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Abstract 

Hall thrusters are an attractive form of electric propulsion that are being cleveloped to replace chemical 

systems for many on orbit propulsion tasks on communications satellites. A major concern in the use of 

these devices is the possible damage their plumes may cause to the host spacecraft. In this paper, the 

present status of computer modeling of Hall thruster plumes is reviewed in the contest of being able to 

address spacecraft integration concerns. A simple, empirical model is described that can he used as a quick, 

engineering tool. However, accurate modeling of Ha!! thruster plumes requires use of kinetic simulation 

techniques. In particular, particle methods are discussed with respect to the physical modeling required to 

accurately simulate the plasma and collision processes that are significant in Hall thruster plumes. Through 

direct comparison between simulation results and detailed experimental measurements, it is demonstrated 

that the computer moc!els have reached a certain level of maturity. Several areas are outlined where further 

work is needed, 

Introduction 

Hall thrusters are uncler development in several countries includin g the United States, Russia, .Japan, 

and France. These electric propulsion devices typically oFfer a specific impulse of about 1,600 set and a 

thrust of about 80 mN. These characteristics make them ideally suited for spacecraft orbit maintenance. 

tasks such as north-south station keeping. Under typical operating conditions, at a power level of about 

1.5 kW, a voltage of 300 V is applied between an esterna! cathode and an annular anode. The electrons 

emitted from the cathode ionize the senon propellant efficiently aided by magnetic confinement within an 

annular acceleration channel (creating an azimuthal Hall current). The ions are accelerated in the imposed 

electric field to velocities on the order of 17 km/set. New classes of Hall thrusters are being developed at 

low power (100 W) f or use on micro-spacecraft, and at high power (25 kW) for spacecraft orbit.-raising. 

As with any spacecraft propulsion device (chemical or electric), there are two important roles for com- 

puter modeling. The first* is to aid in the optimization of the performance of the thruster. In the case of 

Hal! thrusters for station-keeping, a typical overall efficiency is about 55%. Moclels of the interior flows 

of Ha!! thrusters have been clevelopec! using hybrid fluid-particle approaches. ‘1’ In atltlition to helping to 

understand how Ha!! thrusters operate, these moclels are useful in provicling bounclary conclitions for plume 

modeling. This relates t.o ttlc seconc! role of computer rnotleling which is to assess any interact.ions between 

the plume of the thruster ant! the host spacecraft. In the case of Ha!! thrusters, tllere are three particular 
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spacecraft integration issues: (1) the divergence angle of these devices is relatively large (about 60”) leading 

to the possibility of direct impingement of high energy propellant ions onto spacecraft surfaces that may 

result in sputtering and degradation of material properties. Material sputtered from spacecraft surfaces in 

this way may ultimately become deposited on other spacecraft surfaces such as solar cells, causing further 

problems; (2) back flow impingement of ions caused by formation of a charge exchange plasma; and (3) the 

high energy ions created inside the thruster cause significant erosion of the walls of the acceleration channel 

(usually made of metal or a ceramic such as boron nitride) and the erosion products may espand out from 

the thruster and become deposited on spacecraft surfaces. 

In this article, we review the physics of Hall thruster plumes that is of most relevance to the compu- 

tational modeling of the first two types of spacecraft interaction effects listed above. Almost no research 

has been performed on the third type of problem. We first begin by considering a semi-empirical approach 

to modeling the plume based on experimental measurement. We then consider in detail the accuracy of 

existing computational procedures with respect to simulatin g the physics of these plumes most relevant to 

understanding the spacecraft interaction phenomena. The computational approaches employ particle meth- 

ods to simulate the plasma and collision physics. Various aspects of these simulation methods are reviewed 

and their short-comings are highlighted. The current status of modeling Hall thruster plumes is discussed 

and this is followed by consideration of areas requiring further work. 

