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Abstract: Film-cooling technology is used in high-temperature components of gas turbines to extend
their service lives. Hot-gas path components are susceptible to damage or failure in the absence
of film cooling. Much of the optimization research efforts have been focused on film hole shapes,
heat/mass transfer measurement techniques, and film cooling performance under various main-
stream and coolant side operating conditions. Due to recent rapid advancements in the areas of
measurement techniques (e.g., pressure-sensitive paints and fast high-resolution imaging) and metal
additive manufacturing (AM), film cooling technology has undergone significant changes and shows
potential new development. In this review, a historical perspective is discussed covering over five
decades of innovation: the geometrical effects from injection angle and hole shapes; flow effects
from density ratio, momentum-flux ratio, blowing ratio, advective capacity ratio, and freestream
conditions; and more items related to AM. The impact of AM on film hole design strategies, the
challenges posed by state-of-the-art AM technology, and pathways for future research are discussed.
A comparative analysis of AM assisted film hole fabrication and conventionally manufactured film
holes is elaborated.

Keywords: film cooling; additive manufacturing; heat transfer; gas turbine

1. Introduction

This paper is expanded from an ASME conference paper by the same set of authors
(Kaur et al. [1]). The film cooling concept has been scientifically analyzed since the 1970s,
even though the first successful gas turbine was demonstrated in Paris in 1903. The
reason behind this delay in film cooling innovation is that in the beginning, turbine design
focused more on aerodynamics, vibration and noise, and combustion stability. As the
operating temperature of gas turbines increased to improve thermal efficiency, this cooling
technique became critical for the success of turbine operations, and because of its crucial
role, high-temperature real engine-cooling design correlations can be treated as protected
national intellectual property in the US or other countries that are capable of developing
aerospace and missile technologies. Modern-day gas turbine components are exposed to
mainstream flow temperatures as high as 1700 ◦C, as shown in Figure 1, and the trend
is going higher for turbine inlet temperature to obtain better thermal efficiency. High-
pressure turbine components are subjected to an extremely hostile environment with the
exposure to the combustor exit, which imposes high thermal loads on the exposed surfaces.
Longevity of operation can be ensured only if the temperature of the components is
maintained below the recommended operating limits of these materials, which are usually
a combination of metals and ceramics. In addition to these steady-state thermal loads,
there are startup, shutdown, and loading variations, which significantly affect the turbine’s
durability. Turbine manufacturers frequently develop two product lines: one is made for
steady-state high-efficiency (Carnot cycle-based high temperature) continuous operations,
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and the other is the Peaker turbine, which can ramp up to produce power quickly when
there is a peak in demand and shut down when the demand is low. In addition, there are
part-load turbines that can operate for long hours at a fraction of the full load. Various
cooling concepts have been proposed by researchers in the turbomachinery community to
keep the surface temperatures within permissible limits, and film cooling (FC) is one such
disruptive technology introduced in the 1970s. Recent progress in additive manufacturing
(AM) is bringing the need for new analysis, as demonstrated by Bogard et al. [2]. Note
that cooling procedures reduce the thermal efficiency of the turbine and are considered
necessary evils. The film cooling is especially bad on aerodynamic performance because it
interferes with the hot gas flow. However, to achieve the higher operating temperatures,
FC has not found an alternative yet. Evolution of a new ceramic–matrix composite (CMC)
provides opportunities to operate the turbine at 3000 ◦C [3]. The CMC can tolerate high
temperature, but does not respond well to moisture, so there are inherent unresolved
challenges in its adoption. However, with CMC technology maturation for employment
in complex turbine parts, FC may not be needed on those components [4]. There is an
ongoing effort to produce CMC components with the emerging additive manufacturing
technologies [5]. The changes in film cooling from AM are akin to evolution (gradual), as
opposed to revolutionary major breakthroughs.

Film cooling involves the introduction of a coolant through one or more discrete
locations on an exposed surface such that the ejected fluid hugs the surface and forms a
protective layer (a.k.a. film) between the surface and the hot mainstream gases. Fluid ejected
through a continuous slot that runs transversely across the exposed wall is ideal, because
of the uniform spread of the coolant layer it provides on the surface, but the structural
integrity of the critical turbine components, such as blades, as well as the amount of coolant
needed to cover the entire surface, can be prohibitive for an economical design. Instead of
full coverage, injection of the coolant through discrete holes with their exits flushed against
the surface is preferred. Goldstein [6] provided a comprehensive review of the continuous
slot- and discrete hole-type configurations. An early explorer of this cooling technique,
Goldstein highlighted that the flow field around the coolant ejected from the continuous
slots could be treated as two-dimensional, whereas the discrete placement of injection holes
resulted in complex three-dimensional flow physics in the regions downstream of hole exits
and within span-wise gaps of adjacent holes in a row. This rendered the development of
analytical models for predicting thermal parameters based on 3-D boundary layer analysis
in discrete hole configurations very challenging. Several experimental and numerical
investigations have been conducted over the last five decades to characterize the film
cooling performance of a wide variety of hole shapes for a broad range of flow conditions.
Zhang et al. [7] presented a review of recent publications on film cooling. They compiled
150 references related to film cooling and provide a good source to find relevant references.
Film cooling in gas turbines involves gas-to-gas interactions, whereas in other applications,
such as rocket engines, liquid-to-vapor phase change can be applied in film or wall jets [8].
Rao et al. [9] showed cooling enhancement with mist-assisted film cooling. It is hard to
get inside design information from turbine manufacturers, but there are two technical
articles released by Mitsubishi Heavy Industries to illustrate their 1600 ◦C J-series gas
turbines [10,11]. These designs showed that film cooling was one of the major techniques
needed to achieve such a high operating temperature, as illustrated in Figure 1.

This decade’s economic growth is counting on new manufacturing technologies,
innovative designs, and optimizations. Figures 2 and 3 show a few samples of additively
manufactured whole turbine components and test coupons used for evaluating film cooling
performance. Horizon Technology [12] has listed several advantages and disadvantages of
additive manufacturing that align with this topic, which are listed in Table 1. Additional
aspects of film hole AM manufacturing are that the tool traverse path is not relevant in
AM and therefore the hole size and shape can be varied irrespective of the hole location on
the component.
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Figure 3. (a) Build orientations for coupons, and (b) cut-section view of the test rig and the additively
manufactured coupons showing the internal channel (which can have either coflow or counterflow
direction with respect to mainstream flow) to feed the film cooling holes (Stimpson et al. [16]).

Table 1. Advantages and disadvantages of AM as listed by a manufacturer [12].

AM Advantages AM Disadvantages

1. Unusual or Complex component shapes can be produced-
like hollow spaces, honeycomb or other thin-walled
internal structures, internal cooling channels,
negative drafts.

2. Assembled product is manufactured. Conventional
manufacturing separated thick walled and thin-walled
structures by different manufacturing processes.

3. No tooling or production line changeover costs. Since all
components start with similar raw material and the same
tooling, the product change does not involve extensive
production line alterations.

1. Part cost from equipment use. Equipment uses high
temperature technologies and sophisticated computation
technologies. That cost needs to be distributed in different
manufactured parts as hourly equipment usage rate.

2. Surface finish can be rough and may need
additional touchups.

3. Dimensional control is challenging as the metal
solidification and cooling can create distortions.

4. Restriction on alloys that are friendly for the
AM processes.

5. Slowness and size limitations exist as the technology is
still under development.

FC Variables of interest: Convective thermal load as transferred from hot mainstream
gases to the exposed blade surface is given by the following equation:

q = h(Tre f − Tw) (1)

where h is the convective heat transfer coefficient, Tw is the surface temperature and Tre f
is the reference temperature. In the absence of coolant fluid, the mainstream temperature
(T∞) serves as the reference temperature. In the presence of the film-coolant layer between
the hot mainstream gas and the surface, the coolant temperature (Tc) can be intuitively
considered the appropriate reference temperature. However, once the coolant fluid is
injected into the mainstream, it interacts, diffuses into the mainstream, and gets diluted by
the ingestion of the hot mainstream flow. Therefore, the film temperature in the proximity
of the surface is different from Tc.

Local wall temperatures in Figure 4 show that the complete film coverage of the surface
is usually not feasible [17], even with a slot hole, and as a result, an average of the values
of the film effectiveness and h are usually provided. The film coming out can be pulsed,
and a study on synthetic jets showed that by controlling the pulsation frequency, local
improvement in near-hole or far-hole regions can be achieved [18]. As such, for analyzing
film cooled heat loads, an average h is required and usually it is different from the h
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obtained without film cooling. LES simulation of converging slot holes was performed by
Wang et al. [19], and more details were provided in that article.
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Figure 4. Slot film pattern for (a) laminar and (b) turbulent flow indicates that film is not really a
uniform coverage, but rather forms streaks even if the injection source is a slot. [17]. The plot shows
local wall temperatures, blue being cooler than red.

