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Abstract: The use of synthetic molecules to achieve specific goals is steadily increasing in the environ-
ment, and these molecules adversely impact human health and ecosystem services. Considering the
adverse effects, a better understanding of how these molecules behave in the environment and their
associated risks is necessary to keep their use acceptably limited. To meet the demands of farmers
and combat weed problems, woodlands and farmlands are sprayed with agrochemicals, primarily
glyphosate-based herbicides. Farmers increasingly embrace these herbicides containing glyphosate.
Glyphosate and aminomethylphosphonic acid (AMPA), a key metabolite of glyphosate, have been
reported as toxicological concerns when they become more prevalent in the food chain. The chemical
glyphosate has been linked to various health issues in humans and other living organisms, including
endocrine disruption, reproductive issues, tumours, non-Hodgkin lymphomas, and liver, heart, and
blood problems. Therefore, the current review aims to compile data on glyphosate-based herbicide
use in the environment, potential risks to human and ecological health, and various maximum
residual limits for crops as suggested by international organizations. As a result, regulatory agencies
can advise glyphosate users on safe usage practices and synthesize herbicides more efficiently.

Keywords: glyphosate-based herbicide; AMPA; toxicological effect; ecological risk; regulations

1. Introduction

Increasing numbers of synthetic molecules are being released into the environment to
achieve specific outcomes [1]. Those molecules may adversely affect human health and
ecosystem services [1,2]. An in-depth understanding of how those molecules behave in the
natural world combined with an estimate of their complexity can help regulate their use
and enable users to take precautionary measures to protect human health [3]. Although
regulations have set the highest points for known pollutants found in water supplies or
drinking water [4], and food [5], there are none for soil residue [3]. Indeed, the United
Nations’ Food and Agriculture Organization recently released a report that exposes the
unseen truth of soil degradation [6]. Agrochemicals, primarily herbicides, are used on
agricultural lands to suit farmers’ demands and overcome weed resistance [7]. Formulation,
approval, use, and monitoring of these herbicides, especially glyphosate-based herbicides
(GBHs) involve numerous stakeholders [3].

Following World War II, food scarcity was a problem around the world. As a result,
today farmers across the globe use several herbicides that are synthetic to manage pests
and weeds. However, the formulation of glyphosate has been considered as the most
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important herbicide in that area [8]. Glyphosate-based herbicides (GBHs) come in a variety
of commercial formulations, including broad-spectrum, non-selective, post-emergent, and
synthetic herbicides [9]. The first glyphosate was developed in 1950, and its herbicidal
properties were only discovered in 1970 when GBHs were resynthesized and tested [10].
The herbicide Roundup contains ‘GLY’ as an active component, which was introduced and
commercialized by Monsanto Corporation in 1974 [11]. Agricultural weed control with
glyphosate quickly became popular with farmers, who gained the ability to eliminate weeds
without causing crop damage [8]. According to Zhang et al. [12], the glyphosate hinders
the synthesis of amino acids including tyrosine, phenylalanine, and tryptophan, thereby
killing weeds without destroying the agricultural crops. Its use has progressively increased
in non-agricultural and agricultural settings, and it is now the most common herbicide
worldwide [13,14]. In addition, many agrochemical companies market GLY formulations
in various strengths and with various adjuvants, because they have already been reviewed
and registered by regulatory organizations [11,15]. It was decided by the European Union
Council on 27 November 2017 that glyphosate would be permitted to be used for five more
years with the majority of 18 member nations voting in favor of allowing the use [16]. As
a result, GLY can be used as a component of plant protection products (PPPs) through
the end of 2022 [17]. Agencies in Europe, such as the European Food Safety Authority
and the European Chemicals Agency, conducted a thorough assessment of GLY in recent
years based on concerns over its environmental and human health consequences [18].
Based on current scientific data, the European Chemicals Agency (ECHA) concluded that
glyphosate does not meet the criteria for a carcinogenicity hazard classification, and cannot
be categorized as a carcinogen, reproductively harmful substance or mutagen [16,19]. As
part of EFSA’s risk-assessment process, the scientific committee has been asked to create
guidelines on how to describe, record, and justify uncertainty [20]. In order to continue the
renewal as an element in PPPs, GLY must not have a negative impact on the environment
or human or animal health, according to European laws [21].

Glyphosate’s widespread use stems from its effectiveness in weed control at a reason-
able price, its presumed low toxicity, fast uptake by plants, and gradual weed resistance
development to glyphosate [22]. Due to the accumulation of residues in the food chain,
glyphosate and aminomethylphosphonic acid (AMPA), one of its main metabolites, are
reported to be toxicologically problematic [23]. Several environmental conditions can
affect the degradation of glyphosate, depending on its structural affinity with certain trans-
formations [24]. Despite AMPA’s longer half-life in soil, with 23–958 days compared to
glyphosate’s (1–197 days), most studies examined only glyphosate [25–28]. In the long term,
contaminants with a long half-life and slow degradation can damage the environment [29].
This occurs most frequently in agricultural and forestry settings where repeated applications
are common. Due to its extremely low vapour pressure, it cannot be volatilized significantly
even if it undergoes mineralization, immobilization, or leaching once applied [29,30]. As a
result of glyphosate mineralization, AMPA, methyl phosphonic acid, sarcosine and glycine
are produced [30,31]. After that, AMPA is mineralized to methylamine and phosphate,
which when decomposed to produce carbon dioxide and ammonium [29,32]. In research,
the presence of glyphosate in the environment was established. As a result, potential health
risks associated with glyphosate must be assessed.

The present review is therefore aimed at consolidating information on glyphosate-
based herbicides in the environment, the potential threat this type of herbicide poses to
ecological and human health, and various maximum residual limits (MRLs) proposed
by international agencies on agricultural crops. Consequently, regulatory organizations
and other authorities can provide glyphosate users with the necessary precautions and
guidelines for future usage and to more effectively formulate herbicides by using safer
surfactants.
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2. Factors Affecting the Degradation Mechanisms of Glyphosate Pollution

Factors and mechanisms of degrading glyphosate pollution in soil include mineraliza-
tion, immobilization and leaching having physical and chemical properties that influence
the mechanism.

2.1. Mineralization

In some circumstances, biochemical properties of a soil can result in glyphosate and
AMPA mineralization occurring very quickly [30]. Increased phosphate content, soil
pH, and low Fe and Cu content accelerate glyphosate mineralization, driven primarily
by increased microbial mineralization [30,33,34]. Adsorption of glyphosate to organic
carbon (C) may provide environmental benefits such as delaying leaching, promoting soil
degradation, and slowing the release of the herbicide. If the glyphosate use continues, the
organic C system may eventually become saturated. Thus, soil biochemical properties,
microbial diversity and activities are all factors in glyphosate degradation [23].

