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ABSTRACT Deep learning (DL) is playing an increasingly important role in our lives. It has already made a

huge impact in areas, such as cancer diagnosis, precision medicine, self-driving cars, predictive forecasting,

and speech recognition. The painstakingly handcrafted feature extractors used in traditional learning,

classification, and pattern recognition systems are not scalable for large-sized data sets. In many cases,

depending on the problem complexity, DL can also overcome the limitations of earlier shallow networks

that prevented efficient training and abstractions of hierarchical representations ofmulti-dimensional training

data. Deep neural network (DNN) uses multiple (deep) layers of units with highly optimized algorithms and

architectures. This paper reviews several optimization methods to improve the accuracy of the training and

to reduce training time. We delve into the math behind training algorithms used in recent deep networks.

We describe current shortcomings, enhancements, and implementations. The review also covers different

types of deep architectures, such as deep convolution networks, deep residual networks, recurrent neural

networks, reinforcement learning, variational autoencoders, and others.

INDEX TERMS Machine learning algorithm, optimization, artificial intelligence, deep neural network

architectures, convolution neural network, backpropagation, supervised and unsupervised learning.

I. INTRODUCTION

Neural Network is a machine learning (ML) technique that is

inspired by and resembles the human nervous system and the

structure of the brain. It consists of processing units organized

in input, hidden and output layers. The nodes or units in

each layer are connected to nodes in adjacent layers. Each

connection has a weight value. The inputs are multiplied

by the respective weights and summed at each unit. The

sum then undergoes a transformation based on the activa-

tion function, which is in most cases is a sigmoid function,

tan hyperbolic or rectified linear unit (ReLU). These func-

tions are used because they have a mathematically favorable

derivative, making it easier to compute partial derivatives of

the error delta with respect to individual weights. Sigmoid

and tanh functions also squash the input into a narrow output

range or option, i.e., 0/1 and−1/+1 respectively. They imple-

ment saturated nonlinearity as the outputs plateaus or satu-

rates before/after respective thresholds. ReLu on the other

hand exhibits both saturating and non-saturating behaviors

with f (x) = max(0, x). The output of the function is then fed

as input to the subsequent unit in the next layer. The result of

the final output layer is used as the solution for the problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Geng-Ming Jiang.

Neural Networks can be used in a variety of prob-

lems including pattern recognition, classification, clustering,

dimensionality reduction, computer vision, natural language

processing (NLP), regression, predictive analysis, etc. Here

is an example of image recognition.

Figure 1 shows how a deep neural network called Convo-

lution Neural Network (CNN) can learn hierarchical levels

of representations from a low-level input vector and success-

fully identify the higher-level object. The red squares in the

figure are simply a gross generalization of the pixel values of

the highlighted section of the figure. CNNs can progressively

extract higher representations of the image after each layer

and finally recognize the image.

The implementation of neural networks consists of the

following steps:

1. Acquire training and testing data set

2. Train the network

3. Make prediction with test data

The paper is organized in the following sections:

1. Introduction to Machine Learning

a. Background and Motivation

2. Classifications of Neural Networks

3. DNN Architectures

4. Training Algorithms
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FIGURE 1. Image recognition by a CNN.

5. Shortcomings of Training Algorithms

6. Optimization of Training Algorithms

7. Architectures & Algorithms – Implementations

8. Conclusion

A. BACKGROUND

In 1957, Frank Rosenblatt created the perceptron, the first

prototype of what we now know as a neural network [1].

It had two layers of processing units that could recognize

simple patterns. Instead of undergoing more research and

development, neural networks entered a dark phase of its

history in 1969, when professors at MIT demonstrated that

it couldn’t even learn a simple XOR function [2].

In addition, there was another finding that particularly

dampened the motivation for DNN. The universal approxi-

mation theorem showed that a single hidden layer was able

to solve any continuous problem [3]. It was mathematically

proven as well [4], which further questioned the validity

of DNN. While a single hidden layer could be used to learn,

it was not efficient and was a far cry from the convenience and

capability afforded by the hierarchical abstraction of multiple

hidden layers of DNN that we know now. But it was not

just the universal approximation theorem that held back the

progress of DNN. Back then, we didn’t have a way to train a

DNN either. These factors prolonged the so-called AI winter,

i.e., a phase in the history of artificial intelligence where it

didn’t get much funding and interest, and as a result didn’t

advance much either.

A breakthrough in DNN occurred with the advent of

backpropagation learning algorithm. It was proposed in

the 1970s [5] but it wasn’t until mid-1980s [6] that it was fully

understood and applied to neural networks. The self-directed

learning was made possible with the deeper understanding

and application of backpropagation algorithm. The automa-

tion of feature extractors is what differentiates a DNNs from

earlier generation machine learning techniques.

DNN is a type of neural network modeled as a multilayer

perceptron (MLP) that is trained with algorithms to learn

representations from data sets without any manual design

of feature extractors. As the name Deep Learning suggests,

it consists of higher or deeper number of processing lay-

ers, which contrasts with shallow learning model with fewer

layers of units. The shift from shallow to deep learning has

allowed for more complex and non-linear functions to be

mapped, as they cannot be efficiently mapped with shallow

architectures. This improvement has been complemented by

the proliferation of cheaper processing units such as the

general-purpose graphic processing unit (GPGPU) and large

volume of data set (big data) to train from.While GPGPUs are

less powerful that CPUs, the number of parallel processing

cores in them outnumber CPU cores by orders of magnitude.

This makes GPGPUs better for implementing DNNs. In addi-

tion to the backpropagation algorithm and GPU, the adoption

and advancement of ML and particularly Deep Learning can

be attributed to the explosion of data or bigdata in the last

10 years. ML will continue to impact and disrupt all areas

of our lives from education, finance, governance, healthcare,

manufacturing, marketing and others [7].

B. MOTIVATION

Deep learning is perhaps the most significant development in

the field of computer science in recent times. Its impact has

been felt in nearly all scientific fields. It is already disrupting

and transforming businesses and industries. There is a race

among theworld’s leading economies and technology compa-

nies to advance deep learning. There are already many areas

where deep learning has exceeded human level capability

and performance, e.g., predicting movie ratings, decision to

approve loan applications, time taken by car delivery, etc. [8].

On March 27, 2019 the three deep learning pioneers (Yoshua

Bengio, Geoffrey Hinton, and Yann LeCun) were awarded

the Turing Award, which is also referred to as the ‘‘Nobel

Prize’’ of computing[9]. While a lot has been accomplished,

there is more to advance in deep learning. Deep learning

has a potential to improve human lives with more accurate

diagnosis of diseases like cancer [10], discovery of new drugs,

prediction of natural disasters [11]. E.g., [12] reported that an

deep learning network was able to learn from 129,450 images

of 2,032 diseases and was able to diagnose at the same level

as 21 board certified dermatologists. Google AI [10] was able

to beat the average accuracy of US board certified general

pathologists in grading prostate cancer by 70% to 61%.

The goal of this review is to cover the vast subject of deep

learning and present a holistic survey of dispersed informa-

tion under one article. It presents novel work by collating the

works of leading authors from the wide scope and breadth

the deep learning. Other review papers [13]–[16] focus on

specific areas and implementations without encompass the

full scope of the field. This review covers the different types
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FIGURE 2. (a) Feedforward neural network [6]. (b) The unrolling of RNN
in time [6].

of deep learning network architectures, deep learning algo-

rithms, their shortcomings, optimization methods and the

latest implementations and applications.

II. CLASSIFICATION OF NEURAL NETWORK

Neural Networks can be classified into the following different

types.

1. Feedforward Neural Network

2. Recurrent Neural Network (RNN)

3. Radial Basis Function Neural Network

4. Kohonen Self Organizing Neural Network

5. Modular Neural Network

In feedforward neural network, information flows in

just one direction from input to output layer (via hidden

nodes if any). They do not form any circles or loopbacks.

Figure 2a shows a particular type of implementation of a

multilayer feedforward neural network with values and func-

tions computed along the forward pass path. Z is the weighed

sum of the inputs and y represents the non-linear activation

function f of Z at each layer. W represents the weights

between the two units in the adjoining layers indicated by

the subscript letters and b represents the bias value of the

unit.

Unlike feedforward neural networks, the processing units

in RNN form a cycle. The output of a layer becomes the

input to the next layer, which is typically the only layer in the

network, thus the output of the layer becomes an input to itself

forming a feedback loop. This allows the network to have

memory about the previous states and use that to influence

the current output. One significant outcome of this difference

is that unlike feedforward neural network, RNN can take a

sequence of inputs and generate a sequence of output values

as well, rendering it very useful for applications that require

processing sequence of time phased input data like speech

recognition, frame-by-frame video classification, etc.

Figure 2b demonstrates the unrolling of a RNN in time.

E.g., if a sequence of 3-word sentence constitutes an input,

then each word would correspond to a layer and thus the

network would be unfolded or unrolled 3 times into a

3-layer RNN.

Here is the mathematical explanation of the diagram:

xt represents the input at time t . U , V , and W are the

learned parameters that are shared by all steps. Ot is the

output at time t . St represents the state at time t and can

be computed as follows, where f is the activation function,

e.g., ReLU.

St = f (Uxt +Wst−1) (1)

Radial basis function neural network is used in classifi-

cation, function approximation, time series prediction prob-

lems, etc. It consists of input, hidden and output layers. The

hidden layer includes a radial basis function (implemented as

gaussian function) and each node represents a cluster center.

The network learns to designate the input to a center and

the output layer combines the outputs of the radial basis

function and weight parameters to perform classification or

inference [17].

Kohonen self-organizing neural network self organizes the

network model into the input data using unsupervised learn-

ing. It consists of two fully connected layers, i.e., input layer

and output layer. The output layer is organized as a two-

dimensional grid. There is no activation function and the

weights represent the attributes (position) of the output layer

node. The Euclidian distance between the input data and each

output layer node with respect to the weights are calculated.