Adiabatic wall temperature (Taw) has been considered the most suitable representative
film temperature in complex fluid-mixing scenarios. Taw would prevail over the surface
if it were perfectly insulated (zero heat flux). Equation (1) can then be represented as
q = h(Taw − Tw), which makes film cooling a three-temperature problem, viz. T∞, Tc, and
Taw. The adiabatic wall temperature is calculated in nondimensional form as film cooling
effectiveness (η), as given in Equation (2):

η =
T∞ − Taw

T∞ − Tc
(2)

The footprints of η on surface walls with higher magnitudes (max = 1) over a larger
coverage area, both streamwise and spanwise, signify more effective film cooling. The
turbulence generated by the mixing of the ejected coolant, vortex creation, and mainstream
gas-path disturbances can enhance the heat transfer on the blade surface in comparison to
no-film cooling, as given by the following equation:

q
q0

=
h(Taw − Tw)

h0(T∞ − Tw)
=

h
h0

(
1− η

T∞ − Tc

T∞ − Tw

)
(3)

The quantity q/q0 is desired to be less than unity to obtain overall benefit from film
cooling; q0 is the heat flux in the absence of film cooling. The high film effectiveness (η)
should not be undermined by the high heat transfer coefficient (h) downstream of the holes.
Generally, the overall benefit of film cooling is expressed through net heat flux reduction,
given as (NHFR = 1− q/q0). Therefore, one needs to determine both parameters h and η
to quantify the overall performance of any film cooling configuration.

The investigations reported in film cooling literature have been dedicated to determin-
ing either one or both of the variables of interest discussed above (h and η). Quantifiable
influences from hole geometry, coolant and mainstream fluid properties, and operating
conditions on these film cooling variables have been thoroughly investigated. The fol-
lowing section briefly describes the prominent historical studies in this regard and some
recent investigations along with different experimental techniques. More coverage on
these FC parameters were provided by Han et al. [20]. The next section focusses on the
scope of alternative emerging technology additive manufacturing (AM) in film cooling
applications. Detailed discussion is provided on the progress of AM in manufacturing film
holes and challenges faced by the state-of-the-art AM technologies in rendering repeatable
and reliable data for film cooling. There are several other fluid phenomena that were
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observed to affect the film cooling, such as vortex shedding frequency past the film ejected
flow [21]. As expected, a higher vortex shedding frequency disturbed the film and reduced
its effectiveness.

2. Historical Perspective of Film-Cooling Performance

This section provides a brief description of the developments made in hole design and
shape and prominent studies that reported on the influence of coolant and mainstream fluid
properties on the overall performance of film cooling holes. The impact of mainstream flow
conditions is also discussed, along with experimental measurements techniques that have
evolved over the last five decades. Huang et al. [22] performed complex multiobjective
shape optimization of fan-shaped holes and, like most researchers, missed a key parameter—
the hood over the film hole. There are other parameters that have not been studied in detail,
like curved hole shapes as patented by United Technologies [23], where the design showed
a significant hood and creative floor designs to disturb the typical vortex formations in film
cooling. The counterrotating vortex pair was illustrated by Li et al. [24], where they showed
the liftoff and reattachment in film cooling flow. Aminov et al. [25] studied the turbine
inlet temperature effects on cycle operation. The turbine inlet temperature is a theoretical
estimate of gas temperature that includes the film coolant flows on the upstream stationary
components. Film cooling is not only needed for cooling, but also to determine the turbine
inlet temperature. Moreover, the uneven distribution of film coolant exit flows can make
the flow entering the turbine an uneven temperature and influences the component’s life
parameters. Chen and Park et al. [26,27] looked at the backward injection of film and found
some situations where the opposing film direction can be beneficial. A tabulated summary
of film cooling on end walls was provided by Barigozzi et al. [28], so is not repeated here.

2.1. Hole Positioning and Film Exit Configurations

Round film holes with circular metering sections machined at shallow angles relative to
the test surface have been the focus of investigation in many earlier studies. The broadscale
applicability of such holes is due to the ease in manufacturing through electrodischarge
machining (EDM), laser drilling, or water-jet drilling. In 1974, Goldstein [29] introduced the
concept of “shaped holes,” where the holes had a circular metering region at the entrance
of the secondary fluid, but laterally expanded by 10◦ near the exit. Widening of the exit
resulted in better spread of the coolant in directions lateral to the hole centerline, thereby
improving the overall coverage of the coolant fluid. Moreover, expansion in flow area
reduced the momentum flux at the exit that inhibits the greater penetration of the ejecting
coolant jet into the mainstream flow and it stays closer to the surface. Figure 5 shows a few
popular film hole shapes. Interestingly, a critical film shape parameter, hood length, has
been neglected in the literature. Figure 6 shows a few patented designs for hooded film
holes. Figure 7 shows some more variations of the film hole that somewhat tried to capture
the hood effect without realizing it. In a hooded film hole, part of the expansion region has
a cover.
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by some authors, e.g., [35], but this parameter is mostly neglected in the literature [22,36].

Bunker [30], Bogard and Thole [37], and Han and Ekkad [38] provided a comprehen-
sive review of the performance of shaped holes with diffused exits. Some common hole
shapes in the film cooling literature are shown in Figure 4 [32]. A compilation of design
data for turbine-related film cooling are available in the book Gas Turbine Heat Transfer
and Cooling Technology [20]. LES simulation on different holes shapes was reported by
Dupuy et al. [39], who noted that inhomogeneous turbulent boundary condition improves
the prediction of film cooling. This LES-based observation is important and signified the
need for design optimizations at the inlet of the film holes.

Gritsch et al. [40] investigated the adiabatic effectiveness of fan-shaped and laid-back
fan-shaped holes with angle of inclination of 30◦ to the test surface for blowing ratio
(M = ρcuc/ρ∞u∞) up to 2. The lateral expansion at the exit in both the shaped holes
was 14◦ and forward expansion of laid-back fan-shaped hole 15◦. Local effectiveness
contours obtained through 2D imaging for the investigated shaped holes and baseline
cylindrical holes are shown in Figure 8 at three blowing ratios. Contrarily to the shaped
holes, the cylindrical jet detached from the surface at the highest blowing ratio and provided
relatively weaker lateral coverage of the coolant fluid. Amongst the shaped holes, fan-
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shaped had higher centerline effectiveness, whereas laid-back fan-shaped had better spread
downstream. In addition to the hole shapes, the curvature of the base surface can have a
significant influence on the film characteristics [41]. The concave surface (pressure side of
airfoil) tends to have inferior film performance than a convex surface. In real engine design,
sometimes the pressure side holes are left round (not shaped) because the performance
does not improve much with hole shapes. Inner flow structures of film injection have been
discussed by Walters and Leylek [42] and Hyams and Leylek [36].
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Kohli and Bogard [45] analyzed round, fan-shaped, and laid-back fan-shaped holes,
but used a wider inclination of jet exit angle relative to the test surface (55◦ instead of
35◦). Their investigation reported superior performance of the larger angle injection in
comparison to standard 35◦ round hole. The angle of injection of the jet axis with respect
to the test surface in industrial applications is typically around 30◦ to 40◦ [46]. Note
that this angle limitation is imposed by the manufacturing techniques, and it is expected
that favorable angles will be implemented by the adoption of additive manufacturing
techniques. Details of near hole heat transfer coefficient were measured by Gritsch et al. [47].
They found that laidback fan-shaped holes provided a better lateral spreading of the
injected coolant than the fan-shaped film hole, which led to lower laterally averaged heat
transfer coefficients.

In film cooling, the holes can be inclined at an angle to the mainstream flow direction
as well as being inclined to the test surface, and this angle is commonly referred to as the
compound angle. Ligrani et al. [48] and Sen et al. [46] investigated film cooling holes with
compound angles. Sen et al. [46] investigated round and 15◦ forward expanded holes with
60◦ compound angle as shown in Figure 9 at blowing ratios (M) varying between 0.5 and
2.5 and momentum flux ratio (I = ρcu2

c /ρ∞u2
∞) between 0.16 to 3.9. The flow structure of

film showed interactions of counterrotating vortex pairs [49], and that was attributed to
improved jet attachment to the surface.
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Figure 9. Film cooling with tabs and the effect of momentum flux ratio (I) were presented by
Nasir et al. [50]. Heat transfer coefficient and net heat flux reduction trends for the compound
holes at different momentum flux ratios were presented by [46].

