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Abstract 

Drug discovery is a time-consuming, high-investment, and high-risk process in traditional drug 
development. Drug repositioning has become a popular strategy in recent years. Different from 
traditional drug development strategies, the strategy is efficient, economical and riskless. There are 
usually three kinds of approaches: computational approaches, biological experimental approaches, 
and mixed approaches, all of which are widely used in drug repositioning. In this paper, we reviewed 
computational approaches and highlighted their characteristics to provide references for 
researchers to develop more powerful approaches. At the same time, the important findings 
obtained using these approaches are listed. Furthermore, we summarized 76 important resources 
about drug repositioning. Finally, challenges and opportunities in drug repositioning are discussed 
from multiple perspectives, including technology, commercial models, patents and investment. 
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Introduction 

Drug discovery is a time-consuming, laborious, 
costly and high-risk process. According to a report by 
the Eastern Research Group (ERG) [1], it usually takes 
10-15 years to develop a new drug. However, the 
success rate of developing a new molecular entity is 
only 2.01% [2], on average. As demonstrated in a 
report by the Food and Drug Administration (FDA), 
the number of drugs approved by the FDA has been 
declining since 1995 [3]. Moreover, investment in 
drug development has been gradually increasing, as 
reported by Pharmaceutical Research and 
Manufacturers of America (PhRMA) [4] (Figure 1). 
This indicates that the cost of new drug development 
will continue to grow. Hence, it is urgent to find a 
new strategy to discover drugs. 

Drug repositioning, also known as old drugs for 
new uses, is an effective strategy to find new 
indications for existing drugs and is highly efficient, 
low-cost and riskless. Traditional drug development 
strategies usually include five stages: discovery and 
preclinical, safety review, clinical research, FDA 

review, and FDA post-market safety monitoring [4, 5]. 
However, there are only four steps in drug 
repositioning: compound identification, compound 
acquisition, development, and FDA post-market 
safety monitoring (Figure 2). Due to the fast growth of 
bioinformatics knowledge and biology big data, drug 
repositioning decreases the time cost of the drug 
development process significantly. Researchers only 
need 1-2 years to identify new drug targets and 8 
years to develop a repositioned drug, on average [1]. 
Furthermore, the research and development 
investment required for drug repositioning is lower 
than that for traditional strategies. Drug repositioning 
breaks the bottlenecks of cost for many countries. It 
only costs $1.6 billion to develop a new drug using a 
drug repositioning strategy, while the cost of the 
traditional strategy is $12 billion [6]. Thus, drug 
repositioning offers an opportunity for many 
countries to develop drugs with lower investments. 

In addition to reducing the time cost and 
investment, drug repositioning is also a low-risk 
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strategy. A risk-reward diagram is often used to 
describe the relationship between a risk and the 
reward on investment [7]. We drew a risk-reward 
diagram to compare repositioning and traditional 
drug development strategies (Figure 3). As shown in 
Figure 3, drug repositioning holds a higher reward 

with a lower risk. Because repositioned drugs have 
passed all clinical tests in Phase I, Phase II, and Phase 
III, their safety has been confirmed. In addition, some 
repositioned drugs may be marketed as molecular 
entities and have more opportunities to be pushed 
into the market once a new indication is discovered. 

 

 
Figure 1. The investment in drug development by PhRMA member companies and the number of approved drugs by the FDA from 1995 to 2015. 

 

 
Figure 2. The contrast of traditional drug development and drug repositioning. A) Flowchart of the traditional drug development process. B) Flowchart of drug repositioning. 
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Approaches to drug repositioning 

The main issue in drug repositioning is the 
detection of novel drug-disease relationships. To 
address this issue, a variety of approaches have been 
developed including computational approaches, 
biological experimental approaches and mixed 
approaches.  

With the fast development of biology microarray 
techniques, various drug and disease knowledge 
databases such as DrugBank [8], ChemBank [9], 
OMIM [10], KEGG [11], and Pubmed [12] have 
appeared, and massive genomic databases such as 
MIPS[13], PDB [14], GEO [15], and GenBank [16] have 
been built (see Resource section for details). This 
knowledge and data further promoted the rapid 
development of a variety of novel computational 
approaches. Compared to biological experimental 
approaches, computational approaches have much 
lower costs and much fewer barriers [17]. In this 
review, we mainly introduce computational 
approaches. 

Most existing computational approaches are 
based on the gene expression response of cell lines 
after treatment or merging several types of 
information about disease-drug relationships [18] that 
can be divided into different types from different 
viewpoints [19-21]. For instance, some researchers 
grouped drug repositioning methods according to the 
biological networks used [19], and others divided 
drug repositioning methods into two types: 

data-driven and hypothesis-driven [21]. 
However, the above studies did not 
focus on methodology. In this paper, we 
emphasized the core methodologies of 
drug repositioning approaches, so we 
divided them into three categories: 
network-based approaches [22-32], 
text-mining approaches [33-45] and 
semantic approaches [46-49]. 

Network-based approaches 

Network-based approaches are 
widely used in drug repositioning due to 
the associated ability to integrate 
multiple data sources. These approaches 
have been proposed in the past few 
decades and became a hot topic 
approximately ten years ago. In this 
section, two types of network-based 
approaches are reviewed: network- 
based cluster approaches [22-24, 26] and 
network-based propagation approaches 
[27, 29, 31, 32, 50]. 

Network-based cluster approaches 

Inspired by the fact that biologic entities 
(disease, drug, protein, etc.) in the same module of 
biological networks share similar characteristics, 
network-based cluster approaches have been 
proposed to discover novel drug-disease relationships 
or drug-target relationships. These approaches aim to 
find several modules (also known as subnetworks, 
groups or cliques) using cluster algorithms according 
to the topology structures of networks. These 
modules include various relationships such as 
drug-disease, drug-drug or drug-target relationships. 
The most common network-based cluster approaches, 
including DBSCAN [51], CLIQUE [52], STING [53], 
and OPTICS [54], cannot detect overlapping clusters. 
To address this problem, Lu et al. [55] studied the 
drug repositioning of SCLC (small-cell lung cancer) 
using a k-means-based network cluster algorithm. 
Chemical-chemical interactions and chemical-protein 
interactions were utilized to select candidate drug 
compounds that had close associations with approved 
lung cancer drugs and lung cancer-related genes. The 
experimental results revealed that the proposed 
algorithm predicted some drugs for treating SCLC, 
indications which were verified by retrieving 
references. 