2.2. Immobilization and Leaching

The high adsorption of glyphosate results in its rapid immobilization in most natural
situations after application [26,35]. Influential factors in the immobilization of glyphosate
include minerals, soil organic matter, and clay. It has also been reported by Shushkova
et al. [36] that adsorption to soil occurs within 3 h of the application when about 20%
of glyphosate quantity is initially applied. High levels of clay, organic matter, iron, and
aluminium are required for high adsorption, soils with low pH and phosphate concen-
trations, and high levels of clay [35–38]. Contrarily, soils with high levels of phosphate,
high pH, and low levels of organic matter, Fe, and Al are more prone to glyphosate and
AMPA losses because of a reduced capacity for adsorption and a larger propensity for
leaching [36,38]. According to Bai and Ogbourne [23], the leaching of glyphosate and
resulting contamination of water sources is increasingly due to the recurrent finding of
glyphosate and AMPA residues in the water.

3. Environmental Hazards Posed by Glyphosate and AMPA Residues

A wide range of environmental risks has been created due to the relatively persistence
of GLY and AMPA in the environment. There is not much information regarding the
toxicity, health, or safety of glyphosate and AMPA on frequent and prolonged exposure, so
it is difficult to predict their consequence and magnitude. Several issues surround these
compounds’ ecotoxicological and toxicological assessments, which may contribute heavily
to the toxicological properties of formulated herbicides [39,40]. Because it is extremely
difficult to assess safe, marketable products (as these products have properties that are only
known to their manufacturers and are partially unknowable to regulatory agencies and
research scientists), it can be suggested that all herbicide formulation ingredients must be
declared and regulated. As a result, this review focuses on the existence of glyphosate and
AMPA residues in soil and water bodies and the risks to human and animal health.

Roundup formulations are among the most extensively utilized GBH products that
consist of other surfactants and chemical adjuvants. The active ingredients in Roundup are
IPA-salt, polyethoxylated tallow amine (POEA) and other constituents [41]. These adjuvants
can sometimes be even more toxic than glyphosate [42,43]. A thorough examination of
surfactant co-formulants in glyphosate-based herbicides is urgently needed. There are
several classes of POEA molecules with common structural characteristics [44]. Over many
decades, ethoxylated amines, also known as POEA, have been the most common surfactants
used in GBH formulations [45]. For instance, according to Guilherme et al. [46], in a study
on the Roundup Ultra formulation, POEA was detected at a concentration of 16%.

Nonetheless, the labeled Roundup Ultra in Portugal (MON 52276) contains neither
POEA nor propoxylated quaternary ammonium surfactants [47]. There are many instances
in which authors cite the brand without citing the source country of the formulation. The
co-formulants found in a formulation called Roundup Ultra vary depending on the country
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of sale. For example, Roundup Ultra is sold under the MON 76473 label in Ireland, whereas
it has the MON 52256 label in Germany, the MON 79351 label in Greece, and the MON
77360 label in the United States [47]. It is not surprising that the same assay used to test the
same GBH brand yields different results in different laboratories worldwide because it is
difficult to identify substances across studies.

Mesnage et al. [48] confirmed that formulated herbicides are possibly more hazardous
than the active substances alone, as evidenced by studies using glyphosate-based herbicides
including a variety of other active components. It has become apparent that glyphosate has
a wide range of harmful consequences [49], and co-formulants in Roundup have endocrine-
disrupting effects in human cells [50]. As a result of these impacts, agrochemicals like
GBHs will affect agricultural products and the environment, notably as chemical residues in
goods produced by agriculture and as adverse effects on nontarget organisms [51]. Various
studies on glyphosate and AMPA in several countries is described by Gillezeau et al. [52]
in Table 1 given below. Even though the values of GLY and AMPA (in the table) may or
may not be harmful, accumulating them over time will result in various health problems.
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Table 1. Description of glyphosate and AMPA studies in several countries.

Country Subjects Type of
Sample

Year of
Sampling Lab Methods Glyphosate

LOD Effects of Glyphosate AMPA
LOD Effects of AMPA References

EXPOSURE IN THE WORKPLACE

United States
(South Carolina,

Minnesota)

Forty-eight farm
families (farmers and

wives, with
79 children aged

between 4 and 18) on
the day of application
and three days later.

Urine Unreported HPLC 1 µg per litre

On application day, farmers’
geometric mean ± SD:
3.2 ± 6.4 µg/L (range < 1–233); while
on day 3, 1.0 ± 3.6 (<1–68) µg per
litre. Less than 25% of the wives or
kids displayed values that could be
identified.

Unreported Unreported [53]

Finland

Five forest workers
sprayed 8% Roundup
solution 6 h a day for

one week

Urine 1988

GC with a 63
Ni-electron

capture
detector

100 µg per litre

Samples of urine remained below
LOD for glyphosate. A subsequent
quantified urine sample contained
85 µg per litre of glyphosate.

50 µg per litre

For AMPA, urine
samples remained
below the limit of

detection

[54]

France

Herbicides based on
glyphosate are used by

a farmer and his
family (5 in the

household)

Urine Unreported LC-MS 1 µg per litre

A 9.5 µg per litre concentration was
found on the farmer following
spraying and about 2 µg per litre
after 2 days; After 2 days, 2 µg per
litre was also measured in one child.
No measurable levels were present in
the mother or the other two kids.

Unreported Unreported [55]

Ireland

Amenity
horticulturalists
(17 males and

1 female), prior to and
following spraying.

Urine 2015 LC MS-MS 0.5 µg per litre

Prior to spraying, mean ± SD:
0.71 ± 0.92.
After spraying:
1.35 ± 2.18 µg per litre

Unreported Unreported [56]

Mexico 76 farmers Urine Unreported ELISA 0.05 µg per litre
(in water)

In farming areas (Mean ± SD):
0.26 ± 0.23 µg per litre,
(median: 0.28)

Unreported Unreported [57]

Sri Lanka

Ten farmers in good
health from regions
where chronic renal

disorders are endemic

Urine Unreported ELISA 0.6 µg per litre Ranged between 40.2–>80 µg per
litre, (Median: 73.5) Unreported Unreported [58]
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Table 1. Cont.

Country Subjects Type of
Sample

Year of
Sampling Lab Methods Glyphosate

LOD Effects of Glyphosate AMPA
LOD Effects of AMPA References

GENERAL POPULATION WITHOUT DIRECT CONTACT

Sri Lanka

Ten healthy
non-farmers from
regions without a

long-standing
endemic kidney

illness.

