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ABSTRACT Recently, development in intelligent transportation systems (ITS) requires the input of various
kinds of data in real-time and from multiple sources, which imposes additional research and application
challenges. Ongoing studies on Data Fusion (DF) have produced significant improvement in ITS and
manifested an enormous impact on its growth. This paper reviews the implementation of DF methods in ITS
to facilitate traffic flow analysis (TFA) and solutions that entail the prediction of various traffic variables such
as driving behavior, travel time, speed, density, incident, and traffic flow. It attempts to identify and discuss
real-time and multi-sensor data sources that are used for various traffic domains, including road/highway
management, traffic states estimation, and traffic controller optimization. Moreover, it attempts to associate
abstractions of data level fusion, feature level fusion, and decision level fusion on DF methods to better
understand the role of DF in TFA and ITS. Consequently, the main objective of this paper is to review DF
methods used for real-time and multi-sensor (heterogeneous) TFA studies. The review outcomes are (i) a
guideline of constructing DF methods which involve preprocessing, filtering, decision, and evaluation as
core steps, (ii) a description of the recent DF algorithms or methods that adopt real-time and multi-sensor
sources data and the impact of these data sources on the improvement of TFA, (iii) an examination of the
testing and evaluation methodologies and the popular datasets and (iv) an identification of several research
gaps, some current challenges, and new research trends.

INDEX TERMS Intelligent transportation systems, traffic flow analysis, data fusion, real-time processing,

multi-sensor, heterogeneous data, machine learning.

I. INTRODUCTION

Data has become a central and dominant element in every
decision-making phase as a consequence of technological
advancements and demands from different disciplines. When
dealing with real-time decision-making systems, it becomes
critical, and it has already benefited a variety of fields, includ-
ing transportation [1]-[3], environmental [4], health care [5],
smart card [6], image processing [7], structures [8], traffic
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flow analysis [9]-[17], Internet of Things (IoT) [18] and Big
Data [9], just to name a few.

The availability of cloud computing and IoT strengthen
the infrastructure of transportation systems and stimulate the
development of ITS globally [19]. One of the contributions
that the ITS has attempted to make is a long-term increase
in traffic research. TFA is a foundational analysis that will
help organizational traffic decisions and future improvement
planning. Reliable traffic data collection generates traffic
insights within a pre-defined period, either from a real-
time or multi-sensor system environment. The ITS performs
better interpretation of the observed traffic conditions by
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considering various data sources across different data
providers. Among the data providers are cameras, global
positioning systems (GPS)s, probe vehicles, social media,
radars, and loop sensors. Their desired integration into a spe-
cific ITS model contributes to improving the ITS [17], [20].
Engaging various field data collection methods reduces the
chances of uncertainties of only relying on individual data
sources [21].

To compose this paper, we extract research articles and
other related literature papers. We construct meaningful
search keywords for effective findings, including DF review,
DF techniques, DF traffic, traffic state estimation, DF appli-
cations, DF framework, DF intelligent transportation sys-
tem, and DF evaluation technique. We use several academic
databases, including Springer Link, IEEE Xplore, and Sci-
enceDirect. Figure 1 shows the number of research and
review papers discussed in this review from 2010 until 2020,
whereas the number on top of the bar shows the number of
DF review papers written in that year.
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FIGURE 1. The reviewed papers on DF and TFA from 2010 to 2020.

As seen in Figure 1, there are 19 papers that focus
on DF review writing between these years. Most of the
review study discuss about general DF ideas, techniques and
models [18], [22]-[29]. Quite a smaller number of litera-
ture papers focus on a specific domain of study. This paper
offers TFA as a domain study of the DF review. It focuses
on studying various traffic conditions, including travel time,
traffic speed, traffic density, lane changing behavior, traffic
congestion, and traffic incident prediction. The review con-
siders both real-time traffic data and various sensors that
are fixed to the real traffic environments of ITSs. This dis-
cussion emphasizes the relation between the TFA models
with the mechanisms, algorithms, techniques, and methods
that construct these models for performing preprocessing,
filtering, estimation, forecasting, evaluation, and behavior
identification.

The paper’s contents are organized as follows: Section I is
the introduction, followed by Section II, focusing on traffic
sensing methods and traffic variables. Discussion of DF is
elaborated in Section III. Section IV emphasizes DF imple-
mentation in TFA and contribution to the domain field and
providing a few of the most frequently used DF techniques
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in TFA study. Section V focuses on analysis and discussion
of DF-TFA research and applications challenges. Finally,
Section VI presents the conclusion and suggests several
recommendations.

Il. TRAFFIC SENSING METHODS AND VARIABLES
Different statistical standard variables are used to measure
scores on different scales based on sensing methods and data
processing techniques (e.g., maximum, minimum, mean, and
standard deviation). In TFA, there are a plethora of variables
produced, such as speed, vehicle count, vehicle presence,
and location. Sensing and gathering information steps are the
most fundamental aspect of better control of any management
and monitoring systems [30]. Sensing methods are crucial in
traffic management systems to measure and evaluate roads’
efficiencies [31]. Different traffic sensing devices give vari-
ous signals or indicators based on their ability and designed
functionality [32], [33].

A. TFA ATTRIBUTES

TFA discusses all sorts of traffic measurement, estimation,
and prediction contributions to various areas of ITS and traffic
management. Table 1 presents some relationships between
traffic state attributes within the related TFA studies.

TABLE 1. Traffic state.

Traffic state TFA Studies Ref.
Vehicle volume, speed, Travel time estimation [34]
occupancy [35]

[36]
Vehicle volume, GPS Traffic speed estimation [37]
Vehicle volume, GPS Traffic speed prediction [38]
Vehicle volume, speed, Traffic flow forecasting [32]
location, weather, wind 39

speed

Fusing point and zone-based
data

Steering wheel, speed

Flow, travel time

Travel time and density estimation

Traffic density estimation

GPS, flow Traffic congestion prediction

Flow, speed, occupancy Traffic incident prediction

[
[
[
[
[
[
Lane changing behavior [
[
[
[
[
[
[
[

Various traffic variables are reflected by different traffic
states of traffic flow parameters. For example, the traffic flow
parameter of vehicle volume represents the total number of
vehicles on the road as observed over a period of time [34].
Similarly, speed denotes the distance a vehicle traveled in
time units, while occupancy represents the extent of the road
the vehicles occupy [35]. While vehicles’ locations are pro-
vided by the GPS [37], the weather and wind speed indicate
the conditions that may occur in the area.

In other words, estimation of traffic conditions is deter-
mined by the current states of traffic parameters as indicated
by the collected data, for example, estimating the average
speed from multiple data sources [37]. By the same token,
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research in predicting traffic conditions yields prediction
results by modeling to determine the future situation. For
example, Li et al. [38] suggest a hybrid method based on deep
feature fusion modeling to achieve speed prediction. Traffic
density is estimated to evaluate a road’s density, such as an
urban signalized junction, by integrating flow and travel time
state attributes [43]. Traffic flow is the most fundamental
criterion of understanding road capacity and traffic conges-
tion, and it is divided into long-term and short-term predic-
tions [42]. It is an essential measurement for travel navigation
decisions [40], transportation management [41], smart city
planning [42], and others. Most of the research conducted
in this specific area aims to propose a better traffic handling
mechanism by making full use of the various source of data,
such as GPS, the incoming flow of vehicle, the outgoing
flow of vehicle, even meteorological data, including weather,
temperature, and wind speed [40], [41]. Traffic congestion
highly relies on GPS and sensor data [9].

