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Abstract 

Dyslexia is a disability that causes difficulties in reading and writing despite average intelligence. This hidden disabil-

ity often goes undetected since dyslexics are normal and healthy in every other way. Electroencephalography (EEG) 

is one of the upcoming methods being researched for identifying unique brain activation patterns in dyslexics. The 

aims of this paper are to examine pros and cons of existing EEG-based pattern classification frameworks for dyslexia 

and recommend optimisations through the findings to assist future research. A critical analysis of the literature is 

conducted focusing on each framework’s (1) data collection, (2) pre-processing, (3) analysis and (4) classification 

methods. A wide range of inputs as well as classification approaches has been experimented for the improvement in 

EEG-based pattern classification frameworks. It was uncovered that incorporating reading- and writing-related tasks 

to experiments used in data collection may help improve these frameworks instead of using only simple tasks, and 

those unwanted artefacts caused by body movements in the EEG signals during reading and writing activities could 

be minimised using artefact subspace reconstruction. Further, support vector machine is identified as a promising 

classifier to be used in EEG-based pattern classification frameworks for dyslexia.

Keywords: Dyslexia, Electroencephalogram, Feature extraction, Artefact removal, Artefact subspace reconstruction, 

Support vector machine, Classification
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1 Introduction
Dyslexia is a disability that involves deficiencies in read-

ing and writing capabilities, but does not affect intellect. 

Although this condition was commonly known as ‘word 

blindness’ in the 1800s, it has now been identified as a 

condition with a neurological origin and not as a condi-

tion to do with lack of vision [1, 2].

�ere are many techniques proposed by past research 

to detect indicators of dyslexia. We can broadly cat-

egorise these techniques into three. �e first category 

is detection using ‘behavioural’ symptoms and aspects. 

�is is the conventional and most popular method that 

is currently used by psychologist to diagnose dyslexia. 

�is method assesses whether a person has dyslexia using 

highly recognised standardised tests [3]. �e second cat-

egory is the use of brain imaging techniques to portray 

distinctive brain behaviours [4]. Functional magnetic 

resonance imaging (fMRI), magneto-encephalography 

(MEG), electroencephalography (EEG) and positron 

emission tomography (PET) are few of the methods that 

could be used to depict these behaviours. Studies show 

[4–6] that individuals with dyslexia have unique brain 

structures and behaviours. �e third category includes 

eye-movement patterns [7–9]. Category two and three 

are still in experimental stages. �ose techniques only 

help to identify symptoms of dyslexia and are not cur-

rently used to diagnose dyslexia.

EEG is one of the popular techniques used to assess 

brain behaviours. In this study, we look at how EEG has 

been used to identify signs of dyslexia. �e EEG results 

may help psychologist to complement the current dys-

lexia assessing techniques as it could add a neurological 

point of view.

�is paper focuses on EEG-based dyslexia studies that 

have attempted to identify unique brain activations using 

pattern recognition. Although dyslexia can further be 

divided into sub-types, this study does not cover stud-

ies that use pattern recognition to identify the sub-types. 
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�e intension of this study is to review EEG-based pat-

tern classification frameworks specific to dyslexia and do 

not intend to speculate the neuroscience behind the find-

ings. Each framework is assessed using a pre-defined for-

mat to arrange the data in a meaningful manner and to 

recognise its strengths and weaknesses. �ese discoveries 

are then used to propose an improved EEG-based pattern 

classification framework for dyslexia (higher validation 

accuracies for the classifier).

1.1  What is dyslexia?

Dyslexia is a disability with a neurological origin that 

causes difficulties in reading, writing or spelling despite 

average or above average intelligence and sensory abili-

ties. Common symptoms of dyslexia include poor reading 

skills, unreadable handwriting, slow writing or copying, 

bad spellings, letter migration or reversals. [2, 10–13].

�is condition is heritable, which means that a child 

might inherit it from a parent. It has been reported that 

23–65% of children who have a parent with dyslexia are 

at risk of having dyslexia [14]. Dyslexia in some cases 

can have partly or wholly distinct genetic causes. Studies 

[15] suggest looking into the genetic aspect to effectively 

detect dyslexia instead of merely considering individ-

ual disabilities. Studies have shown that overall reading 

capabilities including dyslexia have noteworthy genetic 

components with heritability estimated at 54–84% [16]. 

Left-handedness is sometimes considered to be prevalent 

among people with dyslexia. However, there seems to be 

a controversy, certain findings have discovered a con-

nection between dyslexia and left-handedness, whereas 

some studies claim it to be a myth [17–19].

1.2  Why is dyslexia detection important?

A noteworthy amount of the world population is affected 

by dyslexia. Statistics show that approximately 20% of the 

child population in the USA [20], approximately 4% of 

the students in Australia [21] and overall approximately 

15–20% of the world population [22] experience dyslexia.

An individual with dyslexia can become a depressed, 

unmotivated or a low self-esteemed if the condition goes 

undetected. Difficulty in learning to interpret letters, 

words or sometimes even symbols certainly causes the 

child to have a hard time keeping up with peers [4, 23].

Diagnosing dyslexia at an early stage is important to 

prevent the child having to go through a stressful, rough 

childhood and face frustrating experiences at school. 