Sen et al. [46] reported the mean adiabatic effectiveness and heat transfer coefficient
distribution for the investigated shapes, where the compound-angled holes had higher
adiabatic effectiveness with respect to standard zero compound angle configuration. Those
plots could not be included here due to permission restrictions. The compound holes also
yielded significantly higher heat transfer coefficients due to increased turbulence levels
near the wall because of coolant-jet and mainstream flow interaction. Momentum flux is
the dynamic head that signifies the aggression with which a coolant jet penetrates the main-
stream flow and mixes with it; therefore, significantly higher heat transfer was observed at
higher momentum flux ratios. For the forward-expanded 60◦ compound hole, maximum
effectiveness was obtained at I = 1, but those flow conditions also yielded the maximum
heat transfer coefficient ratio (h/h0), resulting in overall net heat flux reduction value less
than that incurred by compound round holes at I = 0.25. Nasir et al. [51] investigated a
row of round holes with 0◦ and 60◦ compound angle to the flow and 55◦ inclination to the
test surface for M = 0.5, 1.0, and 1.5, where higher adiabatic effectiveness and heat transfer
coefficient was observed for compound holes. These investigations warrant the necessity
of quantifying both the adiabatic wall effectiveness and heat transfer coefficient to measure
the overall potential of the film cooling configurations as ranking the configurations based
on their adiabatic film cooling effectiveness alone can be misleading. Figure 9 shows the
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effect of placing a tab at the film hole exit. A properly designed tab showed to preserve the
film cooling effectiveness for a larger distance than the configuration without a table. The
trend in film effectiveness can be complex, as shown by Barigozzi et al. [28] in Figure 10.
The film holes manufactured in conventional machining processes have to have the line of
sight for the machine to drill holes, and that can be restrictive on deciding where the hole
can be placed. AM removes that design restriction.
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(courtesy: MDPI open source).

Schroeder and Thole [52] reported that about 130 different hole designs exist in the
literature, but suggested the lack of a baseline configuration with which the performance of
the novel shapes can be satisfactorily compared. Therefore, the authors proposed a 7-7-7
laid-back fan shaped hole that had circular metering section with diffused outlet having
7◦ expansion angle in each direction. The configuration parameters were selected based
on the dimensional ranges reported in film cooling literature with an argument that the
proposed design would demonstrate no in-hole jet separation. Unfortunately, they did not
pay much attention to the hooded length.

Ekkad and associates [53–55] proposed novel antivortex turbine film cooling designs
that had a tripod like arrangement with two secondary holes on either sides of the primary
middle one. The design of anti-vortex holes was conceived to mitigate the effect of counter-
rotating vortex pairs (known as kidney pairs) generated by the main hole to prevent the
liftoff of the coolant by reducing the momentum flux from the main holes. The film cooling
effectiveness and heat transfer ratios for different parametric values of the design have
been analyzed and reported by the group. These anti-vortex holes could provide better
film cooling effectiveness than standard cylindrical and diffused-exit holes at about 50%
less coolant consumption.

Several studies mentioned above were conducted on holes flushed on a flat test plate
because of the convenience in conducting experiments. Variations in the number of holes
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or arrays have been explored in details by Ligrani et al. [48] They investigated single-
and double-staggered rows of compound round holes for blowing ratios M = 0.5, 1.0, 1.5,
and 1.74. Spanwise-averaged film cooling effectiveness for two row staggered compound
holes was the highest at M = 0.5 and this effectiveness decreased with increasing M for
streamwise distance of x/D < 20. Injectant liftoff was reported to be influenced by the
momentum flux ratio, whereas the blowing ratio was significant in determining the coolant
coverage characteristics. Figure 11 illustrates the effect of conductivity of the solid on
full-coverage film effectiveness.
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Figure 11. Total cooling effectiveness in a full-coverage film cooling with changing conductivity
of the base plate in a flat plate configuration [56]. Thermal conductivities were (a) 0.2, (b) 1, and
(c) 13.4 W/mK. As the conductivity increases, film streaks get blurred.

Multiple rows with full array film cooling over the entire flat test surface was inves-
tigated by Ligrani et al. [57] and Metzger et al. [58]. Combustor cooling employs such
densely arranged film cooling holes. Ligrani et al. [57] investigated full-coverage film
cooling with streamwise (6D and 18D) and spanwise (3D, 5D, and 7D) pitch values as the
variables. For streamwise spacing of 6D, minimal increase in effectiveness was observed
with increment in the blowing ratio (M) from 2 to 5 and no effect was present for M > 5. At
fixed blowing ratio, effectiveness for dense array of streamwise distance of 6D was higher
than sparse configuration having streamwise distance of 18D. Denser configuration with
streamwise distance of 6D exhibited higher line-averaged values of heat transfer coefficient
and net heat flux reduction.

Ekkad et al. [59] reported detailed film effectiveness and adiabatic film cooling ef-
fectiveness for two rows of holes oriented at ±15◦ from the stagnation line of a cylinder
representative of the blade leading edge. Turbine blade leading edge experiences high heat
flux and aerodynamic loads due to fluid stagnation. Therefore, film cooling in this zone
is typically provided through an array of holes called showerhead. In a different study,
Lu et al. [60] investigated the influence of angle and shape of holes in rows adjacent to
the middle stagnation-line row in showerhead cooling through semicylindrical leading
edge mounted on a flat after-body test model. Inclinations of the holes were 0◦, 30◦, and
45◦ to the test surface in the transverse direction. The study showed that the addition of



Energies 2022, 15, 6968 12 of 35

a third compound angle (inclination to test surface in spanwise direction) to the config-
urations increased the film effectiveness at lower blowing ratios without impacting heat
transfer coefficient.

Ramesh et al. [61] reported film effectiveness results on the pressure and suction
sides of the airfoil shapes. Similarly, several investigations by Han and group [62–64] in
the post-2000 era were conducted on the real blade-like configurations. Gao et al. [63]
performed experimental measurements on a test blade in a linear cascade of five-blade
facility equipped with four rows of laidback fan-shaped holes on the pressure side and
two rows on the suction side. Film cooling effectiveness decayed faster on the pressure
side in comparison to the suction side due to jet liftoff. Better cooling performance at lower
blowing ratios was present immediate in downstream regions of the holes but wider film
coverage was obtained in far downstream regions at high blowing ratios as the coolant
was convected back to the blade surface. The upstream wakes were artificially simulated
with wake rods upstream of the cascade inlet and were found to have detrimental effect
on the film coverage, especially in the mid-span region of suction side. Narzary et al. [65]
analyzed the effect of coolant blowing ratio, coolant-to-mainstream fluid density ratio,
and freestream turbulence on the adiabatic film effectiveness of a blade in a high pressure
five-blade linear cascade facility. Two, four, and three rows of cylindrical holes were present
on the suction side, pressure side, and around the leading edge of the test blade. An
increase in the blowing ratio from 1.2 to 1.7 lead to significant improvement on the pressure
side and enhancement of blowing ratio from 1.1 to 1.4 led to moderate augmentation in the
effectiveness on the suction side. Augmentation in the freestream turbulence resulted in
deterioration of effectiveness on pressure side but showed improved cooling performance
at downstream distance beyond 0.45 axial chord length on the suction side.

The academic studies mostly focus on the near-hole effectiveness, but the turbine
designers are more interested in the far-field effects such as distance of about 20–100 times
of cooling hole diameter downstream of the hole exit. Unfortunately, most published work
does not provide that data. Near-hole high effectiveness is not practically useful because
the convection cooling in the hole can easily take care of the near hole region. Heat pickup
in the film hole and the balancing effect on film can be optimized in a scientific way as
discussed by Dutta and Smith [66,67].

2.2. Fluid Ratios
2.2.1. Density Ratio

Typical coolant-to-mainstream fluid density ratio (ρc/ρ∞) in actual turbine applica-
tions is maintained around 2 to maintain a cooler (hence, heavier) film with respect to the
incoming hot gases. Goldstein et al. [29] analyzed the effect of density ratio on film cooling
performance of cylindrical and diffused-exit holes and found that the relatively denser fluid
provided higher film cooling effectiveness at larger blowing ratios. Momentum flux ratio
was identified as the key parameter in determining the penetrating capability of coolant
jets of different densities into the mainstream flow. Pederson et al. [68] investigated the
influence of density ratio (ρc/ρ∞ = 0.75 and 4.17) for cylindrical holes inclined at 35◦ to the
mainstream direction. Sinha et al. [69] investigated a row of cylindrical holes for a wide
range of density ratios (ρc/ρ∞ = 1.2 to 2.0) for their effect on the centerline effectiveness at
blowing ratio of M~0.25 to 1.0 and momentum flux ratio varying between 0.05 and 0.83.
Figure 12 shows the centerline effectiveness at different density ratios. Higher DR showed
better film effectiveness. Sinha et al. [69] studied the effect of DR with different blowing
ratios like M~0.5 and 1.0. The jet remained attached for M~0.5 showing a monotonic
decrease with respect to the streamwise distance and the performance at both density
ratios was similar. However, for higher mass flux, M~1.0, jet-detachment at the hole exit
was apparent and the magnitudes of performance was significantly different as well. For
higher density ratios (ρc/ρ∞ = 1.6 and 2.0), the laterally averaged effectiveness showed
maxima near the hole followed by monotonic decrease downstream of the hole at lower
blowing ratios but as the blowing ratio increased, the jet exhibited minima near the hole exit
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followed by continuous rise in value downstream. Increasing the density ratios generally
increase the lateral average effectiveness at higher blowing ratios due to better spreading
over the surface.