Adetiloye and Awasthi [9] categorize congestion as
(1) high congestion prediction, (2) possible congestion,
(3) medium congestion prediction, and (4) low congestion
prediction based on the study conducted. Response to the
pre-defined variable state in this study contributes to traffic
management decision-making procedure. Travel time estima-
tion requires accurate vehicle count data from loop detectors
and vehicles’ locations (from GPS), whether it is measured
from road traffic or freeways [34]-[36]. Speed estimation
could be generated with the availability of vehicle volume
data and GPS collected from vehicles, phones, or navigator
devices [38], [51].

A traffic incident is another area of traffic studies that
predicts road incidents based on traffic behavior by con-
sidering a few traffic state attributes, such as vehicle flow,
speed, and occupancy [51]. A road incident is closely related
to the severity of congestion. It is useful for the emergency
response team to facilitate efficient road traffic management
to avoid prolonged road congestion [50]. Lane changing is
an everyday event among road users in all circumstances,
and this area requires an initial knowledge of classifying and
differentiating driving behavior based on changing state of
the object or vehicle being observed, in fact, data such as
steering wheel angle, accelerations, and vehicle speeds are
required [45].

B. TRAFFIC SENSING METHODS
There are few technologies or devices that are used for traffic
data gathering, including, Global Positioning System (GPS)
equipped in vehicles [13], [31], wireless communica-
tions [31], loop sensor or fixed detector [17], [32], [33], [52],
Remote Traffic Microwave Sensors (RTMS) [13], radar [53],
Automatic Vehicle Identification (AVI) Bluetooth [54] and
many more. Integration of different sensor technologies could
bring a convincing result to achieve ITSs [55].

Single sensor technology is not an all-time practical
mechanism to illustrate a complete cognizance of a domain
problem, while accuracy level and data certainty might
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be questionable. Having an incomplete and inaccurate
data collection phase may affect estimation or forecast
results [3], [34]. In ITS, the needs of multiple sensors have
become increasingly crucial for multiple purposes, such
as (1) lane management, (2) surveillance, (3) parking man-
agement, (4) automatic tolling, (5) special event transporta-
tion, (6) intersection management and a lot more. There are
few types of sensor technologies available to gather traf-
fic data, and each of them has its strength and weakness,

as shown in Table 2.

TABLE 2. Category of sensors and variables.

Sensor/Method

Description

Variables

Inductive Loop
Detector

Detects vehicles' movement, presence,
count, and occupancy. Reliable under
various weather conditions

Vehicle  count,
vehicle presence

Magnetic Sensors

Detects vehicle's presence,
stopped and moving vehicles

identify

Vehicle presence

Camera

Detects vehicles across several lanes,
vehicle classification, flow rate,
occupancy, and speed. Cameras are
linked to a computer with an intelligent
algorithm to retrieve traffic parameters.
It is of low cost, easy to install and
maintain.

Flow rate,
occupancy,
speed, density,
queue length

Radar

Uses radio waves to detect vehicles,
measure speed, and detect movement
direction. It is of high cost, difficult to
install, and difficult to maintain.

Vehicle  count,
speed, direction

Infrared

Detects infrared radiation through
sender and receiver parts. It can measure
speed, vehicle volume, and lane
occupancy. It is of a low cost but
difficult to be maintained.

Speed,  vehicle
count, occupancy

Ultrasonic

Uses ultrasonic waves to detect vehicle
presence and occupancy A low cost but
difficult to maintain sensor.

Vehicle  count,
vehicle presence,
occupancy

Radio Frequency

Uses electromagnetic fields to identify

Target

Identification and track vehicles. It is mainly used for | identification

(RFID) toll management.

GPS Uses Satellite-based sensing to provide | Coordinate,
information on vehicle location. It is of | count, speed,
a high cost, difficult to install, and | direction
difficult to maintain.

RTMS Uses radar technology for vehicle | Average vehicle

detection

Detects traffic stream by continuous
Bluetooth sensor

Provides geographic location

length, Speed
Travel time

AVI Bluetooth

Cellphone-probe Cellphone count,

pseudo speed

Sensors create a raw input signal to the system in various
formats, depending on the type of data being collected [56].
The input signals from sensors produce data, filtered into
meaningful features before any decision is made [57], [58].
The collective input from two or more sensors could lead to a
better traffic management system [33]. Zhang et al. [57] gen-
erate real-time traffic state estimation by merging data from
a loop sensor and GPS. Deng et al. [54] incorporate vehicle
detectors, automatic vehicle identification (AVI) Bluetooth,
and GPS as their sensing device to determine traffic estima-
tion. Loop detectors and GPS data are two input sources to
Jiang et al. [17] research on urban expressways study.

Subsequently, multimodal sensing tends to give a better
scenario description to an existing problem [59]. It con-
tributes to big data growth in general. Multimodal sensing
ensures input robustness and trust, reduces the risk of missing
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data, and increases input accuracy when cross-validation is
performed during the fusion process [60]. For multiple sen-
sors that are sending data to a system, they are not necessar-
ily installed side by side, and they might measure different
criteria of the input. This issue requires applying some data
association and estimation [58].

Ill. DATA FUSION IN TFA

This section provides a general idea of DF processes, data
properties, and their implementation in TFA. There are
several main objectives of applying DF methods in TFA.
DF methods help to overcome inconsistency and imperfec-
tion during data collection. DF methods extract higher-level
information from raw data sources that reduce data capacity
and improve its quality. DF methods improve data complete-
ness and reliability by enabling systems to gather data from
multiple sources and with different properties.

A. DATA PROPERTIES

In any estimation or prediction study, the more consistent data
collected, the better the accuracy of results produced [39].
Rich features in datasets require refinement and exploration
to maximize the output to the field. A multi-sensor offers
diverse and heterogeneous data structures with high vari-
ability of formats. Heterogeneous forms of data primarily
from various sources can compensate for incomplete data
from sensors [61]. It is a critical task of DF preprocessing
to eliminate any possibility of having low quality, redundant
or ambiguous data in the initial stage. Real-time data is
mostly collected from sensors at a specific interval, which
requires a particular process to collect, control, and monitor
the resources [62]. DF on multi-features data are not only
applicable to a single domain but can be blended among
different domains [63].

Correlating heterogeneous data is significant in real-time
system environments to accurately describe real-world sce-
narios [64]. A variety of data characteristics proves its
capability to describe a problem being observed from dif-
ferent angles [37], [74]. Integrating data from multiple
sources increases the results’ accuracy and stability [70].
Multi-sensor, heterogeneous, real-time, or combination of
those features would stimulate a DF technique’s suitability
for further implementation. For instance, Ning et al. [70]
demonstrate a model incorporating data from multi-sensor
and heterogeneous in the real-time system environment,
such as loop detectors and probe vehicles. They found
that integrating cameras and mobile phones can achieve
comprehensive traffic state estimation. Cipriani et al. [71],
Mil and Piantanakulchai [72], and Jiang et al. [17] inte-
grate multi-sensor and heterogeneous data, including loop
detectors and probe vehicles, to come out with their state
estimation. Deng et al. [54] propose fusing data from loop
detectors, AVI Bluetooth, and GPS to improve traffic state
estimation on freeways. Examples of TFA data characteristics
are shown in Table 3.
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TABLE 3. Characteristics of traffic flow datasets.