Tamas´ et al. [22] proposed a greedy network 
cluster approach named ClusterONE with two kernel 
components: cohesiveness score and greedy growth 
process. There are three steps in the approach: (i) 
generating growth groups from the greedy growth 

 
Figure 3. Risk and reward in two different drug development strategies 
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process using high-cohesiveness seed nodes, (ii) 
merging highly overlapping group pairs, (iii) 
discarding some complex groups according to the 
threshold. The advantage of the approach is its 
generality, and it can accurately predict not only 
disease-drug relationships in disease-drug networks 
but also protein interactions in protein-protein 
networks. Yu et al. [23] proposed an approach to 
construct disease-protein-drug networks based on a 
symmetrical conditional probability and detection of 
modules on the network via the ClusterONE 
algorithm. As a result, potential disease-drug 
interactions were found—for example, the authors 
discovered that iloperidone could be used to treat 
hypertension. Wu et al. [24] developed a novel 
approach through combining ClusterONE and 
Louvain [25] to detect modules in a heterogeneous 
network built from KEGG [11] disease-drug and 
drug-target data. They found 98 clusters and 1160 
pairs of disease-drug interactions—for instance, 
vismodegib was predicted to treat Gorlin syndrome, 
while its original indication was basal cell carcinoma. 
Luo et al. [26] presented an approach named MBiRW 
with three steps: (i) calculating a comprehensive 
similarity between drugs and diseases; (ii) obtaining 
drug-drug subnetworks, disease-disease subnetworks 
and drug-disease subnetworks; and (iii) finding 
drug-disease relationships using a bi-random walk 
algorithm. Some novel disease-drug relationships 
such as Alzheimer’s-levodopa were found (see Table 
1). 

Network-based propagation approaches 

Network-based propagation approaches are 
another important type of network-based approach. 
The workflow of these approaches is that prior 
information propagates from the source node to all 
network nodes and some subnetwork nodes. 
According to the different propagation ways, these 
approaches can be divided into two types: local 
approaches and global approaches. Several studies 
have proven that these methods perform well in 
finding disease-targets, disease-genes and 
disease-drug relationships [27]. Local propagation 
approaches only take the limited information of the 
network into account and may fail to make correct 
predictions [28] in some cases. By contrast, global 
approaches containing information from the entire 
network perform better than local approaches. Most 
current researchers concentrate on global approaches 
to achieve outstanding performance. For example, 
Kohle et al. [29] developed a network propagation 
approach based on the global information of a 
network to find novel disease-gene interactions. The 
approach included three phases: (i) extracting 

drug-disease relationships and constructing a 
disease-gene network; (ii) obtaining the global 
information of the network using a random walk 
propagation algorithm [56] in the network; and (iii) 
defining global metrics to predict novel disease-gene 
relationships. The proposed approach performed 
better than other approaches, including the diffusion 
kernel approach, PROSPECTR [30]. In addition, 
cross-validation showed that the accuracy of 
disease-gene predictions is 98%. Vanunu et al. [31] 
also proposed a global approach for finding 
disease-gene and disease-protein relationships via a 
network propagation approach called PRINCE. The 
method is based on formulating constraints on a score 
function related to the smoothness of the disease-gene 
network. In the proposed method, gene nodes adopt 
prior information as input and then pump this 
information to their neighbor node until convergence. 
The score function gives a confidence level for each 
predicted disease-gene pair. PRINCE was evaluated 
on 1369 disease data points from OMIM and could 
predict unknown causal genes of some diseases such 
as type 2 diabetes, Alzheimer’s disease and prostate 
cancer. Martinez et al. [32]

 
presented a 

disease-gene-drug network propagation approach 
wherein two different propagation approaches were 
defined: propagation in homogeneous subnetworks 
(such as gene subnetworks) and propagation between 
subnetworks. They used a prioritization function to 
measure the correlation between drugs and diseases. 
As a consequence, a list of drugs was produced for a 
queried disease. Novel indications of some drugs 
such as methotrexate, gabapentin, cisplatin, 
donepezil, and risperidone were obtained using this 
approach. In addition, Emig et al. [27]

 
proposed a 

comprehensive approach combining 4 local and 
global network approaches through a logistic 
regression model. The approach was evaluated on 30 
different diseases with known drug targets and 
yielded an AUC (area under the curve) above 80%. 
Furthermore, melanoma’s drug target c-Myc was 
successfully predicted, and this finding was also 
confirmed by two other experiential studies. [57, 58]

 
 

Network-based approaches are vital for drug 
repositioning. Researchers often need to make a 
decision in selecting appropriate approaches, and we 
summarized these approaches in Table 1 and listed 
their benefits, bottlenecks, key findings, databases 
and other information. The networks employed in 
these approaches can be divided into two classes: 
homogeneous and heterogeneous. As disease 
pathways can be constructed from protein-protein 
interaction (PPI) network analysis [59], a 

protein-protein interaction (PPI) network, as a 
homogeneous network, is often employed in some 
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approaches [22, 60, 61] used to identify drug targets 
involved with multiple pathways. Along with the 
deeper research associated with the network, the 
accuracy of PPI networks has been enhanced because 
numerous PPI databases have been established and 
updated by experiments. However, PPI networks are 
limited since they only include protein information 
without considering additional information. With the 
advent of the era of big data, the accumulation of 
various medical data (such as drugs, diseases, and 
targets data, among others) has made it possible to 
construct complex heterogeneous networks. 

Heterogeneous networks, which integrate multiple 
sources of information including genomes, proteomes 
and metabolic pathways [62], typically contain 
two-layer (i.e., disease-drug) or three-layer (i.e., 
disease-drug-gene) relationships and have attracted 
researchers’ attention. Different biological entities 
included in the heterogeneous networks not only 
provide an opportunity to improve the performance 
of existing methods but also offer a tool to design 
more efficient and stable approaches [24, 26, 27, 29, 31, 
55, 58] (see table 1). 

 

Table 1. Networks-based drug repositioning 

Name Method Network Description Key Findings Advantage Disadvantage Ref. 

RNSC Cluster PPI A global network 
algorithm to identify 
protein clusters on PPI 
networks 

Some complex proteins This method considers both 
local and global information 
from networks. 
Overlap clusters can be 
detected as well. 

Some information may be 
dropped because the 
cluster size is small. 

[60] 

RRW Cluster PPI An effective network 
cluster approach to identify 
protein clusters on a PPI 
network 

Some complex proteins This is a general method 
with a high prediction 
accuracy. 

It is a time-costly and 
memory-costly method 
that cannot detect 
overlap clusters. 

[61] 

ClusterONE Cluster PPI A global network algorithm 
to identify node clusters on 
networks. 

Some complex proteins This approach outperformed 
the other approaches 
including MCL, RRW, etc., 
both on weighted and 
unweighted PPI 
networks. 

There is no a gold standard 
to evaluate clusters. 

[22] 

- Cluster Drug-protein-disease A variant of ClusterONE 
algorithm to cluster nodes 
on heterogeneous networks 

(Iloperidone, 

schizophrenia) → 

Hypertension 

This is an efficient 
cluster approach that 
integrates multiple 
databases. 

It is difficult to distinguish 
between positive 
associations and negative 
associations on the 
network. 

