D
,

E =
3

96π

(

2g3
1 + (g2

1 + g2
2)

3/2
)

,

 

(133)

where in the above g1 and g2 are the standard model gauge 

boson couplings. The strength of the phase transition is given 

by [239]

φc

Tc

= 2
E

λ
= 4E

v
2

m2
H

∼
2300

m2
h

. (134)

So for a Higgs mass of 125 GeV one has a very weak first 

order phase transition with an order parameter  ∼0.1. In real-

ity, lattice simulations indicate that the electroweak transition 

is a smooth crossover. To boost the strength of the electroweak 

phase transition there are four model classes to achieve this 

which are depicted in figure 10. These are

 I.  Boost the effective E parameter in equation  (132) by a 

factor of at least 5. This can only be achieved through 

the introduction of new bosonic degrees of freedom that 

acquire a part of their mass through electroweak sym-

metry breaking. Also the total mass of the new boson 

cannot be too heavy as the cubic term is only manifest 

when the high temperature expansion is valid—that is 

when the temperature is large or comparable to the mass. 

Above such a mass the thermal contribution from such 

a boson is heavily Boltzmann suppressed. The most 

celebrated example of such an approach is the light stop 

scenario [276]. Such a scenario is very efficient as the 

contribution to E has a multiplicity factor of 12. However, 

the light stop scenario is highly constrained as it requires 

a stop lighter than the SM top quark and it is difficult, but 

not impossible, for such a light stop to evade detection 

7 One caveat is that it is possible through the introduction of many singlets 

for electroweak symmetry to not restore at high temperature [274].
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[277]. Another possibility that is equally efficient and can 

evade detection is that of folded supersymmetry [278] 

where the SU(3)C quantum numbers of the stop is not the 

standard model colour. It is also in principle possible to 

boost the value of E through light scalars fields.

 IIA.  The second scenario attempts to introduce a tree level 

effective cubic term to provide a barrier between the true 

and false vacuum during the phase transition (a barrier 

that can persist at zero temperature). Such an operator 

is forbidden due to gauge invariance unless there are 

additional scalar fields [279]. Such a scalar field must 

have their vev also substantially change during the phase 

transition.

 IIB.  In this scenario the barrier between the true and false 

vacuum is created by the effective quartic changing signs 

and the vacuum is stabilized by the non-renormalizable 

sextet term. Such a theory can be an effective theory 

that is valid up to the cutoff scale Λ. The scale of new 

physics needs to be relatively low compared to the 

standard model—between about 500 and 800 GeV—in 

order to catalyze a strongly first order electroweak phase 

transition [233]. If the cutoff is too low then the tun-

neling probability becomes large compared to the age 

of the Universe. If the cutoff is too high then the effect 

of the new physics is too feeble to catalyze a strongly 

first order electroweak phase transition. Recent work has 

demonstrated that the dimension eight operators are also 

important for the electroweak phase transition [280]. The 

dependence on the dimension six and dimension eight 

Wilson Coefficients we show in figure 11.

 III.  Perhaps the least explored option of the four is to induce 

a large contribution from the Coleman Weinberg poten-

tial to catalyze a strongly first order electroweak phase 

Figure 10. Model classes for catalyzing a strongly first order electroweak phase transition. From top left to bottom right the barrier is 
caused by thermal loops, tree level triscalar interactions, non-renormalizable operators and Coleman Weinberg corrections, respectively. 
Reprinted figure with permission from [270], Copyright (2013) by the American Physical Society.

Figure 11. Values of Wilson coefficients for c6/(8f 2)h6 and 

c8/(16f 4)h8 operators with LISA and future e+e− circular 

collider (FCC-ee) constraints given. Note λ3 refers to the usual 
Higgs coupling and FCC-ee can probe values outside the interval 
λ3 ∈ [0.1, 1.9]. Reproduced from [284]. CC BY 3.0.
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transition. For instance in the case where one has a large 

number of inert scalar singlets (say 12 or more) the 

contribution to the Coleman Weinberg potential can be 

large enough to catalyze a strongly first order electroweak 

phase transition. A more recent paper achieved this with 

the addition of two fermion fields [281].

On top of these possibilities some more exotic possibili-

ties include having cosmologically varying Yukawa couplings 

[282] or cosmologically varying the gauge coupling such that 

a strongly first order EWPT is catalyzed by a QCD transition 

at a higher scale [283].

With the light stop scenario becoming more constrained, 

most phenomenology research focuses on IIA and IIB scenarios. 

Both of these types of phase transition often causes substantial 

supercooling which also implies a larger gravitational wave sig-

nal as we will see in forth coming sections. For type IIB sce-

narios the Higgs quartic being negative is a generic consequence 

of fixing the mass and vacuum expectation value to agree with 

experiment in the presence of a sizable positive Wilson coef-

ficient for a H6 operator. Some examples of extended scalar sec-

tors that generate this operator are given in table 3. Note from the 

form of the Wilson coefficients given in this table it is of course 

not guaranteed it has the needed positive sign and some models 

more easily accommodate this than others.

For scenarios of type IIA one requires an effective trilin-

ear coupling to provide a barrier between the true and false 

vacuum. For a second field, φ, the electroweak phase trans-

ition proceeds along the field space path (0, vφ) → (vh, v
′

φ) 

where in principle vφ can be negligible. Rotating and shift-

ing to field space coordinates ϕ = ah + b(φ+ vφ) and 

ϑ = −bh + a(φ+ vφ) where a and b are chosen so that in the 

rotated and shifted coordinates the phase transition proceeds 

as (0, 0) → (0, vϕ). Even though a term of the form h3 is for-

bidden by gauge invariance, if a trilinear coupling between h 

and φ exists then in the rotated coordinates this leads to a term 

of the form ϕ3. As an example consider the real singlet, S, with 

potential [231]

V = −µ2|H|2 + λ|H|4 +
a1

2
|H|2S +

a2

2
|H|2S2

+
b2

2
S2 +

b3

3
S3 +

b4

4
S4 .

 
(135)

After rotating to the coordinates vs = ϕ(T) sinα(T),

vh/
√

2 = ϕ(T) cosα(T) and ignoring the resulting linear 

term (which means ignoring the existence of a high temper-

ature singlet vev) one has [231]