Early detection helps to direct a child with dyslexia 

to the necessary treatments required. Targeted assis-

tance is essential for people with dyslexia to cope up 

with their struggles and difficulties. Recent studies [10] 

state that ‘dyslexia is not a disease or defect that can be 

cured’, rather a ‘condition that can be helped’ with proper 

targeted support. Promising results have shown of chil-

dren who go through such intervention programs in the 

early stages [24] proving improvement in reading perfor-

mance as well as reduction in anxiety [25]. �ough these 

techniques help, dyslexia still does persist into adulthood 

[26].

Although persons with dyslexia face difficulties in read-

ing and writing, they have normal or sometimes even 

higher intelligent levels. Albert Einstein, Leonardo da 

Vinci, Alexander Graham Bell, Hans Christian Andersen, 

Walt Disney, Henry Ford, Steve Jobs and Richard Bran-

son are few of the famous and talented dyslexic great 

minds [27]. According to Davis [27] in the book ‘�e gift 

of dyslexia: why some of the brightest people can’t read 

and how they can learn’, people with dyslexia are believed 

to be highly intuitive and insightful with the ability to 

alter and create perceptions. �ey are known to be highly 

aware of the environment, with more curiosity than aver-

age, thinking mainly in pictures instead of words and 

experiencing thought as reality with a lot of vivid imagi-

nations [27].

1.3  Conventional dyslexia detection techniques

�e conventional dyslexia detection practices are often 

based on ‘behavioural’ symptoms and aspects [28]. 

Standardised test such as Wechsler Individual Achieve-

ment Test (WIAT), Comprehensive Test of Phonological 

Processing (CTOPP), Oral and Written Language Scales 

(OWLS) and Woodcock Johnson (WJ) are used to assess 

reading, writing, intelligence quotient and phonological 

processing abilities. �e results of the standardised test 

along with factors such as biographical information and 

family history help determine whether a person has dys-

lexia [21]. �e severity of dyslexia may vary from mild to 

severe, and the symptoms of dyslexia vary from person to 

person [29].

2  Electroencephalogram (EEG)
2.1  What is an EEG?

Electroencephalogram, commonly known as EEG, is 

a ‘record of the oscillations of brain electric potential 

recorded from electrodes on the human scalp’ [30, p. 

3]. EEG is a technique that can be used to monitor and 

detect brain functions. �e electrical activity of the brain 

for various stimuli can be identified via the electrodes 

placed on the scalp (Fig. 1).

2.2  EEG-based pattern classi�cation for dyslexia

EEG is often used for detecting conditions in the brain 

such as epilepsies, seizures, brain tumours and sleeping 

disorders [31–36].

Recent studies show that researchers are now looking 

into ‘neurological’ aspects to identify patterns that are 
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unique to dyslexia. It has been uncovered that there are 

structural differences as well as different forms of pro-

cessing of the brain between normal and dyslexic indi-

viduals. Dyslexics’ brain is normal and healthy; it takes 

a longer time to make connections compared to normal 

people [4, 37].

Similar to other conditions, EEG can also be used to 

identify unique brain activation patterns of dyslexia since 

it has a neurological origin. �e next section will discuss 

the efforts made by research in using EEG for pattern 

classification between dyslexics and non-dyslexics.

3  What are the existing frameworks and their 
shortcomings?

�is section covers research carried out to improve pat-

tern classification frameworks for dyslexia using EEG. 

�e existing frameworks will be identified, and each 

framework will be explored in depth to identify its 

strengths and weaknesses.

Given below is an overview of the review process, 

which consists of 5 main steps. Each framework will 

be analysed taking into account the following criteria 

(Fig. 2).

A study carried out by Arns et  al. [38] was able to 

uncover unique brain activation patterns in dyslexic chil-

dren. A total of 38 participants: 19 dyslexics (11 males 

and 8 females) and 19 controls (11 males and 8 females) 

between the ages of 8–16  years took part in this study. 

�e exclusion criteria included mental illness or genetic 

disorders in person or family history, neurological disor-

der, brain injury, addiction to drug or alcohol and seri-

ous medical conditions. �e EEG data were acquired at 

a sampling rate of 500 Hz using the internationally rec-

ognised 10–20-electrode positioning system having 28 

channels, namely Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, 

FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, 

P4, T6, O1, Oz and O2. �e experiment was performed 

in a sound- and light-attenuated room, which was con-

trolled at a room temperature of 22  °C. �e EEG data 

were recorded for 2  min while being seated with eyes 

open, focusing the attention on a red dot displayed on a 

computer screen. �e group of participants with dyslexia 

was also given few language tests. �ese tests consist of 

articulation, rapid naming of letters, phoneme deletion 

and spelling. �ese reading-related tasks were collected 

to find the correlation between EEG and the neurological 

findings of dyslexia. However, EEGs were not recorded 

while these tasks were performed; instead, the above-

explained tasks with eyes open were used since the EEG 

of resting state highly correlated with the tests.

�e data are EOG-corrected prior to the analysis. 