Energies 2022, 15, x FOR PEER REVIEW 14 of 37 
 

 

the hole exit followed by continuous rise in value downstream. Increasing the density 
ratios generally increase the lateral average effectiveness at higher blowing ratios due to 
better spreading over the surface. 

 
Figure 12. Inclined holes in tandem and the effect of density ratio were shown by Yao et al. [70]. 
Centerline effectiveness at different blowing ratios and density ratios were presented by [69]. 

Ekkad et al. [71] analyzed the effect of density ratios using air and 𝐶𝑂  as injection 
coolant in an array of compound holes aligned at 45° and 90° to the mainstream flow using 
high resolution transient liquid crystal method. For both the coolants, higher effectiveness 
was provided by compound angle holes at the same blowing ratio. 𝐶𝑂  provided lower 
heat flux ratio (𝑞 𝑞⁄ ) than air at higher momentum flux ratios. More recently, Johnson et 
al. [72] used particle image velocimetry (PIV) and mass-transfer experimental techniques 
to quantify the flow and thermal processes in a row of cylindrical holes with 30° angle of 
injection for two different density ratios 𝜌 𝜌⁄ —0.97 and 1.5. The PIV analysis revealed 
that at blowing ratio of ~1.7, the coolant jet with lower density lifted off the surface, 
whereas the heavier coolant was still attached to the surface, yielding better film cooling 
coverage. The thermal analysis also showed the presence of finite effectiveness area up-
stream of the injection holes possibly due to entrainment of the coolant jet by the horse-
shoe-vortex. The density ratio effect results are consistent within the literature and align 
with the discussion presented above. Several other researchers have analyzed this varia-
ble, but not all of them are presented here for brevity. Readers are referred to a review 
provided by Ekkad and Han [73] for further details. 

  

Figure 12. Inclined holes in tandem and the effect of density ratio were shown by Yao et al. [70].
Centerline effectiveness at different blowing ratios and density ratios were presented by [69].

Ekkad et al. [71] analyzed the effect of density ratios using air and CO2 as injection
coolant in an array of compound holes aligned at 45◦ and 90◦ to the mainstream flow using
high resolution transient liquid crystal method. For both the coolants, higher effective-
ness was provided by compound angle holes at the same blowing ratio. CO2 provided
lower heat flux ratio (q /q0) than air at higher momentum flux ratios. More recently,
Johnson et al. [72] used particle image velocimetry (PIV) and mass-transfer experimental
techniques to quantify the flow and thermal processes in a row of cylindrical holes with
30◦ angle of injection for two different density ratios ρc/ρ∞—0.97 and 1.5. The PIV analysis
revealed that at blowing ratio of ~1.7, the coolant jet with lower density lifted off the
surface, whereas the heavier coolant was still attached to the surface, yielding better film
cooling coverage. The thermal analysis also showed the presence of finite effectiveness
area upstream of the injection holes possibly due to entrainment of the coolant jet by the
horseshoe-vortex. The density ratio effect results are consistent within the literature and
align with the discussion presented above. Several other researchers have analyzed this
variable, but not all of them are presented here for brevity. Readers are referred to a review
provided by Ekkad and Han [73] for further details.

2.2.2. Blowing Ratio (M) and Momentum Flux Ratio (I)

Effect of blowing ratio (M), momentum flux ratio (I), and free-stream turbulence pa-
rameters on the film cooling performance has been reported by several researchers [46,74,75]
in the last five decades. Some prominent studies and results are discussed herein to have
a basic understanding of the general impact of these flow variables. Blowing ratio or
mass flux ratio between 0.5 and 1.0 has been considered an optimum working range for
the cylindrical holes beyond which jet detachment becomes profound and film cooling
diminishes. Eriksen and Goldstein [76] analyzed an array of 35◦ inclined cylindrical holes
with spanwise spacing of three diameters and found that heat transfer coefficient at low
blowing rates were not much different from no-blowing case. The heat transfer enhanced
with increasing M and at M~2, an increment of 27% in lateral average heat transfer was
observed with respect to the no-blowing case. Peak heat transfer was generally located at
the edges of the jets between the span of two adjacent holes due to enhanced turbulence.

Sen et al. [46] investigated heat transfer for an array of 35◦ cylindrical holes with
60◦ compound angle for M = 0.4 to 2.0 and I = 0.16 to 3.9, where the authors found that
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large compound angles do not provide significant enhancement in heat transfer levels at
lower values of momentum flux ratio. Several studies as listed here have investigated
suitable scaling parameters at which the performance data measurements can collapse.
Finding suitable scale allows one to directly compare the film cooling performance of
configuration under investigation to another study by matching the scaling parameter.
For cylindrical hole configurations, Sinha et al. [69] suggested that for attached jet (one
that is not yet lifted off) centerline effectiveness scaled with mass flux ratio (M) and for
detached-reattached jets at higher blowing ratios, effectiveness scaled with the momentum
flux ratio (I). Decrease in density and increase in momentum flux ratio reduced the spread
of the film cooling resulting in lower laterally averaged effectiveness. The authors showed
that jet detached from the surface at larger momentum flux ratios caused drop in the
effectiveness. Later, Schroeder and Thole [52] showed that the effectiveness of the shaped
holes did not scale with mass flux or momentum flux ratios for M > 2 at density ratios of
1.2 and 1.5. Ammari et al. [77] analyzed heat transfer values on a flat plate rendered by hole
with 90◦ (normal) and 35◦ injection angle to the test surface. Density ratios of ρc/ρ∞ ∼1.0,
1.38 and 1.52 were investigated with blowing rate of M ~0.5–2.0. Heat transfer data of
normal injection hole scaled well with the mass flux ratio, whereas 35◦-hole data collapsed
better for velocity ratio (uc/u∞) at any fixed streamwise distance x/D.

Determination of a parameter to scale the laboratory-obtained results to the engine-
relevant conditions is important and mixed success has been achieved on this issue. Density
ratio achieved in real operating conditions is around 2, therefore, making it an important
non-dimensional parameter to be scaled or replicated. Several parameters such as blowing
ratio, momentum flux ratio, or velocity ratio have been considered in prior investigations
to scale film cooling effectiveness across varying density ratios as discussed above, but the
consistent trends were not observed. In case an appropriate parameter is found to scale the
effectiveness across wide density ratio range, it would help in circumventing the need to
match density ratios in experiments.

Film effectiveness with varying momentum flux ratio and density ratio was illustrated
by Li et al. [78]. The momentum flux ratio on a film cooled turbine platform is shown in
Figure 13.
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2.3. Advective Capacity Ratio (ACR)

Quite recently, a new scaling parameter called advective capacity ratio (ACR = cP,cρcuc/
cp,∞ρ∞u∞) has been advocated by several authors [81,82] with the argument that consider-
ing the temperature differences, it is not only the density but the specific heat capacities
of the fluids that influence the distribution of effectiveness. Rutledge and Polanka [82]
numerically investigated the influence of Reynolds number ratio, Prandtl number ratio,
and ACR on the adiabatic effectiveness and heat transfer coefficient of a single cooling
hole. Density ratio demonstrated the most dominating effect; however, thermal conduc-
tivity and heat capacity variations also resulted in about ≥10% higher deviation in heat
flux when scaled to engine-relevant conditions. Even matching both the blowing ratio
and momentum flux ratio resulted in underprediction of effectiveness and heat transfer
coefficient. Fischer et al. [81] performed experiments on a 7-7-7 shaped hole embedded in a
flat plate and reported that ACR could exactly scale the adiabatic effectiveness while the jet
remained attached, i.e., I < 0.5 in their study. The authors emphasized that as long as ACR
is matched in experiments, there is no need to have matching density ratio, however, this is
found to be true only for low momentum flux ratios. This ACR parameter is promising
and can be explored further for various types of hole geometries and operating conditions
to establish its robustness and fidelity in scaling the film cooling performance.