Urine Unreported ELISA 0.6 µg per litre Ranged between 1.2–5.5 µg per litre,
(Median: 3.3) Unreported Unreported [58]

US (Iowa)

Households who do
not farm (23 fathers,

24 mothers,
51 children)

Urine 2001 FCMIA 0.9 µg per litre For the non-farm fathers, djusted
geometric mean was 1.5 µg per litre Unreported Unreported [59]

US (Washington
and Idaho)

A total of 41 lactating
women of greater than

18 years old

Milk (41),
Urine (40) 2014–2015 LC-MS

1 µg per litre in
Milk;

0.02 µg per litre in
Urine

For milk, glyphosate is below LOD.
For urine, the glyphosate mean is
0.28 ± 0.38 µg per litre. Glyphosate
detectable in 37/40 of the urine
samples. There are no statistically
significant differences between
consuming conventional or organic
food or living in an urban or
suburban region.

In milk: 1 µg per
litre; while

0.03 µg per litre
was detected in

Urine

In milk, AMPA is
below the LOD.
In urine: AMPA
mean is 0.30 ±
0.33 µg per litre

[60]

Canada

Similar in age and BMI
of pregnant (30) and

non-pregnant women
(39), and 30 umbilical

cords

Maternal
and

umbilical
cord

serum

unreported GC-MS 15 µg per litre

No glyphosate found in the umbilical
cord or in pregnant women. Mean of
glyphosate found in non-pregnant
women is 73.6 ± 28.2 µg per litre

10 µg per litre
In none of the
samples was

AMPA found.
[61]

US (Indiana)
Pregnant women (71)

between the ages of 18
and 39

Urine and
drinking

water
2015-2016 LC MS-MS

In urine: 0.1 µg
per litre; while in

water: 0.2 µg
per litre.

Glyphosate found in the urine: mean
(SD) 3.40 (±1.24) µg per litre. No
glyphosate was found in the
drinking water.

Unreported Unreported [62]

Ireland

Fifty Irish persons
over the age of 18 who

do not have any
special dietary

preferences, with no
pesticide usage in their

line of works

Urine 2017 LC-MS-MS 0.5 µg per litre.

A total of 47 samples were examined,
and their urinary creatinine levels
ranged from 3.0 to 30 nmol/L. 20% of
the samples had Glyphosate levels
above LOD. Glyphosate levels in
samples with medians above the
LOD (Range): 0.87 (0.80–1.35) µg
per litre.

Unreported Unreported [63]
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Table 1. Cont.

Country Subjects Type of
Sample

Year of
Sampling Lab Methods Glyphosate

LOD Effects of Glyphosate AMPA
LOD Effects of AMPA References

GENERAL POPULATION WITHOUT DIRECT CONTACT

Denmark

A total of 13 mothers
and 14 children

(6–11 years old) in
rural and urban

communities

Urine 2011-2012 ELISA 2.5 ppb

For children, the mean was 1.96
(range: 0.85–3.31) µg per litre. For
mothers, the mean was 1.28 (range:
0.49–3.22) µg per litre

Unreported Unreported [64]

Germany 399 individuals aged
20–29 years Urine 2001-2015 GC-MS-MS LOQ: 0.1 µg

per litre

A total of 31.8% of the samples
(127 samples) were found to have
glyphosate level above LOD. The
highest levels were found in males.

LOQ: 0.1 µg
per litre

AMPA: 160
(40.1%) > LOD. [65]

18 European
countries 182 volunteers Urine 2013 GC-MS-MS LOQ: 0.15 µg

per litre

44% of the samples (of about
80 samples) were found to have
glyphosate level above LOQ; Latvia
had the highest glyphosate
concentration, which is 1.8 µg
per litre.

LOQ: 0.15 µg
per litre

36% > LOQ
AMPA;) highest

AMPA
concentration:
2.6 µg per litre

(Croatia)

[66]

Colombia

A total of 112 people
who live in locations

where glyphosate was
applied aerially

Urine 2006

GC with a
detector for

electron
micro-capture

0.5 µg per litre

For the glyphosate (mean ± SD):
7.6 ± 18.6 µg per litre, ranged from
0–130 µg per litre. There were
quantifiable AMPA levels in 4/42
participants with quantifiable
glyphosate levels:
Mean glyphosate: 58.8 µg per litre
(range: 28–130 µg per litre).

1.0 µg per litre

AMPA: 1.6 to
8.4 µg per litre
(range: 0–56 µg

per litre)

[67]

Thailand

A total of 82 expectant
women, aged 19 to 35,

who gave birth in a
participating hospital

Umbilical
cord and
maternal

serum

2011 HPLC 0.4 µg per litre

Median for maternal serum: 17.5 µg
per litre (range 0.2–189.1), while for
the umbilical cord serum: 0.2 µg per
litre (range 0.2–94.9). 50.7% of the
umbilical cord serum samples are
below LOD, 46.3% maternal serum
samples are below LOD.

UUnreported Unreported [68]

Note: AMPA, aminomethylphosphonic acid; ELISA, enzyme-linked immunosorbent assay; FCMIA, fluorescence covalent microbead immunoassay; GC, gas chromatography; HPLC,
high-performance liquid chromatography; LC, liquid chromatography; LOD, limit of detection; LOQ, limit of quantification; MS, mass spectrometry; MS/ MS tandem, mass spectrometry.
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3.1. Soil with Glyphosate

Given the widespread usage of glyphosate, understanding how it interacts with the soil
ecosystem is critical for environmental safety assessment and practical application. Despite
not being sprayed directly on the ground, glyphosate-based herbicides can contaminate
the soil in and surrounding treated areas due to spray drift during application and leaf
surfaces that have been washed away by rain. Mineralization, degradation, immobilization,
and leaching are all factors in glyphosate’s fate in soil. Several kinds of research have
been published in recent years, attempting to discover and comprehend the processes that
determine how chemicals behave in the environment and produce pollution, particularly
in soil and water [12]. Mesnage et al. [69] analyzed the most prevalent surfactants used
as co-formulants in glyphosate-based herbicides. They looked at how adding surfactants
(such as Triton CG-110) would impact the soil’s glyphosate adsorption, mineralization and
leaching processes.

Soil composition, physicochemical factors, biological properties, chemical properties of
the individual pesticide, and timing of precipitation and pesticide application all influence
the fate of glyphosate [25,26,70–72]. Total organic carbon, pH, and temperature fluctuations
in German soil were recently discovered to affect glyphosate mineralization kinetics, level
of bio-NER formation, and the amount of recoverable glyphosate over time [73].

