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Abstract: Ultrasound imaging of the lung has played an important role in managing patients with
COVID-19–associated pneumonia and acute respiratory distress syndrome (ARDS). During the
COVID-19 pandemic, lung ultrasound (LUS) or point-of-care ultrasound (POCUS) has been a popular
diagnostic tool due to its unique imaging capability and logistical advantages over chest X-ray and
CT. Pneumonia/ARDS is associated with the sonographic appearances of pleural line irregularities
and B-line artefacts, which are caused by interstitial thickening and inflammation, and increase in
number with severity. Artificial intelligence (AI), particularly machine learning, is increasingly used
as a critical tool that assists clinicians in LUS image reading and COVID-19 decision making. We
conducted a systematic review from academic databases (PubMed and Google Scholar) and preprints
on arXiv or TechRxiv of the state-of-the-art machine learning technologies for LUS images in COVID-
19 diagnosis. Openly accessible LUS datasets are listed. Various machine learning architectures
have been employed to evaluate LUS and showed high performance. This paper will summarize
the current development of AI for COVID-19 management and the outlook for emerging trends of
combining AI-based LUS with robotics, telehealth, and other techniques.

Keywords: lung ultrasound; machine learning; deep learning; COVID-19; artificial intelligence (AI)

1. Introduction

The COVID-19 pandemic has posed an extraordinary challenge to the global public
health system due to the high infection and mortality rate [1]. The hallmark of severe
COVID-19 is pneumonia and acute respiratory distress syndrome (ARDS) [2–4]. Among
symptomatic patients with COVID-19, 14% are hospitalized, 2% require intensive care
with an overall mortality rate of 5%. Severe illness can occur in healthy individuals but
is more frequent among those with common medical morbidities, including increasing
age, diabetes and chronic lung, kidney, liver or heart disease, and mortality may be up to
12-fold in these populations [5]. Medical imaging provides an important tool to diagnose
COVID-19 pneumonia and reflect the pathological conditions of the lung [6–13]. Lung
ultrasound (LUS) or point-of-care ultrasound (POCUS) is an emerging imaging technique
that has demonstrated higher diagnostic sensitivity and accuracy than a chest X-ray and
is comparable to CT in COVID-19 diagnosis [14]. For simplicity, we will use LUS instead
of LUS/POCUS in this paper. LUS has unique advantages of being portable, prompt,
repeatable, low cost, easy to use, and free of ionizing radiation [15,16]. LUS can be used at all
steps to evaluate COVID-19 patients from triage, diagnosis, and follow-up exams. Over two
years into the COVID-19 pandemic, the number of daily confirmed COVID-19 cases is still
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striking, and new variants are being identified, requiring efficient diagnostic tools to guide
clinical practice in triage and management of potentially suspected populations [17–19].
Figure 1 shows the rapid increases of artificial intelligence (AI) publications for COVID-19
diagnosis with US and all imaging modalities (CT, X-ray, and US) in PubMed database.
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This review aims to outline current and emerging clinical applications of machine 
learning (ML) in LUS during the COVID-19 pandemic. We conducted a literature search 
with keywords including “COVID-19”, “AI”, “Machine Learning”, and “Deep Learning”. 
We first searched the PubMed database with a combination of “COVID-19”AND “ultra-
sound” AND “AI OR Machine Learning OR Deep Learning OR Auto” in the title and 
abstract fields. For a more comprehensive literature review, we further searched key-
words: “COVID-19” + “Ultrasound” + “AI/Machine Learning/Deep Learning” on Google 
Scholar. Combining the results from PubMed and Google scholar, we reviewed recent 
original research articles focusing on ML applications of LUS in COVID-19, consisting of 
journal articles, conference papers, arXiv or TechRxiv preprints and book chapters. More 
than 35 research articles were reviewed and summarized in the following sections. 

2. LUS Scan Protocols and Features of COVID-19 
2.1. LUS Scan Protocols 

A variety of LUS scanning schemes for COVID-19 patients exist. LUS has been per-
formed with US scanners ranging from high-end systems to hand-held devices [20–25] and 
different transducers, including convex, linear, and phased array transducers [26–29]. Scans 
have been performed with patients in the sitting, supine or decubitus positions. Several scan 
methods have been reported, including the BLUE protocol (6-point scans), 10-point scans 
[30,31], 12-zone scans [32,33], and 14-zone scans [34,35], all aiming to examine the whole 
lung in a standardized and thorough manner. The intercostal scanning tries to cover more 
surfaces in a single scan and evaluates the ultrasound patterns bilaterally in multiple re-
gions to evaluate the overall severity of lung diseases. The BLUE (Bedside Lung Ultrasound 
in Emergency, Figure 2) protocol works in respiratory failure settings [36] and is thus a suit-
able practice for rapid COVID-19 scans [37]. Three standardized points for scanning at one 
side of the lung and bilaterally six key zones in total are examined [37,38]. The three BLUE-
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Figure 1. The number of COVID-19 AI publications based on ultrasound (orange bars) and CT, X-ray
and ultrasound combined (blue bars) in PubMed Database, as of 17 January 2022.