The weights of the closest node and its neighbors from the

input data are updated to bring them closer to the input data

with the formula below [18].

wi (t + 1) = wi (t)+ α(t)ηj∗i(x(t)− wi (t)) (2)

where x(t) is the input data at time t, wi (t) is the ithweight at

time t and ηj∗i is the neighborhood function between the ith

and jth nodes.

Modular neural network breaks down large network into

smaller independent neural network modules. The smaller

networks perform specific task which are later combined as

part of a single output of the entire network [19].
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DNNs are implemented in the following popular ways:

1. Sparse Autoencoders

2. Convolution Neural Networks (CNNs or ConvNets)

3. Restricted Boltzmann Machines (RBMs)

4. Long Short-Term Memory (LSTM)

Autoencoders are neural networks that learn fea-

tures or encoding from a given dataset in order to perform

dimensionality reduction. Sparse Autoencoder is a variation

of Autoencoders, where some of the units output a value

close to zero or are inactive and do not fire. Deep CNN

uses multiple layers of unit collections that interact with

the input (pixel values in the case of image) and result in

desired feature extraction. CNN finds it application in image

recognition, recommender systems and NLP. RBM is used to

learn probability distribution within the data set.

All these networks use backpropagation for training.

Backpropagation uses gradient descent for error reduction,

by adjusting the weights based on the partial derivative of the

error with respect to each weight.

Neural Network models can also be divided into the fol-

lowing two distinct categories:
1. Discriminative

2. Generative
Discriminative model is a bottom-up approach in which

data flows from input layer via the hidden layers to the output

layer. They are used in supervised training for problems like

classification and regression. Generative models on the other

hand are top-down and data flows in the opposite direction.

They are used in unsupervised pre-training and probabilistic

distribution problems. If the input x and corresponding label y

are given, a discriminative model learns the probability dis-

tribution p(y|x), i.e., the probability of y given x directly,

whereas a generative model learns the joint probability of

p(x,y), from which P(y|x) can be predicted [20]. In general

whenever labeled data is available discriminative approaches

are undertaken as they provide effective training, and when

labeled data is not available generative approach can be

taken [21].

Training can be broadly categorized into three types:
1. Supervised

2. Unsupervised

3. Semi-supervised
Supervised learning consists of labeled data which is used

to train the network, whereas unsupervised learning there

is no labeled data set, thus no learning based on feed-

back. In unsupervised learning, neural networks are pre-

trained using generating models such as RBMs and later

could be fine-tuned using standard supervised learning algo-

rithms. It is then used on test data set to determine pat-

terns or classifications. Big data has pushed the envelope

even further for deep learning with its sheer volume and

variety of data. Contrary to our intuitive inclination, there is

no clear consensus on whether supervised learning is better

than the unsupervised learning. Both have their merits and

use cases. Reference [22] demonstrated enhance results with

unsupervised learning using unstructured video sequences

for camera motion estimation and monocular depth. Modi-

fied Neural Networks such as Deep Belief Network (DBM)

as described by Chen and Lin [23] uses both labeled and

unlabeled data with supervised and unsupervised learning

respectively to improve performance. Developing a way

to automatically extract meaningful features from labeled

and unlabeled high dimensional data space is challenging.

Yann LeCun et al. asserts that one way we could achieve this

would be to utilize and integrate both unsupervised and super-

vised learning [24]. Complementing unsupervised learning

(with un-labeled data) with supervised learning (with labeled

data) is referred to as semi-supervised learning.

DNN and training algorithms have to overcome two major

challenges: premature convergence and overfitting. Prema-

ture convergence occurs when the weights and bias of the

DNN settle into a state that is only optimal at a local level

and misses out on the global minima of the entire multi-

dimensional space. Overfitting on the other hand describes a

state when DNNs become highly tailored to a given training

data set at a fine grain level that it becomes unfit, rigid and

less adaptable for any other test data set.

Along with different types of training, algorithms and

architecture, we also have different machine learning frame-

works (Table 1) and libraries that have made training models

easier. These frameworks make complex mathematical func-

tions, training algorithms and statistically modeling available

without having to write them on your own. Some provide

distributed and parallel processing capabilities, and conve-

nient development and deployment features. Figure 3 shows

a graph with various deep learning libraries along with their

Github stars from 2015-2018. Github is the largest hosting

service provider of source code in the world [25]. Github

stars are indicative of how popular a project is on Github.

TensorFlow is the most popular DL library.

III. DNN ARCHITECTURES

Deep neural network consists of several layers of nodes. Dif-

ferent architectures have been developed to solve problems in

different domains or use-cases. E.g., CNN is used most of the

time in computer vision and image recognition, and RNN is

commonly used in time series problems/forecasting. On the

other hand, there is no clear winner for general problems like

classification as the choice of architecture could depend on

multiple factors. Nonetheless [27] evaluated 179 classifiers

and concluded that parallel random forest or parRF_t, which

is essentially parallel implementation of variation of decision

tree, performed the best. Below are three of the most common

architectures of deep neural networks.

1. Convolution Neural Network

2. Autoencoder

3. Restricted Boltzmann Machine (RBM)

4. Long Short-Term Memory (LSTM)

A. CONVOLUTION NEURAL NETWORK

CNN is based on the human visual cortex and is the neural

network of choice for computer vision (image recognition)
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FIGURE 3. Github stars by Deep Learning Library [26].

TABLE 1. Popular deep learning frameworks and libraries.

and video recognition. It is also used in other areas such

as NLP, drug discovery, etc. As shown in Figure 4, a CNN

consists of a series of convolution and sub-sampling lay-

ers followed by a fully connected layer and a normalizing

(e.g., softmax function) layer. Figure 4 illustrates the well-

known 7 layered LeNet-5 CNN architecture devised by

LeCun et al. [28] for digit recognition. The series of mul-

tiple convolution layers perform progressively more refined

feature extraction at every layer moving from input to

output layers. Fully connected layers that perform classifica-

tion follow the convolution layers. Sub-sampling or pooling

layers are often inserted between each convolution layers.

CNN’s takes a 2D n × n pixelated image as an input. Each

layer consists of groups of 2D neurons called filters or ker-

nels. Unlike other neural networks, neurons in each feature

extraction layers of CNN are not connected to all neurons in

the adjacent layers. Instead, they are only connected to the

spatially mapped fixed sized and partially overlapping neu-

rons in the previous layer’s input image or feature map. This

region in the input is called local receptive field. The lowered

number of connections reduces training time and chances of

overfitting. All neurons in a filter are connected to the same

number of neurons in the previous input layer (or featuremap)

and are constrained to have the same sequence of weights and

biases. These factors speed up the learning and reduces the

memory requirements for the network. Thus, each neuron in a

specific filter looks for the same pattern but in different parts

of the input image. Sub-sampling layers reduce the size of

the network. In addition, along with local receptive fields and

shared weights (within the same filter), it effectively reduces

the network’s susceptibility of shifts, scale and distortions

of images [29]. Max/mean pooling or local averaging filters

are used often to achieve sub-sampling. The final layers of

CNN are responsible for the actual classifications, where

neurons between the layers are fully connected. Deep CNN

can be implemented with multiple series of weight-sharing

convolution layers and sub-sampling layers. The deep nature

of the CNN results in high quality representations while

maintaining locality, reduced parameters and invariance to

minor variations in the input image [30].

In most cases, backpropagation is used solely for training

all parameters (weights and biases) in CNN. Here is a brief

description of the algorithm. The cost function with respect

to individual training example (x, y) in hidden layers can be
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FIGURE 4. 7-layer architecture of CNN for character recognition [28].

defined as [31]:

J (W , b; x, y) = 1

2
||hw,b(x)− y| |2 (3)

The equation for error term δ for layer l is given by [31]:

δ(l) =
(

(W (l))T δ(l+1)
)

.f
′
(z(l)) (4)

where δ(l+1) is the error for (l + 1)th layer of a network

whose cost function is J (W , b; x, y). f ′ (z(l)) represents the
derivate of the activation function.

∇w(l)J (W , b; x, y) = δ(l+1)(a(l+1))T (5)

∇b(l)J (W , b; x, y) = δ(l+1) (6)

where a is the input, such that a(1) is the input for 1st layer

(i.e., the actual input image) and a(l) is the input for l − th

layer.

Error for sub-sampling layer is calculated as [31]:

δ
(l)
k = upsample

(

(W
(l)
k )T δ

(l+1)
k

)

· f ′ (z(l)k ) (7)

where k represent the filter number in the layer. In the sub-

sampling layer, the error has to be cascaded in the opposite

direction, e.g., where mean pooling is used, upsample evenly

distributes the error to the previous input unit. And finally,

here is the gradient w.r.t. feature maps [31]:

∇
w
(l)
k

J (W , b; x, y) =
m
∑

i−1
(a

(l)
i ) ∗ rot90

(

δ
(l+1)
k , 2

)

(8)

∇
b
(l)
k

J (W , b; x, y) =
∑

a,b

(

δ
(l+1)
k

)

a,b.
(9)

where (a
(l)
i ) ∗ δ

(l+1)
k represents the convolution between error

and the i − th input in the l − th layer with respect to the

k − th filter.
Algorithm 1 below represents a high-level description and

flow of the backpropagation algorithm as used in a CNN as

it goes through multiple epochs until either the maximum

iterations are reached or the cost function target is met.

In addition to discriminative models such as image recog-

nition, CNN can also be used for generative models such

as deconvolving images to make blurry image sharper.

Algorithm 1CNNBackpropagation Algorithm Pseudo Code

1: Initialization weights to randomly generated value

(small)

2: Set learning rate to a small value (positive)

3: Iteration n = 1; Begin

4: for n< max iteration OR Cost function criteria met, do

5: for image x1 to xi, do

6: a. Forward propagate through convolution, pooling and

then fully conflected layers

7: b. Derive Cost Fuction value for the image

8: c.Calculate error term δ(l) with respect to weights for

each type of layers.