Semi-Empirical Approach 

It can be argued that the primary physical property of the Hall thruster plume with respect to prediction 

of spacecraft integration issues is the ion current density. This has some validity since it is the impact of 

energetic ions on spacecraft surfaces that leads to erosion of spacecraft materials which may subsequently 

change their physical properties (thermal, optical, electrical). Fortunately, the ion current density is readily 

measurable in the laboratory using a Faraday cup and this has been performed in the plumes of several Hall 

3b4 thrusters including the SPT-100, the D-55,3 and the BPT-2000.s By making the assumptions that the 

velocity at some small distance away from the thruster is constant (since the electric fields are weak in this 

region) and that the ion density decays with the inverse square of distance from the source, it is possible to 

use a single angular profile of esperimental data to estrapolate the entire ion current flow field.6 

An example of results obtained from this approach are shown in Fig. 1 for the SPT-100 Hall thruster 

where angular profiles of the ion current density are plotted at distances of 0.5 and 1.0 m from the thruster 

exit. The measurements are those of King et al.4 and the measured data at 0.5 m are used together with the 

above assumptions to compute the ion current density at, 1.0 m. The comparison of the measured and model 

data at 1.0 m indicate that this simple approach is very effective in the core of the plume, at angles below 

about 45’. However, at larger angles, the model shows a significantly lower ion current density than that 

measured experimentally. The higher angle regions are strongly affected by the charge esctlange plasma, 

and the background pressure in the experimental facility. Both of these issues are discussed in detail later in 

the paper. What is clear at this stage is that the simple semi-empirical model gives significant disagreement 
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with available Psperimental data in the regions of t*he plume where spacecraft interaction effects are most 

likely to occur. 

An adtlitional failing of the simple approach t.o modeling the Hall thruster plume is the fact that it is 

the total ion current density that is modeled. This does not provide any information on the distribution 

function of ion energy contained in the current. Experimental evidence shows that there is significant 

variation of t.lte senon ion energy distribution as a function of angle in the plume. This represents an 

important shortcoming of the. model because the sputter yield of typical spacecraft materials (the number 

of material at.onts sputtered for each impact of an ion) is strongly dependent on the incident energy’ and 

angle of the ion. The semi-empirical model is very useful as a preliminary evaluation tool of different Hall 

thrusters inkgratecl on different spacecraft configurations, but a much more detailed analysis of the plume 

is requirecl to accurately predict spacecraft integration concerns. This has lecl to significant activity in the 

development of Inore sophisiicated prediction models. 

Particle Approach 

To unclerstancl the type of numerical approach required to accurately model Hall thruster plumes, it is 

informative t,o consider some of the basic physical characteristics of the flow esiting from the thruster. In 

Table 1, typical values of some of the pertinent properties are listed at-the thruster exit for the SPT-100. 

For these plasma densities, the Debye length is very small, on the order of 10-s m. This indicates that 

the plume is charge neutral for a relatively large distance away from the thruster. At the same time, the 

collision mran free paths are very large, on the order of 1 m. These fundamental physical properties of 

the plume suggest that a kinetic approach is necessary that simulates both plasma and collision effects: A 

numerical model that solves the velocity distribution functions for ions and neutrals and assumes adiabatic, 

collisionless, un-magnetized electrons is described by Bishaev et, al..s The model includes charge esch&ige 

phenomena in a very macroscopic sense (using a constant cross section). Agreement with experimental data 

was achieved for ion current density by assuming relatively large values of the ion temperature at the thruster 

exit plane (20-2.5 eV). While this model represents a significant improvement over the semi-empirical model, 

it cannot be expected to accurately provide the detailed information on the ion energy distribution function 

that is needed for spacecraft integration analysis. 

In this paper, the status of particle simulation methods for computin g Hall thruster plumes is discussed. 

The Particle In Cell method (PIG) ’ is employed t,o model the plasma dynamics, and the direct simulation 

Monte Carlo method (DSMC)” is used to simulate the collision dynamics. In the following, we discuss 

in detail the various aspects of the physical modeling that are required to accurately moclel Hall thruster 

plumes. 