2.4. Freestream Turbulence

Schmidt and Bogard [80] reported the effect of freestream turbulence on the film
cooling effectiveness of cylindrical holes inclined at 30◦ to the test surface at mass flux
ratio of M = 0.6, 1.0, and 2.0, and the corresponding momentum flux of I = 0.18, 0.5, and
2.0. For 0.1 < I < 0.5, high freestream turbulence reduced the peak laterally averaged
effectiveness by ~50% as compared to that at low turbulence level conditions. However,
interestingly the trend reversed for I > 1, where laterally averaged effectiveness at higher
mainstream turbulence was superior. The increment in effectiveness at higher free-stream
turbulence was attributed to the capability of turbulent mainstream flow to disperse the
coolant better over the surface and push it back towards the surface wall after it lifts off at
higher momentum flux values.

Saumweber and Schulz [83] investigated the cylindrical and fan-shaped holes, both
with inclination of 30◦ with respect to the test surface, at fixed density ratio of 1.75 and
varying turbulence intensity (Tu ~2.0% to 7.5%). The authors emphasized that the perfor-
mance enhancement of shaped holes with respect to cylindrical holes at the low turbulence
levels maintained in laboratory conditions was overestimated. Larger free-stream turbu-
lence intensity was more detrimental for the shaped holes than for the cylindrical holes.
Ekkad et al. [59] studied the effect of freestream turbulence and coolant density on the two
rows of injection holes located ±15◦ from stagnation line of cylindrical test model. Air
provided highest effectiveness at blowing ratio M = 0.4 whereas CO2 provided the peak
effectiveness at M = 0.8. The high-resolution data obtained through transient liquid crystal
thermography showed that regions of higher effectiveness did not coincide with higher
heat transfer zones. Increment in freestream turbulence had weak impact on the Nusselt
number values of both investigated coolants, but the film effectiveness was significantly
influenced at lower blowing ratios.

3. Measurement Techniques

The adiabatic surface temperature measurements in earlier investigations were per-
formed by mounting finite number of thermocouples at discrete locations on test plates.
The spatial trendlines were generated from this discrete data and the distribution of the
effectiveness and heat transfer coefficient on the surface was interpreted. Achieving fully
adiabatic wall conditions and eliminating conduction errors in these experiments was
challenging due to which mass-transfer experiments gained attention. If the Lewis number
(ratio of thermal diffusivity to mass diffusivity) is maintained nearly unity, then the mass
transfer analogy can be used to find temperature on an impermeable wall. Goldstein [6]
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pointed out that both the turbulent and molecular Lewis number should be around 1 to
validate the analogy between mass and heat transfer. This can be achieved in highly turbu-
lent flows where the turbulent Lewis number can be safely assumed to be around unity.
Departure of molecular Lewis number from unity in highly turbulent flows might not be
consequential for the final performance; however, maintaining turbulent Lewis number
around unity is of prime importance. Han and Rallabandi [84] emphasized that while the
flow is turbulent over most of the surface of turbine blades due to high Reynolds number
assisted by turbulence enhancing secondary mechanisms involving vortices, coolant jets’
penetration into mainstream flow, and wake formations, the flow in the vicinity of the
leading edge could still be either laminar or in transitional stage, thus invalidating the
analogy in this region. Despite these limitations, mass transfer techniques are still used
because of their benefits over thermal methods. Mass transfer methods such as naphthalene
sublimation technique has been used by Goldstein and Jin [85] to quantify film cooling
effectiveness; however, naphthalene was found to have serious health-related issues and
its use was discontinued. The mass transfer technique used in recent investigations are
usually pressure sensitive paints (PSPs).

Development of fast thermal methods such as transient liquid crystal (TLC) thermog-
raphy and infrared imaging (IR) also provided an opportunity to obtain temporal and
high-resolution spatial variation of effectiveness and heat transfer coefficient contours.
These methods have been widely accepted in turbomachinery community, and a brief
description of these is provided below.

3.1. Transient Liquid Crystal (TLC)

This technique commonly employs one-dimensional semi-infinite heat conduction
model with convective type boundary condition at the surface, which gives the final
solution for temperature as following [50,55,86]:

Tw − Ti =

[
1− exp

(
h2αt
k2

)
er f c

(
h
√

αt
k

)]
(ηTc + (1− η)Tm − Ti) (4)

where Ti is the initial test surface, Tm is the mainstream temperature and Tw is the wall color
change temperature. Two similar transient runs are conducted to obtain two equations,
which can be then simultaneously solved to obtain η and h. For example, Nasir et al. [50]
performed first run with mainstream heated to 58 ◦C and the coolant heated slightly above
room temperature. In the second run, the coolant was heated slightly above mainstream
temperature. Several factors such as lighting, calibration test, and conduction errors in the
zones of high thermal gradients immediately near the hole exits affect the results. The final
solution needs to be corrected for the conduction errors in the vicinity of holes.

3.2. Transient Infrared Imaging (IR) and Temperature-Sensitive Paint (TSP)

Ekkad et al. [87] were the first ones to use transient IR technique to capture the
film cooling performance, where both the adiabatic film effectiveness and heat transfer
coefficient were evaluated from a single test run based on the methodology proposed by
Vedula and Metzger [88]. The solution of the temperature is similar to the one-dimensional
conduction equation provided in Equation (4), but in this IR method, the temperatures are
recorded at two instances of time (t1 and t2) in the same run:

Tw1 − Ti
Tf − Ti

=

[
1− exp

(
h2αt1

k2

)
er f c

(
h
√

αt1

k

)]
(5)

Tw2 − Ti
Tf − Ti

=

[
1− exp

(
h2αt2

k2

)
er f c

(
h
√

αt2

k

)]
(6)
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The above two equations obtained from same transient run can be solved to obtain
η and h. The advantage of this technique over the above discussed TLC method is that
it requires only one test run to determine variables of interest, and there is no limitation
of operating temperature band as imposed by the use of liquid crystals in TLC method.
Also, transient IR method allows one to capture the initial temperature distribution on
the surface. IR is used for surface temperature measurement, but the optics requires
that viewing window is IR transparent. An alternative temperature measurement is TSP
(temperature-sensitive paint) that can be viewed without any specialized window material.
A fast measurement technique with TSP is illustrated by Bitter et al. [89] in subsonic flows.

3.3. Pressure-Sensitive Paints (PSP)

Pressure-sensitive paints use mass transfer technique, which eliminates conduction-
related errors that inherently occur in thermal methods. Pressure-sensitive paints (PSP)
are composed of luminescent molecules that are suspended in a polymer binder to form a
paint. When these luminescent molecules are excited by blue light with wavelength around
400 nm, the excited particles have two routes to get back to the ground state. One is to emit
light at longer wavelength (greater than 600 nm in red spectrum) and the second route is to
interact with surrounding oxygen molecules (known as oxygen quenching) in which case
the fall back to lower energy state does not emit light radiation. Therefore, the intensity of
emitted red light can become function of the oxygen partial pressure adjacent to the PSP
layer. A calibration test is conducted to find a relationship of the emitted intensity with that
of the oxygen partial pressure, with an added caution that the calibration is performed at the
same reference temperatures at which the actual tests have to be conducted. Introduction
of a secondary gas through film cooling essentially modifies the oxygen concentration in
vicinity of PSP and the corresponding light intensity is recorded. From the calibration test,
the partial pressure corresponding to the recorded intensity values can be evaluated and
further related to concentration and effectiveness, as follows (where CO2,C = 0):

η ≈ Cw − C∞

Cc − C∞
=

CO2, f g − CO2,air

CO2,C − CO2, air
= 1−

CO2, f g

CO2,air
(7)

With special cases such as nitrogen as foreign gas where the molecular weight is
similar to that of air, Equation (7) becomes:

η ≈ 1−
CO2, f g

CO2,air
= 1−

PO2, f g

PO2,air
(8)

More details on this are available at Zhang and Jaiswal [90]. Han’s group [84] at Texas
A&M University have reported extensive film cooling research using the PSP technology
in the last fifteen years. Wright et al. [91] compared the film cooling results obtained for
seven equally spaced holes with injection angle of 30◦ and compound angle of 45◦ using
three measurement techniques, viz. infrared thermography (IR), pressure-sensitive paint
(PSP) and temperature-sensitive paint (TSP). The comparison showed that results of all
these techniques were very different at lower blowing ratio M = 0.6, where the differences
were amplified near the hole exit. The authors did not account for conduction errors in this
region causing higher film effectiveness values with thermal methods like IR and TSP than
that with PSP. At higher blowing ratios M = 1.2, the data downstream of the holes showed
good match among the three techniques; however, the near-hole dip in film effectiveness
due to jet detachment was not captured effectively by the IR- and TSP-based methods.
Russin et al. [92] illustrated the TSP and PSP techniques on film cooling measurements.
They used PSP for the film cooling effectiveness without the conduction effects and then
used TSP to measure heat transfer coefficients in the presence of film cooling. Other notable
publications with TSP include [63,93].