Traffic flow Multi- | Hetero- | Real-

Sensors . Ref.
study sensor | generous | time

Traffic state Loop detectors,
estimation Bluetooth, GPS v v v [13]
Trgvel Fime Probe vehicles R N N [16]
estimation
Traffic state and Loop detectors, probe
emission vehicles \/ Y R [17]
estimation
Trgfﬁc §tate Probe vehicles R N J 65]
estimation
Traffic state License plate, vehicle
estimation count, flow rate, speed v v v [66]
Traffic state Loop detectors, AVI N N N [54]

estimation Bluetooth, GPS

Travel time Inductive loop, dedicated

estimation short-range V 3 V [67]
communications

Traffic state Loop detectors,

estimation connected vehicles v v v [68]

ITS SCATS loop detectors

computational and probe vehicles V R v [69]

data

Traffic state Loop detectors, probe N J N [70]

estimation vehicles

Traffic state Loop detectors, probe J N N [71]

estimation vehicles

Travel time Loop detectors, probe

estimation vehicles v v v [72]

Traffic state Small imaging satellite,

estimation connected vehicles v v v [73]

Travel time License plate

estimation recognition,
Geomagnetic detector v v v [74]
data, Floating car data

Travel time Vehicle Mass and Road N J N [75]

estimation Grade

Trgfﬁc §tate Connected vehicles } J N [76]

estimation

Travel time GPS, inductive loop

estimation sensors, mobile phone Y R - [77]
network

Traffic flow GPS } J N [78]

prediction

Traffic flow Vehicle flow } R N [79]

forecasting

Similarly, to introduce a robust traffic estimation method,
Nantes et al. [15] use data from loop detectors, Blue-
tooth, and GPS by implementing a heterogeneous data
source. They conclude that the greater the amount of
data being fed, the higher the accuracy of the outcome.
Seo and Kusakabe [73] combine small imaging satellites
and connected vehicles to generate traffic state estima-
tion, which does not require any parameter calibration on
any device input. Guo and Yang [74] propose a robust
travel-time estimation method based on license plate recog-
nition, geomagnetic detector data, and floating car data
as traffic data input. Zhang et al. [75] perform real-time
estimation of road infrastructure grading based on data col-
lected from GPS, an inertial navigation system, and wheel-
speed. Khan et al. [76] work on a real-time traffic estimation
study by integrating connected vehicle technology with the
multi-sensors approach. Tak er al. [35] merge traffic data
collected from an inductive loop and dedicated short-range
communications to produce a real-time prediction of travel
time.
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B. DATA FUSION APPROACH IN TFA

DF methods reconstruct data from different data sources to
find new correlations and combinations that generate new
data and produce better decisions and actions [51]. Formu-
lating DF methods or algorithms consists of four basic pro-
cesses: preprocessing, filtering, decision, and evaluation [27].
Achieving high-quality results from a DF model depends
on the algorithm combinations choice to perform these pro-
cesses, the quality of the inputs, and the type of outputs. These
steps attempt to combine data to reveal meaningful features
that achieve higher accuracy values and assist in improv-
ing the decision-making process. Figure 2 shows a general
DF model of multi-sensor heterogeneous data.

Data source DF model Evaluation
- Dat rce #1
ﬂ Ehraos Preprocessing Criteria
9 ¥
[ g Data source #2 ] Filtering Benchmark
=
4 ¥
Decision Results
@ Data source #3

FIGURE 2. General DF model.

On the other hand, for heterogeneous and complex mul-
timodal sensing, DF can be divided into three abstraction
levels: (1) data level fusion, (2) feature level fusion, and
(3) decision level fusion [80]-[84]. Figure 3 summarizes
the taxonomy of DF traffic parameters/variables in the
TFA studies. DF systems need to handle a heavy communi-
cation load to produce reliable and accurate results [80]. Data
level fusion manifests high complexity, especially for incom-
ing data with various characteristics. A data level fusion or
preprocessing method operates on the collected data in its
original form. It entails combining, associating, and format-
ting the data to prepare for raw data [85]. This level imple-
ments various techniques, including noise removal, outliers,
sudden spike [64], [70].

Wang et al. [12] improve data quality by performing data
cleaning and denoising using the Kalman Filter (KF) tech-
nique. For state estimation studies, it is common to prepare
the data in batches. Pamuta and Krél [79] perform discretiza-
tion to the dataset to group the data based on a specific
interval to be inputted to the proposed model. In contrast,
Liu et al. [66] perform a weighted average to determine
vehicle speed for an interval of two minutes. The missing
value is another challenge when dealing with datasets, and
to a certain field of study, this condition produces uncertainty
during model evaluation. An et al. [40] handle this situation
by performing estimation at the data level to avoid having less
sampling data from the dataset by implementing a proximity
alternative method.

Feature level fusion is a process of merging and filter-
ing data to extract features from different sources or sen-
sors to achieve meaningful features and comprise statistical,
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segmentation, or clustering process [70], [84]. A combina-
tion of features entails making a more realistic condition.
Liu et al. [86] use speed and density features to come out
with freeway state estimation. Mehrannia et al. [49] combine
features from different sensor systems for traffic incident
detection. Adetiloye and Awasthi [9] engage with the hetero-
geneous and heterogeneous data types in the proposed model.
Features from different sources are used to make congestion
predictions. Zhu et al. [68] propose a DF model that fuses
loop detector and mobile phone data to estimate travel time.
Other than numeric data, the filtering process can also be done
for motion type of data input. Gao et al. [45] combine features
from video data with lane boundary and distance to determine
lane changing of vehicles on the road.

Decision level fusion is the stage where the system’s deci-
sion is made by selection, inferencing, and reasoning [87].
It comprises the classification, prediction, or estimation pro-
cess [71]. Soua et al. [88] fuse several traffic flow decisions
from event-based data streams to predict the final traffic
flow. Nae and Dumitrache [89] produce a final decision by
synthesizing a time-based system and sensor-based system
as a mechanism to manage traffic light timing strategies.
An et al. [40] fuse decisions from three systems: accident
information, priority vehicle transition, and road information
to be used by traffic signal control that handles both coordi-
nated and isolated intersections.

The evaluation process finds the correlation between esti-
mated or found results with the actual scenario or bench-
marking data. It can be done quantitatively or qualitatively,
depending on the modeling of the DF methods [64]. The
evaluation process helps to describe the efficiency and effec-
tiveness of the implemented DF model or method. These
issues are discussed in detail in the next section.

IV. MODELING DATA FUSION

A. DF METHODS

Each DF technique, algorithm, or method is strengthened by
adopting a specific algorithm and/or mathematical model to
solve the domain’s particular problem. This section discusses
a few popular DF algorithms, methods, and techniques in
building DF models.

1) KALMAN FILTER

A Kalman filter (KF) is one of the most frequently used algo-
rithms to deal with estimating the unknown state over time.
The estimation value continuously gets improved through
observation [90]. KF is also known best for its ability to
deal with sensor noise and applicable for any dynamic
system which experiences consistent changes [22]. One of
KF implementation benefits is that it does not require much
data to be kept in the memory, and the only critical data is the
previous state of the sensor signal. This issue proves that the
KF suits real-time application systems with a minimum sys-
tem specification requirement [91]. However, KF is limited
to linear models of domain problems [92].
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FIGURE 3. Taxonomy of data fusion parameters in TFA systems.

KF algorithm focuses on two processing stages, predic-
tion and update. State estimation evolved from the previous
updated state, and the updated state is determined by find-
ing the difference between real measurement and estimation
measurement [93]. Once updated state estimation is figured
out, error covariance is calculated. A critical note here is that
having a smaller value of error covariance than prediction
error covariance indicates the state estimation parameter’s
measurement precision. This technique can also be used to
perform estimation based on historical state and incorpo-
rate with current measurement. The state equation is shown
below [12]:

X =A-x_1+w_1 (1
z=H x+v (2)

X; indicate estimation of state, at time t,
z; indicate measurement at time t,
w; indicate noise process,
vy measurement noise
A indicate state transfer matrix and
H indicate parameter of the variable measured

This technique is suitable to make predictions based on cur-
rently collected heterogeneous data from multi-sensor [18].
Wang et al. [12] applied a KF technique to produce traffic
state estimation based on the fusion process of GPS and
RTMS data. The experiment is measured using accuracy to
compare the accuracy during the off-peak and peak period.
All the used four intersections show high accuracy during
all conditions with Gaussian Mixture Model (GMM)-KF
methods, off-peak (97%, 94%, 78%, and 94%), and peak
period (94%, 92%, 91%, and 96%) compared to the other few
tested methods.
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Liu er al. [86] implement a progressive extended

KF (PEKF) to produce traffic conditions estimation on
heterogeneous data from multi-sensor. The sensors are
microwave and wireless communication, which provide data
of different characteristics. They introduce some inferences
during the estimation process when there is a feature conflict
from two different data sources. The absolute difference (AD)
pattern shows that the estimation model is close to the real
measurement.