9: Note that the error gets propagated from layer to

layer in the following sequence

10: i.fully connected layer

11: ii.pooling layer

12: iii.convolution layer

13: d.Calculate gradient ∇
w
(l)
k

and ∇
b
(l)
k

for weights ∇
w
(l)
k

and bias respectively for each layer

14: Gradient calculated in the following sequence

15: i.convolution layer

16: ii.pooling layer

17: iii.fully connected layer

18: e.Update weights

19: w
(l)
ji ← w

(l)
ji +1w

(l)
ji

20: f.Update bias

21: b
(l)
j ← b

(l)
j +1b

(l)
j

Reference [32] achieves this by leveraging Fourier trans-

formation to regularize inversion of the blurred images and

denoising. Different implementations of CNN has shown

continuous improvement of accuracy in computer vision.

The improvements are tested against the same benchmark

(ImageNet) to ensure unbiased results.

Here are the well-known variation and implementation of

the CNN architecture.

1. AlexNet:

a. CNN developed to run on Nvidia parallel comput-

ing platform to support GPUs
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FIGURE 5. Linear representation of a 2D data input using PCA.

2. Inception:

a. Deep CNN developed by Google

3. ResNet:

a. Very deep Residual network developed by

Microsoft. It won 1st place in the ILSVRC

2015 competition on ImageNet dataset.

4. VGG:

a. Very deep CNN developed for large scale image

recognition

5. DCGAN:

a. Deep convolutional generative adversarial net-

works proposed by [33]. It is used in unsupervised

learning of hierarchy of feature representations in

input objects.

B. AUTOENCODER

Autoencoder is a neural network that uses unsupervised algo-

rithm and learns the representation in the input data set for

dimensionality reduction and to recreate the original data set.

The learning algorithm is based on the implementation of the

backpropagation.

Autoencoders extend the idea of principal component

analysis (PCA). As shown in Figure 5, a PCA trans-

forms multi-dimensional data into a linear representation.

Figure 5 demonstrates how a 2D input data can be reduced to a

linear vector using PCA. Autoencoders on the other hand can

go further and produce nonlinear representation. PCA deter-

mines a set of linear variables in the directions with largest

variance. The p dimensional input data points are represented

as m orthogonal directions, such that m ≤ p and constitutes a
lower (i.e., less than m) dimensional space. The original data

points are projected into the principal directions thus omit-

ting information in the corresponding orthogonal directions.

PCA focuses more on the variances rather than covariances

and correlations and it looks for the linear function with the

most variance [34]. The goal is to determine the directionwith

FIGURE 6. Training stages in autoencoder [36].

the least mean square error, which would then have the least

reconstruction error.

Autoencoders use encoder and decoder blocks of

non-linear hidden layers to generalize PCA to perform

dimensionality reduction and eventual reconstruction of the

original data. It uses greedy layer by layer unsupervised pre-

training and fin-tuning with backpropagation [35]. Despite

using backpropagation, which is mostly used in supervised

training, autoencoders are considered unsupervised DNN

because they regenerate the input x(i) itself instead of a

different set of target values y(i), i.e., y(i) = x(i). Hinton

et al. were able to achieve a near perfect reconstruction of

784-pixel images using autoencoder, proving that it is far

better than PCA [36].

While performing dimensionality reduction, autoencoders

come upwith interesting representations of the input vector in

the hidden layer. This is often attributed to the smaller number

of nodes in the hidden layer or every second layer of the two-

layer blocks. But even if there are higher number of nodes

in the hidden layer, a sparsity constraint can be enforced

on the hidden units to retain interesting lower dimension

representations of the inputs. To achieve sparsity, some nodes

are restricted from firing, i.e., the output is set to a value close

to zero.

Figure 6 shows single layer feature detector blocks

of RBMs used in pre-training, which is followed by
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FIGURE 7. Autoencoder nodes.

unrolling [36]. Unrolling combines the stacks of RBMs to

create the encoder block and then reverses the encoder block

to create the decoder section, and finally the network is fine-

tuned with backpropagation [36].

Figure 7 illustrates a simplified representation of how

autoencoders can reduce the dimension of the input data

and learn to recreate it in the output layer. Wang et al. [37]

successfully implemented a deep autoencoder with stacks

of RBM blocks similar to Figure 6 to achieve better mod-

eling accuracy and efficiency than the proper orthogonal

decomposition (POD) method for dimensionality reduction

of distributed parameter systems (DPSs). The equation below

describes the average of activation function a
(2)
j of jth unit of

2nd layer when the xth input activates the neuron [38].

ρ̂j =
1

m

∑m

i=1
[aj

(2)x(i)](10) (10)

A sparsity parameter ρ is introduced such that ρ is very

close to zero, e.g., 0.03 and ρ̂ = ρ. To ensure that ρ̂ = ρ,

a penalty term KL(ρ||ρ̂j) is introduced such that the

Kullback–Leibler (KL) divergence term KL(ρ||ρ̂j) = 0,

if ρ̂j= ρ, else becomes large monotonically as the difference

between the two values diverges [38]. Here is the updated cost

function [38]:

J sparse(W , b) = J (W , b)+ β

s2
∑

j=1
KL(ρ||ρ̂j)] (11)

where s2 equals the number of units in 2nd layer and β is the

parameter than controls sparsity penalty term’s weight.

C. RESTRICTED BOLTZMANN MACHINE (RBM)

Restricted Boltzmann Machine is an artificial neural net-

work where we can apply unsupervised learning algorithm to

FIGURE 8. Restricted Boltzmann machine.

build non-linear generative models from unlabeled data [39].

The goal is to train the network to increase a function

(e.g., product or log) of the probability of vector in the

visible units so it can probabilistically reconstruct the input.

It learns the probability distribution over its inputs. As shown

in Figure 8, RBM is made of two-layer network called the

visible layer and the hidden layer. Each unit in the visible

layer is connected to all units in the hidden layer and there

are no connections between the units in the same layer.

The energy (E) function of the configuration of the visible

and hidden units, (v, h) is expressed in the following way [40]:

E (v, h) = −
∑

iεvisible
aivi −

∑

jεhidden
bjhj

−
∑

i,j
vihjwij (12)

vi and hj are the vector states of the visible unit i and hidden

unit j. ai and bj represents the bias of visible and hidden units.

Wij denotes the weight between the respective visible and

hidden units.

The partition function, Z is represented by the sum of all

possible pairs of visible and hidden vectors [40].

Z =
∑

v,h
e−E(v,h) (13)

The probability of every pair of visible and hidden vectors

is given by the following [40].

p(v, h) = 1

Z
e−E(v,h) (14)

The probability of a particular visible layer vector is pro-

vided by the following [40].

p (v) = 1

Z

∑

h
e−E(v,h) (15)

As you can see from the equations above, the partition

function becomes higher with lower energy function value.

Thus during the training process, the weights and biases of

the network are adjusted to arrive at a lower energy and thus

maximize the probability assigned to the training vector. It is

mathematically convenient to compute the derivative of the

log probability of a training vector.

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model (16)
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FIGURE 9. LSTM block with memory cell and gates.

In the equation [40] above 〈vihj〉data and 〈vihj〉model repre-
sents the expectations under the respective distributions.

Thus, the adjustments in the weights can be denoted as

follows [40], where ǫ is the learning rate.

1wij = ǫ(〈vihj〉data − 〈vihj〉model (17)

D. LONG SHORT-TERM MEMORY (LSTM)

LSTM is an implementation of the Recurrent Neural Network

and was first proposed by Hochreiter et al. in 1997 [41].

Unlike the earlier described feed forward network architec-

tures, LSTM can retain knowledge of earlier states and can

be trained for work that requires memory or state aware-

ness. LSTM partly addresses a major limitation of RNN,

i.e., the problem of vanishing gradients by letting gradients

to pass unaltered. As shown in the illustration in Figure 9,

LSTM consists of blocks of memory cell state through which

signal flows while being regulated by input, forget and output

gates. These gates control what is stored, read and written on

the cell. LSTM is used by Google, Apple and Amazon in their

voice recognition platforms [42].

In figure 9, C , x, h represent cell, input and output values.

Subscript t denotes time step value, i.e., t−1 is from previous

LSTM block (or from time t − 1) and t denotes current block

values. The symbol σ is the sigmoid function and tanh is

the hyperbolic tangent function. Operator + is the element-

wise summation and x is the element-wise multiplication.

The computations of the gates are described in the equations

below [41], [43].

ft = σ (Wf xt + wf ht−1 + bf ) (18)

it = σ (Wixt + wiht−1 + bi) (19)

ot = σ (Woxt + woht−1 + bo) (20)

ct = ft ⊗ ct−1 + it ⊗ σc(Wcxt + wcht−1 + bc) (21)

ht = ot ⊗ σh(ct )(21) (22)

where f , i, o are the forget, input and output gate vectors

respectively. W , w, b and ⊗ represent weights of input,

weights of recurrent output, bias and element-wise multipli-

cation respectively.

There is a smaller variation of the LSTM known as gated

recurrent units (GRU). GRUs are smaller in size than LSTM

as they don’t include the output gate, and can perform better

than LSTM on only some simpler datasets [44], [45].

LSTMs recurrent neural networks can keep track of long-

term dependencies. Therefore, they are great for learning

from sequence input data and building models that rely on

context and earlier states. The cell block of LSTM retains

pertinent information of previous states. The input, forget

and output gates dictates new data going into the cell, what

remains in the cell and the cell values used in the calculation

of the output of the LSTM block respectively [41], [43].

Naul et al. demonstrated LSTM andGRU based autoencoders

for automatic feature extractions [46].

