
����������
�������

Citation: Khant, N.A.; Kim, H.

Review of Current Issues and

Management Strategies of

Microplastics in Groundwater

Environments. Water 2022, 14, 1020.

https://doi.org/10.3390/w14071020

Academic Editor: Judith S. Weis

Received: 18 February 2022

Accepted: 22 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

Review of Current Issues and Management Strategies of
Microplastics in Groundwater Environments
Naing Aung Khant and Heejung Kim *

Department of Geology, Kangwon National University, Chuncheon 24341, Korea; khant@kangwon.ac.kr
* Correspondence: hydroqueen@kangwon.ac.kr; Tel.: +82-33-250-8560

Abstract: Microplastic contamination has become widespread in natural ecosystems around the globe
as a result of the tremendous rise in plastic production over the last 70 years. However, microplastic
pollution in marine and riverine habitats has received more attention than that of terrestrial environ-
ments or even groundwater. This manuscript reviews the current issues, potential occurrences, and
sources of the emerging problem of microplastic contamination in groundwater systems. The most
prevalent types of plastic detected in groundwater are polyethylene and polyethylene terephthalate,
and fibers and fragments represent the most commonly found shapes. The vertical transportation
of microplastics in agricultural soils can affect groundwater aquifer systems, which is detrimental
to those who use groundwater for drinking as well as to microorganisms present in the aquifers.
Moreover, this review sheds light on the interlinkage between sustainable development goals and
groundwater microplastic contamination issues as part of the strategies for the management of
microplastic contamination in groundwater. Overall, this review reveals a lack of interest and a gap
in knowledge regarding groundwater microplastic pollution and highlights future perspectives for
research in this area.
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1. Introduction

Groundwater is used for various purposes by almost two billion people worldwide,
such as for drinking and agricultural, residential, and industrial functions [1]. According
to recent reports, groundwater is contaminated by microplastics [1–5]. Plastic products,
which have played a vital role in global society since the 20th century due to their unique
properties, represent the source of microplastics. Plastic can conveniently be shaped into
any design by applying temperature or pressure and these products are immensely useful
and ubiquitous in daily life, such as for packing food and other materials. Plastic production
has increased from 5 Mt in 1950 to 367 Mt in 2020 [6] (Figure 1). The materials employed to
build utensils and other fundamental items are frequently used to depict human history and
advancement [7]. Mankind has progressed through the rock, bronze, iron, and copper ages
and is now widely considered to be in the digital age. However, an alternative perspective
is that mankind is currently in the plastic age [8] owing to the pervasiveness of plastic in
human life.

When plastic waste is disposed of in the environment, it degrades into smaller
sizes [9–12]. Plastic pieces with diameters of <5 mm are referred to as microplastics [13,14]
and can be divided into primary and secondary microplastics (Figure 2). Primary mi-
croplastics are released directly into natural environments and originate mostly from body
and skin care products, industrial wastes, and textile applications [12,15–17]. Secondary
microplastics originate from the fragmentation of larger plastic particles into smaller parti-
cles that are degraded in the environment due to ultraviolet exposure from the sun as well
as from chemical, physical (such as washing machines), and mechanical weathering (such
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as tidal waves) [18,19]. Most microplastics in the environment are secondary microplastics
and they, together with primary microplastics, pose a threat to the environment [4,20–22].
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In 2015, approximately 6300 Mt of plastic waste was produced. Of this waste, 9% was
recycled, 12% was incinerated, and 79% was disposed of in landfills or natural environ-
ments [23,24]. In addition to natural environments, plastic waste has been found in sea
salt, table salt [25], and beer [26]. In recent years, there has been increasing research on
the presence of microplastic contaminants in marine, river, and lake environments [27–34];
however, little attention has been paid to microplastic contamination of groundwater on a
global scale. This could be because groundwater microplastic contamination is still in its
early stages [35]. However, it presents an emerging concern [36].
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Groundwater microplastic pollution has been less studied than that in other natural
environments such as marine, river, aquatic, and soil (Figure 3). Soil can act as a barrier
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to groundwater microplastic pollution, which could explain why researchers have not
focused on groundwater microplastic pollution [5]. However, soil microplastic pollution has
increased in recent years [38–44] and soil is the most likely route for microplastics to enter
the groundwater system, meaning that the rise in microplastic pollution in soil in recent
years is a point of concern. Previous studies have identified the vertical transportation
of microplastics from soil to groundwater systems [45–50] which can lead to significant
consequences when groundwater is used for drinking or agricultural purposes.
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Although groundwater pollution can affect human health [51,52], plant species, and
underground microorganisms, there are considerably fewer studies on microplastics in
groundwater than in soils. Microplastics in groundwater should not be underestimated.
They necessitate urgent attention from the scientific community, especially hydrogeology
and environmental impact studies, to decrease their negative impact and to estimate their
potential threats to the environment and human society. The purpose of this review is to
(1) highlight the gaps and challenges in the current literature on microplastic pollution and
sources in groundwater, and (2) describe and discuss strategies for the management of
microplastic contamination in groundwater systems in the future.