This review aims to outline current and emerging clinical applications of machine
learning (ML) in LUS during the COVID-19 pandemic. We conducted a literature search
with keywords including “COVID-19”, “AI”, “Machine Learning”, and “Deep Learning”.
We first searched the PubMed database with a combination of “COVID-19”AND “ultra-
sound” AND “AI OR Machine Learning OR Deep Learning OR Auto” in the title and
abstract fields. For a more comprehensive literature review, we further searched keywords:
“COVID-19” + “Ultrasound” + “AI/Machine Learning/Deep Learning” on Google Scholar.
Combining the results from PubMed and Google scholar, we reviewed recent original
research articles focusing on ML applications of LUS in COVID-19, consisting of journal
articles, conference papers, arXiv or TechRxiv preprints and book chapters. More than
35 research articles were reviewed and summarized in the following sections.

2. LUS Scan Protocols and Features of COVID-19
2.1. LUS Scan Protocols

A variety of LUS scanning schemes for COVID-19 patients exist. LUS has been per-
formed with US scanners ranging from high-end systems to hand-held devices [20–25] and
different transducers, including convex, linear, and phased array transducers [26–29]. Scans
have been performed with patients in the sitting, supine or decubitus positions. Several
scan methods have been reported, including the BLUE protocol (6-point scans), 10-point
scans [30,31], 12-zone scans [32,33], and 14-zone scans [34,35], all aiming to examine the
whole lung in a standardized and thorough manner. The intercostal scanning tries to
cover more surfaces in a single scan and evaluates the ultrasound patterns bilaterally in
multiple regions to evaluate the overall severity of lung diseases. The BLUE (Bedside Lung
Ultrasound in Emergency, Figure 2) protocol works in respiratory failure settings [36] and
is thus a suitable practice for rapid COVID-19 scans [37]. Three standardized points for
scanning at one side of the lung and bilaterally six key zones in total are examined [37,38].
The three BLUE-points include at one side the upper and lower BLUE-point (anterior) and
the PLAPS (posterolateral alveolar and/or pleural syndrome) BLUE-point. Such scanning
protocols may be followed to acquire at-home LUS [39].
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Figure 2. The three standard BLUE points are illustrated (two anterior and one posterior) [modified
from [40]]. Two hands are placed on the front chest such that the upper hand touches the clavicle,
and the upper anterior BLUE-point is in the middle of the upper hand, while the lower anterior
BLUE-point is in the middle of the lower palm. The PLAPS-point is vertically at the posterior axillary
line and horizontally at the same level of the lower anterior BLUE-point.

2.2. LUS Image Features for COVID-19 Pneumonia

When compared to liquids or soft tissues, the air-filled lung presents significant
differences in acoustic properties. As shown in Figure 3, LUS images distinguish a healthy
lung from a lung with interstitial pathology mainly via artifacts [41]. For a healthy lung
with a normally aerated pleural plane, the incident ultrasound pulses are almost completely
reflected by the regular pleural plane, resulting in horizontal linear artifacts parallel to the
pleural plane (A-lines). When the ratio of air to fluid in the lung is changed, the lung and
pleural tissues lose the regular structure and can no longer function as a complete specular
reflector of the incident ultrasound signals, thus producing various artifacts [29]. One
important artifact is the B-line, a type of vertical artifact beginning from the plural plane,
focal or confluent [20]. B-lines are believed to correlate with the volume of extravascular
lung water and interstitial lung diseases, cardiogenic and non-cardiogenic lung edema,
interstitial pneumonia, and lung contusion [42]. Overall, COVID-19 pneumonia/ARDS
is associated with the sonographic appearances of pleural line irregularities and B-line
artefacts, which are caused by interstitial thickening and inflammation, and increase in
number with severity.