The first efforts to use a combination of the PIC and DSMC methods to model the plurnes of Hall 

thrusters were Inaclc by Oh and Hastings”~” and this has formed the basis for subsequent work.13l1” In 
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general, the PIG: method accelerates charged particles through applied ancl self-generated electric fields in 

a self-consistent. manner. In Refs. 11 and 12, the ions are modeled as particles a.ncl the electrons as a fluid. 

The plasma pokntial is obtained by assuming quasi-neutrality. This allows the ion density to represent the 

electron density. By further assuming that the electrons are isothermal, collisionless, ancl un-magnetized, 

the Boltzmann relation can be invoked: 

d 
72, = nrefeq k~, 

( 1 
(1) 

where n, is the electron number density, n,.</ is a reference density where the potential 4 is zero, k is 

Boltzmann’s constant, and T, is the constant electron temperature. Inversion of Eq. (1) gives the potential 

which can then by clifferentiated spatially to obtain the electric fields. 

There are several limitations of this approach. Firstly, experimental evidence”,” indicates that there is 

variation of the electron temperature in Hall thruster plumes. The variation occurs mairlly in the near-field 

of the plume. At the thruster exit the electron temperature can be as high as 10 eV’” and in the far field 

typical values are 1 to 2 eV.” This creates a difficulty in the choice of T, to be used in Eq. (1). A further 

difficulty with application of the Boltzmann relation to Hall thruster plumes is t,he possible effects of the 

magnetic field. The combination of permanent ant1 electro-magnets employed in Hall thrusters are designed 

to provide optimum device performance. However, some of the magnetic field may leak out into the plume 

of the thruster. The amount of this leakage will depend strongly on the Hall thrust,er type and configuration. 

The effects on the Hall thruster plume of variation in electron temperature and magnetic field can be 

modeled using the full electron momentum equation: 

mcn,f$ = -n,e(E + v, x B) - Vp - flemeVei(Vi - “i) (2) 

where m, is the electron mass, e is the electron charge, v, and vi are the electron and ion velocities, E is the 

electric-field, B is the magnetic field, p is the pressure, and v,i is the electron-ion collision r&e. Assuming 

current-less flow, the left hand side is zero. The plume is essentially collisionless which allows the third term 

on the right hand side to be neglected. The pressure is conveniently represented by t.he ideal gas law: 

p = 11~rt.T~ (3) 

Of course, Eq. (2) reduces to the Boltzmann relation under the relevant assumptions. 

The electron momentum equation neglecting the magnetic field but including an imposed variation 

of electron temperature was employed within a PIGDSMC model by VanGilder et al.13 to compute the 

SPT-100 plume. The variation of electron temperature was obtainecl by fitting a simple analytical model 

to available experimental measurements16 as shown in Fig. 2. In Figs. Oa and 3b, comparisons are made 

between model preclictions and measurements of the ion current density in the plume near Field. It is found 

that the variable T, model significantly improves t.he agreement with the measured data, although some 
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differences persist. Angu1a.r profiles of electron number density at a distance of 31 cm from the thruster are 

shown in Fig. 4. Use of t.he variable electron temperature leads to a small widening of the ptullle profile that 

is in better agreement with the measuredmdata.of.Ref. -1.5: Radi-alLprofiles of plasma pot.ent,iat are shown in 

Fig. 5 at an asia! distance of 48 cm from the thruster. The variable electron temperature nlodet predicts 

a less rapid ctecrease in potential that is in excellent agreement with the measured data of hlarrese and 

Gattimore.‘7 These comparisons illustrate that variation of the electron temperature should be included in 

the computation of tile electric field by using Eq. (2). 