�ese data are then examined using the power spectral 

analysis. �e approach followed is that the data are first 

partitioned into adjacent 4-s sections, next the data are 

transformed to the frequency domain from the time 

domain using fast Fourier transform (FFT), and finally 

Fig. 1 Capturing EEG [30, p. 5]

Data 
Collec�on

• Number of particpants (test and control group), gender 
diversity within the groups, age range, participant inclusion 
and exclusion criteria, Experiment, EEG channels used

Pre -
processing

• Pre-procesing techniques used, artifacts removed

Analysis

• The input features used, method of analysis

Classifica�on

• Mechanisms used for classification and outcome

Conclusion

• Identifying strengths and drawbacks of the framework

Fig. 2 Overview of the review process
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the average power spectra are calculated for specified fre-

quency bands ranging within the delta, theta, alpha and 

beta bands. �e EEG data are then analysed statistically 

using one-way ANOVA to find the significant differences 

between the dyslexic and control group. Further, a cor-

relation matrix is acquired for correlations between the 

variables within the dyslexic group. �e significant meas-

ures of the EEG power and coherence data obtained from 

the two groups are submitted for the correlation analysis 

with the four language tests explained above. �e study 

revealed that the dyslexic group had increased slow theta 

and delta activity in the frontal and right temporal areas 

of the brain. Beta was clearly increased at F7, and signifi-

cant correlations were found between the EEG coherence 

and the dyslexia tests [38] (Table 1). 

�is study only performs statistical analysis using the 

EEG data and does not present any classification mecha-

nisms to differentiate between dyslexics and non-dys-

lexics. �e data collection has been carried out wisely, 

taking into account an equal number of participants, a 

sufficient number of EEG channels, excluding criteria 

that could have an effect on the brainwave recordings and 

by collecting the data in a consistent and suitable envi-

ronment. However, since the EEG data are collected only 

in the resting state and not while the tests are actually 

being undertaken, important artefacts specific to each 

task are most likely to be missed out. Since the EEGs 

were recorded only in the resting state, the only main 

unwanted artefact being the eye blinks has been removed 

in the pre-processing step of the analysis. �e input fea-

tures using the EEG recordings include the power spec-

tra for specified frequency bands such as alpha, beta and 

theta at each EEG channel. One of the significant find-

ings being the increase in beta frequency verifies that the 

brainwaves get activated significantly in dyslexics while 

performing tasks, in this case specifically reading-related 

tasks.

A framework for detecting abnormalities in dyslexia 

using approximate entropy of EEG signals was proposed 

by Andreadis et  al. [39]. Approximate entropy (ApEn) 

is a ‘statistical parameter used to quantify the regularity 

of a time series data of physiological signals’ [39]. �is 

study consisted of a total of 57 participants: 38 dyslexics 

(26 males and 12 females) and 19 controls (7 males and 

12 females) between the ages of 2–13  years. �e exclu-

sion criterion comprises difficulties in hearing, history 

of head injury, neurological diseases or attention deficit 

disorders.

�e EEG for this study was recorded using the interna-

tional 10–20 system, containing 15 channels, namely Fp1, 

F3, C5, C3, Fp2, F4, C6, C4, O1, O2, P4, P3, Pz, Cz and Fz. 

�e experiment for this study is that a single sound tone 

was presented to the participant via earphones, which 

was of a high frequency of 3000 Hz or low frequency of 

500 Hz, followed by numbers that had to be memorised. 

�e brainwave data were collected as EEG signal for 

500 ms before the stimulus and as event-related potential 

(ERP) after the stimulus for 1000 ms.

�e pre-processing mechanisms used in this study 

include two main steps. �e first step was recording the 

electrooculography (EOG) and rejecting values higher 

than 75  μV, and the second step was normalising the 

waveforms by subtracting the mean value and dividing by 

the standard deviation of each signal. �ese data are then 

analysed using ApEn and Cross-ApEn (comparing EEG 

signals from two electrodes). A support vector machine 

(SVM) classifier was then implemented using the statisti-

cal significant electrodes for all subjects obtained using 

ApEn as input features. �is classifier offered promising 

results achieving a sensitivity of 89.47% and specific-

ity of 57.89%. �e study was then taken a step forward 

to enhance the classifier using the input features from 

Cross-ApEn. �is method looks at significant pairs of 

electrodes instead of evaluating electrodes on its own. 

Although this technique delivered better discrimination 

Table 1 Overview of  the  review process signi�cant 

correlations for frequency bands versus dyslexia tests [38]

ART  articulation, PD phoneme deletion, RNL rapid naming letters, SPL spelling

Location versus subtest Correlation and sign

Delta C4-C3 versus ART r = 0.568 df = 17; P = 0.017

T4-FC4 versus ART r = 0.508 df = 17; P = 0.037

C4-T4 versus ART r = 0.527 df = 17; P = 0.030

T3-FC3 versus ART r = 0.541 df = 17; P = 0.025

T3-FC3 versus PD r = 0.520 df = 17; P = 0.033

C3-F7 versus RNL r = 0.638 df = 17; P = 0.006

C3-Fp1 versus RNL r = 0.662 df = 16, P = 0.005

CP4-F8 versus RNL r = 0.527 df = 18; P = 0.025

FC3-F7 versus RNL r = 0.576 df = 17; P = 0.015

T4-F8 versus SPL r = 0.529 df = 17; P = 0.029

CP4-T4 versus SPL r = 0.491 df = 17; P = 0.045

Theta C3-F7 versus RNL r = 0.598 df = 17; P = 0.011

FC3-Fp1 versus RNL r = 0.772 df = 16; P < 0.000

T3-FC3 versus ART r = 0.527 df = 17; P = 0.030

C3-T3 versus ART r = 0.532 df = 17; P = 0.028

Alpha T4-FC4 versus RNL r = 0.576 df = 17; P = 0.015

T4-FC4 versus PD r = 0.653 df = 17; P = 0.005

C4-T4 versus RNL r = 0.508 df = 17; P = 0.038

C4-T4 versus PD r = 0.565 df = 17; P = 0.018

Beta C4-T4 versus RNL r = 0.501 df = 17; P = 0.041

C4-T4 versus SPL r = 0.617 df = 17; P = 0.008

C4-T4 versus PD r = 0.602 df = 17; P = 0.011

CP4-T4 versus RNL r = 0.521 df = 17; P = 0.032

CP4-T4 versus SPL r = 0.637 df = 17; P = 0.006
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abilities, no clear pattern has yet been found because 

there were a very high number of statistically significant 

pairs of electrodes.