Many review papers have discussed the LUS image characteristics for COVID-19
pneumonia [6,14,20,43–47]. When diagnosing COVID-19, the diffuse B-lines are the most
commonly seen in US findings, followed by the pleural line irregularities and subpleural
consolidations as the next most frequent findings [20,30,31,39,48,49], while the pleural
diffusions appear less often [20,21,26,30,31,48,50]. The reappearance of A-lines is expected
during the recovery phase or in normal lungs [24,48], and the “white lung” (multi B-lines
coalescing) is observed as pneumonia deteriorates [31,45].
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Figure 3. Examples of (a) horizontal A-lines (yellow arrows) in a normal lung, (b) multiple B-lines
(yellow arrows) with an irregular pleura line (red arrows) in a COVID-19 indicative lung, and (c) white
lung (completely diffused B-lines) for severe COVID-19 pneumonia. Reprinted with permission from
ref. [34,51]. Copyright 2020 John Wiley and Sons.

2.3. LUS Grading Systems of COVID-19 Pneumonia

Various grading systems have been proposed to classify COVID-19 pneumonia using
LUS images (A-lines, B-lines, pleural lines, and subpleural consolidates). For instance,
Soldati et al. [35] proposed a scoring scheme that classifies the severity of pneumonia into
four stages: score 0 is when a regular pleural line and horizontal A-lines are observed,
indicating a normal lung; score 1 is when indented pleural lines and vertical white areas
below the indent are observed; score 2 is when the broken pleural lines, small-to-large
consolidations and multiple or confluent B-lines are observed (white lung happens at this
stage); score 3 is the highest level of severity, where the white lung is dense and extends to
large areas. Similar scoring systems were proposed by Volpicelli et al. [52], Deng et al. [53],
Lichter et al. [54], and Castelao et al. [50]. Such LUS scores could be utilized in AI algorithms
for a future auto-grading system of pathology severity.

3. Machine Learning in COVID-19 LUS
3.1. Public-Accessible Databases

AI is commonly used in medical imaging for detecting diseases [55]. Machine learning
(ML) such as deep learning (DL) are powerful techniques used in AI, and large databases
are critically important. Many of the current COVID-19 imaging datasets consist of CTs,
such as COVID-CT [56], or based on X-rays, such as COVIDx [57], with only a few con-
taining collections of ultrasound images [58]. Table 1 summarizes publicly accessible
LUS databases.

Table 1. Large online open databases of COVID-19 ultrasound images.

Database Data Characteristics Access Link

POCUS dataset [59]
64 lung POCUS video recordings, divided into 39 videos of

COVID-19, 14 of (typical bacterial) pneumonia and 11 of
healthy patients.

https://github.com/jannisborn/covid19_pocus_
ultrasound (29 November 2020)

Enlarged POCUS dataset
[60]

139 recordings (106 videos + 33 images) with convex or linear
probes.

63 COVID-19, 34 bacterial pneumonia, 7 virial pneumonia
and 35 healthy cases.

https://github.com/jannisborn/covid19_pocus_
ultrasound/tree/master/data (29 November 2020)

New POCUS dataset [61]
202 videos and 59 images from 216 patients.

COVID-19, bacterial pneumonia, non-COVID-19 viral
pneumonia and healthy controls.

https:
//github.com/BorgwardtLab/covid19_ultrasound

(1 December 2021)

ICLUS-DB [35] 30 cases of confirmed COVID-19 for a total of about 60,000
frames by the time of publishment.

https://covid19.disi.unitn.it/iclusdb
(29 November 2020)

https://github.com/jannisborn/covid19_pocus_ultrasound
https://github.com/jannisborn/covid19_pocus_ultrasound
https://github.com/jannisborn/covid19_pocus_ultrasound/tree/master/data
https://github.com/jannisborn/covid19_pocus_ultrasound/tree/master/data
https://github.com/BorgwardtLab/covid19_ultrasound
https://github.com/BorgwardtLab/covid19_ultrasound
https://covid19.disi.unitn.it/iclusdb
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Table 1. Cont.