Gao and Han [94] used PSP technique to obtain film effectiveness characteristics from
three- and seven-rows arrangement on a semi-cylindrical blunt body (that mimicked the
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trailing edge) at blowing ratios M = 0.5 to 2.0 with radial and compound-angled holes.
Seven-row design exhibited better cooling performance because of better film accumulation
on the surface. The contours of film cooling effectiveness with PSP measurement are shown
in Figure 14. Film cooling effectiveness distribution contours for seven-row design were
obtained using PSP technique by Gao and Han [94]. Several other investigations on film
cooling have been reported by Han and associates [95,96] with focus on the leading edge.
Rallabandi et al. [97] analyzed the density ratio and unsteady wake effects (generated
with vortex shedding from rods) on film cooling of turbine blade using PSP. Increasing the
blowing ratio decreased film cooling on both suction and pressure side; however, at higher
blowing ratios, the flow reattached on the pressure side due to concavity lending higher
effectiveness downstream. Unsteady wakes shortened the film cooling traces without
significant detrimental effect on the pressure side.
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4. Curvature and Roughness

Even if most studies and measurements were conducted on flat surfaces, the airfoil is
far from flat. Besides curvature of the wall, the flow accelerates or decelerates depending
on the side of the airfoil, and it is well known that the blade passage fluid mechanics is
very complex. Figure 15 shows the effect of curvature on film effectiveness without the
complexities from end-wall effects. The pressure side clearly shows lower values than the
convex suction side. As a result, there are usually more film holes in the pressure side than
suction side. It has also been observed that using costly shaped holes in the pressure side
does not add much benefit and thus many airfoils use simple round holes for the pressure
side cooling.
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(pressure side) and convex surface (Suction side) in Schwarz et al. [41].

Surface quality rendered by the adopted manufacturing technology plays significant
role in determining the overall film cooling performance and a defining variable of this sur-
face quality is the “roughness”. The alternative additive manufacturing routes, especially
laser powder bed fusion (LPBF)-based technologies, result in roughness scales that can
significantly alter the film cooling performance. Therefore, it is imperative to have thorough
understanding of the role that roughness plays in dictating the cooling characteristics in
turbine blades. This section provides an account of prior reported investigations where
the roughness of conventionally built blades was accounted for in discussing the film
cooling performance. The following section will then discuss in detail the role of roughness
rendered by additive manufacturing technologies in particular.

Bunker [99] highlighted that the EDM technology can provide uniform surface finish
with roughness heights of about 2.5 µm whereas laser drilling yields relatively irregu-
lar hole diameter and inferior surface finish. Water-jet drilling can produce clean holes
with shaped exits under controlled conditions. Marimuthu and Smith [100] reported the
roughness of holes drilled via water-jet guided laser at an acute angle over thermal barrier
coated nickel superalloy to be around 1.15 µm. Apart from the roughness incurred during
manufacturing, the continued operation subjects the blade surfaces to deposits, pitting,
erosion, and spallation, which generates roughness on the surfaces, as highlighted by
Bons et al. [101]. Bons et al. [101] and Bogard et al. [102], targeted spatial nonuniformity in
the roughness levels that persists on the surface of the blades. Figure 16 shows that film
cooling effectiveness is susceptible to this spatially varying roughness near the injection
and downstream.
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in film effectiveness happens with increased surface roughness [104]. The trend is captured in
numerical simulations by Zamiri et al. [105].

Zamiri et al. [105] used LES to show that the film effectiveness reduces with increasing
surface roughness. In another publication, Zamiri et al. [106] slightly overpredicted the
film cooling effectiveness with LES in a smooth flat surface configuration, but the overall
decay pattern was captured successfully. LES has significant potential to capture and
characterize the inner details. A full paper on LES in turbine cooling is feasible because so
many publications available on that topic. Due to lack of space and theme of this article,
only a limited discussion on LES is provided as supporting evidence. Goldstein et al. [107]
analyzed actual working turbine blade and found that the roughness was primarily present
upstream of holes on the suction side and downstream of holes on the pressure side. Au-
thors [107] then used cylindrical roughness elements in staggered type arrangement to
study its impact on film cooling of one/two rows of cylindrical holes. At higher blowing
ratios, 40–50% improvement in adiabatic wall effectiveness of single row of holes was
observed due to enhanced turbulence and mixing with rough surface that dissipated the
injected flow, preventing it from penetrating farther into mainstream flow. Although not
quantified by the authors, the heat transfer coefficient values were also expected to be
significantly increased over those with the smooth surface. Due to roughness-caused
mixing, more spanwise uniformity in film cooling effectiveness occurred. Schmidt and
Bogard [80] reported that at higher investigated turbulence level (~17%), laterally aver-
aged effectiveness of rough surface modeled using conical elements was higher than the
corresponding smooth configuration at blowing ratio of 0.6 because of the suppression of
turbulent mixing. These past studies mimicked the roughness on the plane surface by using
engineered roughness elements such as cylindrical and conical elements. While roughness
upstream and downstream of the holes could be replicated conveniently with accessible
surface modifications, the in-hole roughness replication is challenging.
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Effect of in-hole roughness was investigated by Schroeder and Thole [104] on coupons
of polystyrene in which a single array of 7-7-7 laidback fan-shaped holes was excavated
using CNC milling machine with roughness varying between Ra/D ∼ 0.003 and 0.020.
These manufactured dimensions were well within the limit of 5% from the intended design.
In comparison to smooth holes, the holes with higher roughness levels demonstrated a
decrease of 60% in the area-averaged adiabatic effectiveness at the highest blowing ratio
M = 3. Figures 17–19 show the AM design for turbine components. The normalized
temperature contours on AM surface as well as on the y-z cross-plane located at x/D = 4
downstream of the holes were shown by Schroeder and Thole [104], at blowing ratio
of 3. For smoother holes, the kidney-shaped profile was observed with better lateral
coverage and lesser penetration into the mainstream as compared to rougher hole. In-hole
roughness elements were considered responsible for creating narrow high-velocity jet core
with thicker boundary layers along the interior walls of holes, which penetrated higher
into mainstream flow. In-hole roughness was reported to be capable of reducing the film
cooling effectiveness by >2 times at higher blowing ratios. The performance of the rougher
holes was diminished relative to smooth holes at both lower (0.5%) and higher (13.2%)
investigated turbulence levels.
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5. Additive Manufacturing (AM)

Additive manufacturing has emerged as an alternative route to realize relatively
sophisticated film cooling designs that are otherwise very difficult, if not impossible, to
manufacture using conventional manufacturing technologies. Dutta et al. [115] discussed
engineering and economic aspects of additive manufacturing in energy-related industries.
The blades/holes made through conventional processes manifest low surface roughness
after many machining hours; on the contrary, the roughness in AM route is inherently
present during thermal printing, making it an important design variable along with the
geometry and flow conditions discussed in the previous sections. Figure 17 shows the
complex structures feasible with the additive manufacturing, and Figure 18 shows a new
film hole design used for tilting the film to the more needed side coverage. One major
contribution from AM can be alterations of the internal features. Conventional machining
altered the visible parts of the film hole due to accessibility issues. AM can accommodate
modifications to the inlet of the film hole to improve coolant distribution.

5.1. AM Surface Roughness

Figure 19 shows the actual scale AM surface roughness and that can vary with build
orientation. Scanning electron microscope images of film cooling holes for actual scale
AM coupon, actual scale EDM coupon, and 2 × scaled AM coupon were illustrated by
Stimpson et al. [16]. Nondimensional temperature contours for smooth and rough holes
as well as effectiveness, η, was measured on wall using IR camera; and thermal field θ

measured on y-z plane located at x/D = 4 downstream of the hole exit using fine-wire
thermocouple rake were performed by Schroeder and Thole [104]. Actual scale EDM hole,
and 2 × actual scale AM holes were built with vertical and angled orientations. Metering
section in the AM holes was rougher and more clogged in comparison to EDM hole. EDM
hole demonstrated higher overall effectiveness values for the entire investigated range of
blowing ratios where internal cooling Reynolds number (and hence the contribution of
internal convection) was held constant at any investigated case. This is because of lower
mass flow rate in the AM holes at the same internal-channel Reynolds number due to lower
effective metering area, and also because in-hole roughness tended to provide jet liftoff
tendency to the ejected fluid. In-hole convection with roughness becomes the dominating
near-hole cooling contributor at higher blowing ratios.