[23] 

- Cluster Drug-target-disease An algorithm to detect 
clusters on the network 

(Vismodegib, Basal cell 
carcinoma) → Gorlin 
syndrome 

This is a general and 
highly robust approach. 

This approach loses 
weakly associate genes of 
diseases and drugs. 

[24] 

MBiRW Cluster Drug-disease A bi-random walk- 
based algorithm to 
predict disease-drugs 
relationships. 

(Levodopa, Parkinsonian 
disorder) → 
Alzheimer’s 
(Cabergoline, 
Hyperprolactinemia) →
Migraine 

Predictions of this approach 
are reliable. 

The approach needs to 
adopt more biological 
information to improve 
the confidence of the 
similarity metric. 

[26] 

- Cluster Drug-protein-chemical A k-means-based network 
cluster algorithm 
on heterogeneous networks. 

(Canertinib, Acute 
lymphoblastic leukemia) 
→ 
SCLC 

This approach is easy to 
implement. Predictions of 
this approach are reliable. 

This approach needs 
to integrate multiple 
databases. 

[55] 

- Propagation Drug-target An algorithm that 
combines four 
network-based approaches 
to predict drug-target 
relationships. 

Melanoma’s target cMyc 
was predicted 

This approach is easy to 
implement. Predictions of 
this approach are reliable. 

This approach needs 
to integrate multiple 
databases. 

[55] 

- Propagation Disease-protein-gene A random walk-based 
network algorithm with 
a diffusion kernel to predict 
disease-gene relationships. 

Some disease-gene 
relationships 

This is a global efficient 
method that can be applied 
on other networks 
such disease-drug networks. 

This approach can 
only be used for genes 
whose protein-protein 
relations are known. 
It does not perform well 
on small disease-gene 
family data. 

[29] 

PRINCE Propagation Disease-gene A global propagation 
algorithm to 
predict disease-gene 
relationships. 

Some disease-gene 
relationships 

This is a global network 
approach combined with a 
novel normalization of 
protein-protein 
interaction weights 
and disease-disease 
similarities. 

This approach relies 
on phenotype data, so 
some diseases that lack 
phenotype information are 
excluded. The performance 
of this approach 
relies on data quality. 

[31] 

DrugNet Propagation Disease-drug-protein A comprehensive 
propagation method to 
predict different 
propagation strategies in 
different subnets. 

(Methotrexate, 
antimetabolite and 
antifolate)→ cancer 
(Gabapentin, 
epilepsy)→neuropathic 
pain 

This method is robust and 
efficient. 

The performance of this 
approach relies on the 
quality of disease data. 

[31] 

Note: In key findings field, some records are organized as the form: (drug, origin indication) → new indication. For example: (Canertinib, Acute lymphoblastic leukemia) → 
SCLC 
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Figure 4. The workflow of text mining. 

 

From the method perspective, network-based 
cluster algorithms are frequently used to find 
interesting modules, and network-based propagation 
algorithms are often used to infer new relationships 
between biological entities. Network-based cluster 
approaches are general because most network-based 
cluster algorithms can be employed for detecting 
biological modules. For example, some cluster 
algorithms in the social network analysis field can be 
employed for detecting modules in biological 
networks [25, 63]. However, there is a challenge of 
network-based cluster approaches in that there exists 
no gold standard to test associations among biological 
modules. Network-based propagation approaches are 
easy to implement and can make accurate predictions. 
Researchers can obtain an AUC value and estimate 
the prediction results. In addition, network-based 
propagation approaches use not only information 
from the selected components but also information 
from expanding components. 

Text mining-based approaches 

Along with the exploration of drug 
repositioning, a great deal of medical and biological 
literature containing fruitful novel biological entity 
relationships have been published. There is a large 
challenge in extracting novel and valuable biological 
entity relationships from the literature. Text mining 
(TM) techniques have been widely used to address 
this problem and have been increasingly developed to 
mine new knowledge from scientific literature and 
identify connections between biological concepts or 
biological entities. 

Marti Hearst gave a general definition for text 
mining as ‘text mining is the discovery by computer 
of new, previously unknown information, by 
automatically extracting information from different 
written resources’ [64]. The main pipeline of 
biological text mining includes four phrases: 
information retrieval (IR), biological name entity 
recognition (BNER), biological information extraction 
(BIE) and biological knowledge discovery (BKD) 
(Figure 4). In the IR step, relevant documents are 
extracted from the literature. These relevant 
documents need to be filtered because there are some 
useless concepts in documents. In the BNER step, 
valuable biological concepts are identified with 
controlled vocabularies. In the BIE and BKD steps, 

useful information is extracted to discover knowledge 
about biological concepts and build a knowledge 
graph. At the same time, potential associations 
between knowledge, such as drug-disease and 
drug-target relationships, can also be detected. 

The origin of text mining methods in the medical 
field is the Swanson ‘ABC’ model, which states that if 
concept A is connected with concept B, and concept B 
is involved with concept C, then concept A may have 
a novel connection with concept C [65]. Based on the 
‘ABC’ model, various text mining methods have been 
proposed to find potential disease-drug relationships 
in the literature. A number of studies have been 
devoted to applying text mining techniques in drug 
repositioning. Li et al. [33] developed an approach to 
building disease-specific drug-protein connectivity 
maps combining network mining and text mining. In 
the proposed method, they first extracted 
disease-protein relationships from molecular 
interaction networks using network mining. Then, 
they searched for drug terms indirectly associated 
with certain diseases such as Alzheimer’s disease 
(AD) in PubMed abstracts through text mining 
techniques. Finally, drugs and proteins could be 
linked through drug-disease or disease-protein 
relationships. 

As a result, diltiazem and quinidine are 
hypertension and arrhythmia drugs, respectively, but 
authors have also found that the two drugs could be 
used to cure Alzheimer’s disease, which has been 
confirmed by clinical evidence. Ruggero et al. [34] 
proposed an approach to building sentence graph 
networks using text mining techniques. The proposed 
network can be used to discover relationships 
between any drug and any disease. These 
relationships are specific paths among the biomedical 
entities in the graph network. A novel disease target 
of sarcoidosis was identified using this approach. 
Rastegar et al [66] extracted drug-gene and 
gene-disease relationships from medical abstracts to 
obtain drug-disease relationships using a rank score. 
To evaluate the performance of the proposed 
approach, the obtained drug-disease relationships 
were validated in the Comparative Toxicogenomics 
Database (CTD). Experimental results indicated that 
the discovered relationships confirmed in CTD were 
highly confident. Jang et al. [35] developed an 
approach to building dependency graph networks 
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through extracting sentences with genes, drugs and 
phenotypes from biomedical literature. They 
calculated the possibility that a drug treats a 
phenotype based on drug-phenotype associations. 
The authors compared the predicted drug-phenotype 
associations using known drug-phenotype 
associations in databases and proved the good 
performance of their method. Kuusisto et al [36] 
proposed another text mining method named 
KinderMiner to identify potential indications of some 
old drugs. The method is based on co-occurrence 
statistics between drugs and diseases in the literature. 
As a result, new indications of some drugs such as 
Zestoretic, Zebeta, and Tiazac were found. Zhang et 
al. [37] reported an algorithm to prioritize anti-AD 
(Alzheimer’s disease) targets. The authors extracted 
224 genetic variations, 14 epigenetic modifications, 98 
proteins and 86 metabolites associated with AD using 
text mining and integrated these interactions to 
construct a weighted sum model to prioritize 
potential anti-AD drug targets. 