Database Data Characteristics Access Link

Extended ICLUS-DB [62]
An extended and fully annotated version of ICLUS-DB.
277 LUS videos from 35 patients (17 positive COVID-19,

4 COVID-19 suspected and 14 healthy patients).

https://iclus-web.bluetensor.ai
(29 November 2020)

COVIDx-US [63]
59 COVID-19 videos, 37 non-COVID-19 videos, 41 videos

with other lung diseases/conditions, and 13 videos of
normal patients.

https://github.com/nrc-cnrc/COVID-US
(1 December 2021)

Born et al. released a lung ultrasound dataset (POCUS) in May 2020. The POCUS
dataset had 1103 images sampled from 64 videos, consisting of 654 COVID-19, 277 bac-
terial pneumonia, and 172 healthy controls [59], which later was enlarged to include
106 videos [60]. In January 2021, Born et al. released an updated version of the dataset,
including 202 videos of COVID-19, bacterial pneumonia, non-COVID-19 viral pneumonia
patients and healthy controls [61]. In March 2020, Soldati et al. proposed an internationally
standardized acquisition protocol and 4-level scoring schemes for LUS in COVID-19 [35].
They shared 30 positive COVID-19 cases in an online database (ICLUS-DB database),
containing about 60,000 frames. Roy et al. proposed an extended and fully-annotated
version of the previous ICLUS-DB database, which includes a total of 277 LUS videos
from 35 patients [62]. The frames from these videos were labeled according to the 4-level
scoring system.

More recently, in March 2021, Ebadi et al. presented an open-access LUS benchmark
dataset, COVIDx-US, collecting images from multiple sources [63]. The COVIDx-US dataset
consists of 150 videos (12943 frames) in total, categorized into four subsets: COVID-19,
non-COVID-19, other lung diseases, and healthy patients. Another group worked on
a 12-lung-field scanning protocol of thoracic POCUS (T-POCUS) images for COVID-19
patients [64]. The preliminary dataset consists of 16 subjects (mean age 67 years old),
with 81% being male. Their data were stored in the Butterfly IQ cloud, so it might not be
openly accessible.

3.2. Traditional Machine Learning Classifiers

Several traditional ML algorithms were utilized for LUS image analyses. Principal
component analysis (PCA) and independent component analysis (ICA) could extract image
features. Random forest, support vector machine (SVM), k-Nearest Neighbour (KNN),
decision trees, and logistic regression could perform subsequent classifications [65]. In
COVID-19 LUS image analyses, SVM classifiers are commonly used.

3.2.1. Support Vector Machine (SVM) Classifier

Carrer et al. trained a support vector machine (SVM) classifier to predict the COVID-19
LUS score on subsets of the ICLUS-DB database [66]. The process mainly focused on the
pleural line and areas beneath the line, which was implemented in two major steps. The
first step was to identify the pleural line in each frame picked from the LUS videos. A
circular averaging filter was used to smooth out the background noise. Then a Rician-based
statistical model [67] was employed to enhance the bright areas (plural lines and other
tissues) from the dark background. Next, a local scale hidden Markov model (HMM) and
the Viterbi algorithm (VA) [68] were adapted to detect all the horizontal linear high-lighted
sections. The deepest linear sections with strong intensities connected to the identified
“pleural line.” Once the pleural line was reconstructed, the second step was to train the
SVM classifier on eight parameters extracted from the geometric and intensity properties
of the pleural line and the areas below the line. Such supervised classification required a
smaller dataset compared to a deep neural network and was computed much faster. The
labeling used a 4-level scoring system [35], from 0-healthy to 3-severe. The overall accuracy
in identifying the pleural lines was 84% for convex and 94% for linear probes. The accuracy
of the auto-classification using SVM was about 88% for convex and 94% for linear probes.

https://iclus-web.bluetensor.ai
https://github.com/nrc-cnrc/COVID-US
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Wang et al. extracted features of the pleural line (thickness, roughness, mean and stan-
dard deviation of pleura intensities) and B-lines (number, accumulated width, attenuation,
and accumulated intensity) from 13 moderate, seven severe, and seven critical cases of
COVID-19 pneumonia. For a binary comparison of severe/non-severe, several features
showed statistically significant differences. An SVM classifier yielded a high area under
the curve (AUC) of 0.96, with a sensitivity of 0.93 and specificity of 1 [69]. One could also
separate the evaluation into two steps of feature extraction and image classification [70].
Four CNN models (Resnet18, Resnet50, GoogleNet, and NASNet-Mobile) were tried to
extract features from LUS images and then fed the features to the SVM classifier. For a
dataset of 2995 images (988 COVID-19, 731 Pneumonia, and 1276 Regular), SVM classifiers
reached exceptional results of accuracy, precision, recall, and F1-score (most exceeding
99%), with all four set of features extracted by the four CNN models.

3.2.2. Artificial Neural Network (ANN) Classifier

Raghavi et al. tried the Hopfield neural network (a type of artificial neural network
for human memory simulation) to classify a dataset with 266 positive COVID-19 and 499
negative cases (training/test: 80/20%), achieving an accuracy of over 83.66% [71].