E. COMPARISON OF DNN NETWORKS

Table 2 provides a compact summary and comparison of

the different DNN architectures. The examples of imple-

mentations, applications, datasets and DL software frame-

works presented in the table are not implied to be exhaustive.

In addition, some of the categorization of the network archi-

tectures could be implemented in hybrid fashion. E.g., even

though RBMs are generative models and their training is

considered unsupervised, they can have elements of discrim-

inative model when training is finetuned with supervised

learning. The table also provides examples of common appli-

cations for using different architectures.

IV. TRAINING ALGORITHMS

The learning algorithm constitutes the main part of Deep

Learning. The number of layers differentiates the deep neural

network from shallow ones. The higher the number of layers,

the deeper it becomes. Each layer can be specialized to detect

a specific aspect or feature.

As indicated by Najafabadi et al. [47], in case of image

(face) recognitions, first layer can detect edges and the second

can detect higher features such as various part of the face,

e.g., ears, eyes, etc., and the third layer can go further up the

complexity order by even learning facial shapes of various

persons. Even though each layer might learn or detect a

defined feature, the sequence is not always designed for it,

especially in unsupervised learning. These feature extrac-

tors in each layer had to be manually programmed prior

to the development of training algorithms such as gradient

descent. These hand-crafted classifiers didn’t scale for lager

dataset or adapt to variation in the dataset. This message was

echoed in the 1998 paper [28] by Yann Lecun et al., where

they demonstrate that systems with more automatic learning

and reduced manually designed heuristics yields far better

pattern recognition.

Backpropagation provides representation learningmethod-

ology, where raw data can be fedwithout the need tomanually

massage it for classifiers, and it will automatically find the

representations needed for classification or recognition [6].
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TABLE 2. DNN network comparison table.

The goal of the learning algorithm is to find the optimal

values for the weight vectors to solve a class of problem in a

domain.

Some of the well-known training algorithms are:

1. Gradient Descent

2. Stochastic Gradient Descent

3. Momentum

4. Levenberg–Marquardt algorithm

5. Backpropagation through time

A. GRADIENT DESCENT

Gradient descent (GD) is the underlying idea in most of

machine learning and deep learning algorithms. It is based

on the concept of Newton’s Algorithm for finding the roots

(or zero value) of a 2D function. To achieve this, we randomly

pick a point in the curve and slide to the right or left along

the x-axis based on negative or positive value of the deriva-

tive or slope of the function at the chosen point until the value

of the y-axis, i.e., function or f(x) becomes zero. The same

idea is used in gradient descent, where we traverse or descend

along a certain path in a multi-dimensional weight space if

the cost function keeps decreasing and stop once the error rate

ceases to decrease. Newton’s method is prone to getting stuck

in local minima if the derivative of the function at the current

point is zero. Likewise, this risk is also present when using

gradient descent on a non-convex function. In fact, the impact

is amplified in the multi-dimensional (each dimension repre-

sents a weight variable) and multi-layer landscape of DNN

and it result in a sub-optimal set of weights. Cost function
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FIGURE 10. Error calculation in multilayer neural network [6].

is one half the square of the difference between the desired

output minus the current output as shown below.

C = 1

2

(

yexpected − yactual
)2

(23)

Backpropagation methodology uses gradient descent.

In backpropagation, chain rule and partial derivatives are

employed to determine error delta for any change in the value

of each weight. The individual weights are then adjusted

to reduce the cost function after every learning iteration of

training data set, resulting in a final multi-dimensional (multi-

weight) landscape of weight values [6]. We process through

all the samples in the training dataset before applying the

updates to theweights. This process is repeated until objective

(aka cost function) doesn’t reduce any further.

Figure 10 shows the error derivatives in relation to outputs

in each hidden layer, which is the weighted summation of

the error derivates in relation to the inputs in the unit in the

above layer. E.g., when ∂E/∂zk calculated, the partial error

derivative with respect to wjk to is equal to yj∂E/∂zk .

B. STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent (SGD) is the most common

variation and implementation of gradient descent. In gradient

descent, we process through all the samples in the training

dataset before applying the updates to the weights. While

in SGD, updates are applied after running through a mini-

batch of n number of samples. Since we are updating the

weights more frequently in SGD than in GD, we can converge

towards global minimum much faster.

C. MOMENTUM

In the standard SGD, learning rate is used as a fixedmultiplier

of the gradient to compute step size or update to the weight.

This can cause the update to overshoot a potential minima,

if the gradient is too steep, or delay the convergence if the

gradient is noisy. Using the concept of momentum in physics,

the momentum algorithm presents a velocity v variable that

configured as an exponentially decreasing average of the

gradient [48]. This helps prevent costly descent in the wrong

direction. In the equation below, α ∈ [0, 1) is the momentum

parameter and ǫ is the learning rate.

Velocity Update : v ← αv− ǫg (24)

Actual Update : θ ← θ + v (25)

D. LEVENBERG-MARQUARDT ALGORITHM

Levenberg-Marquadt algorithm (LMA) is primarily used in

solving non-linear least squares problems such as curve fit-

ting. In least squares problems, we try to fit a given data

points with a function with the least amount of sum of the

squares of the errors between the actual data points and points

in the function. LMA uses a combination of gradient descent

and Gauss-Newton method. Gradient descent is employed

to reduce the sum of the squared errors by updating the

parameters of the function in the direction of the steepest-

descent, while the Gauss-Newtonmethodminimizes the error

by assuming the function to be locally quadratic and finds the

minimum of the quadratic [49].

If the fitting function is denoted by ŷ(t;p) andm data points

denoted by (ti, yi), then the squared error can be written

as [49]:

x2 (p) =
∑m

i=1

[

y (ti)− ŷ (ti;p)

σyi

]2

(26)

= (y− ŷ (p))TW
(

y− ŷ (p)
)

(27)

= yTWy− 2yTWŷ+ ŷTWŷ (28)

where the measurement error for y (ti), i.e., σyi is the inverse

of the weighting matrix Wii.

The gradient descent of the squared error function in

relation to the n parameters can be denoted as [49]:

∂

∂p
x2 = 2(y− ŷ (p))TW

∂

∂p

(

y− ŷ (p)
)

(29)

= 2(y− ŷ (p))TW

[

∂ ŷ (p)

∂p

]

(30)

= 2(yŷ)TWJ (31)

hgd = αJTW
(

y− ŷ
)

(32)

where J is the Jacobian matrix of size m × n used in place

of the [∂ ŷ/∂p], and hgd is the update in the direction of the

steepest gradient descent.

The equation for the Gauss-Newton method update (hgn)

is as follows [49]:
[

JTWJ
]

hgn = JTW(y− ŷ) (33)

53050 VOLUME 7, 2019



A. Shrestha, A. Mahmood: Review of DL Algorithms and Architectures

The Levenberg- Marquardt update [hlm] is generated by

combining gradient descent and Gauss-Newton methods

resulting in the equation below [49]:

[

JTWJ+ λ diag(JTWJ)
]

hlm = JTW(y− ŷ) (34)

E. BACKPROPAGATION THROUGH TIME

Backpropagation through time (BPTT) is the standard

method to train the recurrent neural network. As shown

in Figure 2b, the unrolling of RNN in time makes it appears

like a feedforward network. But unlike the feedforward net-

work, the unrolled RNN has the same exact set of weight val-

ues for each layer and represents the training process in time

domain. The backward pass through this time domain net-

work calculates the gradients with respect to specific weights

at each layer. It then averages the updates for the same weight

at different time increments (or layers) and changes them to

ensure the value of weights at each layer continues to stay

uniform.

F. COMPARISON OF DEEP LEARNING ALGORITHMS

Table 3 provides a summary and comparison of common deep

learning algorithms. The advantages and disadvantages are

presented along with techniques to address the disadvantages.

Gradient descent-based training is the most common type of

training. Backpropagation through time is the backpropaga-

tion tailored for recurrent neural network. Contrastive diver-

gence finds its use in probabilistic models such as RBMs.

Evolutionary algorithms can be applied to hyperparameter

optimizations or training models by optimizing weights.

Reinforcement learning could be used in game theory, multi-

agent systems and other problems where both exploitation

and exploration need to be optimized.

V. SHORTCOMINGS OF TRAINING ALGORITHMS

There are several shortcomings with the standard use of

training algorithms on DNNs. The most common ones are

described here.

A. VANISHING AND EXPLODING GRADIENTS

Deep neural networks are prone to vanishing (or explod-

ing) gradients due to the inherent way in which gradients

(or derivates) are computed layer by layer in a cascad-

ing manner with each layer contributing to exponentially

decreasing or increasing derivatives. Weights are increased

or decreased based on gradients to reduce the cost func-

tion or error. Very small gradients can cause the network to

take a long time to train, whereas large gradients can cause

the training to overshoot and diverge. This is made worse

by the non-linear activation functions like sigmoid and tanh

functions that squash the outputs to a small range. Since

change in weight have nominal effect on the output train-

ing could take much longer. This problem can be mitigated

using linear activation function like ReLu and proper weight

initialization.

TABLE 3. Deep learning algorithm comparison table.

B. LOCAL MINIMA

Local minima is always the global minima in a convex

function, which makes gradient descent based optimization

fool proof. Whereas in nonconvex functions, backpropaga-

tion based gradient descent is particularly vulnerable to the

issue of premature convergence into the local minima. A local

minima as shown in Figure 11, can easily be mistaken for

global absolute minima.

C. FLAT REGIONS

Just like local minima, flat regions or saddle points

(Figure 12) also pose similar challenge for gradient descent

based optimization in nonconvex high-dimensional func-

tions. The training algorithm could potentiallymislead by this

area as the gradient comes to a halt at this point.

D. STEEP EDGES

Steep edges are another section of the optimization sur-

face area where the steep gradient could cause the gradient
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FIGURE 11. Gradient descent.

FIGURE 12. Flat (saddle point marked with black dot) region in a
nonconvex function.

descent-based weight updates to overshoot and miss a poten-

tial global minima.