Looking at the study as a whole, it can be stated that 

the researchers have been able to successfully develop a 

classifier that can differentiate between the dyslexic and 

the non-dyslexic. However, the experiment used looks 

into only the working memory abilities and does not 

involve any reading- or writing-related elements. Since 

dyslexia is a condition that causes deficiencies in read-

ing and writing abilities, important factors required for 

the differentiation process could be missed out. �e same 

research team performed another analysis using the same 

experiment and data by using wavelet entropy [40]. �e 

findings revealed that wavelet entropy could be used as a 

quantified measure to observe and analyse EEG and ERP 

signals to detect brain patterns specific to dyslexia.

A Malaysian research team conducted a frequency 

analysis of EEG signals generated between dyslexic 

and normal children during writing [41, 42]. �e EEGs 

were recorded from a total of 6 right-handed children: 

3 dyslexic and 3 control subjects between the ages of 

8–12  years using the standard international 10–20 sys-

tem. �is study uses only 4 EEG channels, namely C3, 

C4, P3 and P4. �e experiment involved collecting EEGs 

in the relaxed state and while performing writing-related 

activities, which were designed based on the conven-

tional method of diagnosing dyslexia.

During the pre-processing phase, unwanted artefacts 

being electrocardiograms (ECG) and electrooculogram 

(EOG) were filtered out. Next, the signals containing the 

writing-related data were extracted using a band-pass 

FIR filter ranging from 8 to 30  Hz. For the frequency 

analysis, the signals are transformed to the frequency 

domain from the time domain using fast Fourier trans-

form (FFT). �e study revealed that the dyslexic children 

consume more energy which results in high-frequency 

beta wave relaxed states during writing-related activi-

ties compared to normal children. �e frequency range 

identified for dyslexic children is between 22 and 28 Hz, 

whereas for non-dyslexic children it is between 14 and 

22 Hz (Tables 2, 3).  

Overall, this study does not provide any classification 

mechanism. It only analyses the frequencies obtained 

from the dyslexic and non-dyslexic groups. Looking at 

the number of channels and the number of participants 

used for the study, it can be implied that the numbers are 

too small to arrive at a conclusion for using these results 

for a framework to discriminate between the dyslexic and 

the non-dyslexic. �e study has explicitly used subjects 

that are right-handed, which is in fact an important fac-

tor since the handedness has an effect on the EEG activi-

ties between the right-handed and left-handed subjects 

[43, 44]. However, excluding factors that could have an 

effect on the EEG recordings has not been taken into 

consideration. Additionally, it is not indicated whether 

a silent and temperature-controlled room was used to 

carry out the experiment. �e pre-processing techniques 

used in this study are similar to previous similar studies; 

however, since this study involves hand movements, it is 

not specified how the artefacts generated from the hand 

movements were filtered out. Further, the experiment 

focuses only on the writing-related tasks.

Frid, Breznitz [45] proposed a support vector machine 

(SVM)-based algorithm for differentiating between dys-

lexic readers and regular readers using ERPs. �e study 

was carried out with a total of 50 participants: 20 dyslex-

ics and 30 controls of the ages between 24 and 40 years. 

�e signals were recorded at a sampling rate of 2048 Hz 

using the standard 10–20 system with 64 channels. 

�e experiment used in the study is that the subject is 

required to press a button in response to a target stimu-

lus, which is a tone. �e conditions consist of 50 stimuli 

of target tones at frequencies of 1000 Hz and 50 non-tar-

get tones of 2000 Hz.

Table 2 Frequency range (Hz) of EEG for relaxed state [42]

Electrode Dyslexic children Normal children

C3 9–12 9–10

C4 10–12 9–10

P3 9–12 9–10

P4 10–12 9–10

Table 3 Frequency range (Hz) of EEG for writing activities [42]

Electrode Dyslexic children Normal children

Alpha sub-band Beta sub-band Alpha sub-band Beta sub-band

C3 9–10 23–27 9–10 15–22

C4 9–10 22–27 9–10 15–20

P3 9–10 23–26 9–10 14–18

P4 9–10 22–28 9–10 14–20
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�e data collected is first pre-processed using a band-

pass filter at 0.1–100 Hz, and then a notch filter at 50 Hz 

is used to remove noise caused by electric power lines, 

and finally unwanted artefacts such as eye and muscle 

movements are filtered out. �e next step is the feature 

selection where the features with the most relevance and 

the ability to discriminate are chosen. �e five features 

selected are positive area (Ap), maximal peak amplitude/

time ratio (Mp), spectral flatness measure (SFM), stand-

ard deviation and skewness, and power spectral density 

(PSD). Although the classification was first attempted 

using a single classifier for all features, it was not success-

ful. �erefore, the approach follows was to use ensemble 

SVMs. �e classification results were compared for the 

combinations: the best single feature, an ensemble of 

three SVMs and only the left or right hemispheres.