V(T ,ϕ) = D(T2
− T2

0 )ϕ
2 + Eϕ3 + λ′

ϕ
4, (136)

with

D =
g2

1 + 3g2
2 + 4y2

t + 8λ

32
,

T0 =
−µ

2 cos2
α−

b2

2
sin2

α

D
,

E ∼
a1

2
cos2

α sinα+
b3

3
sin3

α,

λ′ = λ sin4 α+
a2

2
sin2 α cos2 α+

b4

4
sin4 α,

 

(137)

where we remind the reader that α is the angle of the phase 

transition in field space. In the above we have ignored the 

small corrections to the effective cubic term due to the gauge 

bosons. Note that the trilinear couplings a1 and b3 enter 

directly into the effective cubic term. To generate a large 

enough effective cubic to catalyze a strongly first order elec-

troweak phase transition one usually has a1 as quite sizeable, 

−1000 GeV � a1 � −100 GeV. In order to comply with LHC 

constraints on the zero temperature mixing angle between the 

singlet and Higgs, one requires that the other portal coupling 

a2 be large and anti correlated with a1 to supress the mixing 

angle. For sub TeV  single mass, current constraints on the 

mixing angle are | sin θ| � 0.2 [285, 286] with this bound 

expected to tighten with future colliders [232, 287].

For both IIA and IIB type phase transitions, one can have 

a barrier between the true and false vacuum that is so large 

at zero temperature that the false vacuum decay rate is never 

fast enough compared to Hubble for the phase transition to 

proceed. A recent proposal demonstrates that one can have 

the QCD transition reduce the barrier between the true and 

false vacuum [288]. Specifically in a Randall Sundrum model 

the radion potential acquires a contribution from gluon con-

densates. The contribution is negative and becomes important 

near the origin thus it removes some of the barrier between 

true and false vacuua. Therefore when the gluons form a con-

densate electroweak symmetry breaking can occur. Thus the 

Table 3. List of operators in scalar extensions that lead to a non-zero Wilson coefficient for the H6 operator necessary to catalyze a 
strongly first order electroweak phase transition through mechanism IIB. Note the Wilson coefficient for H6 must be positive to catalyze the 
electroweak phase transition. Notation and results taken from [284].

Model Couplings Wilson coefficient of H6

R  Singlet −
1
2
λHS|H|2S2 − gHSH†HS −

λHS

2

g2
HS

M4

C Singlet
−gHS|H|2Φ−

λHΦ

2
|H|2Φ2 −

λ
′

HΦ

2
H†H|Φ|2 + h.c. −

|gHS|
2
λ
′

HΦ

2M4 −
Re[g2

HSλHΦ]
M4

2HDM −Z6|H1|
2H

†
1 H2 − Z∗

6 |H1|
2H

†
2 H1

|Z6|
2

M2

R  triplet gH†
τ

aHΦ
a −

λHΦ

2
|H|2|Φa|2 −

g2

M4

(

λHΦ

8
− λ

)

C triplet gHT iσ2τ
aHΦ

a −
λHΦ

2
|H|2|Φa|2 −

g2

M4

(

λHΦ

4
+ λ

′

8
− 2λ

)

−
λ
′

4
H†

τ
a
τ

bHΦ
a(Φb)† + h.c.

C 4-plet −λH3ΦH∗

i H∗

j H∗

k Φ
ijk + h.c. |λH3Φ|2

M2
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electroweak phase transition could occur at a much lower 

scale than usual. Alternatively, it was recently shown that if 

the electroweak phase transition occurs in two steps, the scale 

of the electroweak phase transition can be multi-TeV [289].

5.1.1. QCD phase transition: an example of fermion condensa-

tion. The QCD phase transition generally occurs when the 

temperature of the Universe is 170 MeV assuming no significant 

baryon chemical potential in the early Universe. The transition 

is caused by the temperature evolution of the strong coupling 

constant gs. At temperatures above the trans ition temperature 

the coupling constant is small enough to treat the system per-

turbatively and the system is an a phase of quark-gluon plasma. 

As the Universe cools the strong coupling constant grows and 

quarks and gluons hadronize into colour neutral objects. All 

colour multiplets are confined to exist then within colour sin-

glet objects such as baryons. Since perturbation theory breaks 

down during the QCD phase trans ition, they are best analyzed 

through lattice simulations. The phase diagram of QCD is 

shown in terms of temperature and baryon chemical potential 

in figure 12 which is taken from [290]. Some intuition can be 

obtained through the bag model [291], for a review see [292].

Although vanilla cosmology would predict that QCD 

underwent a crossover transition, there have been some recent 

proposals to catalyze a strongly first order phase transition. 

One approach is to delay the electroweak phase transition 

until after the QCD phase transition such that the number of 

light quarks is large enough for the transition to be strongly 

first order [293]. The quark nuggets that form during such a 

trans ition are a dark matter candidate [293]. Another approach 

is to take advantage of the fact that the lepton asymmetry is 

relatively unconstrained. A large enough lepton asymmetry 

could catalyze the QCD transition [294]8. Such a phase trans-

ition could leave the signature of observable low frequency 

gravitational waves [298–300].

5.1.2. An example of a multistep phase transition. In this sec-

tion we briefly give an example of a multi-step phase trans-

ition. We will focus on the case where a zero temperature 

symmetry, SU(3)C in particular, is broken in an intermediate 

phase before being restored. This can be achieved either by 

having a large number density or introducing new colored 

scalars which acquire a vacuum expectation value at an inter-

mediate temperature. Let us consider the latter case. Consider 

an effective potential that includes the standard model Higgs 

coupled to a colored scalar field C, which is an SU(2)L and 

U(1)Y singlet but a triplet under SU(3)C

V = −µ2H|H|2 − µC|C|2 + λHC|H|2|C|2 +
λH

2
|H|4 +

λC

2
|C|4.