E. TRAINING TIME

Training time is an important factor to gauge the efficiency

of an algorithm. It is not uncommon for graduate students to

train their model for days or weeks in the computer lab. Most

models require exorbitant amount of time and large datasets

to train. Often times many of the samples from the datasets

do not add value to the training process and in some cases,

they introduce noise and adversely affect the training.

F. OVERFITTING

As we add more neurons to DNN, it can undoubtedly model

the network for more complex problems. DNN can lend itself

to high conformability to training data. But there is also a high

risk of overfitting to the outliers and noise in the training data

as shown in Figure 13. This can result in delayed training and

testing times and result in the lower quality prediction on the

actual test data. E.g., in classification or cluster problems,

overfitting can create a high order polynomial output that

separates the decision boundary for the training set, which

will take longer and result in degraded results for most test

FIGURE 13. Overfitting in classification.

data set. One way to overcome overfitting is to choose the

number of neurons in the hidden layer wisely to match the

problem size and type. There are some algorithms that can be

used to approximate the appropriate number of neurons but

there is no magic bullet and the best bet is to experiment on

each use case to get an optimal value.

VI. OPTIMIZATION OF TRAINING ALGORITHMS

The goal of the DNN is to improve the accuracy of the

model on test data. Training algorithms aims to achieve the

end goal by reducing the cost function. The common root

cause of three out of five shortcomings mentioned above is

primarily due to the fact that the training algorithms assume

the problem area to be a convex function. The other problem

is high number of nodes and the sheer possible combination

of weight values they can have. While weights are learned by

training on the dataset, there are additional crucial parameters

referred to as hyperparameters that aren’t directly learnt from

training dataset. These hyperparameters can take a range of

values and add complexity of finding the optimal architecture

and model. There is significant room for improvement to the

standard training algorithms. Here are some of the popular

ways to enhance the accuracy of the DNNs.

A. PARAMETER INITIALIZATION TECHNIQUES

Since the solution space is so huge, the initial parameters

have an outsized influence on how fast or slow the train-

ing converges, if at all or if it prematurely converges to a

suboptimal point. Initialization strategies tend to be heuristic

in nature. Reference [50] proposed normalized initialization

where weights are initialized in the following manner.

W ∼ U

[

−
√
6

√
nj+nj+1

,

√
6

√
nj+nj+1

]

(35)

Reference [51] proposed another technique called sparse

initialization, where the number of non-zero incoming

weights were capped at a certain limit causing them to retain

high diversity and reduce chances of saturation.
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B. HYPERPARAMETER OPTIMIZATION

The learning rate and regularization parameters constitutes

the commonly used hyperparameters in DNN. Learning rate

determines the rate at which the weights are updated. The

purpose of regularization is the prevent overfitting and reg-

ularization parameter affects the degree of influence on the

loss function. CNN’s have additional hyperparameters i.e.,

number of filters, filter shapes, number of dropouts and

max pooling shapes at each convolution layer and number

of nodes in the fully connected layer. These parameters are

very important for training and modeling a DNN. Coming

up with an optimal set of parameter values is a challeng-

ing feat. Exhaustively iterating through each combination

of hyperparameter values is computationally very expensive.

For example, if training and evaluating a DNN with the full

dataset takes ten minutes, then with seven hyperparameters

each with eight potential values will take (87 × 10 min), i.e.,

20,971,520 minutes or almost 40 years to exhaustively train

and evaluate the network on all combinations of the hyperpa-

rameter values. Hyperparameter can be optimized with differ-

ent metaheuristics.Metaheuristics are nature inspired guiding

principles that can help in traversing the search space more

intelligently yet much faster than the exhaustive method.

Particle Swarm Optimization (PSO) is another type of

metaheuristic that can be used for hyperparameter optimiza-

tion. PSO is modeled around the how birds fly around in

search of food or during migration. The velocity and location

of birds (or particles) are adjusted to steer the swarm towards

better solution in the vast search space. Escalante et al. used

PSO for hyperparameter optimization to build a competitive

model that ranked among the top relative to other comparable

methods [52].
Genetic algorithm (GA) is a metaheuristic that is com-

monly used to solve combinatorial optimization problems.

It mimics the selection and crossover processes of species

reproduction and how that contributes to evolution and

improvement of the species prospect of survival. Figure 14a

shows a high-level diagram of the GA. Figure 14b illustrates

the crossover process where parts of the respective genetic

sequence are merged from both the parents to form the new

genetic sequence in the children. The goal is to find a pop-

ulation member (a sequence of numbers resembling DNA

nucleotides) that meets the fitness requirement. Each pop-

ulation member represents a potential solution. Population

members are selected based on different methods, e.g., elite,

roulette, rank and tournament.

Elite method ranks population members by fitness and

only uses high fitness members for the crossover process.

The mutation process then makes random changes to the

number sequence and the entire process continues until a

desired fitness or maximum number of iterations are reached.

References [53], [54] propose parallelization and hybridiza-

tion of GA to achieve better and faster results. Parallelization

provide both speedup and better results as we can periodically

exchange population members between the distributed and

parallel operations of genetic algorithms on different set of

FIGURE 14. (a) Genetic algorithm [53]. (b) Crossover in genetic algorithm.

population members. Hybridization is the process of mixing

the primary algorithm (GA in this case) with other operations,

like local search. Shrestha and Mahmood [53] incorporated

2-Opt local search method into GA to improve the search

for optimal solution. Reference [55] postulates that correctly

performed exchanges (e.g., in GA) breeds innovation and

results in creation solutions to hard problems just like in

real life where collaboration and exchanges between indi-

viduals, organizations and societies. In additional to GA,

other variations of evolution-based metaheuristics have also

been used to evolve and optimize deep learning architectures

and hyperparameters. E.g., [56] proposed CoDeepNEAT

framework based on deep neuroevolution technique for

finding an optimized architecture to match the task at

hand.
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C. ADAPTIVE LEARNING RATES

Learning rates have a huge impact on training DNN. It can

speed up the training time, help navigate flat surfaces bet-

ter and overcome pitfalls of non-convex functions. Adaptive

learning rates allow us to change the learning rates for param-

eters in response to gradient and momentum. Several innova-

tive methods have been proposed. Reference [48] describes

the following:
1. Delta-bar Algorithm

2. AdaGrad

3. RMSProp

4. Adam
In Delta-bar algorithm, the learning rate of the param-

eter is increased if the partial derivative with respect to it

stays in the same sign and decreased if the sign changes.

AdaGrad is more sophisticated [57] and prescribes an

inversely proportional scaling of the learning rates to the

square root of the cumulative squared gradient. AdaGrad is

not effective for all DNN training. Since the change in the

learning rate is a function of the historical gradient, AdaGrad

becomes susceptible to convergence.

RMSProp algorithm is a modification of AdaGrad algo-

rithm to make it effective in a nonconvex problem space.

RMSProd replaces the summation of squared gradient in

AdaGrad with exponentially decaying moving average of the

gradient, effectively dropping the impact of historical gradi-

ent [48]. Adam which denotes adaptive moment estimation

is the latest evolution of the adaptive learning algorithms that

integrates the ideas from AdaGrad, RMSProp and momen-

tum [58]. Just like AdaGrad and RMSProd, Adam provides

an individual learning rate for each parameter. Adam includes

the benefits of both the earlier methods does a better job

handling non-stationary objectives and both noisy and sparse

gradients problems [58]. Adam uses first moment (i.e., mean

as used in RMSProp) as well as second moments of the gra-

dients (uncentered variance) utilizing the exponential moving

average of squared gradient [58].

Figure 15 shows the relative performance of the various

adaptive learning rate mechanisms where Adam outperform

the rest.

D. BATCH NORMALIZATION

As the network is getting trained with variations to weights

and parameters, the distribution of actual data inputs at

each layer of DNN changes too, often making them all too

large or too small and thus making them difficult to train on

networks, especially with activation functions that implement

saturating nonlinearities, e.g., sigmoid and tanh functions.

Iofee and Szegedy [59] proposed the idea of batch normal-

ization in 2015. It has made a huge difference in improving

the training time and accuracy of DNN. It updates the inputs

to have a unit variance and zero mean at each mini-batch.

E. SUPERVISED PRETRAINING

Supervised pretraining constitutes breaking down complex

problems into smaller parts and then training the simpler

FIGURE 15. Multilayer network training cost on MNIST dataset using
different adaptive learning algorithms [58].

FIGURE 16. DNN with and without dropout.

models and later combining them to solve the larger model.

Greedy algorithms are commonly used in supervised pre-

training of DNN.

F. DROPOUT

There are few commonly used methods to lower the risk of

overfitting. In the dropout technique, we randomly choose

units and nullify their weights and outputs so that they

do not influence the forward pass or the backpropagation.

Figure 16 shows a fully connected DNN on the left and a

DNN with dropout to the right. The other methods include

the use of regularization and simply enlarging the training

dataset using label preserving techniques. Dropout works

better than regularization to reduces the risk of overfitting

and also speeds up the training process. Reference [60]
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proposed the dropout technique and demonstrated significant

improvement on supervised learning based DNN for com-

puter vision, computational biology, speech recognition and

document classification problems.

G. TRAINING SPEED UP WITH CLOUD AND GPU

PROCESSING

Training time is one of the key performance indicators of

machine learning. Cloud computing and GPUs lend them-

selves very well to speeding up the training process. Cloud

provides massive amounts of compute power and now all

major cloud vendors include GPU powered servers that can

easily be provisioned and used for training DNNs on demand

at competitive prices. Cloud vendor Amazon Web Services’

(AWS) P2 instances provides up to 40 thousand parallel GPU

cores and its P3 GPU instances are further optimized for

machine learning [61].

H. SUMMARY OF DL ALGORITHMS SHORTCOMINGS

AND RESOLUTIONS TECHNIQUES

Table 4 provides a summary of deep learning algorithm short-

comings and resolutions techniques. The table also lists the

cause and effect[s] of the shortcomings.