In most soils, glyphosate degrades quite quickly, with an estimated half-life of 7 to
130 days on-site [74]. Because glyphosate degrades relatively quickly, it has a low impact on
the environment, particularly water and soil resources. On the other hand, its metabolites,
AMPA and/or sarcosine, may boost the pollution risk. According to Grandcoin et al. [14],
the herbicide molecule can be degraded in two ways (Figure 1). The first technique relies
on the dissolution of the carbon-nitrogen bond, which forms AMPA (glyphosate’s main
metabolite) via the enzyme glyphosate oxidoreductase, which is broken down to carbon
dioxide. In contrast, the second process relies on the broken carbon–phosphorus (C–P)
bond, which is accomplished through the C–P lyase enzyme and results in the synthesis of
glycine and sarcosine [75–77]. However, as an aminopolyphosphonate photodegradation
product in water, AMPA can also be found in the natural world [78].
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Glyphosate is a three-polar functional group amphoteric chemical (amine, carboxymethyl,
and phosphonomethyl) in its structure, linearly arranged. It is an ionic compound that is
highly polar and soluble in water (10.5 g L1 at 20 ◦C) due to the existence in its structure of
those groups [79]. Even when glyphosate dissolves in water, it can sometimes attach to soil
particles, especially in clays. It has been found in several laboratory experiments that the
molecule has a high absorption constant in soil, ranging between 8 and 377 dm3/kg. The
characteristics of the soil, temperature, and soil moisture all influence glyphosate adsorption
and subsequent release from the soil. As a result, it may wash away rapidly in clay-rich
soils for more than a year or in sandy soils. Even when attached to soil particles, in the
presence of phosphates, in some cases, it can be broken down into soil water. Additionally,
glyphosate can form compounds with metal ions, which could alter the soil’s nutritional
availability [3]. Because glyphosate adsorbs to soil particles suspended in the runoff, it
risks surface water contamination due to erosion [80,81].

Concerns regarding the existence of environmental levels of GLY and AMPA have
grown as the use of herbicides containing glyphosate has grown. Argentina [82–85],
Canada [86], the United States [87], Mexico [88], and Portugal [89], as well as Spain [90],
New Zealand [91], Austria [92], and France [93], have received a lot of attention.

Even though GLY is the most widely used herbicide, an investigation into the presence
and amounts of glyphosate residues in soils and analytical methods for this purpose is
relatively limited, especially given the scale of its use [94–96]. Furthermore, some polluted
soils were found in locations prone to water and wind erosion [97]. Therefore, it is necessary
to establish soil residue threshold values to identify potential risks to soil health, as well as
off-site consequences from wind and water erosion [3].

Studies on soil microbial diversity and composition do not necessarily support the
notion that glyphosate and AMPA are non-toxic to soil microorganisms [98,99]. For exam-
ple, studies indicated earthworms as an essential biomarker for soil health, and following
glyphosate application to the soils, the soils’ biomass was reduced [100,101]. According to
García-Pérez et al. [101], soil earthworm biomass was considerably lower in coffee plan-
tations subjected to continuous glyphosate spraying for 22 years compared to those not
treated in the previous seven years. Other research found that glyphosate had no direct
effect on earthworms [102–104]. In contrast, others found that although earthworms may
survive after glyphosate treatment, it can disrupt cocoon hatching, resulting in lower earth-
worm numbers in the soil [105,106]. According to another study, sub-lethal glyphosate
spraying can alter soil chemistry, affecting water quality and other soil dwellers [107].
Moreover, due to glyphosate application, a change in the makeup of the soil community
was seen, altering the availability of soil nutrients and nutrient balance [108]. However,
there have been studies that disagree on whether or not applying glyphosate or glyphosate
resistance species can cause nutritional imbalances [109].

3.2. Water with Glyphosate

A metabolite of glyphosate, AMPA, and its residues are increasingly discovered in
water sources, with runoff being one source of water contamination [110]. Glyphosate
concentrations of more than 400 g/L harm some aquatic animals, including amphibians
and fish [111,112]. According to Mercurio et al. [113], glyphosate has been reported in
the marine ecosystem, and its persistence in saltwater is now being investigated. Table 2
showed the occurrence and concentrations of glyphosate in various water bodies across
several countries in America and Europe. Although, they proved to be safe according to
their respective guidelines, persistent exposure to glyphosate can pose a health threat.

Regarding risks posed to human health, the maximum concentration level (MCL) of
glyphosate in the United States of America [23] and Australia is 700 µg L−1 and 1000 µg L−1

respectively. In Europe, glyphosate concentrations in drinking water are permitted to be
less than 0.1 g/L, but 77 g/L are considered tolerable, according to reports by Horth and
Blackmore [114]. According to European criteria, glyphosate residue in human drinking
water must be reduced; however, glyphosate water treatment is expensive. Although
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these remedies have little influence on the presence of glyphosate in the water supply, the
long-term impacts of glyphosate remain a worry [23]. Saunders and Pezeshki [81] urged
that correct management measures, such as lower application rates and vegetation buffers,
be used to limit glyphosate’s eco-toxicity hazards.

3.3. Glyphosate in Nontarget Plant Species

In spite of the specified waiting period in harvested crops, glyphosate and AMPA
residues are observed in unintended plant species after weed spraying [23]. Glyphosate
residues in tree foliage that are unusually high (e.g., 1000 mg/kg) may be attributable to
direct absorption into tree leaves due to airborne herbicide drift contamination [115]. In
addition to the possible health problems associated with food contamination, glyphosate
exposure can have phytotoxic effects. Reduced absorption of vital nutrients is one way
phytotoxicity affects plant performance [116], nutritional imbalances, reduced yield, and
poor food quality [117,118]. Various studies have reported that about 50% of plant biomass
being reduced following glyphosate contamination in some nontarget plant species [116,119].
Following the application of GBH to crops, residual GLY and AMPA may remain in
harvested crops and processed foods [120]. According to testing conducted by the UK
Food Standard Agency, 27 out of 109 samples of bread had glyphosate residues of at
least 0.2 mg/kg. The US Department of Agriculture Tests in 2011 revealed that 90.3% of
300 samples of soybeans contained glyphosate and 95.7% of which included AMPA with
concentrations of 1.9 and 2.3 ppm, respectively [120].

Consumers are exposed to more glyphosate residues through their food, so this expo-
sure should also be considered [51]. By drifting, leaching, and surface runoff, biologically
active herbicide interacts with biomass and is absorbed by soil and water [121]. Among
other places, glyphosate contamination is found in human urine, animal urine, ground
water, and human milk and meat from farm animals [32,122–125]. Therefore, interactions
with other stressors should be investigated in a more realistic situation when interacting
with biological systems or the environment [126,127].