Aghasi et al. [116] compared the film cooling performance of 7-7-7 shaped diffusing
hole proposed by Schroeder and Thole [52] manufactured through three different AM
technologies: fused deposition modeling (FDM), stereolithography (SLA), and polyjet
(see Figure 20). The blowing ratio (M) was varied between 1 and 3.5 at mainstream
Mach number of 0.30 and density ratio of 1.5. The designed hole diameter (D) was held
constant at 0.1 inches, i.e., 4 to 5 times bigger than typical hole size of an actual high
pressure turbine blade (0.020 in–0.024 in). The relative roughness (with respect to hole
diameter) was the highest for FDM (Ra/D∼0.01) and the least roughness was observed for
SLA (Ra/D∼0.005). The span-averaged film cooling effectiveness was higher for rougher
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coupons at the highest M~3.5 because of the spread of coolant caused by the roughness
and inhibition of the flow to strongly penetrate the mainstream flow. It should, however,
be noted that through these technologies, the coupons were printed either in photopolymer
or plastic material, whereas the practical applications used high-temperature alloys. The
adiabatic film cooling effectiveness and heat transfer values obtained from smooth coupons
can be fairly scaled to the actual operating conditions; however, such an exercise for
additively manufactured samples should be conducted cautiously. That is because the
roughness signature of additively manufactured polymeric/plastic material are going to be
different from that present on the metal. Moreover, the influence of roughness with scaled
up geometries can significantly deviate from that in actual smaller dimensions, for e.g.,
more profound obstruction can occur in holes printed with smaller metering diameters.

A numerical study by Shi et al. [117] showed the AM-related surface roughness
decreased the cooling effectiveness. They also found unequal coolant distribution in the
film holes caused by the surface roughness. Design optimization based on hole blockage
due to manufacturing uncertainty was carried out by Lee et al. [118]. Manufacturing
deviations and related uncertainties can be more problematic in supersonic condition [119].
Partial hole blockage could occur due to particle deposition or thermal barrier coating
(TBC). Lee et al. [118] found that TBC-induced hole blockages had more detrimental effect
on film cooling performance than the AM-induced in-hole and blade surface roughness.

Coupons made with laser powder bed fusion (LPBF) technology with internal chan-
nels capable of supplying coflow or counterflow movement of coolant with respect to
mainstream flow was analyzed in a series of paper by Thole and group [16,120,121]. The
common design and flow conditions in these investigations were as follows. The samples
were printed in nickel alloy that is typically used in high-temperature applications. The
coupons are shown in Figure 3a, and they were built with two major orientations, one
with the vertical hole axis and other with the face of the coupon inclined at 45◦. The
holes were printed at the scales of actual turbine applications, and the experiments were
typically conducted at Biot number and h∞/hi (mainstream to internal cooling channel
heat transfer coefficient ratio) matching with those encountered in real engines. The results
were therefore directly scalable to industrial operations. Since the entire test coupons were
printed in metal, the conjugate cooling performance of the holes was given in the form of
overall cooling effectiveness (φ):

φ =
Tw − T∞

Tc − T∞
(9)

Jung et al. [56] studied full-coverage film cooling with various Biot numbers. The
cooling effectiveness was observed to be of the order of 87% at low Biot number cases.
As the Biot number was decreased from 4.04 to 0.06, the cooling effectiveness increased
by 23%.

In configuration with internal channels like that shown in Figure 3b, three major
mechanisms of heat transfer determine the overall performance: external surface film
cooling, inside film hole convection, and inner airfoil surface convection. Conjugate
optimization of all three heat transfer mechanisms was explored by Dutta and Smith [122].
They showed that local hole diameter adjustment can result in lower thermal stresses due
to more uniform metal temperatures. Stimpson et al. [16] showed that the build orientation
could impact the overall effectiveness of the holes as the resulting surface roughness
characteristics were different. Vertical orientation was found to be more favorable for the
construction of laidback fan-shaped hole as it provided no profound hole blockage and
lower roughness in comparison to angled orientation. For comparison of the surface quality,
a separate solid (no holes) coupon was manufactured with AM in which holes were cut
through EDM technology. Moreover, the scaled up versions of the additively manufactured
coupons were also generated for testing and analyzing.
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5.2. AM New Hole Shapes

Snyder et al. [121] additively manufactured six different hole-shapes, viz. 7-7-7,
console, crescent, oscillator, and tripod. The microscopic images of the manufactured
hole exits are shown in Figure 21. Metering area was oversized by about 20% from the
designed real engine values. Console, crescent, and tripod provided better cooling coverage
because of proximity of the hole exits. As seen in Figure 21, the thin features at the exits of
the hole were distorted, which severely affected the uniformity of cooling on the surface.
Stimpson et al. [120] analyzed the effect of coolant flow direction and found that the overall
effectiveness of 7-7-7 holes was higher with coflow direction. It was found that increased
roughness in the film cooling hole resulted in decreased effectiveness. Vinton et al. [123]
investigated the full-array coverage film cooling coupons manufactured through direct
metal laser sintering (DMLS) technique for blowing ratio range of 0.5 to 6. Presence of
in-hole roughness diminished the laterally averaged film cooling effectiveness by 50%
when compared with prior studies.
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Overall, published literature suggests that the in-hole roughness is detrimental to film
cooling downstream of the hole, but the in-hole convection is increased with increasing
in-hole roughness, which can compete with decreasing film cooling and provide positive
countereffect to improve the overall effectiveness in the vicinity of film holes. Since internal
channel convection is positively affected by the channel roughness, the cooling affected
zone (CAZ) by the film hole expands. Unfortunately, designers find that too cold CAZ
increases thermal stress and can initiate cracks near the holes in the thermal barrier coating
(TBC). It can be hypothesized that at the film hole exit, there is high heat transfer for the
film coolant and keeping the target surface temperature lower in the vicinity of the hole
exit may benefit the film performance. That is because a cooler metal temperature means
lower heat pickup by the coolant at that location, but cooler metal is obtained by using
coolant. What is the right balance of CAZ and film heat pickup can be an interesting topic
for the researchers to investigate.

Research on the efficacy of additive manufacturing in film cooling performance is
still in a nascent stage and relatively few numbers of studies have been conducted on
engine-relevant scales and conditions. Full-scale turbine blades are being manufactured
by the researchers using metal additive manufacturing technologies, and examples were
shown in Figure 2 [13]. Several design constraints must be considered to ensure successful
integration of film cooling holes in blade structures during additive manufacturing. The
five decades of research signifies that the film cooling holes on a single airfoil can have
varying orientations with varying cooling characteristics. Since heat load on an airfoil is
not uniform, hole assignments in different regions of the airfoil become a control knob for
the designers through AM. This control was not available prior to AM due to conventional
manufacturing constraints. Note that Ni-Co alloys used for turbine components are tough
to machine and some machine shops refer to them as “angry metals.” Conventional drill
breaks and milling tools deform when machining attempts are made on these alloys with
simplistic machine tools. A correlation for film hole density based on local heat load and
mechanical strength requirements will help the designers to obtain a rough estimate on
total number of holes needed in a component.

Most investigations have been primarily conducted on flat plate-type coupons, but
manufacturing holes on curved surfaces at varying angles can provide more realistic
performance estimation. Moreover, why do we have to limit the feeder metering hole
to straight and round? The metering hole can be curved and can help provide an exit
coolant velocity profile that is beneficial to the local film cooling on the curved airfoil
surface with vortex-strewn predictable but complex hot-gas flow. Shi et al. [126] studied the
uncertainty from manufacturing deviations and observed 26% deviation in the discharge
coefficient Cd. To the best of the authors’ knowledge, there is no elaborate work conducted
on additively manufactured compound holes and that can be analyzed in the near future.
Also, the adiabatic film cooling effectiveness obtained through comparative analysis of
polymeric coupons manufactured via nonmetal additive manufacturing technology can
deviate from the actual performance of holes realized in metal via LPBF technologies
unless comparable roughness scales are achieved. Even if the roughness scales are closely
mimicked, another challenge is to quantify the heat transfer coefficient of these samples,
as that cannot be overlooked for the overall cooling performance. The repeatability and
reliability of the data obtained from additively manufactured film cooling coupons has
to be ensured for wide-scale industrial applications. This can be done by having a set
of correlations for robust relationships among AM process parameters, build direction
orientation, final surface quality, and obtained flow and thermal properties on the samples.
Despite the current challenges, the use of AM technologies is gaining traction and there is
continuous effort by the researchers to optimize manufacturing processes for better gain
and improved performance. This is definitely an active area for new inventions, such as
those demonstrated in patents [33,34]. These patents indicate a cap element in the film hole,
and influence of that is not yet available in the published literature. The knowledge base
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on covered film holes is not yet publicly disclosed. AM technologies offer opportunities to
bring such novel configurations in the mainstream applications.

Huang et al. [127] showed that imperfect holes can cause a decrease in film cooling
effectiveness and at the same time decrease the coefficient of discharge for the same-sized
hole. We would like to point out that a decrease in discharge coefficient allows for a bigger
hole for the same throughput with a given pressure drop. That can be used as an advantage,
as was discussed in opportunities found in impingement cooling [128].