To recapitulate, the study uses a simple experiment 

task, which relates to working memory and reasoning 

abilities, but does not engage any stimulus with regard to 

reading or writing which are important factors in detect-

ing unique patterns to dyslexia. �is may have bypassed 

on activating vital areas of the brain specific to dyslexia. 

�e study does not indicate whether they were any inclu-

sion and exclusion criteria taken into account when 

recruiting the participants, which could increase the like-

lihood of having outliers within the groups selected.

A classification model to distinguish dyslexic children 

from the normal children during rest state was sug-

gested by [46]. A total of 6 participants: 3 dyslexics and 

3 controls within the ages of 4–7 years took part in this 

study. �e EEG data are collected using the international 

10–20-electrode placement system using 8 channels with 

a sampling rate of 250 Hz. �e experiment is carried out 

in a room with controlled temperature and lighting while 

the participants are in the resting state with both eyes 

closed and eyes open.

During the pre-processing phase, noise and irrelevant 

artefacts have been removed. Since the data collection 

is done in the resting state, the frequency band relating 

to this state is alpha, and this has been extracted using 

band-pass filtering. �e next phase being the feature 

extraction is performed using kernel density estimation 

(KDE), which is an artificial neural network technique 

organised in several different layers [46]. Finally, the clas-

sifier is trained using multilayer perceptron (MLP). �is 

mechanism was able to obtain an accuracy rate of 90% to 

classify the dyslexic and non-dyslexic during both eyes 

open and eyes closed conditions.

To wrap up, the study uses EEG data from only the 

resting state disregarding the essential reading- and writ-

ing-related brainwave data. �e number of participants 

and the number of channels used are quite low compared 

to previous similar research [39, 45]. No inclusion or 

exclusion criteria for participants used are indicated. Fur-

ther, although the study gave a 90% accuracy rate since 

the data set used is very small it is very encouraging.

A wavelet packet analysis of EEG signals between dys-

lexic and non-dyslexic children during writing was pro-

posed by [47]. A total of 8 subjects: 4 dyslexics and 4 

controls between the ages of 7–12 years took part in this 

study. �e EEG data were recorded in the temperature-

controlled room at 24  °C using the international 10–20 

system with 4 channels, namely C3, C4, P3 and P4, hav-

ing a sample rate of 256  Hz. �e signals were captured 

in the relaxed state, writing state and during letter recog-

nition, and each task was repeated 6 times. �is is then 

examined using wavelet packet analysis for alpha and 

beta frequency bands. �e outcome of the study discov-

ered that there was no significant difference in the alpha 

band frequencies during the relaxed state and writing 

state in dyslexics; however, for non-dyslexics the alpha 

band frequency was higher during relaxed state com-

pared to writing state. During writing, beta frequency 

was higher in dyslexics compared to non-dyslexics.

�is study looks into the brain behaviours during the 

resting and writing states, but does not look into the 

reading state. No information is provided about pre-

processing the signal to remove unwanted artefacts such 

as eye blinks. �e number of subjects and the number of 

channels used in the study are low compared to previous 

similar research [39, 45]. Finally, the study performs only 

as analysis and does not perform any classifications.

4  Is there a need for an improved framework?
�is section will examine all the frameworks as a whole 

and ultimately propose an improved framework.

4.1  Data collection

4.1.1  Number of participants

�ere are many important decisions to be made prior 

to the data collection to make the experiment success-

ful. One of the most important decisions to be made is 

to determine the number of participants required for 

the study. �e review disclosed that some studies had 

too little subjects, which makes the outcome less reliable 

(Table 4).

In medical research, the number of subjects used 

for the study is mostly limited because of uniqueness, 

ethical considerations, time and cost. �erefore, it is 

important to identify the optimal sample size to avoid 

the sample being too small resulting in not being able 

to recognise important effects and the sample being too 

large resulting in a waste of resources. Using the sam-

ple size of a similar study is one of the approaches that 

can be used to determine the sample size [48]. In this 

case, instead of relying on one previous similar study, 
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the sample size can be determined by getting the mean 

sample size of multiple similar studies. According to 

the calculation using past similar research, we can sug-

gest having approximately 15 subjects for each group.

Another technique to determine the number of sub-

jects is the Altman’s nomogram sample size calculation. 

According to this calculation for a power of 0.80 (P 

value significance of 0.05) and a standardised difference 

value between 0.8 and 1.0 (Cohen’s d effect size), the 

total number of subjects would vary between 50 and 30 

participants. �erefore, the number of subjects would 

per group vary between 25 and 15 (Fig. 3).

4.1.2  Age range

According to previous similar studies, EEG-based pat-

tern classification frameworks for dyslexia studies have 

been carried out on children as well as adults, which 

means that the study can be used on either group. How-

ever, it is important to make sure that the subjects of age 

range selected have parallel reading and writing abilities 

(Table 5).