The effect of magnetic field on the plumes from three different Eiatt thrusters was studiect using a semi- 

analytical, fluid mode! by Keidar and Boyd. ‘s The main result of this study is ittustratec! in Fig. fj which shows 

the variation of plasma potential along the plume axis for three ctifferent values of B,. the magnetic field 

strength at t!le thruster exit. These values cover the range of magnetic fields of three actual Hat! thrusters: 

the SPT-100 (B,=0.02 T), the D-55 (B,=O.OlS T), and a device studied by Kusamoto et at.‘” (B,,=O.l T). 

The results indicate that there are three different regimes for the effects of the thruster magnetic field on 

the plasma potential in the plume: (1) at low values of B,, there is no effect and the potential decreases 

away from the thruster resulting in continued acceleration of the ions (this is the behavior predicted by the 

Bottzmann relation); (2) at intermectiate values of 5, the potential is almost constant; and (3) at high values 

of B,: the plasma potential actually increases away from the thruster which leads to deceleration of the ions. 

Comparison of the mode! predictions with experimental measurements of potential is shown in Fig. 7 for the 

Hal! thrust.er with large magnetic field considered in Ref. 19. 

Et is clear that accurate computation of EIall thruster plumes requires consideration of t.he effects of 

electron temperature and magnetic field. To compute the variation of electron temperature in the plume, 

rattler than imposing a measured profile, an electron energy equation can be solved, as has been performed 

by Samanta Roy et a!.?” for an ion thruster plume. For magnet.ic effects, it is reasonable to impose the 

magnetic Field (obtained from measurements or from a separate computation) as the self-inctuced magnet.ic 

fields are negligible under the conciitions found in Hall thruster plumes. This 11% not yet been performed in 

tile framework of a PIC-DSMC simulation. 

Collision Dynamics 

The DSMC method uses particles to simulate collision effects in rarefied gas Rows. This is performed 

by collecting groups of particles into cells which have sizes of the order of a mean free path. Pairs of these 

particles are then selected at ranclom ant! a collision probability is evaluated for each pair that is proportional 

to t.he proctuct of the pair’s relative velocity ant! collision cross section. The probability is compared with a 

random number to determine if that collision occurs. If so, some form of collision dynamics is performed to 

alter the properties of the colliding particles. 

Thcrc are three basic classes of coi!isions that may occur in IEa!l thruster ~~lurr~cs: ( 1) elastic; (2) charge 

exchange; and (3) Coulomb. At first glance, based on the tow number densities at the thruster exit, it 

appears that collisions are unimportant in tlalt thruster plumes. However, it will be found that charge 
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eschange coilisions have a profound effect on t.he Hall thruster plume structure even though the mean free 

path for all collisions is large. Each of the collision classes is distinguished by its cross section and collision 

dynamics. These issues are discussed in the following. 

Elastic Collisions 

Elastic collisions involve only eschange of momentum between the participating particles. For the 

systems of interest here, this may involve atom-atom or atom-ion collisions. For atom-atom collisions, the 

Variable Hard Sphere (VHS)” collision model is employed. For xenon, the collision cross section is: 

aEL(Se, 9e) = 
2.12 x lo-‘sm? 

9 2w (4) 

where g is the relative velocity, and w=O.12 is related to the viscosity temperature exponent. For atom-ion 

elastic interactions, the following cross section of Dslgarno et al.” is employed: 

a~r.(,Ye, ,Ye+) = 
6.42 x 10-I” 

m” 
9 

(5) 

The model of Ref. 21 predicts that there is no difference in the elastic cross section for interaction between 

an atom and a singly charged and for an atom and a doubly charged ion. In all elastic interactions, the 

collision dynamics employs isotropic scattering together with conservation of linear momentum and energy 

to determine t,he post-collision velocities of the colliding particles.” 

Charge Exchange Collisions 

Charge escltange concerns the transfer of one or more electrons between an atom and an ion. This is 

a long-range interaction that involves a relatively large cross section in comparison to an elastic interaction. 