Appl. Sci. 2022, 12, 8789 11 of 29

Table 2. Investigation of the presence and levels of glyphosate in surface and ground water samples collected from several countries in Europe, South America, and
North America.

Country Year Presence of Glyphosate/Concentration References

United State
(Midwest) 2002 Of the sampled streams, 36% were positive/about 8.7 g/L. [128]
(Midwest) 2013 Of the sampled streams, 44% were positive/about 27.8 µg/L. [129]
(Washington, Maryland, Iowa, Wyoming) 2005–2006 Positive outcomes in all of the sampled streams/about 328 µg/L. [130]
(Iowa, Indiana, Mississippi) 2004–2008 Positive results for most of the sampled rivers/about 430 µg/L after a storm. [131]

Spain 2007–2010 Of the groundwater samples, 41% were positive/about 2.5 µg/L. [90]

Canada 2002 Of the samples, 22% were positive/about 6.07 µg/L. [132]

Argentina 2012 Of the surface water samples, 35% were positive/0.1–7.6 µg/L. [133]

Switzerland 2016 Positive results for most of the stream samples/about 2.1 µg/L. [134]

France 2003–2004 Positive results from 91% of stream samples/up to 165 µg/L. [135]

Hungary 2010–2011 Positive results for most rivers and groundwater samples/about 0.001 µg/L. [136]

Denmark 1999–2009 Of the surface water samples, 25% were positive/about 31 µg/L.
Of the groundwater samples, 4% were positive/up to 0.67 µg/L. [137]

Mexico 2015 The groundwater samples were all positive/about 1.42 µg/L. [57]

Germany 1998 Only a few positive samples in two tributaries of the Ruhr River/with
concentrations up to 0.59 µg/L. [138]
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4. Toxicological Effects of Glyphosate and AMPA

Glyphosate inhibits the route of shikimic acid in weeds by blocking the synthase of
enolpyruvylshikimic phosphate (EPSP), which prevents aromatic amino acid production,
including tryptophan, tyrosine, and phenylalanine [139]. Herbicide exposure results in
green colouration disappearance, leaf wrinkling or deformation, stunted growth, and tissue
damage and the plant will eventually die after 7–21 days [81,139]. Plants, fungi, and some
microorganisms are the only species that synthesize aromatic amino acids through shikimic
acid [81]. Animals do not synthesize shikimic acid, so it is required to supplement their
diet with aromatic amino acids. As a result, the low toxicity of glyphosate in animals
is due to the absence of this pathway. Despite this, some adverse effects are associated
with exposure to high doses for extended periods [32,81,139,140]. Due to its minimal
acute toxicity, glyphosate appears to have little or no impact on microorganism popula-
tions and processes [98,141]. However, as shown in Table 3 below, the harmful effects of
glyphosate-based formulations on aquatic and terrestrial nontarget creatures were found to
be distinct [42,142–145]. The observed toxicity of Roundup formulations can be attributed
to surfactants, including POEA [31,139,145–147]. Acute toxicity could not be as serious as
reproductive, chronic, and sub-chronic harm, according to new findings on glyphosate
contamination in the environment [23]. Figure 2 illustrates various pathways of glyphosate
formulations used in agricultural or non-agricultural settings, liable for causing potential
environmental and human health risks.
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4.1. Acute Toxicity

In spite of the most severe cases of glyphosate poisoning (125 µg kg−1 day−1) and
AMPA poisoning (5 µg kg−1 day−1) documented in adult humans, it was concluded that
these substances do not pose a risk to humans [149]. Approximately 3.2% of patients died of
acute poisoning, and the pathophysiology of these deaths remains unclear. This happened
after evolving cardiorespiratory toxicity over a period of many hours and no proof that
increased accessibility to intensive care units or laboratory services would have made a
difference in these outcomes [150]. The use of various glyphosate formulations could lead
to variations in reported cases. Surfactants are typically used in commercial glyphosate
formulations to help the active component penetrate more easily and effectively. It is worth
noting that neat glyphosate exhibits the lowest in vitro toxicity (approx. 2 g L−1) while
Roundup 450 and 400 exhibit the highest levels (approx. 0.001 g L−1) [151].
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4.2. Toxicity, Both Chronic and Subchronic

A dose of 560 mg kg−1 day−1 is recommended as the highest dose for male rats and
671 mg kg−1 day−1 for female rats, that do not lead to chronic toxicity [152]. Bai and
Ogbourne [23] found that even relatively low amounts of glyphosate are enough to alter
cell activities and produce cytotoxicity. Sub-agricultural concentrations of glyphosate and
Roundup 400 in living organisms can impact the endocrine system at 0.5 ppm, estrogen
receptor transcriptional activity at 2 ppm, and cytotoxicity at 10 ppm [151].

4.3. Genotoxicity

Several studies have questioned and mostly rejected claims that glyphosate is geno-
toxic [149,152]. Most previous DNA damage studies used excessive glyphosate doses [23].
Human cells have experienced DNA damage in other experiments utilizing sub-agricultural
levels of glyphosate and Roundup [151,153,154]. According to Koller et al. [154], evidence
of DNA damage was recorded after exposure of buccal epithelial cells to Roundup and
glyphosate at quantities of 10 to 20 mg/L lower than recommended agricultural rates. In
addition, DNA of caiman embryos was also damaged when exposed to Roundup at various
sub-lethal doses [155]. However, Kier and Kirkland [156] reported that DNA damage from
glyphosate is due to cytotoxicity, rather than genotoxicity. Then Bai and Ogbourne [23]
concluded that, regardless of the cause, DNA damage can still happen at relatively low
glyphosate levels.

4.4. Toxicity of Reproductive System

Glyphosate is unlikely to be toxic to reproductive systems [149] with no-observed-
adverse-effect-level (NOAEL) between 300 mg/kg/day and 50 mg/kg/day [152]. Other
studies reported that exposure to NOAEL concentrations of glyphosate may affect re-
productive function in offspring [157,158]. Rates between 50 mg/kg and 450 mg/kg of
Roundup were applied to rats during pregnancy without adverse effects; however, male
offspring were affected [157]. These results highlight the need for more research to be
carried out in order to fully comprehend the impacts of glyphosate-based herbicide use.