 
(138)

For simplicity let us only include thermal corrections which 

are quadratic in temperature and fields. Symmetry is restored 

in the H and C directions above a temperature T
f

X  where [289]

(T f
H)

2 =
λHv

2
h

(

λH

4
+ λHC

4
+

3g2
2

16
+ y2

t

4

) , (139)

(T f

C)
2 =

µ2
C

(

λC

3
+ λHC

6
+

g2
3

3

) . (140)

If one has T
f

H < T
f

C  then one has a range of temperatures where 

color can be spontaneously broken but electroweak symmetry 

is restored. In figure 13 we show in the top panel from [289] 

the possibility of color breaking and restoration. Note that this 

scenario is not particularly fine tuned however the mass range 

of the colored scalars is quite light. The addition of a gauge 

singlet allows the mass of the colored scalar to be multi-TeV.

5.2. Topological/non-topological defects and solitons

5.2.1. Topological defects. The phase transition can also give 

rise to topological defects [3, 117, 130, 301–304], for a review 

see [305]. Let us discuss briefly the microscopic origin of the 

formation of topological defects. Let us suppose that there is 

a non-trivial charge for ψ field under some gauge symmetry 

G, and then ψ field obtains a non-vanishing VEV due to phase 

transition, the symmetry group is broken now; G → H . The 

manifold of all the vacua accessible to ψ is then given by the 

quotient group after breaking, i.e. M = G/H . As an example, 

in the case of an abelian Higgs model, the symmetry breaking 

pattern is very simple U(1) → I , and the manifold of vacua 

is M = U(1), corresponding to the circle of constant radius 

in the complex plane |ψ| = constant. Therefore, the formation 

and the type of topological defects depend on the topological 

properties of M [117, 130], which is classified by the homo-

topy groups πn  of order n. Each group πn(M) is composed 

of all classes of hyper surfaces of dimension n. If any hyper 

surface can shrink to a point inside M, then the homotopy 

group contains only one element and becomes trivial and is 

simply connected [306]. In the opposite case, if M is not sim-

ply connected (for example during the breaking of a discrete 

group Zn → I), uncorrelated regions of the Universe would 

have different vacua separated by the domain walls [130, 

301]. The domain walls with tiny energy scale may yield some 

interesting cosmological consequences [307, 308], including 

mild acceleration of cosmic expansion [309]. If their energy 

scale is high, and if they persist in the late Universe, they 

would simply cause cosmological disasters over dominating 

the energy density of the Universe [307]. There are ways to 

tackle the problem if we change the nature of phase transition 

from G → H  to a smooth adiabatic transition [310]. Note that 

defects can also be formed in a slow first order phase trans-

itions [311].

The formation of topological defects also depends on the 

space-time dimensions, a d-dimensional defect is governed by 

the non-triviality of the homotopy group [306]:

π3−d �= I. (141)

Any symmetry breaking of the form G → H × U(1) gives rise 

to monopole (point-like defects). Since the standard model 

group contains the U(1) factor, any GUT group breaking 

8 BBN bounds constrain the lepton asymmetry from being this large if a 

large amount of the lepton asymmetry is first generation [295]. However, 

this can be avoided if the initial lepton asymmetry is second or third genera-

tion [296, 297]. This is true even when one continues oscillations.
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down to the standard model gauge group leads to this mono-

pole problem. This formation of unwanted defects was one 

of the original motivation to introduce a phase of primordial 

inflation.

There is also a class of unstable topological defects which 

can form even when the topology is trivial [3, 302]. The elec-

tro-weak strings can be formed during the electroweak sym-

metry breaking which are perturbatively stable for a range of 

parameters which are not realized in nature. In general, the 

defects are a priori unstable due to plasma effects.

5.2.2. Non-topological solitons. The phase transition can 

also yield non-topological solitons, such as Q-balls. The 

Q-ball becomes a generic ground state in interacting scalar 

fields carrying some conserved global charge [132, 312, 313], 

whose boundary condition at infinity is the same as that for 

the vacuum state, unlike in the case of topological solitons 

such as magnetic monopoles [314, 315]. A detailed review of 

non-topological solitons can be found in, e.g. [132]. Forma-

tion of Q-balls can be extended to many scalar fields with vari-

ous U(1) charges [316, 317], with a non-Abelian symmetries 

[318], and also with local gauge symmetries [319]. The main 

difference between global and local Q-balls is that in the latter 

case the charge of the stable Q-ball is bounded from above.

There is a theorem [132, 313], which states that if there 

exists a range for a field φ, in a potential U(φ2), which contains 

an attractive interaction, then a non-topological soliton should 

exist for

ν
2
� ω

2
< m2

φ, (142)

where U(φ2) → m2
φφ

2 when φ → 0. The value of 

ω =
√

k2 + m2
φ  determines the frequency of the φ quanta in 

the field space. A necessary condition for the existence of a 

solitonic solution is ω2 < m2
φ, which means that there exists 

a parabola ν2φ2 tangent to U(ϕ2) at φ = ±φ0, with ν2 < m2
φ. 

For a sufficiently large Q, the energy of a soliton is then given 

by

E = |νQ| < mφ|Q|, (143)

which ensures its stability against decay into plane wave solu-

tions with φ ≃ φ0 inside the Q-ball, and φ ≃ 0 outside. The 

global U(1) symmetry is broken inside and remains unbroken 

outside.

The Q-balls can be formed after inflation, as we had dis-

cussed earlier, but can be formed at later stages by the dynam-

ics of a scalar field, such as present in supersymmetric theories 

due to plenty of supersymmetric flat directions, made up of 

squarks and sleptons, for a review see [133, 320]. The stabil-

ity of the Q-balls can contribute to the dark matter abundance 

[185], see review [133]. During the formation, gravitational 

waves can also be generated [125, 126].

Figure 12. Phase diagram of QCD as a function of temperature and baryon chemical potential. Note that in the absense of a large 
chemical potential the QCD is expected to have a crossover transition. Reproduced from [294] with permission.
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6. Phase transitions and cosmic signatures

6.1. Gravitational waves

First order cosmological phase transitions proceed via bub-

ble nucleation. While an isolated spherical bubble produces 

no gravitational waves as such an event has no quadupole 

moment, the violent process of bubble collision does [18, 30, 

248, 322–334], for a review of gravitational waves, see [335]. 