Byon et al. [94] implement single-constraint-at-a-time
(SCAAT) KF to fuse data from various sources and produce a
better way of traffic conditions monitoring. The main concern
here is to focus on a single recent measured sensor data to
avoid any malfunction input device to interrupt the estimation
process. They perform several test scenarios to evaluate the
SCAAT KF. However, its performance efficiency is yet to be
proven.

Zhang and Poschinger [95] apply an extended KF (EKF)
based on the extended cell transmission model to estimate
turning ratios using detector data. They implement two blocks
of EKF-based filter that deal with real-time floating car and
historical data. Nine experiments are conducted, and the vari-
ance of both filtered turning ratio one and filtered turning
ratio two gives the best value based on the noise pair given
during the third experiment. Cai et al. [39] use noise immune
KF with non-Gaussian noise to perform traffic flow forecast-
ing on real traffic data. Its immunity towards non-Gaussian
noise is the main reason the technique is proposed. A dataset
consists of four motorways named Al, A2, A4, and A8 are
used in this study. The RMSE of the proposed model reduces
t0 38.83,22.76, 24.65, and 24.46 percent. Ottaviano et al. [96]
produce traffic estimation patterns with KF by integrating
data from heterogeneous real-time data sources. In this study,

51263



IEEE Access

S. A. Kashinath et al.: Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis

multiple DF methods that are implemented have reduced the
estimation error based on various incorporated data. After
integrating GPS data into the KF model, the RMPSE is
reduced to 7%. Saeedmanesh et al. [97] implement EKF to
produce traffic estimation for a large-scale urban network
by disaggregating a huge coverage area to multiple regions.
Real-time measurement of each region is made by aggregat-
ing the accumulation before estimation is determined. They
focus on producing state variables per region. Comparison
between estimation and real demand (simulation) accuracies
shows that the proposed model tends to follow a signal trend.

2) NEURAL NETWORK

A neural network (NN) is a subset of algorithms that mimic
the way the human brain operates [47]. NN comprises several
different layers (input layer, hidden layers, and output layer)
built up of nerve cells, and each node is paired to the next
layer node [25]. It could work in an incomplete knowledge
environment and perform parallel tasks simultaneously [98].
However, this technique requires accurate information and
requires a device with higher processing power [47].

An et al. [40] conduct a prediction study by applying a
fuzzy-based convolutional NN (F-CNN). F-CNN performs
features extraction on the data, then training data to construct
an improved CNN model and achieve the best results. The
authors compare it with different methods such as SARIMA,
VAR, DeepST, and RT-ResNet. Accuracy prediction of the
proposed method is shown in RMSE performance by an
improvement of 15.65%.

Peng et al. [41] propose a convolutional NN (CNN) with
a deep learning model to generate traffic flow forecasting
by using historical data of subway, taxi, and bus in Beijing.
Evaluation and comparison among different methods that
used the same dataset (TaxiBJ) are conducted. The proposed
model manages to reduce RMSE from 0.0017 to 0.0008 and
MAE from 0.00055 to 0.00031. Du et al. [99] proposed Fused
Deep NN (F-DNN) to enhance pedestrian detection accuracy
by introducing a pedestrian candidate generator. Evaluation
conducted based on different settings of height and visibility
of bounding box. In eight evaluation criteria, seven of them
show ideal log-average miss rate (L-AMR) percentage level
based on the proposed model.

Essien et al. [100] propose long short-term memory
NN to improve traffic speed prediction by merging data from
traffic and weather datasets. The model evaluation results
have shown MAE value as 0.049, RMSE 0.0892, and MSE
as 0.008. It shows that the environment factor plays a signif-
icant role in the traffic prediction model.

3) DEMPSTER-SHAFER

Dempster-Shafer (DS) technique is known as a probability-
based technique. It is used for classification based on math-
ematical theory, which is also known as the theory of belief
functions [22]. The (0, 1) are the judgment values used to
measure belief indication. DS is one of the suitable techniques
when dealing with uncertainty and imprecise data [70].
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DS is suitable for multi-sensor and heterogeneous data pro-
cessing as it can evaluate the trust of different resources [101].
Each evidence is represented by a basic probability assign-
ment which is also known as a density function. The relation
between the degree of belief (bel) and plausibility (pl) is as
below:

Pl (A) = 1 — bel(—A) 3)

Wahab et al. [102] detect a misbehaved cluster of vehicles
with the application of DS. Each node of the cluster helps
in evidence aggregation before a decision can be made by
the DS theory. DS plays an important role in filtering uncer-
tain evidence and exclude them. The result shows improved
detection ability for almost 40% and reduces selfish nodes
up to 30%. Mehrannia et al. [49] make full use of evidence
theory for fusing traffic sensor data received from various
sensory systems available within a certain segment of the road
and fuse the processed information to determine the area of
road incident. The Best Performance in Scenario (BPS) is
measured in this study, and the proposed technique is reliable
to achieve better accuracy in different scenarios. The standard
deviation is the variable for each scenario representation, such
as normal traffic distribution, cars not well concentrated, and
cars concentrated at the incident location.

Ning et al. [70] propose a reliability revaluation DS tech-
nique for real-time traffic estimation study. This technique
could fuse heterogeneous traffic data of different formats
like cameras and mobile phone data. The proposed method
shows the lowest percentage of mean state decision error
(MSDE), which is 6.9% for arteries and 8.3% for branches
than three other methods. Soua er al. [88] propose DS as one
of the fusing techniques to fuse decisions made for stream
data that consists of traffic and weather data and event-based
data that consists of traffic and tweet data. Few scenarios are
tested to find a correlation between DS and deep belief net-
work (DBN) as a feature level fusion technique to validate the
DF model. The proposed model has shown 88.91% accuracy,
85.96% precision, 86.23% G-Mean, and 89.89% sensitivity.
Fusion decision from the proposed framework has fulfilled
a high level of accuracy compared to other classic methods.
Gao et al. [45] use various data sources, including video data,
GPS data, and logging device data, to trace lane-changing
behavior among road drivers by assimilating improved
DS based on correlation coefficient (DST-CC). The fused
feature set from different modalities is combined in decision
level fusion to determine lane change events. The model’s
evaluation results have shown an accuracy of 84.17% for
139 lane change left (LCL) event while 84.81% for 158 lane
change right (LCR) event.

4) FUZZY LOGIC

The idea behind Fuzzy Logic (FL) is to measure the degree
of the state by stimulating human reasoning rather than
judging the value based on absolute truth (1) or absolute
false (0) scales [40], [103]. Some advantages of FL include
its simplicity and ability to deal with imperfect data [104].
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However, it requires enough understanding of possible sce-
narios that may arise [105]. The input signals generated by
sensors can be in various forms. Each of the inputs or fuzzy
sets is being mapped to certain real numbers. A member-
ship value between [0,1] range is represented based on a
mathematical basis to associate memberships to fuzzy vari-
ables in the fuzzification process. The fuzzification process is
determined by rules that have been set and fuzzy inferences.
Subsequently, the defuzzification is performed by functions
such as the centroid that estimate a point over a fuzzy area to
generate the final outputs.