Table 4 Determination of number of subjects

Research Test 
group 
size

Control 
group 
size

Total

Different brain activation patterns in dyslexic children: Evidence from EEG power and coherence patterns for the 
double-deficit theory of dyslexia [38]

19 19 38

Wavelet entropy differentiations of event-related potentials in dyslexia [40] 38 19 57

Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic signals [39] 38 19 57

Comparison between characteristics of EEG signal generated from dyslexic and normal children [42] 3 3 6

An SVM-based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs [45] 20 30 50

Classification of dyslexic and normal children during resting condition using KDE and MLP [46] 3 3 6

Wavelet packet analysis of EEG signals from children during writing [47] 4 4 8

Mean sample size (rounded) 18 15 32

Fig. 3 Altman’s nomogram sample size calculation [71]
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4.1.3  Gender

�e past similar studies reviewed have not compared 

any brainwave patterns specific to gender. �erefore, 

for future work, the comparison between the female 

and male dyslexic brainwave patters is a gap to be filled.

4.1.4  Environment

�e data collection location and its environment is a 

very important factor to be looked at when recording 

EEGs. Below given is a summary of typical environ-

ment extracted from the review and more suggestions. 

�ese factors are important to make sure no interfer-

ence caused to the signals, the subjects are comfortable 

and are not distracted.

  • Sound- and light-attenuated room.

  • Temperature-controlled room—if subjects are per-

spiring, it could cause problems to the recordings.

  • Any extra equipment in the room should be electri-

cally quiet—this can be checked via a probe test for 

electromagnetic signals [49].

4.1.5  EEG recording system and channels

�e recommended electrode placement system is the 

international 10–20 system. �is method describes the 

location electrodes on the scalp. �e ‘“10” and “20” refer 

to the fact that the actual distances between adjacent 

electrodes are either 10 or 20% of the total front–back 

or right–left distance of the skull’ [50] (Fig. 4; Table 6).

�e popular choice of EEG channel list was deter-

mined using channels specifically mentioned as prom-

inent for classification in a study and channels that 

overlap at least between 2 studies.

4.1.6  Inclusion and exclusion criteria of the subjects

�e inclusion and exclusion criteria summarised from 

the reviews are given below.

Exclusions:

  • Mental illness.

  • Genetic disorders in person or family history.

  • Neurological disorders.

  • Brain injuries.

  • Drug or alcohol addiction.

  • Serious medical condition.

  • Difficulties in hearing/vision—this would not apply 

if the subject has corrected vision/hearing.

  • Attention deficit disorders.

Inclusions:

  • Handedness–the participants recruited need to be 

either left-handed or right-handed and not have a 

mix of the both. �is is because there is a difference 

Table 5 Determination of age range

Research Age range (years)

Different brain activation patterns in dyslexic children: evidence from EEG power and coherence patterns for the double-deficit 
theory of dyslexia [38]

8–16

Wavelet entropy differentiations of event-related potentials in dyslexia [40] 2–13

Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic signals [39] 2–13

Comparison between characteristics of EEG signal generated from dyslexic and normal children [42] 8–12

An SVM-based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs [45] 24–40

Classification of dyslexic and normal children during resting condition using KDE and MLP [46] 4–7

Wavelet packet analysis of EEG signals from children during writing [47] 7–12

Fig. 4 Arrangement of the international 10–20-electrode system [50]
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in EEG activities between the right-handed and 

left-handed subjects [43, 44].

4.2  Experiment

As explained before, it is now understood that dyslexia is 

a disability that causes difficulties in reading and writing 

despite normal (or above) intelligence and sensory capa-

bilities. �erefore, it can be presumed that dyslexia-spe-

cific brainwave activation patterns are more prominent 

during performing reading and writing activities instead 

of having tasks that are only related to the working mem-

ory and reasoning. Reading-related tasks can be drilled 

down further to find out brain signal patterns while read-

ing regular words against nonsense words. Phonological 

awareness, ‘the ability to hear and manipulate the sounds’ 

in words [51], is one of the commonly found difficulties 

in dyslexics. Research [52] shows that dyslexics perform 

worse in reading irregular and nonsense words compared 

to regular words. �erefore, including a task to read non-

sense words may show noticeable results. Today, writ-

ing is often replaced by typing in day-to-day activities; 

therefore, this too could be included in the tasks. Further, 

a task with a combination of reading and writing can be 

incorporated.

4.3  Pre-processing

Pre-processing is one of the most important steps in 

the analysis process of the signals. �is step makes sure 

unwanted artefacts are removed from the signal. When 

recording EEG signals, some of the most commonly seen 

irrelevant artefacts are the eye movements and eye blinks, 

and the common practices used for removing these from 

EEG signals are independent component analysis (ICA) 

and principal component analysis (PCA) [53, 54]. Com-

parison studies between these two techniques show that 

ICA produces better results compared to PCA [54, 55].

In addition, electrooculogram (EOG), which are pro-

duced from eye movements, and EEG recordings can 

contain contamination signals such as electromyogram 

(EMG) and electrocardiogram (ECG). Typically, body 

movements are kept to a minimum during EEG-based 

experiments. �is is because movements cause unwanted 

artefacts in the EEG signal, making the analyses and 

classifications difficult. In fact, sometimes trials with 

unwanted artefacts are manually rejected from studies 

[56]. However, new methods have now been introduced 

making it possible to collect data during real-life activi-

ties instead of only collecting data during resting state or 

simple activities such as button clicks. Artefact subspace 

reconstruction (ASR) is one such method which can 

be used to filter out body movement and muscle burst 

artefacts from the EEG signals [57, 58]. ASR ‘relies on a 

sliding-window principal component analysis, which sta-

tistically interpolates any high-variance signal compo-

nents exceeding a threshold relative to the covariance of 

the calibration data set. Each affected time point of EEG 

is then linearly reconstructed from the retained signal 

subspace based on the correlation structure observed in 

the calibration data’ [58].