This is an important mechanism in Hall thruster plumes because at the thruster esit plane, the atoms and 

ions have velocities that differ by almost two orders of magnitude (see Table I). While the ions have been 

accelerated electrostatically, the atoms remain at thermal speeds. Thus, charge exchange leads to a slow ion 

and a fast atom. The slow ion is much more responsive to the electric fields set up in the plume and are 

easily pulled behind the thruster into the back flow region. Thus, the so-called charge exchange plasma is 

fortned near the thruster exit. It is because we need to tnodel the charge exchange behavior accurately that 

we go to the trouble of using the DSMC technique. 

For singly charged ions, the following theoretical cross section of Rapp and Francis” has been widely 

used: 

aCE,y(Se, Set) = (-O.S52lfog(g) + 15.1262)’ x 10-?‘rn’ (6) 

An alternative cross section is ba.secl on an onlpirical curve-fit to several sets of esperimental data for a 

variety of atomic species performed by Sakabe and Izawa:“3 

crcEx(Xe, /Ye+) = (-21.21oglo(g) + 140)(1/f,)-‘.” x IO-“m’ 

G 
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where I is the ionization potential of the atom, and I, is the value for hydrogen. These t.wo cross sections 

are almost identical and Eq. (7) is used here. For doubly charged xenon ions exchanging two electrons with a 

senon atom, the following curve fit to the esperimental mecasurements of Hasted and Hussein’” is employed: 

uCEX(,Ye, Se’+) = (-2.703Slog(g) + 35.000)’ x IO-“‘m’ (8) 

Several of these cross sections are shown in Fig. S as a function of relative velocity for the range of interest 

in Hall thruster plumes. 

In all charge exchange collisions, the collision dynamics assumes that there is no transfer of momentum 

accompanying the transfer of the electron(s). This is a reasonable assumption based on the premise that 

these interactions are at long range. 

Coulomb Interactions . 

Coulomb interactions involve collisions between charged species (ion-ion, electron-ion, and electron- 

electron). These collisions have been neglected in Hall thruster plume modeling mainly because the cross 

sections are only significant for very small scattering angle interactions. This has been confirmed for xenon 

flow through an ion thruster in which the inclusion of Coulomb collisions in a PIC-DSMC model were found 

to have no effect on the computed properties.‘” 

Boundary aud Auxiliary Couditious 

For PIC-DSMC computations of Hall thruster plumes, boundary conditions must be specified at several 

locations: (1) at the thruster exit; (2) along the outer edges of the computational donlain; and (3) along any 

solid surfaces in the computational domain. In addition, ausiliary conditions are required to simulate the 

plume expansion into the finite back pressure of a laboratory vacuum chamber. These aspects of PIC-DSkIC 

models are discussed below. 

Several macroscopic properties of the plasma esitGng the Hall thruster acceleration channel are required 

for PIC-DSMC computations. Specifically, the plasma potential, the electron temperature, and for each 

of the particle species we require the number density, velocity, and temperature. In the real device, these 

properties will vary spatially across the annular face of the thruster exit plane, but also in many operating 

modes of the thruster these quantities vary in time. In general, the approach to determining these properties 

is a misture of analysis and estimation. By assuming ion and neutral temperatures (typically 4 eV and 

1,000 I<, respectively) and using measured properties such as thrust, mass flow rate, and current, it is 

possible to determine the species number densities and velocities. This approach gives uniform profiles of 

all properties across the exit plane. Generally, a small half-angle is imposed at the thruster esit plane to 

provide a variation in velocity vector. For the SPT-100, profiles of number density and velocity have been 

obtained from near-field measurements of velocity and ion current density.‘” No study has yet been made of 

the influence of temporally varying thruster exit boundary conditions on the plume structure, although such 

behavior has been observed experimentally.“” As would be espected, the computed plume structure can be 
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very serlsitive to the boundary conditions used at the thruster esit. This is particularly true with respect to 

the divergence angle of the plume. The nest natural step is to use output from two-dimensional models of 

the acceleration channel’ as input to a PIC-DSMC plume computation. 