4.5. Carcinogenicity

When exposure is within the allowable NOAEL, studies have shown that glyphosate
is not carcinogenic [23]. According to George et al. [159] and Thongprakaisang et al. [160],
They reported glyphosate could promote tumour growth in skin cells (in vivo mouse)
and breast cell proliferation (in vitro human models). In Thongprakaisang’s [160] study,
glyphosate residue concentration in drinking water as low as 10−12 M stimulated hormone-
induced breast cancer. The International Agency for Research on Cancer recently deter-
mined that glyphosate is most likely human carcinogenic [161]. It has been reported that
non-Hodgkin lymphoma (NHL), cancer derived from lymphocytes of the regular human
immune system, is caused by GBH [162]. Different subtypes of NHL exist depending on
where the cell originates, for example, in T and B cells, or natural killer cells. The distinct
stages of lymphocyte development are related to the different NHL subtypes. Typically,
lymph nodes and the spleen are enlarged, as well as other tissues such as the blood and
bone marrow are affected [162]. A variety of infection agents, chemical agents, and deficien-
cies in the immune system are among the causes of NHL [162]. Zhang et al. [163] discovered
that being exposed to GBH raises the risk of NHL among workers that are highly exposed
to glyphosate. In 2020, NHL accounted for approximately 77,000 new cases and caused
almost 20,000 deaths in the United States alone [164]. There were many lawsuits in court by
the time Bayer bought Monsanto in 2018, alleging that Roundup is linked to NHL [165–167].
Researchers from the University of Washington found that Roundup exposure increases
NHL risk by 41%, a clear link between the herbicide and cancer [166].

Even though glyphosate and glyphosate-based herbicides are valuable and significant
weed-management tools for agricultural and forestry practices, long-term appropriate
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procedures and control of glyphosate usage are still needed to ensure efficacy, minimize
pollution, and avoid adverse human health effects.

Table 3. The toxicity of glyphosate-based herbicide formulations to a variety of living organisms.

Living Organisms GLY Concentration Toxic Effects References

Human

0.5–10 mg L−1 Endocrine disruption [151]
>20 mg/L to >80 mg L−1 DNA damage [154]

<1000 mg L−1 Effects on oxidative balance [168]
4000 mg L−1 Neurological disorder [169,170]

85–1690 mg L−1 Blood disorder [171]
1–3 mg L−1 Human cell toxicity [147]

36–178 mg L−1 Effects on cell physiology [172]

Earthworm 1–10 mg L−1 Growth and reproductive defects [106,173]

Snails 0.1–10 mg L−1 Body growth [174–176]

Wasps 960 g ha−1 Parasite eggs are harmed when exposed to
this substance [177]

Honeybee 2.5–10 mg L−1 Adaptation in agricultural environments [175,177–179]

Amphibians 1.5–684 mg L−1 Chronic toxicity [41,42,180–184]

Daphnia 1.4–250 mg L−1 Chronic toxicity [39,185]

Zebrafish 10 mg L−1 Toxicity in the reproductive system [186]

Birds Wetland with glyphosate aerial
spray coverage of 50–90 percent

Reduced natural habitats and bird
populations, as well as affected male

genital organs
[187–189]

Goldfish 32 µg L−1
Effects on acetylcholinesterase (AChE),
malondialdehyde (MDA), and OH in

the liver
[183]

Reptiles 144 mg L−1
Increase in heterophils and total protein
content DNA damaged, physiological

stress, decrease in WBC
[145,190,191]

Tilapia fish 108–540 mg L−1 Toxic to the point of death [192]

Wistar rat 14.4–375 mg kg−1 Consequences for physiology and
reproduction [193,194]

Silver catfish 0–5 mg L−1
Enzymatic activity, leukocytes,

vacuolization, melanomacrophages and
cytoplasm all show changes

[195]

Pig 41% of IPAG and 15% surfactant Effects on the cardiovascular system [196]

5. Health and Immunological Impacts of GBH

Microorganisms break down glyphosate into its most active metabolite, AMPA, and
methyl phosphonic acid, once it reaches the environment [149]. They are found in water,
soil, plants, and food, among other places [11,197,198]. Human urine, blood, and breast
milk have all been shown to contain glyphosate. The urine levels in exposed workers
ranged from 0.26 to 73.5 g/L, whereas those in the general population ranged from 0.16 to
7.6 g/L [199]. Most likely, the skin, mouth, and through the lungs are where glyphosate
is absorbed [149,200]. Although skin absorption is the most widely mentioned route
of ingestion in affected farmers, it only accounts for about 2% of total absorption [201].
According to Williams et al. [149], glyphosate appears to build up in the small intestine, liver,
kidneys, and colon before excreting in the urine and faeces within two days. Nonetheless,
an increasing body of knowledge exists about the human health impacts of GBHs and
glyphosate [202].
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Glyphosate has been evaluated by the International Agency for Research on Cancer
(IARC) as “probably carcinogenic” in humans after more than 40 years of widespread
usage [165]. Other bodies, such as Health Canada [203] and the European Commission [204]
have renewed their authorizations for glyphosate use based on scientific findings as of 2017.
However, with the “Monsanto Papers” revelation in 2017, the validity of several studies
was called into question [205]. Monsanto is accused of interfering with the disclosure of
important glyphosate toxicity data and ghostwriting studies confirming the safety of the
herbicide [205]. Consequently, according to Peilex and Pelletier [206], it seems appropriate
to provide a summary of the observed impacts of glyphosate and GBHs on humans’
immune systems and cellular to systemic animal health consequences. Animal data is
valuable in and of itself, not simply due to glyphosate contamination affecting a wide
range of species in the environment, which might be transferred down the food chain.
Given that numerous animals are common laboratory models and share largely conserved
immunological systems and defensive processes with humans, they can provide essential
knowledge when human data is restricted [207].

6. Health Effects and Toxicity of GLY and GBHs
6.1. Cellular Impact

In a rat cardiac cell model, no substantial harm was seen at glyphosate doses that
are significant to the environment. However, toxicity was found to be dose-dependent
with increasing doses of TN20 surfactant at a constant glyphosate dosage [208], indicating
that GBH components, including glyphosate, may be harmful. Additionally, this study
discovered that this combination of glyphosate and TN20 induced the proliferation of
tumour cells. Apoptosis and necrosis caused their deaths equally; however, when TN20
levels were increased, apoptosis was the predominant mode of cell death [208]. Rats
exposed to a mixture of 12 chemicals, including glyphosate, for 18 months showed some
cytotoxic effects in testis and kidney cells [209]. However, determining glyphosate’s role in
this cytotoxicity is difficult [206].

On the one hand, investigations of glyphosate alone on human cells, both fibrosar-
coma and healthy cells, found no substantial cytotoxicity at environmentally relevant
amounts [210] whereby GBHs show toxicity that is dose-dependent, even when producing
at the sub-agricultural level. Roundup, like another GBH product called glyphogan, killed
human Sertoli cells, with glyphogan causing the most substantial harm [211]. The necessity
of investigating GBHs rather than glyphosate alone is highly required.