ASR requires a 1-min EEG recording in the relaxed 

state, which is known as the calibration data set. �is 

technique performs PCA on a sliding window, removes 

high variance up to three standard deviations above the 

Table 6 Popular choice of EEG channels

Research Number of channels Channels

Different brain activation patterns in dyslexic children: 
evidence from EEG power and coherence patterns for 
the double-deficit theory of dyslexia [38]

28 Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, Fizz, FC4, T3, C3, Cz, C4, T4, 
CP3, Caps, CP4, T5, P3, PHz, P4, T6, O1, Oz, O2

Wavelet entropy differentiations of event-related potentials 
in dyslexia [40]

15 Fp1, F3, C5, C3, Fp2, F4, C6, C4, O1, O2, P4, P3, PHz, Cz, Fz.

Detecting complexity abnormalities in dyslexia measuring 
approximate entropy of electroencephalographic signals 
[39]

15 Fp1, F3, C5, C3, Fp2, F4, C6, C4, O1, O2, P4, P3, PHz, Cz, Fz.

Comparison between characteristics of EEG signal gener-
ated from dyslexic and normal children [42]

4 C3, C4, P3, P4

An SVM-based algorithm for analysis and discrimination of 
dyslexic readers from regular readers using ERPs [45]

64 F3, F4, P6, PHz, F8, CP4, AF7, F3, F5, T7, PO3, FC6, TP7, P7 (not 
all are given)

Classification of dyslexic and normal children during rest-
ing condition using KDE and MLP [46]

8 F3, F4, C2, C3, C4, P3, P4, T3, T4

Wavelet packet analysis of EEG signals from children dur-
ing writing [47]

4 C3, C4, P3, P4

Popular EEG channels for identifying unique brainwave 
patterns for dyslexia

Fp1, F3, Fz, F4, F7, F8, T3, C3, Cz, C4, T4, PHz, AF3, TP7, P7
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mean and finally reconstructs using the remaining signal. 

�is automated artefact removal technique is quite easy 

to use as it is available as a plug-in in EEGLAB (Fig. 5).

state = asr_calibrate (calibrationData, samplingFre-

quency);

cleanData = asr_process(experimentData, sampling-

Frequency, state);

Another important aspect to be filtered prior to the 

analysis is the noise caused by electric power lines. �is 

is often seen at 60 or 50 Hz, and this can be filtered out 

using a notch filter.

4.4  Analysis

4.4.1  Analysis method

�ere are mainly 2 types of analysis that could be used, 

which are namely frequency/Fourier analysis and wavelet 

analysis (Table 7).

Frequency analysis One of the common analyses 

used in EEG-based pattern classification frameworks 

for dyslexia is the frequency analysis. �e raw EEG sig-

nal recorded is in the time domain. �is waveform is a 

combination of a number of sinusoidal waves although 

is it not directly visible. Fast Fourier transform, com-

monly known as FFT, can be used for the decomposi-

tion of the waveform into a sum of sinusoids of different 

frequencies. �erefore, by performing the FFT it helps 

detect spikes in the frequency domain which could not 

have been visible before.

Wavelet analysis �is method decomposes a sig-

nal onto a set of basis functions called wavelets [59] 

and allows analysis on the frequency domain and time 

domain.

�e analysis should be selected based on the expected 

outcome. Although wavelet gives extra information, 

this might not be important if the intension is only to 

identify which voltages are present at each frequency 

and not at what time the particular voltage was present. 

�e decision for the analysis method is purely based on 

the experiment and expected outcome.

Fig. 5 Example of filtering out movements from EEG using ASR [58]

Table 7 Analysis summary

Research Analysis method

Different brain activation patterns in dyslexic children: evidence from EEG power and coherence patterns for the 
double-deficit theory of dyslexia [38]

Fast Fourier transform

Wavelet entropy differentiations of event-related potentials in dyslexia [40] Wavelet entropy

Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic 
signals [39]

Approximate entropy and cross-
approximate entropy

Comparison between characteristics of EEG signal generated from dyslexic and normal children [42] Fast Fourier transform

An SVM-based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs [45] Time domain and frequency domain

Classification of dyslexic and normal children during resting condition using KDE and MLP [46] Short-time Fourier transform

Wavelet packet analysis of EEG signals from children during writing [47] Wavelet analysis
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4.4.2  EEG sub-band decomposition

Once all the channels have been transformed to the fre-

quency domain, this could be decomposed into sub-

bands. Table  8 contains a summary of each frequency 

sub-band. 

�is method allows analysing the frequencies at spe-

cific frequency bands instead of analysing each frequency 

in isolation.