With the development of natural language 
processing (NLP) techniques, increasing numbers of 
text mining tools have been developed and used to 
discover repositionable drugs (see [38, 39]). Here, we 
summarized the inputs, outputs and characteristics of 
these tools in Table 2. The inputs of these methods are 
usually biological terms extracted from existing 
literature, and the corresponding outputs are lists of 
relationships of biological terms. The confidence 
levels of the relationships are generally evaluated 
using computational approaches or biological 

experiments. These tools can be divided into two 
categories: static tools and dynamic tools. 

Static tools were built on steady databases or 
documents with large size. Due to the large data size, 
the time performance of these tools was poor. To 
address this problem, indexes for documents or 
records were created to accelerate the query process in 
static tools. For example, DrugQuest [40] is a type of 
query tool for detecting drug-drug relationships. The 
workflow of this tool includes five stages. (i) Query, in 
which users provide a query term to retrieve related 
documents. (ii) Name entity recognition, which 
identifies proteins, chemicals and pathway terms in 
related documents using a biomedical concept 
recognition service named BeCAS [67] and identifies 
significant terms closely associated with the query by 
calculating the TF-IDF score (Term Frequency - 
Inverse Document Frequency) to measure the 
importance of terms. (iii) Building document network, 
which uses the similarity of documents. (iv) 
Clustering, in which various clustering algorithms 
(MCL, K-means, hierarchical clusters) are employed 
to cluster documents on the network. (v) 
Visualization, in which the ‘tag cloud’ technique is 
used for representing cluster results. The DrugQuest 
tool is promising for knowledge discovery and 
drug-drug relation prediction. However, the 
proposed tool only supports the DrugBank database, 
which leads to limitations of the query results. Other 
query tools [39, 40, 68, 69] were also designed in a 
similar way (see table 2). 

 

Table 2. Text mining tools for drug repositioning. 

Name Class Input Output Description Web Site Ref 

Biovista Static Biological 
knowledge 

Gene-protein relationships A mining framework to extract gene-protein 
relationships. 

http://www.biovista.com/ [68] 

BioWisdom Static Ontology Drug-disease, drug-target 
relationships 

A platform to discover novel biological 
entity relationships. 

http://www.biowisdom.com [39] 

FACTA+ Static Tekst Abstracts and linked 
concepts 

A system to find associated concepts based 
on a user query 

http://www.nactem.ac.uk/facta/cepts based on a 
user query 

[102] 

EDGAR Static UMLS terms Drug-gene relationships A system to extract relationships 
between drugs and genes involved in cancer 
using syntactic 
analysis 

https://www.sec.gov/ [103] 

PolySearch Dynamic Bio-entities Drug-disease, Drug-gene 
relationships 

A web service to extract links between 
biological terms 

http://wishart.biology.ualberta.ca [41] 

TextFlow Dynamic Document Knowledge A web-based text mining and 
natural language processing platform 

http://textflows.org/ [42] 

EXTRACT2 Static Bio-entities Entity relationships A text mining-based tool to 
map biological entities to 
ontology/taxonomy entries 

http://extract.jensenlab.org/ [104] 

Anni 2.0 Static Bio-entities Linked concepts An ontology interface of a text mining tool to 
extract concepts 
relationships 

http://biosemantics.org/anni [69] 

DrugQuest Static Drugs Drug-drug relations A knowledge discovery tool to 
detect drug-drug relationships 

http://bioinformatics.med.uoc.gr [40] 

MaNER Dynamic Medical 
Document 

Relevant entities A rule-based system to mine relevant 
entities in medical documents 

- [43] 

BEST Dynamic Biomedical 
Literature 

Relevant bio-entities A knowledge discovery system to extract 
relevant bio-entities. 

http://best.korea.ac.kr.  [44] 

Alibaba Dynamic Bio-entities Linked concepts A tool to fit a PubMed query as a 
graphical network 

- [45] 
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Static tools usually cause outdated result 
problems. To address this issue, many dynamic tools 

[41-45] that update their document databases daily 
were developed. However, these tools also need more 
time to handle user queries. To reduce the time cost of 
queries, cache and index techniques were employed 
in dynamic tools. For example, PolySearch2 [41] used 
a cache technique to reduce the response time, and 
BEST [44]

 
used an indexing technique to reduce the 

computation time. BEST is a biomedical search tool 
that returns a list of 10 different types of biomedical 
entities including genes, diseases, drugs, targets, 
transcription factors, miRNAs, and mutations for a 
query. The proposed tool consists of two parts: an 
indexing subsystem and a search subsystem. In the 

indexing subsystem, the authors used a 
dictionary-based approach to extract entities from the 
text and create a document-entity to list paired 
indexes. To avoid the outdated results problem, the 
tool automatically downloads abstracts newly 
indexed from the PubMed system and updates the 
document-entity indexes every day. In the search 
subsystem, the proposed tool utilizes the inverted 
index to obtain matched query terms. All entities 
obtained from the query are ranked according to their 
integrated entity scores involving entities and query 
terms included in all documents. BEST is a real-time 
and constantly updated tool, for which the time 
performance and output quality are both considered. 

Text mining tools reduce the time complexity of 
drug repositioning and assist researchers in verifying 
their experimental results by returning massive 
amounts of biological entity relationships. However, 
there are still some issues that need to be addressed. 
For example, the limited coverage problem is one 
limitation of text mining tools, which means that 
partially important biomedical entities or 
relationships such as mutations, targets, and drugs 
are not considered. Therefore, there is an urgent need 
to improve the performance of existing text mining 
tools. 

Semantics-based approaches 

Semantics-based approaches are widely used in 
information retrieval, image retrieval and other fields. 
Recently, these methods have been applied to drug 
repositioning. The workflow of these methods mainly 
includes three steps (Figure 5). First, biological entity 
relationships are extracted from prior information in 
massive medical databases to build the semantic 
network. Then, semantics networks based on existing 
ontology networks are constructed by adding the 
prior information obtained in the previous step. 
Finally, mining algorithms are designed to predict 
novel relationships in the semantic network. 