Chen et al. [106] carry out a study on TFA prediction
by applying fuzzy deep learning. This research integrates
fuzzy representation in the deep learning model to reduce
uncertain data. The proposed multilayer model obtained the
best result with RMSE of 0.3037 and MRE of 0.2045 com-
pared to few other popular algorithms such as ARIMA,
DeepST, and CNN. Wang et al. [107] employ multilevel
fuzzy theory to fuse features from real-time connected vehicle
data to perform traffic condition evaluation. Within one hour
of data, 92.6% of total packet data are classified as valid.
Bouyabhia et al. [108] applied fuzzy switching linear models
to produce traffic state estimation from GPS data collected
from the dataset. Evaluation of the proposed model based
on open England traffic datasets shows 9% of the maximum
absolute relative error.

5) JOINT PROBABILISTIC DATA ASSOCIATION
Data association in DF implementation is a primary step in
data preparation, and this is performed at the data level phase,
where each incoming data must be received within time
intervals. This task is performed before the estimation process
takes place [22]. Joint probabilistic data association (JPDA),
by the name itself, already indicates that data association
is the primary goal. JPDA connects detected measurement
within a specific interval of time with the target [109].
Various algorithms can be implemented under data associ-
ation, for example, Multiple Target Tracking (MTT), Multiple
Hypothesis Test (MHT), and Probabilistic Data Association
(PDA) [22]. Joint association probabilities can be depicted as
below [96]:

1
PO1Z1) = £p @10, Xi) PO | Xi) “

K indicate normalization constant
X indicate target state vector
P (0| Xy ) indicate the probability of assignment 6

Garcia et al. [110] compare JPDA over other data associ-
ation techniques, which is the global nearest network. They
incorporate two types of sensors and perform JPDA to the
incoming sensor data to fuse data by applying the MTT
approach to enhance the pedestrian detection mechanism.
The proposed model shows 82.29% of positive detections
with the lowest 1.11% misdetections per frame, compared
to other devices and techniques discussed in this study.
Hu et al. [111] used a joint probabilistic model to fuse
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movement data at lower-level detection to perform data clas-
sification on traffic scene prediction, engaging two hierarchi-
cal modules: upper and lower modules. Within ten frames of
test scenario, RMSE shows 0.41, 0.33, 0.22, 0.14, 0.04 and
0.02 for each 4s, 3s, 2s, 1.5s, 1s and 0.5s interval.

6) BAYESIAN
Bayesian is a statistical analysis technique that could produce
the probability of an event or data source [37] by adopting the
mathematical Bayes theorem of probability rule. This prob-
ability value is called posterior distribution, and this value
summarizes the state of input by combining information from
existing data with the help of a certain likelihood function.
Bayesian is a simple yet powerful classification technique
that works well for a large set of data. Bayes Theorem is
shown below:

P(A|B) = w (%)

(B)

A, B indicate events
P (A | B) indicate the probability of A given B is true
P (B|A) indicate the probability of B given A is true
P (A), P (B) indicate independent probabilities of A and B

Zhang et al. [37] apply a combination of Bayesian methods
to integrate multiple speed predictions from different traffic
sources of data by fusing them to achieve speed estimation by
considering a few traffic factors. The proposed model’s eval-
uation shows better accuracy than other models: MAE 14.35,
MAPE 5.92, and RMSE 9.77. Mil and Piantanakulchai [36]
propose a framework of travel time estimation by com-
bining Bayesian and GMM to enhance sensor accuracy
data that contributes to travel time accuracy. From three
case studies engaged in this study, MAPE shows the range
of 3.46% to 16.3%.

Zhu et al. [112] propose a short-term traffic flow estimation
model by applying Bayesian Network (BN), which takes spa-
tial and temporal aspects into considerations. The prediction
is performed based on variables and conditional distributions.
The model shows a MAPE average of 18.2, 14.5, and 13.5 for
five minutes, 10 minutes, and 15 minutes data from three
different interval data. Liu et al. [34] carry out research on
travel time estimation based on loop and probe vehicle data.
They apply Bayesian fusion to fuse estimated travel time and
develop an iterative estimation concept to enhance Bayesian
estimation. The evaluation results show that the MAPE value
is reduced to 4.8% and prove that Bayesian is a robust esti-
mator.

7) K-NEAREST NEIGHBOR

Clustering is a technique of grouping unlabeled data into
a group based on certain characteristics of the data. The
k-nearest neighbor (KNN) is one classification algorithm
that can process features from numerical and categorical
types [113]. The basic idea behind the KNN algorithm is to
classify new data points received based on data characteristics
defined from available data.

51265



IEEE Access

S. A. Kashinath et al.: Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis

Distance between data (test data and training data) can
be calculated in various ways, and one of them is using
Euclidean distance. The formula is shown below [114]:

N. N,

SWuv) = | DY () = vali j)* (6)

i=1 j=1

S indicate the degree of similarity between two sets of
data v, and v,, indicate different sets of data

In recent studies, the KNN-based technique proves its
ability to integrate with other DF techniques to improve
the clustering process [115]. Yu er al. [114] develop a
prediction model of short-term traffic conditions using the
KNN algorithm. In this model, KNN groups each incom-
ing data from a target road link, upstream and downstream,
before the prediction process occurs. The proposed model
shows the average of MAPEs of the first to fifth predic-
tions as 10.37%, 13.58%, 16.81%, 19.49%, and 20.53%.
Coluccia et al. [53] propose a set of detection procedures
for radar detection by applying the KNN classifier algorithm.
Tak et al. [35] make some improvements on KNN that is
used for a traffic state prediction model. They introduce
single-level and sequential search strategies to improve the
data process and accuracy. Error distribution is measured
and compared for the proposed model and traditional KNN
algorithm. The proposed model shows that the error dis-
tribution is reduced (25% reduced to 2%) within the first
18 minutes compared to another algorithm that becomes
stable after 27 minutes. Yu ef al. [116] work on a study
to generate short-term traffic state prediction. This model
identifies the current pattern of traffic based on the historical
state to make the prediction. Evaluation conducted shows that
the proposed model achieves the best performance compared
to another model with MAPE value roughly by 25.15%,
12.19%, 22.18%, 31.20%, 28.37%, 29.93%, and 27.62%.

8) SOFTWARE AGENT
A software agent (SA) is a software component that can
autonomously execute certain tasks, communicate, and share
information within a system [117]. SA has intelligent capa-
bilities to perform tasks based on certain plans and strategies.
Its performance provides autonomous control to entities and
systems. Each of these categories can instantiate different
agents. An agent type depends on the field of study and the
application domain that the agent is situated in [103]. The
computational and task-specific are the most suitable agent
types in DF studies. The flexibility brings great potential
to achieve a modular-based system with less dependency
and higher scalability [118]. However, the lack of efficient
coordination between agents might affect overall system per-
formance as this is one of the important characteristics of
agent-based systems [119].

The modeling and implementation of an agent-based
TFA system can be adapted according to the system setup
and environment. Hamidi and Kamankesh [120] propose a
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three-layered agent-based system to perform traffic and trans-
portation management during emergency conditions with
consideration of traffic flow improvement. The result shows
the positive impact on the road network’s average speed when
drivers use the proposed route. Tan et al. [121] highlight a
local and supervisory agent concept in a hierarchical-based
multi-agent system. A local agent has the capability to per-
form the best control based on the decision made within
limited knowledge exploration, while a supervisory agent
has a long-term learning experience to provide the best con-
trol decision to all local agents. The proposed model shows
a 30.8% reduction of average delay compared to the classic
model.