4.4.3  Feature extraction

�e most important step in the analysis phase is the 

extraction of features. Feature extraction is transform-

ing the input data into a set of features [34]. �is helps 

to analyse the data in terms of a reduced set of features 

instead of the large original input data set. �e input fea-

tures identified through the review are power spectral 

density, entropy, positive area, maximal peak amplitude/

time ratio, spectral flatness measure, standard devia-

tion and skewness. Energy, average valley amplitude, 

peak variation, root mean square and power are few of 

the features used in recent EEG-related studies [31, 60, 

61] that could be incorporated in EEG-based pattern 

classification for dyslexia frameworks as well. Adding all 

these features will not necessarily improve the validation 

accuracy; these features from other EEG studies are sug-

gested so that these combinations could be tested and 

help improve dyslexia-based frameworks as it has helped 

improve other frameworks.

4.5  Classi�cation

�e classification phase can be identified as the most 

important step in the dyslexia pattern identification pro-

cess. Once all the data are ready, it is important to select 

the best classification algorithm. �e popular choices of 

classification algorithms used in past similar research are 

support vector machine and multilayer perceptron. EEG 

classifications have also been performed for other condi-

tions using classifiers such as fuzzy support vector [62], 

optimum-path forest classifier [31], linear discriminant 

analysis and neural networks [63]. Out of the choices 

below are 3 popular choices, along with pros and cons of 

each choice.

4.5.1  Linear discriminant analysis

Linear discriminant analysis classifies data by first creat-

ing ‘models of the probability density functions for data 

generated from each class. �en, a new data point is clas-

sified by determining the probability density function 

whose value is larger than the others’ [62]. �e algorithm 

‘assumes that each of the class probability density func-

tions can be modelled as a normal density and that the 

normal density functions for all classes have the same 

covariance’ [62].

Linear component analysis is known to be a simple 

classifier that requires very small computations. How-

ever, this algorithm is not suitable for complex nonlinear 

EEG classifications since it does not produce good results 

for such scenarios [64].

4.5.2  Neural networks

Neural networks are ‘an assembly of several artificial 

neurons which enables to produce nonlinear decision 

boundaries’ [64].

Neural networks perform better for EEG classifica-

tions compared to linear discriminant analysis since it 

can be used to implement boundaries for nonlinear clas-

sifications. Nevertheless, to acquire the desired level of 

accuracy, it is important to choose a suitable number of 

hidden units, which can become problematic. Having a 

larger number of hidden units than required results in 

memorising the training set which causes poor generali-

sation [63].

4.5.3  Support vector machines

Support vector machine is a supervised learning method 

[65], which can handle both linear and nonlinear 

Table 8 EEG sub-band frequencies [68]

Frequency band name Frequency bandwidth (Hz) Usual human state associated 
with bandwidth

Example bandwidth

Delta 1–3.9 Deep sleep

Theta 4–7.9 Drowsy, meditate

Alpha 8–13.9 Relaxed

Beta 14–29.9 Alertness, focused

Gamma 30–64 Peak performance



Page 12 of 14Perera et al. Brain Inf.  (2018) 5:4 

classifications. It produces a hyper-plane having the 

maximal margin to the support vectors. Support vector 

machine can classify even overlapping and non-separable 

data sets by mapping onto higher-dimensional spaces 

using the kernel functions [34, 63].

4.5.4  Popular classi�cation technique

�rough the comparison of the popular choices of the 

classification algorithms for EEG signals, it can be con-

cluded that support vector machine (SVM) is a better 

choice.

SVM has been used in past research for many EEG sig-

nal classifications. Successful results have been obtained 

in classifying mental tasks [66], seizure detection [34, 35], 

discrimination between dyslexics and non-dyslexics [39, 

45], epilepsy diagnosis [31], vigilance analysis [67], etc.

Further research [63, 64] has recommended support 

vector machines as a more appropriate choice for EEG 

signal classifications. Recent EEG-related studies [68–70] 

have been able to obtain good validation accuracies using 

SVM classifiers.

5  Conclusion
Dyslexia is a disability with a neurological origin, affect-

ing a significant amount of the population, which causes 

difficulties in reading and writing despite average intel-

ligence. It is a heritable condition, but not a disease or 

defect that can be cured, rather a state that can he helped 

with proper targeted assistance. Research has shown dis-

tinctions in the brainwave patterns and brain structures 

of dyslexics compared to non-dyslexics (normal). �ough 

dyslexia has a neurological origin, the conventional 

dyslexia detection techniques used are often based on 

behavioural aspects such as reading, writing, intelligence 

quotient (IQ) and memory abilities.

Many researches have attempted to introduce and 

improve EEG-based pattern classification frameworks for 

dyslexia. �is review paper has identified pros and cons 

of existing frameworks. �e frameworks are reviewed 

based on the criteria: data collection, pre-processing, 

analysis and classification. According to the review, it was 

revealed that frameworks require a minimum of 15 sub-

jects per each group, the studies could be conducted on 

children or adults, and comparison between the female 

and male dyslexic brainwave patterns need to be con-

ducted. It is also important to identify the inclusion and 

exclusion criteria prior to the data collection to minimise 

the number of outliers.

It was discovered that the experiments used were often 

simple tasks, which measure working memory and rea-

soning abilities instead of reading and writing abilities. 

�is could be because to reduce the unwanted artefacts 

caused by body movements in the EEG signals during 

reading and writing activities. We have proposed using 

ASR a successful method that has been used in recent 

studies to filter out body movement and muscle burst 

artefacts from the EEG signals [57, 58]. Finally, we have 

proposed more input features and recommended SVM as 

the classifier to be used in EEG-based pattern classifica-

tion frameworks for dyslexia.
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