Upon collisions of such bubbles, the latent heat will be con-

verted to bulk flow of the plasma, as well as to kinetic energy 

of the scalar fields. The fraction of energy converted to gravi-

tational waves per decade is

ΩGW = ω
dEGW

dω

1

Etot

,
 

(144)

where

dEGW

dΩdω
= 2Gω2Λij,lm(k̂)T̃

∗

ij (k̂,ω)T̃l,m(k̂,ω),
 

(145)

where T̃ij is the fourier transform of the stress energy tensor and

Λij,lm = δilδjm − 2k̂jk̂mδij +
1

2
k̂lk̂jk̂lk̂m −

1

2
δijδlm +

1

2
δijk̂lk̂m +

1

2
δlmk̂ik̂j,

 (146)
is a projection operator. The contributions to the gravitational 

wave spectrum can be modeled as a sum of three contributions 

characterized by a contribution to the stress energy tensor 

and an efficiency parameter κx which denotes the efficiency 

that the latent heat can be converted into a particular source 

of gravitational waves. The three contributions to the stress 

energy tensor are as follows

Figure 13. Top panel: parameter range that permits an intermediate colour breaking phase transition. Yellow hatched region are regions 
with electroweak symmetry at zero temperature and have an intermediate color breaking phase. Bottom pane: tempearture evolution of the 
potential evaluated at the electroweak and color breaking vacuum for a benchmark scenario that includes the addition of a gauge singlet. 
The electroweak minimum is deeper at zero temperature evolves faster with temperature. The addition of a gauge singlet allows the phase 
transition to occur at multi-TeV scale. Reprinted figure with permission from [238], Copyright (2013) by the American Physical Society.
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 1.  A contribution from the initial collision of scalar field 

shells. The stress energy tensor contribution is

Tµν = ∂µφ∂νφ− gµν

[

1

2
∂ρφ∂

ρφ− V0

]

. (147)

 2.  The interaction between kinetic shells going at the speed 

of sound [336]. The stress energy contribution is [337]

Tµν =
∑

i

∫

d3k

(2π)32Ei

kµkν fi(k), (148)

  where vi is the three velocity of the relativistic fluid, γ  is 

the Lorentz factor, ǫ is the energy and p  is the pressure.

 3.  A contribution due to magnetohydrodynamic turbulence 

[38] which again is prominent after the collision of the 

scalar shells. This contribution is usually subdominant. 

The spatial components of this contribution to the stress 

energy are

Tij(x, η) =
4π

3
ρ(η)vi(x, η)vj(x, η), (149)

  where vi is the turbulent velocity and η is the conformal 

time.

Recent work has suggested the existence of a fourth contrib-

ution from quantum fluctuations in bubble wall collisions 

[338–340]. They considered a double well potential and dem-

onstrated that quantum fluctuations break the SO(2,1) symme-

try of bubble wall collisions. One has a parametric instability 

and wiggles on the wall from the collision grow and break 

SO(2,1). The size of this contribution relative to LISA sen-

sitivity is an open problem and we therefore focus on the 

contrib utions to the gravitational wave spectrum that are bet-

ter understood. The total gravitational wave spectrum can then 

be modeled as a sum of the three contributions [337]

Ω( f )h2 = Ωcol( f )h2 +Ωsw( f )h2 +Ωturb( f )h2 . (150)

The change in free energy between during the phase transition 

gives a limit to how much vacuum energy can be converted 

into gravitational waves. The efficiency of converting vacuum 

energy into scalar field gradient energy is denoted by κcol (the 

first contribution in the above list) controls the efficiency of 

producing contributions to Ωcol. The efficiency parameter, 

κcol, is typically small, making this contribution sub-domi-

nant. Specifically it be found by calculating the gradient den-

sity ρD = 1
2
(∇φ)2, and potential energy density ∆V(φ) for a 

bounce solution [341]

κcol =
2ρD

ρvac − ρV

. (151)

Ignoring the turbulence contribution, the conservation of 

energy and momentum gives

∂µT
µν

plasma + ∂µT
µν

field = 0 . (152)

One can parametrize the plasma contribution as follows [321]

Tplasma
µν

= wuµuν − gµνp, (153)

where u = (γ, γv) is the four velocity field of the plasma. If 

we ignore the field contribution we can calculate the fluid 

velocity from the equations  ∂zT
zz = ∂zT

0z = 0 from which 

one obtains [321]

w+v
2
+γ

2
+ = w−v

2
−
γ2
−

, (154)

and

w+v+γ
2
+ = w−v−γ

2
−

, (155)

where ± denotes the symmetric and broken phases respec-

tively. Defining [321]

a+ ∼
π2

30

∑

i

(Nb
i +

7

8
N

f
i ) (156)

one can define an expression for the fluid velocity [321]

v+ =
1

1 + a+





v−

2
+

1

6v−

±

√

(

v−

2
+

1

6v−

)2

+ a2
+ +

2

3
a+ −

1

3



 ,

 
(157)

a detonation has v+ > v− and deflagration is v− < v+. The 

latter only exists only when a+   <  1/3. In a detonation the wall 

moves at supersonic speed and the plasma it expands into is at 

rest. In contrast, a deflagration has the wall expanding into the 

perturbed plasma. Simulations show that the efficiency coef-

ficient for a deflagration (wall velocity smaller than the speed 

of sound) is [321]

κsw =
6.9vwα

1.36 − 0.037
√
α+ α

, (158)

whereas for detonations (runaway walls) one has

κsw =
α

0.73 + 0.083
√

α+ α
. (159)

Here α is the ratio of Latent heat to vacuum energy and vw 

is the wall velocity. These thermodynamic quantities are 

defined in section  3.2. Alternatively if one knows the fluid 

radial velocity profile, Vr(ξ) one can explicitly calculate the 

efficiency as [337]

κf =
3

ǫv2
w

∫

dξω(ξ)V2
r (ξ)γ

2ξ2 . (160)

Here ξ = r/t  and ω  is the enthalpy. If the bubble wall does not 

runaway, the sound wave and turbulence terms are expected to 

dominate. If the bubbles runaway, the collision term becomes 

more important and in fact dominates for very large α.

Apart from the efficiency parameters that define the effi-

ciency of converting energy available to gravitational wave 

energy, the gravitational wave power spectrum is controlled 

by the ratio of Latent heat to vacuum energy, the bubble wall 

velocity and the speed of the phase transition compared to the 

Hubble rate β/H∗ as well as parameters that are numerically 

derived from analytical fits to numerical simulations.
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6.1.1. Collision term. The interaction of the bubbles can be 

well approximated by the ‘envelope approximation’ [326] 

which is the combination of two approximations—first that 

the stress energy tensor is non-zero only in an infinitesimal 

region at the bubble wall and second that the stress energy 

tensor vanishes when the bubble overlaps. This contribution 

becomes most significant when the bubble runs away γ → ∞. 