Xu et al. [122] develop multiple agents that are situated in a
traffic control system to optimize traffic timing and enhance
network performance of a road stretch for actuated control
operation mode. This system is divided into two separate
modules, and communication between them is in the form of a
hierarchical multi-agent system (MAS). The proposed model
shows a significant reduction of travel delay by 17.63%,
7.16%, and 8.25% over other methods while incrementing
in average speed by 18.5%, 7.81%, and 8.62% over other
methods.

9) HYBRID ALGORITHM

Integrating data from various resources and large-scale sys-
tems require a robust model that can liaise with different
data sources [69], [123]. Most Al-related technology and
algorithms such as Deep Learning (DL), Machine learning
(ML), and optimized tools can be utilized to achieve optimum
results [124].

Few TFA related studies discuss Al contribution to DF
framework when integrating with huge data from various data
sources [9], [62], [63], [100], [88]. Al-related techniques have
improved few areas of DF implementation in TFA related
study, such as traffic flow prediction [41], [88], [106], [125],
pedestrian detection module [126], traffic data classifica-
tion [127], traffic speed prediction [38] and missing value
estimation. Figure 4 shows a missing value estimation based
on the DF technique in the training phase of the multimodal
deep learning model (MDLM) of Li et al. [128].
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FIGURE 4. DF Improvement training procedure of an MDLM [128].

DL methods are known for the ability to manage the fusion
process of heterogeneous data from multiple sources and

VOLUME 9, 2021



S. A. Kashinath et al.: Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis

IEEE Access

robust enough to handle substantial unsupervised data from
those multiple heterogeneous sources [69]. This technique
can learn features with less preliminary knowledge and pro-
duce a certain pattern, which helps in decision-making [125].

On the other hand, ML provides a mechanism with which
the machine or computer makes a certain discovery by learn-
ing from real-world data to gain an understanding of the pat-
tern to perform a required task, and it is a continuous learning
processing towards the huge data [127]. ML is proven to
be one of the best classifier algorithms that link data from
different sets of data by finding correlations among them
and getting them converted into meaningful features [129].
Li et al. [38] implement ML by combining a few different
DF techniques in the model to produce traffic speed predic-
tion. Features are extracted from incoming data before the
ML model performs its prediction. Four prediction models
are compared, and the data level fusion shows that support
vector regression performs well with a MAPE value of 7.85%
and a RMSE of 8.71%. Figure 5 shows an example of
a DF model based on a multi-agent system that controls
several ML classifiers [119].
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FIGURE 5. Decision level fusion of ML classifiers [119].

Koesdwiady et al. [125] implement a combination of
DL, multi-task learning (MTL), and decision level by using
connected vehicle data as well as weather information to
get a better prediction of traffic flow. The proposed model
improves accuracy by having an MAE of 0.0352, 0.0250,
and 0.0654 for low traffic, medium traffic, and high traffic
conditions, respectively, from the performance comparison
matrix. The RMSE values for three conditions are 0.0481,
0.0356, and 0.0954. Li et al. [128] propose a multimodal
DL model incorporating feature fusion to perform missing
value estimation from heterogeneous traffic data. An experi-
ment is conducted, and the correlation between missing data
and accuracy is measured. The proposed model shows better
accuracy by improving the RMSE by 49.38%, 32.20%, and
22.21% compared to the other three models.

Adetiloye and Awasthi [9] propose a big data fusion inte-
gration model to manage two different kinds of data from
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homogeneous and heterogeneous sources of data. This model
consists of an ML algorithm to fuse quantitative data, such
as backpropagation NN, RF, and DBN, to manage the same
format of data. The heterogeneous model of fusion achieves
a 0.1262 MAE value compared to other individual tech-
niques. Gu et al. [130] propose the Bayesian technique’s
deployment to optimize the outputs of three types of DL
prediction algorithms in the TFA model. The proposed model
shows great accuracy from each aspect by achieving an MAE
of 7.41, MAPE of 12.44%, and VAPE of 13.94% compared
to the other seven models. The architecture of the improved
DL-Bayesian encompasses a combination model that is used
for short-term TFA prediction.

Nowak et al. [129] present a DF classifier module by
combining Bayesian and decision tree to perform real-time
processing data for a multi-sensor system environment. Based
on the confusion matrix evaluation, the proposed model’s
error rate shows the lowest value, 3.41%, compared to the
other two classifiers. Din et al. [131] propose a robust model
of big data clustering with a routing technique to analyze
data from multiple sensor systems. They divide the clustering
algorithm into three phases: (1) setup phase, (2) steady phase,
and (3) routing phase, and they prove efficient results at the
end of the study. Table 4 shows some examples of hybrid
models in the TFA study.

TABLE 4. Examples of hybrid models in TFA.

Methods Result to achieve Ref.
Backpropagation NN, RF, DBN | Big DF for traffic congestion 9]
EKF, Sentiment analysis, cluster | Traffic congestion prediction [9]
FL, CNN Traffic flow prediction [40]
DL, NN Big DF for traffic speed [100]
DL, DS Traffic flow prediction [88]
DL, FL Traffic flow prediction [106]
RF, ML Traffic accident detection [132]
Bayesian, Decision tree Data classification of real-time data | [129]
Bayesian, DL Traffic flow prediction [130]

Performing prediction or estimation based on a single
method has its own limitation when aggregating linear and
non-linear models [42]. Higher accuracy results can be
achieved by various sources integration to the combination
algorithm model [37].

B. EVALUATION TECHNIQUES AND CRITERIA
Research outcome requires certain measurement tools to
define the effectiveness of DF models, either quantitatively
or qualitatively. Shen and Zhu [133] highlight the need for
evaluation after performing the estimation fusion to measure
the performance efficiency level. Linear or non-linear pro-
cess of selected DF method depends on the data properties,
proposed model, and the domain issue being modeled. Four
techniques that are briefed in this section are root mean square
error (RMSE), root mean percentage square error (RMPSE),
mean absolute error (MAE) and mean absolute percentage
error (MAPE).

Cai et al. [134] apply MAPE and RMSE to measure
the short-term traffic forecasting model to find the relative
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errors. Cai et al. [39] also evaluate the proposed forecasting
model with MAPE and RMSE using benchmark datasets.
Kawasaki et al. [65] choose MAPE to measure the
average error ratio in the estimation result. Mil and
Piantanakulchai [72] estimate their proposed model’s travel
time error by adopting MAPE and MAE.

RMSE is more reactive towards outliers and suitable for a
normal error distribution [135]. Since most of the prediction
model tends to produce normal distribution, RMSE would be
the most suitable choice [136]. On the other hand, MAPE
is used when there are no extreme or zero values found in
the data [137], [138]. Jiang et al. [17] apply RMSE to evalu-
ate a proposed traffic state estimation model’s performance.
Seo and Kusakabe [73] choose MAPE and RMSE to weigh
the error in traffic density estimation. Li er al. [38] use
MAPE and RMSE to compare traffic speed prediction value’s
effectiveness with ground truth values. Deng et al. [54] mea-
sure their traffic estimation effectiveness value by using the
MAPE evaluation metric.