2. Current Issues in Microplastic Pollution Occurrences and Sources in Groundwater

The horizontal and vertical transportation of microplastics from soil migration, sur-
face runoff from mulching waste, and industrialization and urbanization can lead to the
contamination of groundwater systems with microplastics. Groundwater can also be con-
taminated with several toxic materials and contaminants from anthropogenic activities [53],
thereby placing groundwater resources at risk [54,55]. Notably, groundwater is used in
approximately 38% of agricultural and cultivated areas globally [56]. The invisible nature
of groundwater makes it difficult to observe and maintain [1]. Groundwater samples from
Chennai, India, were reported to contain fibrous and fragment-shaped microplastics [57].
When synthetic microfibers are too small to be filtered by wastewater treatment plants
(WWTPs), they can leach into soil via land-applied WWTP’s biosolids [38,58–60] (Figure 4)
and/or may directly be dispensed as grey water out of a septic tank, creating a conduit for
microfibers to infiltrate groundwater systems [1,61]. Median and maximum concentrations
of microplastics (microfibers) measuring 6.4 and 15.2 n/L, respectively, were observed in
a karst groundwater aquifer system [2]. A low concentration of microplastics measuring
0.0007 n/L was reported in Holdorf, Germany, which was smaller than other microplastic
concentrations observed in groundwater around the world [3]. In an alluvial sedimentary
unconfined aquifer area (agricultural area), groundwater was found to be contaminated
with microplastics with a concentration of 38 ± 8 n/L [5]. Groundwater contamination
with microplastics [62] and numerous metals, such as Pb, Cu, Cd, As, Zn, and Mn, has
been linked with landfills [63] at Chennai and Tamil Nadu, India. These investigations
constitute the most recent contributions to the knowledge on groundwater contamination
with microplastics, and distribution comments and remarks have been made and published
for those investigations [64,65]. The above studies have provided data indicating that
research on groundwater should receive international attention.

Therefore, qualifying and quantifying microplastics in groundwater may require a
multi-pronged strategy with careful sampling methods and alternative approaches, making
it more complicated than studies of other freshwater environments [66]. There have
been a few published research and review papers on groundwater contamination with
microplastics (Table 1). Some of these studies related the problem with soil pollution and
determined that soil acts as a potential conduit for microplastics to enter groundwater
systems [45,67–69]. There is a possibility that microplastics can reach groundwater situated
below agricultural or cultivated land [50] The two most common transport systems are
horizontal and vertical transportation [70]; horizontal transport of microplastic in soil
mostly occurs via surface runoff and wind erosion [44,71], whereas vertical transportation
of microplastic in the soil is mainly influenced by microorganisms and earthworms, which
increase the risk of microplastic contamination in groundwater systems [44,59].

PE and PET are the most common microplastic materials in groundwater pollution sys-
tems [3,5,69,72,73] and fragments and fibers are the most common shapes (Table 2). There
are five main sources and causes of microplastics in groundwater: landfill leachate, soil
migration, wastewater effluent, surface runoff from mulching waste [74], and human activ-
ities related to plastic usage and disposal [2,63,73,75]. When compared with groundwater
microplastic contamination, the surface water contamination is considerably higher since it
has directly been impacted and contaminated by anthropogenic activity (Figure 4). WWTPs
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and Sewage treatment plants (STPs) serve as pathways for microplastics to enter the sur-
face water when such water sources are located near the WWTP and STP areas [76,77].
PE, polypropylene (PP), and polystyrene (PS) are the most abundant types found in the
surface water, and fragments, fibers, and films are mostly common shapes [77,78]. Unlike
in groundwater, PET is not abundant in surface water because the density of PET is higher
than that of the surface water [79].
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Table 1. Recent research on microplastics in groundwater and soil.