The glyphosate appeared to be highly genotoxic in Nile tilapia erythrocytes [209], but
only affects both fibrosarcoma and healthy human cells at high doses [210]. These findings
show that GLY and GBHs have the potential to be genotoxic, cytotoxic, or both and that the
effects vary depending on the cell type.

6.2. Impacts on Reproduction, Hormones, and Teratogenicity

It has been demonstrated that glyphosate and GBHs interfere with the human estrogen
pathway [206]. Roundup inhibits the production of estrogen by the aromatase enzyme in
the placental and embryonic cell lines of humans [212,213]. For glyphosate, it has been
proposed that the enzyme be inhibited competitively, an effect facilitated by adjuvants that
increase glyphosate solubilization and activity in herbicide formulations [214].

Mesnage et al. [215] discovered the impact of GLY on estrogen receptors (ER) in breast
cancer cell lines, most likely through an indirect mechanism because it is structurally
incapable of binding ERα. Because ER antagonists impede the glyphosate effect, Thong-
prakaisang et al. [160] theorized that glyphosate has estrogen-like properties interacting
with the ERα and ERβ. Furthermore, glyphosate may trigger up to 50% of the estrogen re-
sponse and cause breast cancer cell proliferation. Upon exposure, both ERs were expressed
after 6 h and just ERα after 24 h. In addition, endogenous estrogen had an antagonistic
effect when it was present. As a result, GLY could disrupt estrogen pathways and cause
endocrine disruption [206].
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Male offspring of rats that were given glyphosate exposure in an acceptable amount
have lower testosterone production [158]. This endocrine imbalance influenced reproduc-
tive behaviour, resulting in changes in sexual choice and a long period in the females’ first
mount starting to reproduce [158]. Young et al. [216] reported that Roundup has been
shown to suppress progesterone synthesis in human placental cells effectively, but only at
greater doses compared to those that kill cells, implying that the progesterone impact is
most likely due to cytotoxicity. GBHs also had an effect on human pregnancies, as shown
by the association between GBH exposure and an increase in the frequency of premature
births and miscarriages [217]. Several studies theorized that glyphosate cytotoxicity may
be responsible for this behavior in light of its effects on embryonic, placental, and human
cell lines [160,218].

GBHs have also been demonstrated to cause teratogenicity in fish (primarily in the form
of heart abnormalities), mice, chickens, and rats, with brain and bone deformities [219–221].
According to Campana et al. [222], GBH exposure before a child’s birth has been associated
with a higher prevalence of malformations such as Down’s syndrome and cleft lip in hu-
mans. Then Peillex and Pelletier [206] concluded that based on the evidence shown above,
glyphosate and GBHs appear to have the ability to disrupt the system of reproduction at
several stages, such as teratogenicity and hormonal pathway disruption.

6.3. Neurological Impact

As seen by acute poisoning instances resulting in neurological changes, some compo-
nents of GBH can penetrate the blood–brain barrier. For example, aseptic meningitis with
measurable glyphosate levels was found in cerebrospinal fluid of a 58-year-old woman
who attempted suicide by consuming a significant dose of the glyphosate surfactant her-
bicide [223]. Vasculitic neuropathy struck a 70-year-old man after a month following
a large-scale Roundup application with no protection, which was linked to the herbi-
cide [224]. As a result, acute GBH poisoning or long-term exposure could hasten the onset
of neurological illness.

When pregnant rats were given various doses of Roundup in their drinking water,
their progeny had impaired movement [225]. Several studies have also indicated that
in Parkinson’s disease, cerebral functions (both movement and learning ability) are both
hindered. Therefore, it’s not surprising that increasing cases imply a link between GBH
exposure and the start of Parkinson’s disease [226–229].

6.4. Digestive Impact

The shikimate pathway that glyphosate targets in plants is also found in microorgan-
isms exposed to GBHs in their guts whether accidentally or not, through oral ingestion.
When rumen of cattle was subjected to various doses of glyphosate, specific phyla of
microorganisms decreased in favour of others, and the dysbiosis benefited pathogens [230].
The glyphosate prevents the growth of Enterococcus spp., which can reduce Clostridium bo-
tulinum in cattle rumens [124]. Compared with cattle not exposed to glyphosate, mycobiota
in the rumen of dairy cows exposed to glyphosate differed [231].

There is considerable concern about glyphosate and the effects of GBHs on liver, an
essential organ in detoxifying xenobiotics [206]. When rainbow trout were exposed to
higher concentrations of GBH, they developed various liver pathologies, such as fibrosis
and mild changes [232]. Pandey et al. [233] also detected mild changes and fibrosis in rats
that exhibited accumulation of collagen plus increased liver weights and varying glycogen
levels following oral administration of Roundup. A hepatic progenitor cell line from a
human showed that glyphosate on its own had a negligible impact on the metabolome, as
well as a decrease in polyunsaturated and long-chain fatty acids [234]. Only the lowest
glyphosate concentration examined resulted in a substantial reduction, demonstrating a
concentration-independent impact [206].

Other digestive system components appear unaffected by Roundup in weaned
piglets [235], nor was there a substantial connection between GBH exposure and dia-
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betes in GBH applicators [236]. There was no indication of kidney damage among children,
despite glyphosate presence in their urine [237]. Overall, these findings show GBH causes
damage to the liver at the cellular and histological level; however, they do not show any
effects on the rest of the digestive organs [206].

6.5. Cardiovascular Impact

Numerous GBHs and glyphosate effects on cardiovascular system have been ob-
served. After consumption of glyphosate-contaminated drinking water for 72 weeks, mice
hemoglobin levels were significantly lower, causing non-significant anemia [238]. The
aortic rings of rats treated with 1% glyphosate displayed an insignificant vasorelaxation,
corresponding to 20% of a standard response. The atria of a rat heart in isolation were stim-
ulated like controls, but they failed to undergo spasmodic spontaneous contractions when
1% glyphosate was added [239]. In human cases of acute poisoning, it was reported that
four out of ten poisoned subjects developed heart arrhythmias [240]. Therefore, glyphosate
alone appears to affect the cardiovascular system, and GBHs may have similar impacts, at
the very least in situations of severe poisoning [206].

6.6. Impact on Carcinogenesis

The carcinogenic potential of glyphosate is still being discussed. George et al. [159]
found mice treated topically with glyphosate not to develop tumors, but did experience
tumor-propagating effects in a skin cancer test.