VII. ARCHITECTURES & ALGORITHMS –

IMPLEMENTATIONS

This section describes different implementations of neural

networks using a variety of training methods, network archi-

tectures and models. It also includes models and ideas that

have been incorporated into machine learning in general.

A. DEEP RESIDUAL LEARNING

The ability to addmore layers to DNN has allowed us to solve

harder problems. Microsoft Research Asia (MSRA) applied a

100/1000 layer deep residual network (ResNet) on CIFAR-10

dataset and won 1st place in the ILSVRC 2015 competi-

tion with a 152-layer DNN on the ImageNet dataset [62].

Figure 17 demonstrates a simplified version of Microsoft’s

winning deep residual learning model. Despite the depth of

these networks, simply adding more layers to DNN does not

improve or guarantee results. To the contrary, it degrades

the quality of the solution. This makes training DNN not

so straight forward. The MSRA team was able to overcome

the degradation by making the hoping stacked layers match

a residual mapping instead of the desired mapping with the

following function [62]:

F (x) := H (x)− xv (36)

where F(x) is the residual mapping and H (x) is the desired

mapping, and then by recasting the desired mapping at the

end [62]. According to MSRA team, it is much easier to

optimize the residual mapping.

B. ODDBALL STOCHASTIC GRADIENT DESCENT

All training data are not created equal. Some will have higher

training error than the others. Yet, we assume that they are the

TABLE 4. DL algorithm shortcomings & resolution techniques.

FIGURE 17. Deep residual learning model by MSRA at Microsoft.

same and thus use each training examples the same number

of times. Simpson [63] argues that this assumption is invalid

and makes a case in his paper for the number of times a

training examples is used to be proportional to its respective

training error. So, if a training example has a higher error rate,

it will be used to train the network higher number of times
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than the other training example. Simpson [63] proves his

methodology, termed Oddball Stochastic Gradient Descent

with a training set of 1000 video frames. Simpson [63] cre-

ated a training selection probability distribution for training

example based on the error value and pegged the frequency

of using the training example based on the distribution.

C. DEEP BELIEF NETWORK

Chen and Lin [23] highlights the fact that conventional neural

network can easily get stuck in local minima when the func-

tion is non-convex. They propose a DNN architecture called

large scale deep belief network (DBN) that uses both labeled

and unlabeled to learn feature representations. DBN are made

up of layers of RBM stacked together and learn probability

distribution of the input vectors. They employ unsupervised

pre-training and fine-tuned supervised algorithms and tech-

niques to mitigate the risk of getting trapped in local minima.

Below is the equation [23] for change in weights, where c is

the momentum factor and α is the learning rate, and v and h

are visible and hidden units respectively.

1wij (t + 1) = c1wij (t)+ α(〈vihj〉data − 〈vihj〉model (37)

Equation [23] for probability distribution for hidden and

visible inputs.

p(hj = 1|v;W) = σ

(

I
∑

i=1
wijvi + aj

)

(38)

p(vi = 1|h;W) = σ





J
∑

j=1
wijhj + bi



 (39)

D. BIG DATA

Big data provides tremendous opportunity and challenge for

deep learning. Big data is known for the 4 Vs (volume, veloc-

ity, veracity, variety). Unlike the shallow networks, the huge

volume and variety of data can be handled by DNNs and

significantly improve the training process and the ability to

fit more complex models. On the flip side, the sheer veloc-

ity of data that is generated in real-time can be daunting

to process. Jajafabadi et al. [47] raises similar challenges

learning from real-time streaming data such as credit cards

usage to monitor for fraud detection. They propose using

parallel and distributed processing with thousands of CPU

cores. In addition, we should also use cloud providers that

support auto-scaling based on usage and workload. Not all

data represent the same quality. In the case of computer

vision, images from constrained sources, e.g., studios are

much easier to recognize that the ones from unconstrained

sources like surveillance cameras. Reference [64] proposes a

method to utilize multiple images of the unconstrained source

to enhance the recognition process.

Deep learning can help mine and extract useful patterns

from big data and build models for inference, prediction

and business decision making. There is massive volumes

of structured and unstructured data and media files getting

FIGURE 18. Learning multiple layers of representation.

generated today making information retrieval very chal-

lenging. Deep learning can help with semantic indexing to

enable information to be more readily accessible in search

engines [14], [65]. This involves building models that provide

relationships between documents and keywords the contain to

make information retrieval more effective.

E. GENERATIVE TOP DOWN CONNECTION

(GENERATIVE MODEL)

Much of the training is usually implemented with bottom-

up approach, where discriminatory or recognition models

are developed using backpropagation. A bottom-up model is

one that takes the vector representation of input objects and

computes higher level feature representations at subsequent

layer with a final discrimination or recognition pattern at the

output layer. One of the shortcomings of backpropagation is

that it requires labeled data to train. GeoffreyHinton proposed

a novel way of overcoming this limitation in 2007 [66].

He proposed a multi-layer DNN that used generative top-

down connection as opposed to bottom-up connection to

mimic the way we generate visual imagery in our dream

without the actual sensory input. In top-down generative

connection, the high-level data representation or the out-

puts of the networks are used to generate the low-level raw

vector representations of the original inputs, one layer at a

time. The layers of feature representations learned with this

approach can then be further perfected either in generative

models such as auto-encoders or even standard recognition

models [66].

In the generative model in Figure 18, since the correct

upstream cause of the events in each layer is known, a com-

parison between the actual cause and the prediction made

by the approximate inference procedure can be made, and

the recognition weights, rij can be adjusted to increase the

probability of correct prediction.
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FIGURE 19. Four-layer DBN & four-layer deep Boltzmann machine.

Here is the equation [66] for adjusting the recognition

weights rij.

1rij α hi

(

hj − σ (
∑

i

hirij)

)

(40)

F. PRE-TRAINING WITH UNSUPERVISED DEEP

BOLTZMANN MACHINES

Vast majority of DNN training is based on supervised learn-

ing. In real life, our learning is based on both supervised and

unsupervised learning. In fact, most of our learning is unsu-

pervised. Unsupervised learning is more relevant in today’s

age of big data analytics because most raw data is unlabeled

and un-categorized [47]. One way to overcome the limitation

of backpropagation, where it gets stuck in local minima is to

incorporate both supervised and unsupervised training. It is

quite evident that top-down generative unsupervised learning

is good for generalization because it is essentially adjusting

the weights by trying to match or recreate the input data on

layer at a time [67]. After this effective unsupervised pre-

training, we can always fine-tune it with some labeled data.

Geoffrey Hinton and Ruslan Salakhutdinov describe multiple

layers of RBMs that are stacked together and trained layer by

layer in a greedy, unsupervised way, essentially creating what

is called theDeepBelief Network. They furthermodify stacks

to make them un-directed models with symmetric weights,

thus creating the Deep Boltzmann Machines (DBM). Four

layered deep belief network and deep Boltzmann machines

are shown in Figure 19. In [67] the DBM layers were pre-

trained one at a time using unsupervised method and then

tweaked using supervised backpropagation on the MNIST

andNORBdatasets as shown in Figure 20. They [67] received

favorable results validating benefits of combining supervised

and unsupervised learning methods.

Here are the equations showing probability distributions

over visible and two hidden units in DBM (after unsupervised

FIGURE 20. Pretraining of stacked & altered RBM to create a DBM [67].

FIGURE 21. DBM getting initialized as deterministic neural network with
supervised fine-tuning [67].

pre-training) [67].

p(vi = 1|h1) = σ





∑

j

W 1
ijhj



 (41)

p(h2m = 1|h1) = σ





∑

j

W 2
jmh

1
j



 (42)

p(h1j = 1|v, h2) = σ

(

∑

i

W 1
ij vi+

∑

m

W 2
jmh

2
m

)

(43)

Post unsupervised pre-training, the DBM is converted

into a deterministic multi-layer neural network by fine-

tuning the network with supervised learning using labeled

data as demonstrated in Figure 21. The approximate

posterior distribution q(h|v) is generated for each input vec-

tor and the marginals q(h2j = 1|v) are added as an addi-

tional input for the network as shown in the figure above

and subsequently, backpropagation is used to fine-tune the

network [67].
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G. EXTREME LEARNING MACHINE (ELM)

There have been other variations of learning methodologies.

While more layers allow us to extract more complex features

and patterns, some problems might be solved faster and bet-

ter with less number of layers. Reference [68] proposed a

four-layered CNN termed DeepBox that outperformed larger

networks in speed and accuracy. for evaluating objectness.

ELM is another type of neural network with just one hid-

den layer. Linear models are learnt from the dataset in a

single iteration by adjusting the weights between the hid-

den layer and the output, whereas the weights between the

input and the hidden layers are randomly initialized and

fixed [69].

ELM can obviously converge much faster than backprop-

agation, but it can only be applied to simpler problems of

classifications and regression. Since proposing ELM in 2006,

Buang-Bin Huang et al. came up with a multilayer version

of ELM in 2016 [70] to take on more complex problems.

They combined unsupervised multilayer encoding with the

random initialization of the weights and demonstrate faster

convergence or lower training time than the state of the art

multilayer perceptron training algorithm.

H. MULTIOBJECTIVE SPARSE FEATURE LEARNING MODEL

Gong et al. [71] developed a multi-objective sparse feature

learning (MO-SFL) model based on auto encoder, where they

used an evolutionary algorithm to optimize two competing

objectives of sparsity of hidden units and the reconstruction

error (input vendor of AE). It fairs better than models where

the sparsity is determined by human intervention or less than

optimal methods.