3.3. Deep Learning (DL) Models

Due to the increasing chip processing capability and reduced computational cost, deep
learning (DL) has been a fast-developing subset of machine learning. Many DL architectures
proposed for COVID-19 detection were based on convolutional neural networks (CNNs),
trained with collected LUS datasets.

3.3.1. Convolutional Neural Networks (CNNs)

Born et al. trained a convolutional neural network (POCOVID-Net) on their POCUS
dataset with 5-fold cross-validation [59]. They combined the convolutional part of VGG-
16 [72] with a hidden layer containing 64 neurons with ReLU activation. The trained
classifier achieved an accuracy of 0.89, a sensitivity of 0.96, and a specificity of 0.79 in
diagnosing COVID-19 pneumonia. Later, they used VGG-CAM (Class Activation Map
(CAM)) or VGG to train three-class (COVID-19 pneumonia, bacterial pneumonia, and
healthy controls) models on POCUS [60]. Both VGG-CAM and VGG yielded accuracies
of 0.90. In January 2021, they extended the dataset and trained a frame-based classifier,
yielding a sensitivity of 0.806 and a specificity of 0.962 [61]. Similarly, Diaz-Escobar et al.
performed both three-class (COVID-19, bacterial pneumonia, and healthy) and binary
(COVID-19 vs. bacterial and COVID-19 vs. healthy) classifications on POCUS, with pre-
trained DL models (VGG19, InceptionV3, Xception, and ResNet50) [73]. Their results
showed that InceptionV3 worked best with an AUC of 0.97 to identify COVID-19 cases
from pneumonia and healthy controls. Roberts et al. tested VGG16 and ResNet18, and
their results from VGG16 outperformed the ResNet18 counterparts [74].

For the fully-annotated ICLUS-DB, Roy et al. proposed an auto-scoring process
for image frames and videos separately, along with a pathological artifact segmentation
method [62]. As for image frames, the anomalies or artifacts were automatically detected
with the spatial transformer networks (STN). For two different STN crops taken from the
same image, they regularized their scores to be consistent, so the method was named the
regularized spatial transformer networks (Reg-STN). As for videos, scores reflect the overall
distribution of frames in sequence by employing a softened aggregation function based on
uninorms [75]. Their Reg-STN method outperformed all other tested baseline methods for
frame-based classifications with an F1-score of 65.1%. Their softened aggregation method
outperformed the maximum and average baseline aggregation methods for video-based
scoring, with an F1-score of 61 ± 12%. For auto-segmentation evaluation, their model
achieved an accuracy of 96% at a pixel level. Yaron et al. tried to improve Roy’s method
by fixing the discrepancy between convex and linear probes, noticing the artifacts (“B-
lines”) were tilting in convex probe images [76]. By rectifying the convex probe images
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from the polar coordinate, the artifacts would be axis-aligned like the linear probe, which
simplified the DL architecture and yielded a higher F1 score compared to [62] over the
same dataset. Reg-STN architectures were also applied on other COVID-19 datasets and
achieved satisfactory accuracies of above 0.9 [77].

In another multicenter study, Mento et al. described standardized imaging protocols
and scoring schemes in acquiring LUS videos. They trained DL algorithms on 82 confirmed
patients and graded videos by aggregation of frame-based scores [78]. The prognostic
agreement between DL models [62] and clinicians was 86% in predicting a high or low
risk of clinical worsening [78]. Later for a larger dataset of 100 patients, the agreement
between AI and clinicians was 82% [79]. Demi et al. applied similar algorithms [78] in
a longitudinal study with 220 patients (100 COVID-19 patients and 120 post-COVID-19
patients), and their prognostic agreement between AI and MDs was 80% for COVID-19
patients and 72.5% for post-COVID-19 patients [80].

Ebadi et al. proposed a deep video scoring method based on the Kinetics-I3D network,
without the need for tedious frame-by-frame processing [81]. Pneumonia/ARDS features
including A-lines, B-lines, consolidation and/or pleural effusion classes were detected from
the video and compared with radiologists’ results. They collected a dataset of 300 patients
with 100 for each ARDS feature. Five-fold cross-validation results showed high ROC-AUCs
of 0.91–0.96 for detecting the three ARDS features (A-lines, B-lines, consolidation and/or
pleural effusion).