This contribution can be derived analytically through calcul-

ation the correlation of the stress energy tensor λT(x)T(y)〉 
[325]. Under the envelope approximation the stress energy 

tensor due to a bubble nucleated at xN = (tN ,�xN) is given by

Tij = ρ(x) ̂(x − xN)i
̂(x − xN)j, (161)

with the energy density localized around he bubble wall in 

accordance with the envelope approximation [325]

ρ(x) =

{

4π
3

rB(t)
3 κcolρ0

4πr′
B
(t)2lB

rB(t) < |x − xN | < r′B(t)

0 otherwise.
 (162)

Here r(t) = v(t − tN) and r′B(t) = rB(t) + lB are the interior 

and exterior edge of the bubble wall respectively and ρ0 is the 

latent heat released by the transition. The nucleation rate is 

controlled by the time rate in change of the effective action β. 

If the phase transition is sufficiently quick, β/H ≫ 1 one can 

ignore the expansion of the Universe and write the metric as

ds2 = −dt2 + (δij + 2hij)dxidx j . (163)

From the equations of motion the tensor perturbations satisfy 

the following

ḧij(t, k) + k2hij(t, k) = 8πGΠij(t, k), (164)

where Πij is related to the fourier transform of the stress 

energy tensor via a projection operator

Πij(t, k) = Λij,klTkl(t, k) . (165)

The tensor perturbations can be solved in terms of a Greens 

function.

The total energy of the gravitational waves is given by the 

oscillation and ensemble average of the correlator [325]

ρGW =
〈ḣij(t, x)ḣij(t, x)〉T

8πG
. (166)

From which we can derive the gravitational wave spectrum 

[325]

ΩGW =
1

ρt

dρGW

d ln k
 (167)

=
2Gk3

πρtot

∫ tf

ti

dtx

∫ tf

ti

dty cos(k(tx − ty))Π(tx, ty, k), (168)

where ρt  is the total energy ρ0 + ρrad and Π(tx, ty, k) is the  

fourier transform of the stress energy correlation function 

contracted with projection operators [325]

Π(tx, ty, k) =

∫

d3reikṙΛij,klΛij,mn〈Tkl(tx, x)Tmn(ty, y)〉, (169)

with r  =  x  −  y . Defining the quantity α = ρ0/ρrad and using 

the fact that H2
∗
= 8π

3G
ρt  we can write

ΩGW = κ
2

(

β

H∗

)−2 (
α

1 + α

)2

∆(k/β, vw),

∆(k/β, vw) =
3β2k3

4π2κ2ρ2
0

∫ tf

ti

dtx

∫ tf

ti

dty cos(k(tx − ty))Π(tx, ty, k) .

 (170)

The ratio of the scale factor at the time of transition to the scale 

factor today is a0/a∗ = 8 × 10−16(100/g∗)(100 GeV/100) 
which can be used to relate the gravitational wave spectrum at 

transition to its spectrum today [325]

f = 1.65 × 10−5 Hz

(

f∗

β

)(

β

H∗

)(

T

100 GeV

)

( g∗

100

)1/6

×
0.35

1 + 0.069vw + 0.69v
4
w

,

ΩGWh2 = 1.67 × 10−5
( g∗

100

)

−1/3

κ
2

(

β

H∗

)(

α

1 + α

)2

×
0.48v

3
w

1 + 5.3v
2
w + 5.0v

4
w

∆ .

 

(171)

The dependence on vw unfortunately comes from numerically 

fitting. All that remains is an analytical calculation of ∆. Such 

a calculation is difficult in practice however one can acquire 

a closed form solution in terms of integrals of spherical 

Bessel functions. The asymptotic form can be derived from 

the asymptotic expansions of the spherical bessel functions 

and one finds that ∆ ∼ k3 for k/β < 1 and k−1 for k/β > 1. 

Numerically fitting to the integral over Bessel functions for vw 

close to unity one has for the frequency spectrum, one finds 

that ∆ is well approximated by [337]

∆ =
∆peak

cl

(

f

fpeak

)

−3

+ (1 − cl − ch)
(

f

fpeak

)

−1

+ ch

(

f

fpeak

)

,
 

(172)

where fitting yields cl  =  0.064 and ch  =  0.48. Note that recent 

work analyzing a vacuum transition (that is, a case where 

the plasma is ignored) [341] demonstrated that the envelope 

approximation breaks down right when it starts to become vis-

ible and the true spectrum is dampened. This seems to imply 

that the collision term is always sub-dominant.

6.1.2. Sound waves. The contributions from the plasma flow 

are much harder to capture in a model. Moreover, recent stud-

ies indicate [342] that the plasma flow contributions dominate 

over the scalar field contributions, since the plasma flow con-

tinues to source GWs long after the collisions of the bubbles.

Progress in this area has been largely dominated by large-

scale hydrodynamic simulations. Nevertheless, well-motivated 

simplified models have been developed recently, such as the 

recent bulk flow model [327] and sound shell model [343]. 

Such models may describe the physics in regimes in where 

simulations have limitations [344].

The sound wave contribution is typically larger than the 

other contributions. Its power spectrum is [342]
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h2Ωsw = 8.5 × 10−6

(

100

g∗

)

−1/3

Γ2Ū4
f

(

β

H

)

−1

vwSsw( f ),

 (173)

and the spectral shape is given by [342]

Ssw =

(

f

fsw

)3







7

4 + 3
(

f

fsw

)2







7/2

, (174)

with [342]

fsw = 8.9 × 10−7Hz
1

vw

(

β

H

)(

TN

Gev

)

( g∗

100

)1/6

 (175)

where Γ ∼ 4/3 is the adiabatic index, and Ū2
f ∼ (3/4)κfαT  

is the rms fluid velocity. Note that the above fits for SW are 

not valid for all possible values of (α, vw). The fit instead was 

chosen to work for typical thermal parameters, namely cases 

where vw is within 10 percent of either the speed of sound or 

the speed of light and α < 0.1. A feature of the soundwave 

source is that it is only supressed by one power of (β/H∗)
−1 

in contrast to the collision of scalar shells. This β/H enhance-

ment captures the fact that this source is longer lasting as the 

dissipation of kinectic energy in the sound shell takes several 

Hubble times [32]. If the phase transition involves a large 

amount of super cooling the strength of the gravitational wave 

background will grow. However, in the limit of high super-

cooling, the expansion of the Universe can be vacuum domi-

nated which can prevent the phase transition from completing 

[345]. This implies the strength of the gravitational signal 

from sound waves cannot be arbitrarily large.