Study (Author) Study Title

[1] Addressing the potential for groundwater contamination by plastic microfibers

[4] Existence of microplastics in soil and groundwater in Jiaodong Peninsula

[73] Microplastic pollution in soils and groundwater: Characteristics, analytical methods, and impacts

[80] Microplastics in the environment: A critical review of current understanding and identification of future
research needs

[62] Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater

[5] Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia

[81] Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants
(review)

[82] Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater

[66] Emerging concerns about Microplastics Pollution on Groundwater in South Korea

[45] Microplastic pollution in soil and groundwater (review)

[57] Microplastics Pollution Pathways to Groundwater in India

[2] Microplastic Contamination in Karst Groundwater Systems

[63] Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface
water of coastal south India
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Table 1. Cont.

Study (Author) Study Title

[83] Assessment of Causes and Effects of Groundwater Level Change in an Urban Area (Warsaw, Poland)

[50] Plastic in agricultural soils; A global risk for groundwater systems and drinking water supplies (review)

[3] Low numbers of microplastics detected in drinking water from ground water sources

[84] The occurrence of microplastics in freshwater systems—preliminary results from Krakow (Poland)

[85] Fate and transport of microplastics from water sources

[86] Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment
Works in England and Wales

[87] Mapping Microplastic in Norwegian Drinking Water, Atlantic

[88] Analysis of microplastic particles in Danish drinking water

[89] Metro station free drinking water fountain—A potential “microplastics hotspot” for human consumption

[90] Drinking plastics?—Quantification and qualification of microplastics in drinking water distribution systems by
µFTIR and Py-GCMS

[72] Investigation of microplastic contamination in drinking water from a German city

Landfill leachates are mainly responsible for heavy and hazardous metal contam-
ination in groundwater systems [63,91,92]. Microplastics can absorb persistent organic
pollutants and metals and may act as a transporter of these hazardous substances in the sub-
surface water, soil, and/or groundwater [44,84,93]. The leachate pollution index [94] related
to groundwater contamination presents a gap in the research and should be investigated in
the future. Washing clothes made from synthetic materials can produce microfibers in the
wastewater or septic tank effluent, which is a potential source of microplastics (microfibers)
in the hyporheic zone, the zone between surface and groundwater [95] and groundwater
systems [2,15,57,89].

Table 2. Typical occurrences and phenomenon of microplastic contamination in groundwater
(Adapted from (Huang et al., 2021)).

Type Depth Concentration Size Major Shape Polymer
Type Location Reference

Deep well
(untreated

potable water)
nd nd 0–0.045 mm Fragments nd Krakow,

Poland [84]

Karst system <65 m 15.2
n/L(max) <1.5 mm Fibers PE Illinois, USA [2]

not mentioned nd 5.3 (4–7) n/L nd Fragments
and fibers PET and PA Tamil Nadu,

India [85]

Drinking water 2–29 m 38 ± 8 n/L 18–491 µm Fragments
and fibers

PE, PS, PP,
PVC, PET,

PC, PMMA,
and PA

Victoria,
Australia [5]

Well 30 m 0.0007 n/L 0.05–0.15 mm Fragments PE Holdorf,
Germany [3]

Wells &
borewells 2–5 m

4.2 n/L
(median),
10.1 n/L

(max)

0.11–12.5 mm
(mean:

0.6 ± 1.4 mm),
<1 mm

(34% domain)

Fibers, foam,
pellets, films,

and
fragments

Nylon (PA,
35%), PE

(55%) and
PET (10%)

Tamil Nadu,
India [63]
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Table 2. Cont.

Type Depth Concentration Size Major Shape Polymer
Type Location Reference

Landfills
(municipal
solid waste

disposal sites)

3–30.48 m 2–80 n/L nd
Pellets, foam,

fragments,
and fibers

Nylon, PVC,
and PE

Chennai,
India [62]

Tap (Treated
portable water) nd

0–0.011 n/L
(>LOD),

0–0.003 n/L
(>LOQ)

>0.025 mm nd
ABS and PS

(domain,
>LOQ)

England &
Wales, UK [86]

Tap nd <1 n/L
(below LOD) >0.1 mm nd nd Norway [87]

Estuary 2–5 m 4.2 n/L
0.11–12.5 mm

(mean:
0.6 ± 1.4 mm)

Fibers, foam,
film, and

fragments

Nylon, PP,
PVC, and PE

Punakayal,
India [63]

Tap (Treated
potable water) nd <1 n/L >0.01 mm Fragments

and fibers
PET, PP, PS,

and PE
Rüsselsheim,

Germany [72]

Tap nd 0.3 n/L <0.3 mm
Fibers,

fragments,
and films

PET, PP, PS,
ABS, and PU Denmark [88]

Public drinking
water

fountains
nd 18 ± 7 n/L 0.5–5 mm (50%);

<0.5 mm (50%)
Fibers and
fragments

PTT and
epoxy resin

Mexico City,
Mexico [89]

Drinking water nd 0.174 n/L <0.15 mm
(32% <0.02 mm)

Fibers and
fragments

PA, PET, and
acrylates

Skåne,
Sweden [90]

Notes: PVC, polyvinyl chloride; PA, polyamide; PE, polyethylene; PS, polystyrene; PP, polypropylene;
PU, polyurethane; PET, polyethylene terephthalate; ABS, acrylonitrile butadiene styrene; PTT, polytrimethy-
lene terephthalate; PMMA, polymethylmethacrylate; LOD, limit of detection; LOQ, limit of quantification;
nd, not described.