Since the time complexity of evolutionary algorithms are

high, they [71] utilize self-adaptive multi-objective differen-

tial evolution (DE) based on decomposition (Sa-MODE/D)

to cut down on time and demonstrate it has better results

than standard AE (auto encoder), SR-RBM (Sparse response

RMB) and SESM (sparse encoding symmetric machine) by

testing with MNIST dataset and compare the results with

other implementations. Their learning procedure continu-

ously iterates between evolutionary optimization step and

the stochastic gradient descent to optimize the reconstruction

error [71].

• Step 1: Multi-objective optimization to select the most

optimal point in the pareto frontier for both objectives

• Step 2: Optimize parameters θ and θ ’ with stochastic

gradient descent in the following reconstruction error

function (of Auto Encoder), where D is the training data

set and L (x,y) is the loss function with x representing the

input and y representing the output, i.e., reconstructed

input.
∑

x∈D
L(x, gθ ′ (f θ (x))) (44)

Figure 22 shows a pareto frontier function that can be used

to achieve a compromise between two competing objectives

functions.

FIGURE 22. Pareto Frontier.

FIGURE 23. Spectral clustering representation.

I. MULTICLASS SEMI-SUPERVISED LEARNING BASED

ON KERNEL SPECTRAL CLUSTERING

Mehrkanoon et al. [72] proposed a multiclass learning algo-

rithm based on Kernel Spectral Clustering (KSC) using both

labeled and unlabeled data. The novelty of their proposal

is the introduction of regularization terms added to the cost

function of KSC, which allow labels or membership to be

applied to unlabeled data examples. It is achieved in the

following way [72]:

• Unsupervised learning based on kernel spectral cluster-

ing (KSC) is used as the core model

• A regularization term is introduced and labels (from

labeled data) are added to the model

Figure 23 illustrates data points in a spectral clustering

representation. Spectral clustering (SC) is an algorithm that

divides the data points in a graph using Laplacian or double

derivative operation, whereas KSC is simply an extension

of SC that uses Least Squares Support Vector Machines

methodology [73].
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Since unlabeled data is more abundantly available relative

to labeled data, it would be beneficial to make the most of it

with unsupervised or in this case semi-supervised learning.

J. VERY DEEP CONVOLUTIONAL NETWORKS FOR

NATURAL LANGUAGE PROCESSING

Deep CNN have mostly been used in computer vision, where

it is very effective. Conneau et al. [74] used it for the first

time to NLP with up to 29 convolution layers. The goal is

to analyze and extract layers of hierarchical representations

from words and sentences at the syntactic, semantic and con-

textual level. One the major setbacks for lack of earlier deep

CNN for NLP is because of deeper networks tend to cause

saturation and degradation of accuracy. This is in addition to

the processing overhead of more layers. He et al. [62] states

that the degradation is not caused by overfitting but because

deeper systems are difficult to optimize. Reference [62]

addressed this issue with shortcut connections between the

convolution blocks to let the gradients to propagate more

freely and they, along with [74] were able to validate

the benefits of the shortcuts with 10/101/152-layers and

49 layers respectively. Conneau et al. [74] architecture con-

sists of series of convolution blocks separated by pooling

that halved the resolution followed by k-max pooling and

classification at the end.

K. METAHEURISTICS

Metaheuristics can be used to train neural networks to

overcome the limitation of backpropagation-based learning.

When implementing metaheuristics as training algorithm,

each weight of the neural network connection is represented

by a dimension in the multi-dimensional solution search

space of the problem we are trying to solve. The goal is to

come as near as possible to the optimal values of weights,

i.e., a location in the search space that represents the global

best solution. Particle Swarm Optimization (PSO) is a type

of metaheuristic inspired by the movement of birds in the

sky consists of particles or candidate solutions move about

in a search space to reach a near optimal solution. In their

paper [75], N. Krpan and D. Jakobovic ran parallel imple-

mentations using backpropagation and PSO. Their results

demonstrate that while parallelization improves the efficacy

of both algorithms, parallel backpropagation is efficient only

on large networks, whereas parallel PSO has wider influence

on various sizes of problems.

Similarly, Dong and Zhou [76] complemented PSO with

supervised learning control module to guide the search for

global minima of an optimization problem. The supervised

learning module provided real-time feedback with back dif-

fusion (BD) to retain diversity and social attractor renewal

to overcome stagnation [76]. Metaheuristics provide high

level guidance inspired by nature and applies them to solve

mathematical problems. In a similar way [77] proposes incor-

porating the concepts of intelligent teacher and privileged

information, which is essentially extra information available

during training but not during evaluation or testing, into the

DNN training process.

L. GENETIC ALGORITHM

Genetic Algorithm is a metaheuristic that can be effectively

used in training DNN. GAmimics the evolutionary processes

of selection, crossover and mutation. Each population mem-

ber represents a possible solutionwith a set of weights. Unlike

PSO, which includes only one operator for adjusting the solu-

tion, evolutionary algorithms like GA includes various steps,

i.e., selection, crossover and mutation methods [52]. Popu-

lation members undergo several iterations of selection and

crossover based on known strategies to achieve better solution

in the next iteration or generation. GA has undergone decades

of improvement and refinements since it was first proposed

in 1976 [78]. There are several ways to perform selec-

tions, e.g., elite, roulette, rank, tournament [79]. There are

about dozen ways to perform crossovers by Larrañaga et al.

alone [80]. Selection methodologies represent exploration of

the solution space and crossovers represent the exploitation of

the selected solution candidates. The goal is to get better solu-

tion wider exploration and deeper exploitation. Additional

tweaking can be introduced with mutation. Parallel clusters

of GA can be executed independently in islands and few

members exchanged between the island every so often [81].

In addition, we can also utilize local search such as greedy

algorithm, Nearest Neighbor or K-opt algorithm to further

improve the quality of the solution.

Lin et al. [82] demonstrated a successful incorporation

of GA that resulted in better classification accuracy and

performance of a Polynomial Neural Network. Standard GA

operations including selection, crossover and mutation were

used on parameters that included partial descriptions (PDs)

of inputs in the first layer, bias and all input features [82].

GA was further enhanced with the incorporation of the

concept of mitochondrial DNA (mtDNA). In evolution, it is

quite evident from casual observation and simple reason that

crossover of population members with too much similarity

does not yield much variance in the offspring. Likewise,

we can infer that in GA, selection and crossover between

solutions that are very similar would not result is high degree

of exploration of the multi-dimensional solution space.

In fact, it might run the risk of getting pigeonholed into a

restricted pattern.

Diversity is the key to overcoming the risk of getting stuck

in local minima. This risk can be mitigated by exploiting the

idea of mtDNA. mtDNA represents one percent of the human

chromosomes [83]. The concept of incorporating mitochon-

drial DNA into GA was introduced by Shrestha and Mah-

mood [53]. They describe a way to restrict crossover between

population members or solution candidates based proximity

on their mtDNA value [53]. Unlike the rest of the 99% DNA,

mtDNA is only inherited from the female, thus it is a more

continuous marker of lineage or genetic proximity. The

premise behind this is that offspring of population members

with similar genetic makeup doesn’t help with overcoming
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FIGURE 24. Continental model with mtDNA [53].

the local minima. Figure 24 describes the parallel and dis-

tributed nature of their full implementation [53] along with

the GA operators (selection, mutation and mtDNA incorpo-

rated crossover). The training process is enhanced [53] with

the implementation of continental model, where distributed

servers run multiple threads, each running an instance of

GA with mtDNA. Population members are then exchanged

between the servers after fixed number of iterations as shown

in Figure 24.

M. NEURAL MACHINE TRANSLATION (NMT)

Neural Machine Translation is a turnkey solution used in

translation of sentences.While it provides some improvement

over the traditional Statistical machine translation (SMT),

it is not scalable for large models or datasets. It also requires

lot of computational power for training and translation, and

has difficult with rare words. For these reason, large tech

companies like Google and Microsoft have both improved on

NMT and have their own implementations of NMT, labeled

as Google Neural Machine Translation (GNMT) and Skype

Translator respectively. GMNT as shown in Figure 257 con-

sists of encoder and decoder LSTMblocks organized in layers

was presented in 2016 in [84]. It overcomes the shortcomings

of NMT with enhanced deep LSTM neural network that

includes 8 encoder and 8 decoder layers, and a method to

break down rare difficult words to infer their meaning. On

Conference onMachine Translation in 2014, GNMT received

results at par with state-of-the-art for English-to-French and

English-to-German language benchmarks [84].

N. MULTI-INSTANCE MULTI-LABEL LEARNING

Images in real life include multiple instances (objects)

and need multiple labels to describe them. E.g., a pic-

ture of an office space could include a laptop computer,

a desk, a cubicle and a person typing on the computer.

Zhou et al. [85] proposedMIML (Multi-InstanceMulti-Label

learning) framework and corresponding MIMLBOOST and

MIMLSVM algorithms for efficient learning of individual

object labels in complex high level concepts, e.g., like the

office space. The goal is to learn f : 2x → 2y from dataset

{(X1,Y1) , (X2,Y2) , . . . , (Xm,Ym)}, whereXi ⊆ X represents

a set of instances {xi1, xi2, . . . xi,ni,}, xij ∈ X (j = 1, 2, . . . , ni),

and Yi ⊆ Y represents a set of instances {yi1, yi2, . . . yi,li,},
yik ∈ Y (k = 1, 2, . . . , li), where ni is the number of

instances in Xi and li is the number of labels in Yi [85].

MIMLBOOST uses category-wise decomposition into tra-

ditional single instance & single label supervised learning,

whereas MIMLSVN utilizes cluster-based feature transfor-

mation. So, instead of trying to learn the idea of complex

entities (e.g., office space), [85] took the alternate route and

learned the lower level individual objects and inferred the

higher level concepts.

O. ADVERSARIAL TRAINING

Machine learning training and deployment used to be done in

isolated computers, but now they are increasing being done in

a highly interconnected commercial production environment.