Based on a hypothesis in which similar drugs are 
correlated with similar targets and similar targets are 
connected to similar drugs, Guillermo et al. [46] 
proposed an unsupervised algorithm to predict 
drug-target relationships. The authors constructed a 
semantic network including drug-drug, target-target, 
and drug-target relationships. The proposed 
approach, which combines semantics link prediction 
methods and edge partition methods, was evaluated 
on a network. Due to substantial semantics 
knowledge being used, the proposed method made 
accurate predictions about drug-target relationships. 
Mullell et al. [47] presented a semantics data-driven 
algorithm for drug repositioning. The authors used a 
Bayesian statistics approach to rank drug-disease 
relationships according to prior knowledge. Then, 
they integrated ranked relationships with other 
biological entity associations to construct a semantical 
drug discovery network. To infer drug-disease 
relationships, the author applied an algorithm for 
detecting semantic subgraphs. As a result, 
nitrendipine, a potent blocker of the calcium channel 
(CACNA1S) used to treat hypokalemic periodic 
paralysis, was found. 

Chen et al. [48] built a semantic linked network 
consisting of over 290,000 nodes and 720,000 edges 
with multisource data including drugs, targets, 
proteins, and disease pathways. Then, the authors 
applied a statistical model to predict drug-target 
relationships. Consequently, the proposed model 
identified some drug-targets pairs and drugs for 
repurposing. For example, barbiturate, a drug used 
for treating migraines, was predicted for use in curing 
insomnia with literature support. Zhu et al. [49] 
proposed an automatic reasoning approach for 
heterogeneous semantics networks. Biological entities 
(such as drugs) are converted to labels in a semantics 
network. Then, disease-drug relationships are 
obtained from automatic reasoning techniques. As a 
demonstration, the authors reported that tamoxifen, a 
drug used for treating breast cancer, can treat ovarian 
cancer, which was confirmed by the literature [70]. 

Semantics-based approaches take full advantage 
of semantics information included in massive 
amounts of literature. Therefore, the precision of 
predicting biological entity relationships was 
improved. However, there is a still challenge in 
constructing a semantic network by integrating 
multisource data. It is urgent to construct semantic 
networks that contain fruitful medical data. 

Resources 

Along with the development of biological 
technology and the accumulation of various omics 
data (genomics, proteomics or metabolomics, etc.), 
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more databases from chemical, medical, 
pharmacological and biological fields have been 
established. We summarized 80 widely used 
databases or resources that can be used for designing 
drug repositioning approaches. 

Pharmacological databases [8, 71-76] are crucial 
resources for drug repositioning. These databases 
collect not only drug property data but also data on 
interactions between drugs and other biological 
entities. Pharmacological data lays the foundation of 
various computational approaches. For instance, 

DrugBank [8] is a unique bioinformatics and 
cheminformatics resource that combines detailed 
drug data with comprehensive drug target 
information. Many computational approaches, 
especially network-based approaches [23-26], were 
designed based on this database, which achieved 
excellent results (see table 1). 

Proteomics databases [13, 14, 76-78] are another 
type of the data resource for drug repositioning. Most 
important protein-protein interaction (PPI) networks 
from proteomics databases are the basis of 

 
Figure 5. The workflow of a semantic network inference. 
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network-based drug repositioning approaches. In 
addition, proteomics databases are also important 
resources for building heterogeneous networks such 
as drug-protein-disease networks. One of the famous 
proteomics databases is MIPS [13], which includes 
manual high-quality PPI data from scientific 
literature. MIPS can provide PPI information for some 
network approaches [61, 77]. Moreover, it is a good 
resource for evaluating the experimental results of 
some computational approaches. 

Chemical features of drugs provide important 
information for designing chemical-based 
approaches. Publicly available databases [9] [79-84] of 
chemical structures contain massive amounts of 
useful information such as 2D topological fingerprints 
and 3D conformations. Chemical information on 
drugs is usually employed for predicting novel drug 
structures to find new indications for drugs having 
similar structures. PubChem [85] is a famous database 
for chemical molecules structures. The database 
contains a massive amount of 2D data that can be 
used to measure the similarity of drugs and to 
construct chemical networks. 

With further studies of drug repositioning, 
enormous amounts of medical and biological 
literature that contain novel biological entities 
relations have been published. Collecting massive 
amounts of literature is a necessary task for 
researchers; hence, many medical literature databases 
[10, 12, 86] have been built. Based on these valuable 
medical textual data, text mining approaches were 
proposed for drug repositioning (see Section Text 
mining-based approaches). PubMed [12] is the most 
widely used literature database. It comprises more 
than 27 million citations for biomedical literature from 
MEDLINE, life science journals, and online books. 
Citations may include links to full-text content from 
PubMed Central and publisher websites. Many text 
mining tools and search engines have been built using 
these databases (Table 2). 

Although increasingly more databases are being 
established, choosing proper approaches to mine 
novel knowledge is still a large challenge. It is 
necessary to discover the potential value of the 
increasing databases and medical literature for 
designing efficient drug repositioning approaches. 
We collected these resources in supplementary 
materials Tables S2 to help researchers choose proper 
approaches. 

Challenges and opportunities 

Traditional drug development strategies are 
costly, failure-prone, and expensive ventures. 
Therefore, drug repositioning has recently drawn 
attention and brings drugs out faster for clinical use. 

However, drug repositioning is a complex process 
involving multiple factors such as technology, 
commercial models, patents, investment and market 
demands. Although many medical databases have 
been established, selecting the appropriate approach 
to make full use of massive amounts of medical data is 
still a challenge. It is urgent to develop new 
approaches for drug repositioning. The intellectual 
property (IP) issue is another highlighted issue to be 
solved. For repositioning drugs, IP protection is 
limited [87]. For example, some novel drug-target- 
disease associations found by repositioning 
researchers were confirmed by publications or online 
databases; however, it is difficult to seek IP protection 
for such associations because of the law. The IP issue 
prevents some repositioned drugs from entering the 
market. Moreover, some repositioning projects are 
forced to be abandoned, which is a waste of time and 
money [88]. It is necessary to develop a new 
commercial model because the traditional commercial 
model is a serial model and causes overlapping 
investment issues. 

Opportunities come with challenges. The first 
example of drug repositioning was an accidental 
discovery in the 1920s. After about a century of 
development, more approaches have been proposed 
for accelerating the process of drug repositioning. For 
this reason, drug repositioning has acquired great 
achievements. In supplementary materials Table S1, 
we list 75 drug repositioning examples collected from 
the comprehensive literature. Massive machine 
learning algorithms were introduced to improve the 
performance of drug repositioning in this scenario. In 
addition to computational approaches, experimental 
approaches that give direct evidence of links between 
drugs and diseases were developed, such as target 
screening approaches [87-91], cell assay approaches 
[92-95], animal model approaches [96-99] and clinical 
approaches [49]. These approaches are reliable and 
credible. In recent years, increasing numbers of 
researchers have combined computational 
approaches and experimental approaches to find new 
indications for drugs, called mixed approaches [59, 
100, 101], wherein the result of computational 
methods was validated by biological experiments and 
clinical tests. Mixed approaches offer opportunities 
for developing repositioned drug effectively and 
rapidly. 