6.1.3. Turbulence. Kolmogorov turbulence [346] can be 

modeled by considering a flow made up of eddy’s of different 

length scales. Large eddies break up into smaller eddies and 

so on. For rate of energy dissipation ǫ and viscosity ν  one has 

the Kolmogorov length scale, or the dissipation scale, which 

defines the length scale at which the dissipation of kinetic 

energy occurs [346],

LK = (ν3/ǫ)1/4 . (176)

This is compared to the largest scale of the flow is LB. Eddies 

exist in the range LK ≪ r ≪ LB and KE is not dissipated in 

this range but merely transferred to smaller scales. We would 

need some characteristic vector field and its correlation. The 

turbulent KE of the flow is (1/2)〈vivi〉 for a phase transition 

the size of the largest eddies, LB ≪ H−1 is the comoving size 

of the largest bubbles when they collide. Energy dissipation 

is [346]

ǫ = −
d

dη

〈v2〉

2
. (177)

The power spectrum is given by Fourier transform of two 

point correlator

P(k) =
1

2

∫

d3xei�k�̇x〈vi(x)vi(x)〉, (178)

where v is the turbulent velocity which is a random variable,

vi(k, η) =
vi(k) for k < L−1

B ,

Vi(k)e
iωkη for L−1

B < k < L−1
K ,

 (179)

and ωk is the frequency associated with an eddy of size l  =  1/k. 

The needed fourier transform of the stress energy tensor is as 

follows [38, 347–351]

Tij(k, η) =
4π

3
ρ(η)

∫

d3q

(2π)3
vi(q)vj(k − q)eiωqηeiω|k−q|η ,

 (180)

and ρ(η) is the energy density at conformal time η. This 

contrib ution can only be modeled numerically. Caprini et al 

[350, 352], noted that when modeling the contribution from 

turbulence, one needs to take into account that the turbulence 

continues long after after the phase transition is complete. If 

the source is long lasting need to take expansion into account. 

For example for T∗  =  100 and β/H∗ = 100 one finds the 

turbulence is not complete until T ∼ 120 MeV. This causes 

some amplification. The effect is rather modest however, as 

the decay time of source (controlled by eddy turnover time) 

is much smaller than Hubble time. Indeed they found an 

amplification of a factor of about 2. Taking this into account, 

simulations show that one can achieve a reasonable fit with a 

power spectrum governed by our usual thermal parameters. 

[350, 353]

h2Ωturb( f ) = 3.35 × 10−4

(

β

H

)

−1

κ
3/2

turb

(

α

1 + α

)3/2

(

100

g∗

)1/3

vwSturb( f ) .

 

(181)

There is as yet no known method for directly calculating the 

efficiency parameter, however, this contribution is expected to 

be sub-dominant. The spectrum is [350, 353]

Sturb =
( f/fturb)

3

[1 + ( f/fturb)]
11/3

(1 + 8πf/h∗)
, (182)

with

h∗ = 1.65 × 10−7 Hz

(

TN

GeV

)

( g∗

100

)1/6

, (183)

fturb = 27 × 10−7 Hz
1

vw

(

β

H

)(

TN

GeV

)

( g∗

100

)1/6

. (184)

6.1.4. Detection of gravitational waves from cosmic phase 

transitions. Of all the thermal parameters only the nucleation 

temper ature depends strongly on the scale. β/H ∼ log[T∗/Mpl] 
also depends weakly on the scale but is more strongly influ-

enced by the ratio of scales v/Λ as is α and the wall velocity. 

The transition temperature also controls the peak frequency. 

Therefore the scale of the new physics can be directly linked 

to the peak frequency. As each gravitational wave detector 

probes a different frequency, each probes a different scale 
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of physics [361]. At the very low frequency one has pulsar 

timing arrays which probes phase transitions at the sub GeV 

scale. Lisa probes the electroweak phase transition and LIGO/

VIRGO as well as KAGRA probes a scale of around 107 GeV. 

KAGRA will soon be online and is expected to break a degen-

eracy in testing polarization [362]. The precise scale of new 

physics that is probed depends on the thermal parameters and 

varies for the soundwave, turbulent and collision contrib utions 

to the total spectrum. In figure 16 we show the scales probed 

for α = 1, vw = 1 and β/H∗ = 1.3 log[T∗/MP] for all three 

contributions. A phase transition with a peak frequency visible 

by LIGO/VIRGO can be motivated by vacuum stability [363], 

split supersymmetry [364], a Pati–Salam transition [365] or 

neutrino masses [366, 367]. Lisa probes both the electroweak 

phase transition [229, 280, 337, 368–384], dark phase trans-

itions [360, 385–391] other low scale symmetry breaking 

[392–395], multistep transitions [229] and multistep phase 

transitions [228, 229] whereas pulsar timing arrays can probe 

supercooled electroweak phase transitions and the QCD phase 

transition [300, 396, 397]. To probe the scale in between Lisa 

and LIGO/VIRGO, several other experiments have been pro-

posed including Magis [398], BBO [361] and Decigo [399].

Beyond the scale of new physics more information can 

be garnered from the combined spectrum. Figure 15 shows 

the combined spectrum against Lisa sensitivity curves. Note 

that the combined gravitational wave spectrum does not 

necessarily look like a multipeaked spectrum, instead one 

might see a shoulder where the power law is broken away 

from the absolute peak. If the peak frequency and ampl-

itude from any two of the peaks can be both detected and 

discerned from the background, one has four parameters 

from which one can in principle reconstruct the four thermal 

parameters. Comparing this to the simplest extension of the 

standard model—a real singlet extension—even a recon-

struction of the four thermal parameters is a mapping of 

five free Lagrangian parameters to four thermal param eters. 