3. Effect of Groundwater Microplastics on Health of Humans, Plants, and Other Species

There has been almost no research on the impacts and effects of groundwater mi-
croplastic contamination [45,96]. This reveals a major gap in the research that needs to be
filled in the future. To reach the groundwater, microplastics need to be smaller than soil
pores, as this allows them to pass through the soil layers [49,81,97–99], which indicates the
degradation of larger plastic waste that is buried in soil [100]. Soils contain macropores
(>0.08 mm) and micropores (<0.08 mm) which drive cracks, fissures, and fractures [101].
Some external factors such as earthquakes and liquefaction can also play a vital role in
shaking down the soil pores. This creates new paths in the groundwater system, posing
a hazard. Additionally, if the soil layer is too shallow and the groundwater level is high,
there is a higher chance that microplastic can pass the soil horizon and enter the ground-
water environments easily. Drinking water from groundwater contaminated with smaller
microplastic particles is a major issue [102,103]. Although the direct effects of groundwater
microplastics on human health have not been studied, there is evidence that microplas-
tics bear adverse effects on humans, such as contributing to cardiovascular diseases, skin
irritation, cancer, reproductive effects, and respiratory and digestive problems [61,104–109].

Research on the effects of microplastics on plants is still in its infancy [73]. According
to P. Wanner [50], microplastics are more likely to reach groundwater below farmland or
agricultural land. The potential uptake routes mostly occur through the soil and in some
farmlands, by the plant roots. Exposing crops to microplastic contaminated groundwater
could trigger microplastic uptake throughout plant roots or a change in soil character-
istics, both of which could impact plant development [62,110]. Microplastic uptake by
microbial activity and plant roots pose a hazard to edible plants (Figure 4) and can even-
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tually be distributed up the food chain system [111]. Groundwater contaminated with
microplastics is dangerous for use as drinking water or in agricultural processes for human
health and is more dangerous than consuming contaminated seafood and fish [1]. In the
case of agricultural processes, a microplastic waste cycling system can be developed if
groundwater contaminated from the vertical transport of microplastics is used for agri-
cultural and cultivated land. The increase in microplastic contamination in groundwater
can impose a destructive effect on groundwater microorganisms. There are several unique
faunas in groundwater, such as troglofaunal [112–116] and stygofauna [73], which could
be vulnerable to microplastic contamination. However, the exact mechanism underlying
how groundwater microplastics affect such faunal species remains unknown and requires
additional research.

4. Strategies for Groundwater Microplastic Management

The study of microplastic contamination in groundwater and strategies for groundwa-
ter microplastic management are in the early stages. Reports of groundwater contaminated
with heavy metals, arsenic, fluoride, chloride (salinization), coliform bacteria, pesticides,
petrochemicals, nitrates, light non-aqueous phase liquids (LNAPL), dense non-aqueous
phase liquids (DNAPL), pathogens, and volatile organic compounds (VOCs) [117,118]
surfaced prior to the issue of microplastic pollution emerging. Now, this too poses a serious
threat to human health and natural environments as with the other pollutants [45]. Strate-
gies to manage microplastic pollution in groundwater should focus on three main factors:
(1) preventive measures and developing national and international rules and regulations,
(2) remediation of microplastics that have entered groundwater, and (3) increasing social
awareness and encouraging the usage of biodegradable plastics. To reduce the severity of
microplastic contamination in groundwater, the quantity of contaminants from different
sources needs to be controlled [44,119,120].