1) ROOT MEAN SQUARE ERROR (RMSE)

Comparing bias of prediction over the actual result is a
frequently used technique to evaluate the proposed models’
accuracy [139], [140]. It can be measured over time based on
the type and source of the implemented data [134]. This intro-
duces the concept of root mean square error (RMSE), which
is a quite common and standardized measure for regression
analysis. It is the standard deviation of the prediction errors
by determining the estimation error variance [141]. RMSE
provides a clear picture of the error scattering [136]. The
formula to measure RMSE is as below [68]:

N
1 R
RMSE = | — > 1: (n — "xn)° (7
=

2) ROOT MEAN PERCENTAGE SQUARE ERROR (RMPSE)
Root Mean Percentage Square Error (RMPSE) calculation
has the same characters as RMSE, or known as an extension
of RMSE, by taking the mean of the target result to form a per-
centage value. This value indicates the magnitude percentage
error of the value from the result calculated. The formula to
measure RMPSE as below [68]:

~

1 (= "xp)?
n n

n=1

3) MEAN ABSOLUTE ERROR (MAE)

Other than RMSE, MAE is another most common way to
measure variables’ accuracy. It is used to calculate the aver-
age errors in a set of estimated values over actual values.
This evaluation technique is scale-independent [140] and
extremely useful for model evaluations and gives the same
weight to the error [136]. The formula to calculate MAE as
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below [128]:
1 n
MAE = - 21: leil 9)
1=

4) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
Mean Absolute Percentage Error (MAPE) is another way
of measuring the effectiveness of research result imple-
mentation and is known as the standard of indicating
errors [139], [140]. This measurement tool is used to measure
forecasted accuracy by calculating the average of normalized
absolute error [54] by finding the average ratio over the
data. This value represents the mean absolute percentage
error value between actual and predicted value in percent-
age form [140], [141]. The formula to calculate MAPE as
below [68]:
MAPE = 100 x L 3~ B ="l 10
= 100250 T a0
n=1
V. ANALYSIS AND DISCUSSION
DF in TFA related studies has contributed signifi-
cant improvement to the ITS field such as travel
time estimation [72], [74], [77], traffic incident detec-
tion [49], [142], [143], driver’s lane-changing behavior [45],
traffic state estimation [65], [70], [71] road/highway manage-
ment [13], [52], [54], smart traffic light system [144], opti-
mizing pedestrian detection [110], [99] and traffic emergency
management [145]. System variables like state estimation
for freeways, highways, and speed are valuable for traffic
light operation improvement, surveillance, management and
to improve human decision-making [21], [146]. Forecasting
and traffic incident are other outputs of DF in TFA related
applications, while incident detection could help in emer-
gency response improvement [1], [21], [147]. Detection pro-
cedures for vehicles and pedestrians can improve DF methods
manipulation to achieve better detection accuracy [53], [99],
[110], [148].

A. ANALYSIS

A few DF methods or techniques implemented in TFA related
studies are discussed in Section IV. Table 5 shows these
methods, the relationships between these methods, the related
abstraction level of fusion, the testing datasets and their
characteristics, the evaluation variables and criteria, and the
outcome to be achieved.

Based on Table 5, we observe that the KF is mainly applied
for performing feature level fusion. It is used in traffic state
estimation [12], [86] and vehicle turning ratio estimation [95].
NN is best served as a feature level fusion technique to
produce flow prediction [40], [41], and filtering pedestrian
detection [99]. DS works best as a classifier at decision level
fusion to detect lane change activity [45], detect misbehaved
clusters of vehicles [102], and traffic state estimation [70].
FL may serve either one or both feature level and decision
level fusion to achieve traffic prediction [106] and estima-
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TABLE 5. DF methods in TFA.

DF Abstraction Dataset Evaluation £
Method Level Fusion Testing data Characteristic Variable Criteria Outcome Ref.
KF Feature level Four segments road in Hangzhou  |Multi-sensor, Average speed, Accuracy Traffic state estimation [12]
heterogeneous average occupancy
(congestion level)
Feature level Jiangsu freeway province, China Multi-sensor, Traffic flow, speed, |Absolute difference |Traffic condition [86]
heterogeneous, real-time |cellphone counts estimation
Feature level VISSIM traffic simulation Heterogeneous Traffic flow, density |Variance Vehicle turning ratio [95]
estimation
NN Feature level Beijing taxicab (TaxiBJ) trajectory |[Multi-sensor, GPS, temperature, RMSE, MSE, MAE |Traffic flow prediction [40]
and meteorology data heterogeneous, real-time |wind speed, date
Feature level Beijing subway (SubwayBJ) and Multi-sensor, Check-in & check-out|RMSE, MAE Traffic passenger flow [41]
Beijing bus (BusBJ) heterogeneous, real-time |time, getting-in & prediction
getting of time, GPS
Feature level Caltech Pedestrian dataset Heterogeneous Bounding box, frame |L-AMR To filter pedestrian [99]
candidate
DS Decision level |Detector and video cameras from  [Multi-sensor, GPS, speed MSDE Traffic state estimation [70]
Guangzhou Traffic Police heterogeneous, real-time
Headquarters, and GPS data from
Guangzhou Communications
Commission of Municipality
Decision level |MATLAB network simulator and  [Multi-sensor, Speed, velocity Probability of Determine misbehave [102]
VanetMobiSim traffic simulator heterogeneous, real-time |distance, GPS detection cluster of vehicles
Decision level |Ten driver's real driving around Multi-sensor, GPS, wheel Confidence, Detect lane change event | [45]
University Michigan, Arbor and heterogeneous, real-time |odometry, onboard  |accuracy
Dearborn campus diagnostic
FL Feature level Beijing Taxi (TaxiBJ) and TaxiCab |Multi-sensor, GPS, input flow, MAE, RMSE, MRE |Traffic flow prediction [106]
GPS heterogeneous, real-time |output flow, weather,
temperature
Feature level Real-time data of experimental Heterogeneous, real-time |GPS, number of Multilevel fuzzy Traffic condition [107]
vehicles, Pingguoyuan South Road, lanes, road length synthetic estimation
Shijingshan District of Beijing
Decision level  |Online highway data of England Multi-sensor, Average density, MRE Traffic state estimation [108]
expressways (Jan Ist, 2014 —Jan  |heterogeneous, real-time |speed, GPS
31st, 2014)
JPDA Data level Real-world devices (a laser scanner, [Heterogeneous, real-time |GPS, pedestrian Positive detection Fuse detection data [110]
a camera, and a car) detection rate, misdetection
rate
Data level Computer simulations Multi-sensor, Velocity, detection  |MSE Fuse and associate data [149]
heterogeneous
Data level NGSIM Multi-sensor, Trajectory, velocity, |RMSE Fuse motion models [111]
heterogeneous, real-time |acceleration
Bayesian Feature level VISSIM simulation on 18 links and |Multi-sensor, GPS, volume, speed, |MAPE To estimate travel time [34]
eight intersections heterogeneous, real-time |occupancy
Feature level California I-880 corridor Multi-sensor, GPS, speed MAPE To estimate travel time [36]
heterogeneous, real-time
Feature level Microscopic traffic simulation Heterogeneous, real-time |Detection, volume, |MAPE To estimate short-term [112]
dataset speed traffic flow
Feature level Interstate 5 (I-5) freeway in the Multi-sensor, Volume, speed, MAE, MAPE, To estimate speed by [37]
northwest region of Washington heterogeneous, real-time |average vehicle RMSE integrating data from
State length, timestamp different sources
KNN Data level Kyungbu expressway, Republic of [Multi-sensor, GPS, speed, vehicle | Error distribution Travel time prediction [35]
Korea heterogeneous, real-time |volume
Data level GPS data of taxis in Foshan, China. |Multi-sensor, Delay, GPS, speed, |MAPE Fuse road data upstream | [114]
6 road links on Foshan Avenue heterogeneous, real-time |velocity and downstream
direction
Data level Beijing Wroker's Stadium Heterogeneous, real-time | Average speed, GPS |[MAE, MAPE Traffic state prediction [116]
SA Decision level |Simulation (18 one-way street and |[Heterogeneous, real-time |Vehicle volume, Average speed of | Traffic management [120]
43 two-way street) traffic flow, speed vehicles transportation
Decision level |Simulation of an arterial traffic Heterogeneous, real-time | Traffic state, cycle Average delay Traffic control decision | [121]
network time fraction reduction
Decision level |Simulation (MATLAB and Heterogeneous, real-time | Traffic flow, speed, |Travel delay Traffic control signal [122]
VISSIM) queue length reduction
Feature and Genetec blufaxcloud travel-time Multi-sensor, Travel time, MAE, R Traffic congestion [9]
decision levels |system engine and Twitter heterogeneous, real-time prediction
Feature level Transport for Greater Manchester ~ [Multi-sensor, Average speed, flow, |MAE, RMSE, MSE |Traffic speed prediction | [100]
(TfGM) heterogeneous, real-time |density
Hybrid Feature level Caltrans Performance Measurement |Multi-sensor, Traffic flow, weather, [RMSE, MAE Traffic flow prediction [88]
Algorithm Systems (PeMS), MesoWest heterogeneous, real-time |event (social media
project, and CityPulse Dataset data)
Collection
Feature level Beijing Taxi (TaxiBJ) Multi-sensor, GPS, input flow, MAE, MRE, RMSE |Traffic flow prediction [106]
heterogeneous, real-time |output flow
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tion [107], [108]. JPDA is mainly implemented at data level
fusion and used mostly during the early stage of data process-
ing in traffic data association [110], [149], and motions [111].
Bayesian works well in achieving estimation value in travel
time [34], [36], speed [37], and traffic flow [112]. KNN is
another method that performs well at data level fusion to pro-
duce travel time [35], traffic state prediction [116], and fusing
incoming traffic direction [114]. SA proves its ability at deci-
sion level fusion in traffic light management system [120]-
[122]. The flexibility of the hybrid models that they work
at feature level and decision level fusions. They are imple-
mented to achieve traffic congestion prediction [9], traffic
speed prediction [100], and traffic flow prediction [88], [106].
Figure 6 summarizes the DF taxonomy in TFA studies.
Integration among the various sources of data ensures
higher accuracy and optimized results [37]. This is clearly
presented in the review of Table 5. All the TFA study focuses
on one or more combinations of multi-sensor, heterogeneous
and real-time data. A few studies conducted focus on improv-
ing highway efficiency and dynamic estimation by incorpo-
rating data from different sensors [14], [52], [96]. Adetiloye
and Awasthi [9] propose a traffic congestion prediction model
by integrating two different kinds of data, homogeneous
and heterogeneous, from various resources. A specific DF
technique handles each ‘block’ of data before features are
used to achieve the result. An et al. [40] make full use of
the weather, wind speed, and GPS data to perform traffic
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flow prediction. Akbar et al. [64] proposed a model for con-
gestion prediction by considering traffic data, Twitter data,
and weather data as input streams. Extensive exploration of
hybrid models brings a positive impact to the TFA study. They
provide more dynamic models to deal with different kinds
of system environments, including prediction [146], [147],
fixing missing values from heterogeneous data [128], and
post-impact of an incident [148]. SA improves DF model
performance at a higher level and considers all required data
and specifications [120].