Generating secondary patents provides an 
opportunity for researchers to find new indications 
for existing drugs. With the IP problem solved, many 
repositioning projects have been conducted smoothly 
with low cost, which has aroused concern from many 
countries. With regard to the commercial model, 
parallel strategies bring significant improvement in 
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the efficiency of drug repositioning. For example, 
multiple tests or studies are conducted for a candidate 
drug, which reduces the time cost for drug 
repositioning. 

From the market perspective, a large number of 
diseases require new drugs to be treated, which 
brings potential economic benefits. Taking rare 
diseases as an example, there are over 6000 rare 
diseases that need to be studied. However, only 5% of 
them are being researched [79]. Rare diseases are a 
large potential market to explore. 

Supplementary Material  

Supplementary tables.  
http://www.ijbs.com/v14p1232s1.pdf  

Acknowledgements 

This work is partially supported by the National 
Natural Science Foundation of China (61471147, 
61371179), the Natural Science Foundation of 
Heilongjiang Province (F2016016), the Fundamental 
Research Funds for the Central Universities 
(HIT.NSRIF.2017037), and the National Key Research 
and Development Program of China (2016YF 
C0901905). 

Author contributions 

Jie Li designed the paper and is the first 
coauthor, Hanqing Xue and Jie Li analyzed and wrote 
the manuscript, Haozhe Xie reviewed the manuscript, 
and Yadong Wang participated in the preparation of 
the manuscript. 

Data availability statement 

The data supporting the findings of this work are 
contained within the manuscript. 

Competing Interests 

The authors have declared that no competing 
interest exists. 

References 
1. Sertkaya A, Birkenbach A, Berlind A, Eyraud J. Examination of clinical 

trial costs and barriers for drug development. US Department of health 
and human services, office of the assistant secretary for planning and 
evaluation report. 2014;1:1-92. 

2.  Yeu Y, Yoon Y, Park S. Protein localization vector propagation: a method 
for improving the accuracy of drug repositioning. Mol Biosyst. 
2015;11(7):2096-102. 

3. [Internet] Pharmaceutical Research and Manufacturers of America. 
http://www.phrma.org/sites/default/files/pdf/2015_phrma_profile.p 
df.2015. 

4. [Internet] Drug development process. https://www.fda.gov/Drugs/ 
default.htm. 

5. [Internet] Drug approval process. https://www.fda.gov/Drugs/ 
DevelopmentApprovalProcess/default.htm. 

6. Deotarse P. P.1, Jain A. S.1, Baile. M. B, et al. Drug repositioning: a 
review. Int J Pharma Res Rev. 2015; 4:51-58 

7. Ashburn TT, Thor KB. Drug repositioning: identifying and developing 
new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673-83. 

8.  Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive 
resource for in silico drug discovery and exploration. Nucleic Acids Res. 
2006;34:668-72. 

9. Seiler KP, George GA, Happ MP, et al. ChemBank: a small-molecule 
screening and cheminformatics resource database. Nucleic Acids Res. 
2008;36:351-9. 

10. Hamosh A, Scott AF, Amberger JS, Bocchini CA, Mckusick VA. Online 
Mendelian Inheritance in Man (OMIM), a knowledgebase of human 
genes and genetic disorders. Nucleic Acids Res. 2005;33:D514-7. 

11. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: 
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 
1999;27:29-34. 

12. [Internet]PubMed: US National Library of Medicine National Institutes 
of Health. https://www.ncbi.nlm.nih.gov/pubmed/. 

13. Mewes HW, Hani J, Pfeiffer F, Frishman D. MIPS: a database for protein 
sequences and complete genomes. Nucleic Acids Res. 1998;26:33-7. 

14. Bernstein FC, Koetzle TF, Williams GJ, et al. The Protein Data Bank: a 
computer-based archival file for macromolecular structures. J Mol Biol. 
1977;112:535-42. 

15. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional 
genomics data sets--update. Nucleic Acids Res. 2013;41:D991-5. 

16. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, 
Ostell J, et al. GenBank. Nucleic Acids Res. 2012; 41: 36-42. 

17. Oprea TI, Overington JP. Computational and Practical Aspects of Drug 
Repositioning. Assay Drug Dev Technol. 2015;13:299-306. 

18. Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a 
machine-learning approach through data integration. J Cheminform. 
2013;5:30. 

19. Lotfi shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A 
review of network-based approaches to drug repositioning. Brief 
Bioinformatics. 2017; 

20. Zou J, Zheng MW, Li G, Su ZG. Advanced systems biology methods in 
drug discovery and translational biomedicine. Biomed Res Int. 
2013;2013:742835. 

21. Gönen M. Predicting drug-target interactions from chemical and 
genomic kernels using Bayesian matrix factorization. Bioinformatics. 
2012;28:2304-10. 

22. Wu H, Gao L, Dong J, Yang X. Detecting overlapping protein complexes 
by rough-fuzzy clustering in protein-protein interaction networks. PLoS 
ONE. 2014;9(3):e91856. 

23. Yu L, Huang J, Ma Z, Zhang J, Zou Y, Gao L. Inferring drug-disease 
associations based on known protein complexes. BMC Med Genomics. 
2015;8 (Suppl 2):S2. 

24. Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug 
repositioning through heterogeneous network clustering. BMC Syst Biol. 
2013;7 (Suppl 5):S6. 

25. Subelj L, Bajec M. Unfolding communities in large complex networks: 
combining defensive and offensive label propagation for core extraction. 
Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83:036103. 

26. Luo H, Wang J, Li M, et al. Drug repositioning based on comprehensive 
similarity measures and Bi-Random walk algorithm. Bioinformatics. 
2016;32:2664-71. 

27. Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and 
repositioning using an integrated network-based approach. PLoS ONE. 
2013;8(4):e60618. 

28. Mei J-P, Kwoh C-K, Yang P, et al. Drug–target interaction prediction by 
learning from local information and neighbors. Bioinformatics. 2012; 29: 
238-45. 

29. Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for 
prioritization of candidate disease genes. Am J Hum Genet. 
2008;82(4):949-58. 

30. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding 
disease gene discovery by sequence based candidate prioritization. BMC 
bioinformatics. 2005; 6: 55. 

31. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes 
and protein complexes with disease via network propagation. PLoS 
Comput Biol. 2010;6(1):e1000641. 

32. Martínez V, Navarro C, Cano C, Fajardo W, Blanco A. DrugNet: 
network-based drug-disease prioritization by integrating heterogeneous 
data. Artif Intell Med. 2015;63(1):41-9. 