Both field and particle boundary conditions are required at the outer eclges of the computational domain. 

The usual field condiitions employed simply set the electric fields normal to the boundary edges equal to zero. 

For plume espansion into vacuum, the particle boundary condition is to remove from the computation any 

particle crossing the domain edge. 

In all configurations, the solid exterior walls of the thruster must be included in the computation. For 

computation of a ground-based laboratory esperiment, the potential of the walls is set to zero. Any ions 

collicling with the thruster walls are neutralized. Both atoms ancl neutralized ions are scattered back into 

t.he flow fielcl from the surface of the thruster wall assuming diffuse reflection. 

For simulation of a laboratory esperiment, the finite back pressure of the vacuum chamber must be 

included in the computation. At the flow rates typical of SPT-100 Hall thrusters (about 5 mg/s), a good 

back pressure is on the order of .5x 10e3 Pa. This pressure corresponds to a number density of about 10’s rnF3 

at room temperature, and this is of the same order as the neutral number density exiting the thruster (see 

Table I). There are two methods for including the effects of the back pressure in a PIC-DSMC simulation. 

In one, temporary particIes are created at each iteration to represent the back pressure.13 These temporary 

particles may undergo collisions with and change the properties of the PIC-DSMC particles. Any change in 

the temporary particles is lost because new temporary particles are created at the nest iteration. In the other 

approach, the back ground particles are simulated as a separate species in the full PIC-DSMC computation.‘” 

An esample of the effect of includin g the facility pressure (labeled “Chamber+CEX”) is shown in Fig. 9 

for the D5.5 Hall thruster. In this case, the back pressure is about 2 x 10d3 Pa which corresponds to the 

level in the experiment performed by Manzella and Sankovic. 3 At this level, the facility pressure generates 

about an order of magnitude larger ion current density in the high angle regions due to charge exchange in 

comparison to that predicted to occur in pure vacuum (labeled “Vacuum+CEX”). Also shown in Fig. 9 is 

the result of a simulation for espansion into vacuum that neglects all charge exchange collisions. In this case, 

(labeled “Vacuum”) the only spreading of the beam is due to electrostatic and thermal effects and there 

is electively no ion current beyoncl an angle of about 50”. This clearly illustrates the significant effect the 

charge eschange mechanism has on the plume structure. 

For simulation of the operation of a Hall thruster in space, there is no requirement for back pressure, 

but. several other difficulties present themselves. First, there is the question of what value to use for the 

plasma potential on the thruster surface. In space, the entire spacecraft will tend to be biased to a negative 

potential, and the distribution of potential over the spacecraft plays an important role in determining the 

impact energy of ions, particularly in the back flow regions. Second, there is the question of how the ambient 

space environment may affect the Hall thruster plume. For esample, it has been argued that in Low Earth 

Orbit (rxoj tl le magnetic field of the Earth may distort the plume in different ways throughout the orbit 
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of t.he spacecra.ft.” Also, far from the Earth, the question has been raised about the possible interaction of 

the solar wincl with the plume of an ion thruster.“” 

Current Status and Future Work 

It is recommended that computer models of Hall thruster plumes inclucle the following: (1) charge 

exchange collisions; (2) variable electron temperature; and (3) effects of the back ground gas in a laboratory 

esperiment. CVith these physical effects modeled, the PIC-DSMC codes are capable of producing accurate 

predictions of plume properties of most relevance to understanding spacecraft integration concerns. For 

example, the angular profile of ion current density at two different locations in the plume of the SPT-100 are 

shown in Fig. 10. The experiments were performed by King et al.’ in a vacuum chamber at the University 

of Michigan. The PIC-DSMC coniputations’3 included the full chamber geometry. Note the excellent 

agreement between experiment ancl simulation all the way into the estrenle back flow (which begins at 

angles off 90”). As stated earlier, it is not sufficient to model the t.otal ion current density accurately. It is 

also important that the distribution of ion energy contained within the ion current be accurately represented. 