5.3. AM Sweeping Film with Synthetic Jet (SJ)

A synthetic jet (SJ) is similar to the oscillator film as shown in Figure 21d. Figure 22
shows the layout and size variations that were tried in published literature. Recent devel-
opments on synthetic jet film cooling at the Ohio State University were published in several
journal articles and in a dissertation [129–132]. Other notable publications can be found in
Zhou et al. [133] and Kong et al. [134]. Zhou et al. used the SJ at the film exit and Kong et al.
used SJ at the impingement configuration prior to the film exit. These studies showed the
working principles of fluidic mechanisms and benefits of spreading the coolant towards
better coverage.
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Figure 23 shows the inner mechanisms of the film development and stretching in
z-direction. The oscillator size had a significant impact on the flow distribution and this
work showed that more understanding and optimization processes are needed before a
conclusively advantageous design can be obtained.

Figure 24 indicates that the film coverage is markedly better on the suction surface
where the boundary layer is stretched thin due to hot-gas acceleration. Figure 25 shows the
detailed film effectiveness distribution with SJ and regular shaped holes. The SJ film holes
had a better spread but a smaller core peak. In a flat plate, the smaller core peak dissipated
faster and as a result no significant benefits were observed with the SJ hole. In contrast to
the flat plate, the suction side of an airfoil helps to hold the film longer towards the target
surface and as a result the SJ film improved the performance in a curved configuration.
Hossain et al. [132] showed the design and validation of SJ film concept in a direct metal
laser sintered turbine nozzle guide vane and found that SJ is better for impinging the
pressure side and SJ is better for film cooling in the suction side. The discharge from SJ
and standard 7-7-7 holes were maintained to be similar and on average a 14% increase
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in area-averaged film effectiveness was observed with SJ. An improvement of ~14% may
be considered insignificant in emerging technologies, but in a mature technique like film
cooling, this is a big achievement.
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6. Future Challenges

New opportunities are continuously arising with the arrival of new technologies like
pressure-gain combustor, ceramic composites, and hydrogen fuel. It is anticipated that
gas turbine manufacturers are considering pressure-gain combustor (PGC) technology. A
couple of open-access publications on pressure-gain combustion are referenced here for
easier access [135,136]. Anand and Gutmark [137] showed that PGC is inherently transient
and has rocket engine-like instabilities. Since film cooling is active in close proximity to
the combustors, any transient flow or pulsing is bound to affect the film performance.
Moreover, a gain in pressure in the combustor is bad for film discharge because the coolant
air for the film is extracted prior to the combustor. The film discharge pressure difference
assumed a pressure drop in the combustor and not a pressure gain. This increase in hot-gas
pressure will require a pressure increase in the film coolant supply and that aspect has
not been properly addressed yet. There is also a push to reduce the carbon-based fuel
and the progress is being made towards using hydrogen in existing natural gas-fueled gas
turbines. Chiesa et al. [138] showed that switching to hydrogen from natural gas involves
more than just changing fuel lines. Hydrogen fuel can burn at a higher temperature with
unacceptable NOx emissions. As a result, the hydrogen combustion system uses significant
amounts of dilution with steam or nitrogen. These additional flows can affect the existing
film cooling systems and can be studied for future development. There are additional
problems when ceramic–matrix composite (CMC) is used along with diluted hydrogen fuel.
Steam is harmful to CMC [139] and a dry-air film is required to protect the CMC surface
from the moisture containing combustion byproducts. The purpose of film in CMC is not
primarily cooling; rather, it is about limiting hydrated degradation through a dry film layer,
which opens up different types of opportunities for researchers and designers.

Opportunities in film cooling research that are beyond previous conventional research
and can now be achieved with emerging AM technologies include:

• Hooded film holes
• Curved film holes
• Design alterations to accommodate AM roughness
• Adaptation of pressure-gain combustors
• Surface protection of CMC
• Adaptation for hydrogen fuel
• Pulsating and sweeping film
• Alterations in film hole inlet
• Film hole cooling affected zones
• Film hole density correlation with heat load and structural strength
• Manufacturing deviations and its impact
• Low discharge coefficient in larger rougher holes
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7. Conclusions

Film cooling is essential in high-performance gas turbines and there is active research
dedicated to improving film cooling technology. The ASME Turbo Expo 2022 conference
had 10 presentations on film cooling. Primary developments in recently reported literature
are in hole shapes, surface roughness, and hole arrangements; while controlling flow
parameters were governed by density ratio, mass flux ratio, and momentum flux ratio.
New cooling challenges are faced as hot-gas conditions became more severe. The operating
factors challenging film cooling are higher gas temperature for better thermal efficiency,
higher dump pressure (lower pressure difference across film hole inlet-to-outlet) due to
pressure-gain combustors, and more curved airfoils as AM changes the core design process.

Fortunately, measurement techniques have improved and can provide inner details of
the flow and heat transfer mechanisms to help improve the cooling design. The shaped exit
film cooling holes have been shown to outperform basic cylindrical holes, but few studies
suggest that the relative performance enhancement can be overestimated if the experiments
were not conducted at engine-relevant freestream turbulence intensity conditions. Com-
pound holes with orthogonal directional component to the hot gas tend to have higher
adiabatic effectiveness, but that is accompanied by a higher heat transfer coefficient, which
can diminish the overall performance of the film cooling. Shaped holes mitigate jet liftoff
compared to cylindrical holes by reducing the momentum flux of the ejected fluid. The
concept of the hooded film hole has not yet been studied in the published literature, but
there are indications from the patent-publications that it is being privately evaluated.

Higher momentum flux with the same mass flow rate signifies higher unwanted
penetration of ejected coolant into hot mainstream and subsequently causing more mixing,
which usually results in lower film cooling effectiveness. Higher density ratio demonstrates
delayed jet liftoff and obtains a higher overall effectiveness in general. Advective capacity
ratio is being explored recently to scale the film cooling performance to engine-relevant
conditions. This parameter needs to be further explored to confirm its suitability to scale
performance over wide spectra of hole configurations and operating conditions. Experimen-
tal film cooling measurement techniques apply sophisticated mass transfer, transient liquid
crystal thermography, and infrared imaging; with mass transfer techniques showing added
advantage of reducing conduction errors, which are nearly unavoidable in heat-transfer
based experiments. Pressure-sensitive paints, a type of mass transfer technique, has gained
significant traction over the last two decades. These experimental techniques are complex
and require years of training to measure thermal outcomes with acceptable accuracy.

Additive manufacturing is promising for cooling technologies because it helps build
complex hole shapes (like synthetic jet oscillators) and customized configurations that are
otherwise challenging or too expensive to build through conventional means. However, the
few studies available on additively manufactured test coupons highlight inferior surface
quality issues. The inherent roughness scales can be significant with respect to the hole
diameters, and that can alter the mass flow rate and hence cooling performance. The
in-hole roughness increases the in-hole convection but reduces film cooling effect due to
increased momentum flux at the core of exiting jet. At similar flow conditions, additively
manufactured film cooling coupons provided inferior overall effectiveness value than
coupons with smoother EDM holes. The overall analysis suggests that surface charac-
teristics cannot be ignored when characterizing film cooling performance of additively
manufactured coupons along with other parameters discussed in the paper. The prospects
of using additive manufacturing are promising and new shapes (not only for the film hole
but also for the airfoil) and compound curved film hole configurations can be explored in
the future. Film cooling technology in the context of emerging technologies like retrofitting
existing gas turbines with hydrogen fuel combustors and new pressure-gain combustion
systems are expected to initiate new research and development activities.
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Nomenclature

C concentration
cp specific heat capacity (J/kg.K)
D diameter of film cooling hole (m)
h heat transfer coefficient (W/m2.K)
I momentum flux ratio
k thermal conductivity of solid (W/m.K)
M blowing ratio
P partial pressure
q heat flux (W/m2)
t time (s)
T temperature (K)
Tu turbulence intensity (%)
u velocity (m/s)
x streamwise distance

Greek letters

α thermal diffusivity of solid (m2/s)
ρ density (kg/m3)
η adiabatic film effectiveness
φ overall film effectiveness

Subscripts

aw adiabatic wall temperature
c coolant
i initial/internal
re f references
w surface wall temperature
∞ mainstream
0 baseline case/no-coolant injection

Abbreviations

ACR advective capacity ratio
AM additive manufacturing
CAZ cooling affected zone
CMC ceramic–matrix composite
EDM electro-discharge machining
FC film cooling
FDM fused deposition modeling
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LPBF laser powder bed fusion
PGC pressure-gain combustor
SLM selective laser melting
TBC thermal barrier coating
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