33. Li J, Zhu X, Chen JY. Building disease-specific drug-protein connectivity 
maps from molecular interaction networks and PubMed abstracts. PLoS 
Comput Biol. 2009; 5: e1000450. 

34. Gramatica R, Di Matteo T, Giorgetti S, Barbiani M, Bevec D, Aste T. 
Graph theory enables drug repurposing–how a mathematical model can 
drive the discovery of hidden mechanisms of action. PloS one. 2014; 9: 
e84912. 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

1243 

35. Jang G, Lee T, Lee BM, Yoon Y. Literature-based prediction of novel 
drug indications considering relationships between entities. Mol 
Biosyst.. 2017; 13: 1399-405. 

36. Kuusisto F, Steill J, Kuang Z, Thomson J, Page D, Stewart R. A Simple 
Text Mining Approach for Ranking Pairwise Associations in Biomedical 
Applications. AMIA Jt Summits Transl Sci Proc. 2017;2017:166-174. 

37. Zhang M, Schmitt-ulms G, Sato C, et al. Drug Repositioning for 
Alzheimer's Disease Based on Systematic 'omics' Data Mining. PLoS 
ONE. 2016;11(12):e0168812. 

38. Fleuren WW, Alkema W. Application of text mining in the biomedical 
domain. Methods. 2015; 74: 97-106. 

39. Krallinger M, Erhardt RA-A, Valencia A. Text-mining approaches in 
molecular biology and biomedicine. Drug discovery today. 2005; 10: 
439-45. 

40. Papanikolaou N, Pavlopoulos GA, Theodosiou T, Vizirianakis IS, 
Iliopoulos I. DrugQuest - a text mining workflow for drug association 
discovery. BMC Bioinformatics. 2016;17 (Suppl 5):182. 

41. Cheng D, Knox C, Young N, et al. PolySearch: a web-based text mining 
system for extracting relationships between human diseases, genes, 
mutations, drugs and metabolites. Nucleic Acids Res. 2008; 36: 
W399-W405. 

42. Perovšek M, Kranjc J, Erjavec T, Cestnik B, Lavrač N. TextFlows: A visual 
programming platform for text mining and natural language processing. 
Science of Computer Programming. 2016; 121: 128-52. 

43. Moreno I, Moreda P, Romá-Ferri MT. MaNER: a MedicAl named entity 
recogniser. Applications of Natural Language to Information Systems. 
2015; 418-23. 

44. Lee S, Kim D, Lee K, Choi J, Kim S, Jeon M, et al. BEST: next-generation 
biomedical entity search tool for knowledge discovery from biomedical 
literature. PloS one. 2016; 11: e0164680. 

45. Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U. AliBaba: 
PubMed as a graph. Bioinformatics. 2006; 22: 2444-5. 

46. Palma G, Vidal M-E, Raschid L. Drug-target interaction prediction using 
semantic similarity and edge partitioning. ISWC. 2014;1:131-46. 

47. Mullen J, Cockell SJ, Woollard P, Wipat A. An integrated data driven 
approach to drug repositioning using gene-disease associations. PloS 
ONE 2016; 11: e0155811. 

48. Chen B, Ding Y, Wild DJ. Assessing drug target association using 
semantic linked data. PLoS Comput Biol. 2012; 8: e1002574. 

49. Zhu Q, Tao C, Shen F, Chute CG. Exploring the pharmacogenomics 
knowledge base (PharmGKB) for repositioning breast cancer drugs by 
leveraging Web ontology language (OWL) and cheminformatics 
approaches. Pac Symp Biocomput. 2014;1:172-82. 

50. Sun Y, Sheng Z, Ma C, et al. Combining genomic and network 
characteristics for extended capability in predicting synergistic drugs for 
cancer. Nat Commun. 2015;6:8481. 

51. Sander Jr, Ester M, Kriegel H-P, Xu X. Density-based clustering in spatial 
databases: the algorithm gdbscan and its applications. Data mining and 
knowledge discovery. 1998; 2: 169-94. 

52. Agrawal, R., Gehrke, J., Gunopulos, et al. Automatic subspace clustering 
of high dimensional data for data mining applications. ACM.1998;27: 
94-105. 

53. Wang W, Yang J, Muntz R. STING: A statistical information grid 
approach to spatial data mining. VLDB; 1997;1:186-95. 

54. Ankerst, M., Breunig, M. M., Kriegel, et al. OPTICS: ordering points to 
identify the clustering structure. ACM.1999;28:49-60. 

55. Lu, Jing, et al. Identification of new candidate drugs for lung cancer 
using chemical–chemical interactions, chemical–protein interactions and 
a K-means clustering algorithm. J Biomol Struct Dyn.2016;34: 906-917 

56. Lovasz Ls. Random walks on graphs. Combinatorics, Paul erdos is 
eighty. 1993; 2: 4. 

57. Hermeking H. The MYC oncogene as a cancer drug target. Curr Cancer 
Drug Targets. 2003;3:163-75. 

58. Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target 
information through a heterogeneous network model. Bioinformatics. 
2014; 30: 2923-30. 

59. Ai N, Wood RD, Welsh WJ. Identification of nitazoxanide as a group 
imetabotropic glutamate receptor negative modulator for the treatment 
of neuropathic pain: an in silico drug repositioning study. Pharm Res. 
2015;32:2798-807. 

60. King AD, Przulj N, Jurisica I. Protein complex prediction via cost-based 
clustering. Bioinformatics. 2004;20:3013-20. 

61. Macropol K, Can T, Singh AK. RRW: repeated random walks on 
genome-scale protein networks for local cluster discovery. BMC 
Bioinformatics. 2009;10:283. 

62. Wu Z, Wang Y, Chen L. Network-based drug repositioning. Mol Biosyst. 
2013; 9: 1268-81. 

63. Frey BJ, Dueck D. Clustering by passing messages between data points. 
Science. 2007; 315: 972-6. 

64. Hearst MA. Untangling text data mining. Proceedings of the 37th annual 
meeting of the association for computational linguistics on 
computational linguistics: association for computational 
linguistics.1999;1:3-10. 

65. Weeber, Marc, et al. Using concepts in literature‐based discovery: 
simulating swanson's raynaud–fish oil and migraine–magnesium 
discoveries. J Am Soc Inf Sci Technol.2001;52:972-6 

66. Rastegar-Mojarad M, Elayavilli RK, Li D, Prasad R, Liu H. A new 
method for prioritizing drug repositioning candidates extracted by 
literature-based discovery. Bioinformatics and Biomedicine (BIBM). 
2015;1: 669-74. 

67. Nunes T, Campos D, Matos S, Oliveira JL. BeCAS: biomedical concept 
recognition services and visualization. Bioinformatics. 2013;29:1915-6. 