B. OPEN RESEARCH DIRECTIONS

The ability to gather data from multiple sources or/and multi-
modal traffic sensing devices improves numerous areas in ITS
development. However, the challenges or complexities in the
model implementation are undeniable. Figure 7 summarizes
the identified challenges of DF-TFA research and its appli-
cations from this review. The review yields five challenging
categories and their related issues. The categories are devices,
data preprocessing, research, system architecture, and pro-
cessing complexity, and their description is as below:

1) DEVICE ISSUES

Adopting multi-device requires additional indexing, synchro-
nization, and mapping skills and methods [80] to ensure the
device’s reliability as data collection tools. However, there is
a costinvolved to ensure device stability and maintenance [2].
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2) DATA PRE-PROCESSING ISSUES

Huge and unstructured data is hard to manage and requires
complex preprocessing methods [150], [151]. Dealing with
those data in a multi-sensor and heterogeneous sources envi-
ronment is the real challenge [60], [69]. Data quality and
missing values from the datasets need to be taken care of to
avoid inaccurate results [64], [152].

3) RESEARCH ISSUES

Identifying critical data to fit the research purpose is a real
challenge [60], [150]. The diversity of algorithms and meth-
ods require intensive study to formulate a suitable model
to solve domain problems [9], [61]. Finding the complete,
suitable, and relevant dataset is another challenge when eval-
uating DF proposed models or solutions, especially for a
data-dependent model [25]. Performing prediction or estima-
tion kind of output in TFA study requires benchmarking to
evaluate and validate the performance and ability of the DF
model [130]. In DF related studies, it is difficult to have a
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benchmark at the model level. Still, it is possible to compare
similar purpose algorithms such as ML algorithms for classi-
fication or prediction tasks.

4) SYSTEM ARCHITECTURE ISSUES

Hardware specification requires compatible software to be
integrated to ensure system performance and stability [153].
Integration of different types of devices, sensors, algorithms,
and methods has its own complexities. Collecting data from
various sources and inputting them into the DF model
requires integration with several systems that are equipped
with stable communication networks [154]. In cloud comput-
ing as a data center, security and privacy leakage are other key
areas that need to be focused on [19], [27].

5) PROCESSING COMPLEXITY ISSUES

Collecting data from various sources and processing them
in a real-time environment requires complex distributed and
dynamic systems [154]. Heterogeneous data sources increase
data completeness and reliability. However, dealing with het-
erogeneous data with different characteristics may require a
model combination as a solution that possibly increases the
complexity [69], [61].

There are various ways of fixing the current challenges
of DF implementation. Multiple DF method combination or
hybrid algorithm is one way of dealing with complex and
unstructured data [61]. Flexible system architecture with suit-
able technology can provide the means to overcome the chal-
lenges of modeling DF for TFA, like reducing the complexity
of such systems. The source of data is not limited only to traf-
fic sensors as discussed in the previous section, but recently,
researchers also exploit more unstructured and dynamic data
from social media networks, such as Twitter [9], [64], [147],
and Instagram [155].

Alkouz and Aghbari [155], in their recent study, develop
a traffic jam prediction classifier by merging data from dif-
ferent sources of social media feeds in different lingual. This
indicates, more dynamic data from various data sources has
a bright potential to be incorporated in DF of TFA related
studies in the future. Recently, Li et al. [156] conduct specific
research about trajectory data in the latest development for
traffic study purposes. IoT helps in integrating data from
different methods for various purposes [27]. Akbar et al. [64]
work on a study to analyze IoT data by integrating them
(traffic, weather, and Twitter data) to predict real-time con-
gestion. Mei et al. [157] make full use of crowd-sensing
traffic vehicle data to provide a city monitoring mechanism.
Mai-Tan et al. [158] propose an architecture of crowdsourc-
ing data for traffic estimation, which consists of various data
from monitoring systems, public websites, and mobile data
collection.

VI. CONCLUSION

This paper attempts to provide an insight into the proposed
DF model specifically in TFA related studies. Production
of this review paper entails carefully analyzing the content
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of 158 articles from the year 2010 until 2020. The review
includes 139 research articles and 19 review articles. This
review offers a comprehensive insight into DF modeling and
implementation in TFA. It describes the evaluation methods
and criteria being applied according to the incorporated traffic
parameters. Moreover, this paper attempts to link each fusion
level with some suitable DF methods and traffic variables to
provide a clear insight into the way DF is being utilized in
various ITS studies. Each DF method has its specific role
either at data level, feature level, or decision level fusion.
The data sources that a DF model deals with specify the
complexity and challenges associated with it. The complexity
results from multi-sensor, heterogeneous and real-time sys-
tem environments. Continuous exploration of hybrid solution
models of DF might lead to a bright future in various TFA
fields. Subsequently, intensive reviews should be initiated to
focus on DF’s involvement in these areas in order to innovate
better solutions.
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