In Fig. lla. comparison is made between the measured and predicted ion energy distribution functions at a 

distance of 0.50 m from the thruster at two diflerent angles with respect to the plume asis.‘g The agreement : 

obtained indicates that the PIC-DSMC model can be considered an accurate prediction method at small 

angles from the plume asis. Unfortunately, this level of agreement between experiment and compukation is 

not maintained at higher angles. As an estreme esample, in Fig. 1 lb, colnparison is made between measured 

clata and the PIC-DSMC computation at distances of 0.50 and 1.0 m and an angle of 150” (well into the back 

flow region). There is significant high-energy struct,ure in the esperimental data at 1.0 m that is completely 

missing in the computational results. Significant discrepancies between the PlC-DSMC simulation and the 

experimental data begin at angles of 40” and their source is not yet understoocl.‘” Possible espkcnations 

inclucle an effect of the thruster magnetic field, or beam ions scattering from the chamber walls. A first 

attempt to include this latter phenomena in Hall thruster plume modeling.is reported in Ref. 30. 

There are several areas where further work is required to improve the PIG-DSMC modeling described 

here. It has been shown that the variation of electron temperature has a significant effect on the plume 

structure both in the near and far fields. Solution of an electron energy equation has been successfully 

included in analysis of an ion thruster plume?’ and should also be performecl for Hall thrusters. Depending 

on the magnetic field strength used in the device, inclusion of the magnetic field in the plume should 

also be assessed. The most important collision moclel concerns the charge exchange interactions. There is 

uncertainty here both in the magnitude and energy dependence of the cross section, and in the nature of 

scattering following the interaction. Recent experimental work3’ may clarify some of these issues. In terms 

of boundary conclitions, the thruster esit plane is most, problematic. It is a rtlajor goal to develop a sea&less 

transition between detailecl computations of the device acceleration channel and PIG-DSMC simulation of 

the external plume. This will certainly require inclusion in the plume simulation of non-isothermal and 

partially magnetized electrons. 
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While three-climensiorlal modeling of Hall thruster plumes interacting with a representative satellite 

configuration was performed by Oh and Hastings,” their approach employed t.he Boltzmann relation. XII 

of the physical modeling improvements discussed here need to be implemented int,o a numerically efficient 

three-dimensional model. 
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Table 1. Properties at the exit of the SPT-100 Hall thruster. 
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Fig. 1. Angular profiles of ion current density in the plume of the SPT-100. 
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Fig. 2. Radial profiles of electron temperature in the near field of the SPT-100. 
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Fig. 3a. Radial profiles of ion current density in the near field of the SPT-100: comparison of 

measured data’” with Boltzxnann PIC-DSMC model. 
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Fig. 3b. Radial profiles of iou current density in the ucar field of the SPT-100: comparison of 

measured dataI with non-isothermal PIC-DSMC model. 
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Fig. 4. Angular profiles of electron number density in the far field of the SPT-100. 
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Fig. 5. Radial profiles of plasma potential in the far field of the SPT-100. 
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Fig. 8. Various collision cross sections as a function of relative velocity. 

n Data 

1o’3 ’ ’ ’ ’ ” ’ ’ ’ ’ ’ ’ ’ ’ ’ ” ’ ’ I ’ ’ 
-100 -50 

Angli(cieg) 
50 100 

Fig. 9. Angular profiles of ion current density in the plume of the D-55. 
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Fig. 10. Angular profiles of ioxl current density in the pluxxxe of the SPT-100. 
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Fig. lla. 10x1 energy distribution fuxxctions at 0.5 m froxn the SPT-100. 
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Fig. lib. Ion energy distribution functions at 150” from the plume axis for the SPT-100. 
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