Moreover one cannot gaurantee which scalar extension is 

responsible for the phase trans ition without complimentary 

collider searches probing the same scale. Even still, recent 

work by [360] showed a non-trivial level of model dis-

crimination for a generic dark Higgs with an SU(N) gauge 

symmetry. They mapped the thermal parameter space for 

different rank groups with and without the introduction of 

non-renormalizable operators and strongly coupled fermi-

ons. Unsurprisingly there was significant overlap between 

different models. Nonetheless there is non-trivial model dis-

crimination as can be seen in figure 17.

In the case of multistep phase transitions, one can have a 

striking signal of having more than three peaks which may 

overlap [229]. That is, for example, the sound wave contrib-

ution from one phase transition may have a higher peak fre-

quency than the collision term of the phase transition that 

occurs at a higher scale. Remarkably, it appears to be pos-

sible that for the case where a phase transition occurs very 

slowly, even more than six peaks are possible as bubbles of 

a new phase can nucleate both in the high and intermedi-

ate temper ature vacuum. The viability of such a scenario 

may depend on the precise details of reheating and a precise 

numerical simulation is yet to be attempted, but a cursory 

calculation indeed gives an intriguing signature which can 

in principle be discerned from both single and consecutive 

transitions [228, 400].

More information about the underlying physics that pro-

duced a primordial gravitational wave signal can be gleaned 

from measuring primordial anisotropies that result from a 

strongly first order phase transition. Work by [401] analysed 

phase transitions occurring between 1–1000 TeV and demon-

strated that we will obtain new anisotropies that can affect the 

CMB. One can then check to see if it is a dark sector or visible 

sector phase transition by checking correlations of δρ/ρ with 

the CMB. If δρ/ρ is uncorrelated with the CMB one knows 

that the Universe had a dark sector phase transition.

Figure 14. From left to right: depiction of deflagration, detonation and hybrid phase transitions. The green bands denote the sound shell 
whereas the solid black line denotes the scalar shell. Reproduced from [325]. © 2010 IOP Publishing Ltd and Sissa Medialab srl.
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6.2. Baryogenesis

A triumph of modern cosmology is that two different mea-

surements of the baryon to entropy ratio have concordance 

[402]. The first is through BBN constraints where deuterium 

in particular is sensitive to the initial ratio of the baryon to 

entropy density [403],

YB =
nb − n̄b

s
= 7.3 ± 2.5 × 10−11. (185)

Furthermore Planck measurements of oscillations in the CMB 

power spectrum give an overlapping estimate of the baryon 

yield [404]

YB = 8.59 ± 0.11 × 10−11. (186)

This is unlikely to be an initial condition in any cosmology 

involving inflation. Although there exists, in the authors words 

[405], an ‘ugly and inelegant’ exception, inflation tends to 

wash out any initial baryon asymmetry. To produce a baryon 

asymmetry in a CPT conserving theory one needs to satisfy 

three conditions known as the Sakharov conditions [406]9

 1.  C and CP violation (one or the other is insufficient)

 2.  Violation of baryon number conservation

 3.  a departure from thermal equilibrium.

Electroweak baryogenesis [13–17, 241, 411–414] generates 

this during the electroweak phase transition where topological 

processes known as sphalerons efficiently produce both bary-

ons and anti-baryons in the symmetric phase. If the elec-

troweak phase transition is strongly first order, CP violating 

interactions with bubbles of electroweak broken phase biases 

the sphalerons to produce more baryons than anti baryons. As 

the bubbles of broken phase expands, some of the net asym-

metry is swept up into the low temperature phase and makes 

up the present asymmetry. If the electroweak phase trans-

ition is strongly first order, the initial baryon asymmetry pro-

duced during the transition will not be washed out by the very 

sphalerons which formed them.

The standard model fails to produce a sufficiently large 

baryon asymmetry. The standard model falls short on two 

Sakharov conditions, for a Higgs mass of 125 GeV the depar-

ture from equilibrium is too weak as the electroweak trans ition 

is actually a crossover transition. Furthermore, the CP viola-

tion in the CKM matrix is far too feeble to sufficiently bias 

the electroweak sphalerons. Therefore if electroweak baryo-

genesis is part of our cosmic history, one needs to extend the 

standard model to accommodate both Sakharov conditions. 

The required extensions to the standard model are in princi-

ple probable by experiment with both particle colliders and 

gravitational wave observatories probing the ingredients for a 

strongly first order electroweak phase transition while searches 

for permanent electric dipole moments probe sources of CP 

violation. The fact that electroweak baryogenesis is both testa-

ble and minimal makes it one of the most attractive paradigms.

Calculating the baryon asymmetry during a cosmic phase 

transition is a difficult problem. One usually calculates the 

Figure 15. Gravitational wave spectrum against Lisa one year sensitivity curves. Thermal parameters are T∗  =  100, α = 1 and vw = 1. 
From left to right the top panels have β/H = (1, 10) respectively and the bottom panels are β/H = (10, 100), respectively. The black line is 
the total spectrum whereas the blue, green and red lines are the collision, sound wave and turbulence terms, respectively. Reproduced from 
[33]. © 2016 IOP Publishing Ltd and Sissa Medialab srl.

9 There are models that violate CPT and achieve succesful baryogenesis 

without fulfilling the Sakharov conditions [407–410].
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overall left handed number density produced through CP vio-

lating interactions and then assume those processes are fast 

compared to weak sphaleron processes. In this case one can 

uncouple the dynamics of the baryon asymmetry production 

from the dynamics of the production of a chiral asymmetry. In 

this case the baryon asymmetry is given by [415]

DQρ
′′

B(z)− vwρ
′

B(z)−Θ(z)RρB = Θ(−z)
nF

2
ΓwsnL(z).

 (187)

Solving the above equation one finds that the baryon asymme-

try is proportional to the sphaleron rate divided by the entropy 

which is the same order of magnitude of the observed baryon 

asymmetry. Therefore electroweak baryogenesis naturally 

produces the correct order of magnitude for the baryon asym-

metry. The more challenging task is calculating nL which is 

the result of solving multiple coupled Boltzmann equations. 