68. Lekka E, Deftereos SN, Persidis A, Persidis A, Andronis C. Literature 
analysis for systematic drug repurposing: a case study from Biovista. 
Drug Discov Today Biosilico. 2011; 8: 103-8. 

69. Jelier R, Schuemie MJ, Veldhoven A, Dorssers LC, Jenster G, Kors JA. 
Anni 2.0: a multipurpose text-mining tool for the life sciences. Genome 
Biol. 2008;9(6):R96. 

70. Lee JY, Shin JY, Kim HS, et al. Effect of combined treatment with 
progesterone and tamoxifen on the growth and apoptosis of human 
ovarian cancer cells. Oncol Rep. 2012;27:87-93. 

71. Pacini C, Iorio F, Gonçalves E, et al. DvD: An R/Cytoscape pipeline for 
drug repurposing using public repositories of gene expression data. 
Bioinformatics. 2013;29(1):132-4. 

72. Liu Y, Hu B, Fu C, Chen X. DCDB: drug combination database. 
Bioinformatics. 2009; 26: 587-8. 

73. Ekins S, Bunin BA. The Collaborative Drug Discovery (CDD) database. 
Methods Mol Biol. 2013;993:139-54. 

74. Fu C, Jin G, Gao J, Zhu R, Ballesteros-villagrana E, Wong ST. DrugMap 
Central: an on-line query and visualization tool to facilitate drug 
repositioning studies. Bioinformatics. 2013;29:1834-6. 

75. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a 
network-based approach to human disease. Nat Rev Genet. 
2011;12:56-68. 

76. Thorn CF, Klein TE, Altman RB. PharmGKB: the Pharmacogenomics 
Knowledge Base. Methods Mol Biol. 2013;1015:311-20. 

77. Goel R, Muthusamy B, Pandey A, Prasad TS. Human protein reference 
database and human proteinpedia as discovery resources for molecular 
biotechnology. Mol Biotechnol. 2011;48:87-95. 

78. Hodis E, Prilusky J, Martz E, Silman I, Moult J, Sussman JL. Proteopedia - 
a scientific 'wiki' bridging the rift between three-dimensional structure 
and function of biomacromolecules. Genome Biol. 2008;9:R121. 

79. Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug 
repositioning for orphan diseases. Brief Bioinformatics. 2011;12:346-56. 

80. Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity 
database for drug discovery. Nucleic Acids Res. 2012;40:D1100-7. 

81. Chen B, Dong X, Jiao D, et al. Chem2Bio2RDF: a semantic framework for 
linking and data mining chemogenomic and systems chemical biology 
data. BMC Bioinformatics. 2010;11:255. 

82. Chen J, Swamidass SJ, Dou Y, et al. ChemDB: a public database of small 
molecules and related chemoinformatics resources. Bioinformatics. 2005; 
21: 4133-9. 

83. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a 
public information system for analyzing bioactivities of small molecules. 
Nucleic Acids Res. 2009;37: 623-33. 

84. Ma DL, Chan DS, Leung CH. Drug repositioning by structure-based 
virtual screening. Chem Soc Rev. 2013;42(5):2130-41. 

85. Bolton, Evan E., et al. PubChem: integrated platform of small molecules 
and biological activities. Annual reports in computational chemistry. 
2008;4: 217-41. 

86. Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 
2011: functional interaction networks of proteins, globally integrated and 
scored. Nucleic Acids Res. 2011;39:D561-8. 

87. Oprea TI, Bauman JE, Bologa CG, et al. Drug Repurposing from an 
Academic Perspective. Drug Discov Today Ther Strateg. 
2011;8(3-4):61-69. 

88. Roin BN. Unpatentable drugs and the standards of patentability. Tex L 
Rev. 2008; 87: 503. 

89. Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev 
Drug Discov. 2011;10:507-19. 

90. Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists 
(vaptans) for the treatment of hyponatremia in neurocritical care: a new 
alternative?. Neurocrit Care. 2009;11:1-4. 

91. Kuter DJ. New thrombopoietic growth factors. Blood. 2007;109:4607-16.  
92. Selby P, Buick RN, Tannock I. A critical appraisal of the "human tumor 

stem-cell assay". N Engl J Med. 1983;308:129-34.  



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

1244 

93. Shah ET, Upadhyaya A, Philp LK, et al.  Repositioning "old" drugs for 
new causes: identifying new inhibitors of prostate cancer cell migration 
and invasion. Clin Exp Metastasis. 2016;33:385-99. 

94. Eriksson A, Österroos A, Hassan S, et al. Drug screen in patient cells 
suggests quinacrine to be repositioned for treatment of acute myeloid 
leukemia. Blood Cancer J. 2015;5:e307. 

95. Sant'anna R, Gallego P, Robinson LZ, et al. Repositioning tolcapone as a 
potent inhibitor of transthyretin amyloidogenesis and associated cellular 
toxicity. Nat Commun. 2016;7:10787. 

96. Camus S, Quevedo C, Menéndez S, et al. Identification of phosphorylase 
kinase as a novel therapeutic target through high-throughput screening 
for anti-angiogenesis compounds in zebrafish. Oncogene. 
2012;31:4333-42. 

97. Ridges S, Heaton WL, Joshi D, et al. Zebrafish screen identifies novel 
compound with selective toxicity against leukemia. Blood. 
2012;119:5621-31. 

98. Tomlinson ML, Hendry AE, Wheeler GN. Chemical genetics and drug 
discovery in Xenopus. Methods Mol Biol. 2012;917:155-66. 

99. Tat J, Liu M, Wen XY. Zebrafish cancer and metastasis models for in vivo 
drug discovery. Drug Discov Today Technol. 2013;10:e83-9. 

100. Amelio I, Gostev M, Knight RA, Willis AE, Melino G, Antonov AV. 
DRUGSURV: a resource for repositioning of approved and experimental 
drugs in oncology based on patient survival information. Cell Death Dis. 
2014;5:e1051. 

101. Lee H, Kang S, Kim W. Drug repositioning for cancer therapy based on 
large-scale drug-induced transcriptional signatures. PloS ONE. 2016; 11: 
e0150460. 

102. Tsuruoka Y, Miwa M, Hamamoto K, Tsujii Ji, Ananiadou S. Discovering 
and visualizing indirect associations between biomedical concepts. 
Bioinformatics. 2011; 27: 111-9. 

103. Rindflesch TC, Tanabe L, Weinstein JN, Hunter L. EDGAR: extraction of 
drugs, genes and relations from the biomedical literature. Pac Symp 
Biocomput. 2000;1:517-28. 

104. Pafilis, Evangelos, Rūdolfs Bērziņš, and Lars Juhl Jensen. EXTRACT 2.0: 
text-mining-assisted interactive annotation of biomedical named entities 
and ontology terms. bioRxiv 2017; 111088. 

 