One example of prevention measures through national policy is the banning of cos-
metic products that contain microplastic beads, which represented the major source of
primary microplastics in the United States in 2017 [121]. At the same time, several countries
in the EU have already banned or imposed taxes on plastic bags as an effort towards plastic
reduction [122]. The EU have been implementing restrictions on the usage of both single
and multiple-use plastic bags with various strategies depending on the country [121,123].
By 2030, Europe aims to recycle more than half of all plastic waste. All plastic packaging will
be reusable or recycled in order to reduce cost and to prevent microplastic [124]. According
to Magnusson and Noren [125], microplastic is often found in the receiving water body
from WWTPs, and thus, an initiative monitoring system is required. The United Nations
launched 17 Sustainable Development Goals (SDGs) in 2015 to maintain human peace and
prosperity, eradicate poverty, and safeguard the planet’s resources for the future. Among
the 17 SDGs, Goal 14 (Life Below Water) is the most relevant to microplastic pollution in
the environment (mostly marine) [126]. Although no SDGs directly refer to microplastic
contamination in groundwater, some SDGs relating to maintaining the health of aquifers
are relevant to microplastic pollution management (Table 3). According to Sinreich [127],
different groundwater contaminants, such as heavy metals, arsenic, nitrates, LNAPL, and
microplastics, require different remediation methods. There have been no recent studies
on the remediation of groundwater microplastic; however, the mitigation of microplastics
and other contaminants from groundwater has been studied [121,128–130]. The mitiga-
tion of microplastics in groundwater plays a vital role and should be carried out before
remediation. Additionally, the mitigation of microplastics from soil and surface water
is also helpful in mitigating and resolving microplastic contamination in groundwater
systems [45,118,131]. Future research should focus on the remediation of microplastics
in groundwater. Another strategy for the management of microplastics in groundwater
is using biodegradable plastic material that can be completely degraded either anaero-
bically or aerobically in the environment [98,132]. The impact of which biodegradable
plastic can have on hydrological environments and marine species remains a controversial
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topic [133,134]. However, microplastics in the soil can be reduced by using biodegradable
plastic in agricultural or cultivated lands [47]. Therefore, using biodegradable plastic can
help reduce the potential impact of microplastics on groundwater indirectly since the soil
can provide a potential pathway for microplastics to enter the groundwater environment.
Biodegradable plastic will continue to have an undeniable and favorable influence on
applications that are likely to end up in the environment [132,135]. It is also necessary
to develop organized and systematic methods, protocols, and strategies for reducing mi-
croplastic contamination in groundwater through local and international governments
and/or agencies.

Table 3. Interlinkage of the Sustainable Development Goals and the Groundwater Microplastic
Contamination Issue.

Goal Number
Link between SDG and the
Groundwater Microplastic

Contamination

Rank (1–5) of Relevance
to Microplastic Pollution

in Groundwater
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5. Conclusions

Microplastic contamination is likely to persist for a long time due to the increasing
production and use of plastics worldwide and a lack of efficient plastic waste management
systems. It is expected that the study of microplastic contamination in groundwater will
continue to grow owing to the susceptibility of groundwater resources to anthropogenic
pressure, the critical role of groundwater in maintaining human activities and natural
ecosystems, and since groundwater conservation and management measures are urgently
required [1]. The negative impacts of microplastics on the environment, humans, and other
species are increasing and extensive studies are required to fully comprehend the incidence,
fate, and movement of microplastics in groundwater systems. The problem of microplastics
in groundwater is currently in an emerging stage but is steadily growing. This review
presents recent and emerging knowledge on microplastic contamination in groundwater.
Further research is needed to fill and address key gaps in knowledge, which we identified
as follows:

• More studies are needed to determine the effects of groundwater microplastic contam-
ination on the human body and microorganisms, such as stygofauna and troglofaunal,
that inhabit groundwater environments.

• Systematic reports and investigations of potential groundwater microplastic con-
tamination with careful sample collection should be carried out in Korea and other
developed countries using advanced technology and instruments, such as Raman
spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography–mass
spectroscopy, in the near future.

• Landfill leachates and surface runoff are among the main factors responsible for
groundwater microplastic pollution. The leachate pollution index relationship with
groundwater contamination represents a gap that needs to be addressed in the future.

• Studies should consider the involvement and links between microplastic contamina-
tion in groundwater and SDGs and encourage the United Nations to focus on this
problem more closely in their future goals as groundwater is used as drinking water
and for agricultural purposes.

• Since soil and surface water are the main potential pathways for microplastics to
enter groundwater, further detailed research on the fate of microplastics and the
occurrence in different horizons of soil should be conducted. In particular, the study
of microplastics in the hyporheic zone, which is the area of contact between surface
water and groundwater, will help to understand problems in groundwater.

• Whether microplastics play a role in the transportation of heavy metals into ground-
water systems should be investigated to protect groundwater environments.

• In groundwater, PE and PET microfibers and fragments are the most common mi-
croplastics; therefore, specific remediation and mitigation strategies for these are
needed.
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