Take a face recognition system where a network could be

trained on a fleet of servers with a training dataset imported

from an external data source, and the trained model could

be deployed on another server which accepts APIs calls with

real time inputs (e.g., images of people entering a building)

and responds with matches. The interconnected architecture

exposes the machine learning to a wide attack surface. The

real-time input or training dataset can be manipulated by an
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FIGURE 25. GNMT architecture [84] with encoder neural network on the left and decoder neural network on the right.

adversary to compromise the output (image match by the

network) or the entire model respectively.

Adversarial machine learning is a relatively new field of

research that takes into out these new threats to machine

learning. According to [86] adversaries (e.g., email spammer)

can exploit the lack of stationary data distribution and manip-

ulate the input (e.g., an actual spam email) as a normal email.

Reference [86] demonstrates these and other vulnerabilities

and discusses how application domain, features and data

distribution can be used to reduce the risk and impact of such

adversarial attacks.

P. GAUSSIAN MIXTURE MODEL

Gaussian mixture model (GMM) is a statistical probabilistic

model used to represent multiple normal gaussian distribu-

tions within a larger distribution using an EM (estimation

maximization) algorithm in an unsupervised setting. E.g.,

a GMM could be used to represent the height distribution for

a large population group with two gaussian distributions, for

male and female sub-groups. Figure 26 below demonstrates

a GMM with three gaussian distributions within itself.

GMM has been used primarily in speech recognition and

tracking objects in video sequences. GMM are very effec-

tive in extracting speech features and modeling the prob-

ability density function to a desired level of accuracy as

long as we have sufficient components, and the estima-

tion maximization makes it easy to fit the model [87]. The

probability density function for the GMM is given by the

following [87]:

p (x) =
∑M

m=1
cmN (x;µm, 6m) , (cm > 0) (45)

FIGURE 26. GMM example with three components.

where M is the number of number of gaussian components,

cm is the weight of the M -th gaussian, and (x;µm, 6m)

represents the random variable x, which following the mean

vector µm.

Q. SIAMESE NETWORKS

The purpose of siamese network is to determine the degree of

similarity between two images. As shown in figure 27 below,

siamese network consists of two identical CNN networks

with identical weights and parameters. The two images to be

compared are passed separately through the two twin CNNs

and the respective vector representations outputs are evalu-

ated using contrastive divergence loss function. The function

is defined as following [88]:

L
(

W ,Y ,
−→
X1,
−→
X1

)

= (1− Y )
1

2
(Dw)

2

+ (Y )
1

2
(max(0,m− Dw))2 (46)
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FIGURE 27. Siamese network.

Dw represents the Euclidean distance between the two

output vectors as shown in figure 27. The output of the

contrastive divergence loss function, Y is either 1 (indicates

images are not the same) or 0 (indicates images are the

same). m represents a margin value greater than 0. The idea

of siamese networks has been extended to come up with

triplet networks, which includes three identical networks and

is used to assess the similarity of a given image with two other

images.

Since the softmax layer outputs must match the number of

classes, a standard CNN becomes impractical for problems

that have large number of classes. This issue doesn’t apply

to siamese network as the number of outputs of the softmax

in the twin networks doesn’t have the requirement to match

the number of classes [89]. This ability to scale to many more

classes for classification extends the use of siamese networks

beyond what a traditional CNN is used for. Siamese network

can be used for handwritten check recognition, signature

verification, text similarity, etc.

R. VARIATIONAL AUTOENCODERS

As the name suggests, variational autoencoder (VAE), are

a type of autoencoder and consists of encoder and decoder

parts as shown in figure 28. It falls under the generative

model class of neural networks and are used in unsupervised

learning. VAEs learn a low dimensional representation (latent

variable) thatmodel the original high dimensional dataset into

a gaussian distribution. Kullback–Leibler (KL) divergence

method is a good way to compare distributions. Therefore,

the loss function in VAE is a combination of cross entropy

(or mean squared error) to minimize reconstruction error and

KL divergence to make the compressed latent variable follow

a gaussian distribution. We then sample from the probability

distribution to generate new dataset samples that are represen-

tative of the original dataset. It has found various applications

FIGURE 28. Variational autoencoder.

including generating images in video games to de-noising

pictures.

In figure 28, x is the input and z is the encoded output

(latent variable). P(x) represents the distribution associated

with x. P(z) represents the distribution associated with z.

The goal is to infer P(z) based on P(z|x) that follows a

certain distribution. The mathematical derivation for VAEs

were originally proposed in [90]. Suppose we wanted to infer

P(z|x) based on someQ(z|x), then we can try to minimize the

KL divergence between the two:

DKL[Q (z|x) ||P (z|x)] =
∑Q(z|x) log [Q(z|x)

P(z|x) ]

z
(47)

= E [log [
Q (z|x)
P (z|x) ]] (48)

= E [logQ (z|x)− logP (z|x)] (49)

where DKL is the Kullback–Leibler (KL) divergence and

E represents expectation.

Using Baye’s rule:

P(z|x) = P (x|z)P(z)
P(x)

(50)

DKL[Q(z|x)||P(z|x)]

= E [logQ(z|x)− LogP(x|z)P(z)
P(x)

] (51)

= E [logQ(z|x)− logP(x|z)− logP(z)]+ logP(x)

(52)

To allow us to easily sample P(z) and generate new data,

we set P(z) to normal distribution, i.e., N (0, 1). If Q(z|x) is
represented as gaussian with parametersµ(x) and

∑

(x), then

the KL divergence between Q(z|x) and P(z) can be derived in
closed form as:

DKL [N (µ (x) , 6 (x)) ||N (0, 1)]

= (1/2)
∑

k
(exp (6 (x))+ µ2 (x)− 1−6 (x)) (53)

S. DEEP REINFORCEMENT LEARNING

The primary idea about reinforcement learning is about mak-

ing an agent learn from the environment with the help of

random experimentation (exploration) and defined reward

(exploitation). It consists of finite number of states (si, rep-

resenting agent and environment), actions (ai) by the agent,

probability (Pa) of moving from one state to another based

on action ai, and reward Ra(si, si+1) associated with moving

to the next state with action a. The goal is to balance and

maximize the current reward (R) and future reward (γ ·
max[Q

(

s′, a′
)

]) by predicting the best action as defined by

this function Q (s, a) · γ in the equation represent a fixed

discount factor. Q (s, a) is represented as the summation of
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current reward (R) and future reward (γ · max[Q
(

s′, a′
)

]) as

shown below.

Q (s, a) = R+ γ ·max[Q
(

s′, a′
)

] (54)

Reinforcement learning is specifically suited for problems

that consists of both short-term and long-term rewards, e.g.,

games like chess, go, etc. AlphaGo, Google’s program that

beat the human Go champion also uses reinforcement learn-

ing [91]. When we combine deep network architecture with

reinforcement learning, we get deep reinforcement learning

(DRL), which can extend the use of reinforcement to even

more complex games and areas such as robotics, smart grids,

healthcare, finance etc. [92]. With DRL, problems that were

intractable with reinforcement learning can now be solved

with higher number of hidden layers of deep networks and

reinforcement learning based Q-learning algorithm that max-

imizes the reward for actions taken by the agent [13].

T. GENERATIVE ADVERSARIAL NETWORK (GAN)

GANs consists of generative and discriminative neural net-

works. The generative network generates completely new

(fake) data based on input data (unsupervised learning) and

the discriminative network attempts to distinguish whether

the data is real (from training set) or generated. The generative

network is trained to increase the probability of deceiving

the discriminative network, i.e., to make the generated data

indistinguishable from the original. GANs were proposed by

Goodfellow et al. [93] in 2014. It has been very popular as

it has many applications both good and bad. E.g., [94] were

able to successfully synthesize realistic images from text.

U. MULTI-APPROACH METHOD FOR ENHANCING DEEP

LEARNING

Deep learning can be optimized at different areas. We dis-

cussed training algorithm enhancements, parallel processing,

parameter optimizations and various architectures. All these

areas can be simultaneously implemented in a framework to

get the best results for specific problems. The training algo-

rithms can be finetuned at different levels by incorporating

heuristics, e.g., for hyperparameter optimization. The time

to train a deep learning network model is a major factor to

gauge the performance of an algorithm or network. Instead

of training the network with all the data set, we can pre-

select a smaller but representative data set from the full

training distribution set using instance selection methods [95]

or Monte Carlo sampling [48]. An effective sampling method

can result in preventing overfitting, improving accuracy and

speeding up of the learning process without compromising on

the quality of the training dataset. Albelwi andMahmood [96]

designed a framework that combined dataset reduction,

deconvolution network, correlation coefficient and an

updated objective function. Nelder-Mead method was used

in optimizing the parameters of the objective function and

the results were comparable to latest known results on the

MNIST dataset [96]. Thus, combining optimizations at mul-

tiple levels and using multiple methods is a promising field

of research and can lead to further advancement in machine

learning.

VIII. CONCLUSION

In this tutorial, we provided a thorough overview of the neural

networks and deep neural networks. We took a deeper dive

into the well-known training algorithms and architectures.

We highlighted their shortcomings, e.g., getting stuck in the

local minima, overfitting and training time for large prob-

lem sets. We examined several state-of-the-art ways to over-

come these challenges with different optimization methods.

We investigated adaptive learning rates and hyperparameter

optimization as effective methods to improve the accuracy

of the network. We surveyed and reviewed several recent

papers, studied them and presented their implementations and

improvements to the training process.We also included tables

to summarize the content in a concise manner. The tables

provide a full view on how different aspects of deep learning

are correlated.

Deep Learning is still in its nascent stage. There is

tremendous opportunity for exploitation of current algo-

rithms/architectures and further exploration of optimization

methods to solve more complex problems. Training is cur-

rently constrained by overfitting, training time and is highly

susceptible to getting stuck in local minima. If we can

continue to overcome these challenges, deep learning net-

works will accelerate breakthroughs across all applications

of machine learning and artificial intelligence.
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