The challenge in solving such equations  lies in the fact that 

the mass basis evolves with both space and time during the 

phase transition. It is therefore customary to follow one of 

two approximate treatments: the first a semi-classical treat-

ment using WKB methods [416, 417]. The second is known as 

the vev-insertion framework where one makes the assumption 

that the bulk of baryon production occurs immediately outside 

the bubble wall where vev is small so we can use the degrees 

of freedom and mass basis of the symmetric phase [415]. The 

vev insertion paradigm utilizes the closed time path formal-

ism and captures resonance and memory effects which can 

substantially boost the overall asymmetry and has the advan-

tage that it can be solved analytically [415, 418]. The vev 

insertion paradigm neglects flavour oscillation effects which 

can dampen the resonance [419, 420, 420]. Including gradi-

ent effects appears to recover some of the resonance [421]. 

When various approaches to calculating CP violating sources 

is valid remains an open problem in the field [422].

Since the standard model fails on two accounts to satisfy 

the Sakharov conditions, it is typical to extend the standard 

Figure 16. Gravitational wave detectors probing the scale of a phase transition. Sound wave (top panel), collision (bottom 
left) and turbulence (bottom right) contributions to a gravitational wave source with α = vw = 1, (κcol,κturb) = (0.3, 0.02) and 

β/H∗ = 1.3 log[T∗/Mpl] for phase transitions occuring at a scale Tn = (10−5, 10−2, 10, 3 × 105) GeV respectively against initial 

sensitivities of LIGO/VIRGO/Virgo [354, 355], LISA [356] and the European Pulsar Timing Array (EPTA) [357]. After integrating over 
frequency the sensitivity improves by several orders of magnitude [358]. Also see [333].

Rep. Prog. Phys. 82 (2019) 076901



Review

34

model by two sectors—one sector which catalyzes the elec-

troweak phase transition, and another which is responsible for 

CP violating interactions with the bubble wall. If both sectors 

are heavy compared to the weak scale then one can in prin-

ciple use an effective field theory approach [218, 423]. More 

common is to look at the case where the new physics sectors 

are weak scale themselves. For example, in the MSSM, if one 

had a stop lighter than the standard model top it could cata-

lyze a strongly first order electroweak phase transition. The 

CP violation can then occur through stop-Higgs interactions 

or gaugino–Higgsino–Higgs interactions [415, 424–431]. 

The existence of colored scalars in the plasma also provide 

substantial drag on the bubble wall making the wall velocity 

naturally small which tends to make baryon production more 

efficient (though also makes the gravitational waves from the 

electroweak phase transition less visible). Unfortunately the 

light stop mechanism for catalyzing the electroweak phase 

transition is in serious conflict with collider constraints [277]. 

Indeed the EWBG within the MSSM was starting to look 

unviable even in the early LHC era [432]. Furthermore, EDM 

limits make both sources of CP violation severely constrained. 

Extending the MSSM by a gauge single (that is the NMSSM), 

one can catalyze a strongly first order electroweak phase trans-

ition with the additional scalar singlet [223, 373, 433–439] 

and the source of CP violation can be Singlino–Higgsino–

Higgs interactions [230, 440]. Alternatively one can extend 

the MSSM by effective operators that catalyze the CP viola-

tion [441]. It is worth commenting that the minimal model of 

baryogenesis probably requires two additions to the standard 

Model to be viable—an addition that provides a source of 

CP violation and a source that catalyses a strong first order 

electroweak phase transition. Some examples of such mini-

mal models include the standard model with an CPV effective 

operator and the addition of an effective operator [442] or an 

additional scalar [443] to catalyze the transition. Alternatively 

it has been shown that the addition of two additional fermions 

is sufficient [281].

Within the minimal supersymmetric standard model 

(MSSM) and 2HDM (Higgs doublet model) using the vev 

insertion frame work, one finds that the strength of CP vio-

lating sources for tree level interactions with the bubble wall 

are suppressed by a factor of ∆β ∼ 10−2 where tanβ(z) is 

the space time dependent ratio of the vevs vu(z)/vd(z) and 

∆β  is its maximal variation. A study of the NMSSM showed 

that the addition of a gauge singlet can boost ∆β , and there-

fore the baryon asymmetry, by an order of magnitude [223]. 

By contrast, if CP violation is a loop effect (for example the 

term HfR f̄L(a + b
Λ2 |H|2) can contain a relative phase), one no 

longer has a ∆β  suppression but instead supressed by a factor 

v
2/Λ2. Therefore the scale of CPV physics can be reasonably 

high. Furthermore, tree level CP violating interactions result 

in a baryon asymmetry that is essentially independent of the 

bubble wall width in contrast to the case where the CP viola-

tion is loop induced where a strong dependence on the bubble 

wall width results. Finally we note that the electroweak phase 

transition need not be weak scale. Indeed if the phase trans-

ition proceeds through a multistep procedure either through an 

intermediate transition that breaks another symmetry [227], 

or through a two step electroweak phase transition [226], the 

scale of new physics required can be at the multi-TeV level 

and are best probed by gravitational wave observers and 

future colliders.

Outside of supersymmetry, Baryogenesis can also be linked 

with the production of dark matter [435, 436, 443–449] and 

has been explored in extended scalar sectors [443, 445, 446, 

450, 451] and other low scale phase transitions [452]. It has 

Figure 17. Thermal parameters from a dark Higgs with (right panel) and without (left panel) non-renormalizable operators for various 
models. In the above N denotes the rank of the group and NF denotes the number of fermions coupled with unity Yukawa coupling. The plot 
points are coloured by their effective zero temperature mass. Note that ξ in the above denotes the usual thermal parameter α. The dashed 
contours in the plots correspond to the GW amplitude Ωsw, with vw = 0.5. The upper thicker contour corresponds to the LISA 1-year peak 
sensitivity [359]. The lower thicker dashed contour corresponds to the LISA for a power-law spectrum (integrated over frequency), taken 
from [358]. Reproduced from [364]. CC BY 3.0.
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also been proposed that baryogenesis occurs spontaneously 

during the electroweak transition [453]. One can also use CP 

violation in the lepton sector to produce enough baryon asym-

metry [454]. We end this section by noting that even if the 

baryon asymmetry is produced through leptogenesis, it may 

still involve a phase transition [455].
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