7. Regulations Currently in Effect

According to the EPA’s glyphosate Interim Registration Review Decision Case number
0178 of January 2020, glyphosate exposure poses no harm to human health. Although
projected to be limited to the application area or nearby areas, the agency acknowledged
potential ecological concerns for birds and mammals. In line with glyphosate’s usage as
an herbicide, the EPA identified a possible risk from off-site spray drift to terrestrial and
aquatic vegetation. When glyphosate is used according to label directions, the EPA believes
the benefits outweigh the potential environmental concerns [241]. However, because
glyphosate is a component of several GBHs, there are concerns about the GBHs’ regulation
and management. Xu et al. [242] reported that the EPA regularly reviews the maximum
allowable quantities in retail GBHs, including the permission granted to farmers using
them for a specific reason for feed and food purposes. The Food and Drug Administration
is therefore in charge of ensuring that imported and domestic goods sold in stores do not
violate the EPA’s standards. The EPA issued glyphosate residue tolerances and determined
the maximum allowable residue for all group 15 cereals at 30 mg/kg, except maize and rice,
which are 5 mg/kg and 0.1 mg/kg, respectively; likewise, all oilseeds in group 20 to be
40 mg/kg, apart from canola, which is 20 mg/kg [243]. In Table 4, you can find a summary
of the details of the glyphosate maximum residue limits (MRLs) set by different agencies
for common cereals and grains

Furthermore, in July 2017, the California Office of Environmental Health Hazard
Assessment (OEHHA) listed glyphosate as a known carcinogen under Proposition 65 Law
and Regulations [166]. This law ensures that California is informed about substances
that could cause congenital disabilities, reproductive harm, or cancer. Meanwhile, the
OEHHA claims that glyphosate exposure below 1100 µg/day has no significant risk level
for cancer [244].

Glyphosate residues in drinking water are regulated differently in different countries.
In the United States, for example, glyphosate has a maximum contamination limit (MCL)
of 700 µg/L [245] and 1000 µg/L in Australia [246].

The use of GBHs was recently extended by the European Commission (EC) until 2022
when it will be reviewed. Based on EFSA [247], the EC established the MRL for sunflower
seed, barley, sorghum, soybean, and oat at 20 mg/kg; 10 mg/kg for wheat, rye, mustard
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seed, linseed, lentils, peas, lupin, cotton seed and rapeseed; 1.0 mg/kg for corn; 2.0 mg/kg
for beans, and 0.1 mg/kg for unnamed grains and cereals.

Health Canada regulates herbicide and pesticide maximum residue limits (MRLs) [242].
It establishes a maximum allowable residue of 20 mg/kg for soybean and rapeseeds,
5 mg/kg for wheat, 15 mg/kg for oats, 10 mg/kg for barley, and maize at 3 mg/kg for
glyphosate-treated crops.

Globally, the World Trade Organization (WTO) plays a significant role in regulating
GLY through its Agreement on the Application of Sanitary and Phytosanitary Measures,
which all of the nations that make up the organization have in common. The Codex
Alimentarius (18-3485), which outlines worldwide recognized accepted standards and
recommendations, is updated by the WTO and FAO and reviews GBHs.

Table 4. Maximum permissible glyphosate residue (mg/kg) in grains placed by different agencies.

Food Sources European
Commission Health Canada USEPA WHO/FAO

Cereals
Barley 20 10 30 30
Corn 1 3 5 5

Not Available Not Available 0.1 (popcorn) and
3.5 (Sweet corn) 3 (Sweet corn)

Not Available Not Available
Millet 0.1 Not Available 30 30

Oat 20 15 30 30
Rice 0.1 Not Available 0.1 NA
Rye 10 Not Available 30 30

Sorghum 20 Not Available 30 30
Teff Not Available Not Available 5 30

Wheat 10 5 30 30
20 (bran)

Oilseeds
Cotton seeds 10 40 40 40
Hemp seeds 0.1 Not Available 40 Not Available

Linseed 10 3 40 Not Available
Mustard seeds 10 10 40 Not Available

Peanuts 0.1 Not Available 0.1 Not Available
Pumpkin seeds 0.1 Not Available 40 Not Available

Rapeseeds 10 20 20 30
Safflower seeds 0.1 Not Available 40 Not Available
Sesame seeds 0.1 10 40 Not Available

Soybeans 20 20 20 20
Sunflower seeds 20 Not Available 40 7

Pseudocereals
Buckwheat 0.1 Not Available 30 30

Quinoa Not Available Not Available 5 30

Pulses
Beans 2 4 5 2
Lentils 10 4 5 5
Lupins 10 Not Available 5 Not Available

Peas 10 5 8 5
Sources: [74,241,247,248].

8. Conclusions

With respect to the literature that focuses on the effects of GBHs and the current reality
in agriculture and the environment, it is clear that GBHs, with their weed-controlling effect
are becoming more commonly used. Glyphosate will likely continue to be used, regardless
of all the damage it can do to the environment. However, glyphosate’s accumulation in
soil, water, and indirectly in the humans and animals that consume agricultural products
should not be disregarded. The majority of agricultural production today relies heavily on
herbicides, and there are no environmentally friendly or commercially viable alternatives.
Even though glyphosate is mineralized, under certain conditions, glyphosate and its
metabolites have long half-lives. In some circumstances, plants, soil, and water may still
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contain glyphosate and AMPA residues. Studies have shown that water, soil, and a variety
of foods are contaminated at rates that could endanger the environment. Regardless,
according to most scientific studies, the contamination rate does not prove harmful to most
organisms and poses no risks to the environment provided recommended application rates
are adhered to, and reapplications are avoided. However, a health concern can arise from
the long-term buildup of these compounds in humans, animals, and the environment as
glyphosate affects the body in an insidious way, slowly and over time.

In agricultural practices and home gardeners, glyphosate is an important weed control
tool. Nevertheless, new research indicates that it is imperative to determine the most
environmentally and toxicologically sensitive scenarios to guide glyphosate use in the
future for it to continue to be useful, thereby assuring minimum contamination of the
environment and no negative health consequences. Therefore, further interdisciplinary
research regarding prolonged herbicide exposure at low levels, microbial community
alterations, growth of antibiotic resistance, and increase in disease outbreaks in humans,
plants, and animals is recommended. Considering all possible health risks, independent
studies are required to revisit glyphosate residue tolerance criteria in food, animal feed,
soil, and water.

Based on literature findings, around 30% of global cropland was contaminated with
glyphosate at low levels, while 93% of worldwide cropland was contaminated with AMPA.
Much information is lacking about the ecotoxic effects of AMPA, the most persistent and
recalcitrant metabolite, i.e., complex for soil microbes to degrade. Therefore, to better
assess the risk of contamination by AMPA, it is necessary to elucidate the ecotoxicity of
this metabolite, as well as its biodegradation pathways and kinetics. Research like this
could lead to the standardization of glyphosate rules among organizations and provide a
definitive answer to glyphosate toxicity among regulators.
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