Since the COVID-19 LUS dataset include both videos and frames, the impact of
various training/test splitting scheme should be evaluated [82]. Roshankhah et al. used
manually segmented B-mode images and corresponding 4-scale staging scores as the
ground truth for 1863 images from 203 videos (of 14 confirmed cases, four suspected cases,
and 14 controls). They achieved a higher accuracy of 95% for image-level data splitting
(training/test: 90/10%) but a much lower accuracy (<75%) for patient-level data splitting.
The overestimation of image-level splitting may originate from the fact that the images from
the same patient could be similar but randomly appear in both training and testing subsets.

Another underlying issue is the labeling effort for LUS videos or frames. Durrani et al.
investigated the impact of labeling effort by comparing binary classification results from the
frame-based method (higher labeling effort) versus the video-based method (lower labeling
effort) [83]. They further introduced a third sampled quaternary method to annotate
all frames based on only 10% positively labeled samples from the whole dataset, which
outperformed the previous two labeling strategies. Gare et al. tried to convert a pre-trained
segmentation model into a diagnostic classifier and compared the results from dense vs.
sparse segmentation labeling [84]. Tested on a restricted dataset of 152 images from four
patients (three COVID-19 positives and one control), they found that with pretrained
segmentation weights and dense labeling pretrained U-net, the classifier performs best
with an overall accuracy of 0.84.

Considering the development of portable LUS and the need for rapid bedside detection,
Awasthi et al. proposed a lightweight DL architecture of COVID-19 LUS diagnosis. The
new method, namely Mini-CovidNet, modifies MobileNet with focal loss. Mini-CovidNet
obtained an accuracy of 0.83 on the POCUS dataset [59], which is similar to POCOVID-Net.
Still, the number of parameters was 4.39 times lesser in Mini-CovidNet, and thus consumed
smaller memory, making it appealing to mobile platforms [85]. On the other hand, an
interpretable subspace approximation with adjusted bias (Saab) multilayer network was
proposed to read LUS images with low-complexity and low-power consumption, which
appeals to personal devices [86].

3.3.2. Hybrid Models: Combining CNNs with Other Methods

Hybrid DL algorithms combining backbone CNNs with other units such as the long
short-term memory (LSTM) were introduced to improve the model performance. Barros
et al. tailored a hybrid CNN-LSTM model to classify LUS videos by extracting spatial
features with CNNs and then learning the temporal dependence via LSTM [87]. Their
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hybrid model reached a higher accuracy of 93% and sensitivity of 97% for COVID-19 cases,
compared to other primitive spatial-based models. Dastider et al. used the Italian LUS
database (ICLUS-DB) to train a frame-based four-score CNN-based architecture with a
backbone of DenseNet-201 [88]. After integrating the LSTM units (CNN-LSTM), the model
performance improved by 7–12% compared to the original CNN architecture.

Besides LSTM units, other add-ons such as feature fusion or denoising could also help.
A CNN-based classifier with a multilayer fusion functionality per block was also tested
to enhance the performance and achieved high metrics of above 0.92 over the POCUS
dataset [89]. Che et al. utilized a multiscale residual CNN with feature fusion strategy
to evaluate a dataset consisting of both POCUS dataset and ICLUS-DB and obtained an
average accuracy of 0.95 [90]. A spectral mask enhancement (SpecMEn) scheme was
introduced to reduce the noise in the original LUS images; thus, the SpecMEn improved
the accuracy and F1-score of DL models (CNN variants) by 11% and 11.75% on the POCUS
dataset [91].

For COVID-19 diagnosis, plural lines and sub-plural symptom features in LUS are
signatures of pneumonia severity [92], so some DL algorithms took advantage of the
identification and segmentation of pleura, A-lines, and B-lines to improve pneumonia
assessment. Baloescu et al. developed deep CNN to detect B-lines from 400 ultrasound
clips and evaluate COVID-19 severity [93]. For binary classification of presence or absence
of B-lines, they reached a sensitivity of 0.93 and a specificity of 0.96. For multiscale severity
based on B-lines, the model reached a weighted kappa of 0.65. Panicker et al. presented a
method to first detect the pleura via extracted acoustic wave propagation features; after
obtaining the region below pleura, the infection severity was classified with VGG-16 from
input regions [94]. They achieved an accuracy, sensitivity, and specificity of 0.97, 90.2, and
0.98, respectively, for 5000 video frames from ten patients over their infection to the full
recovery phase. Considering the complexity of pathology behaviors for COVID-19, Liu
et al. built a new LUS dataset with multiple COVID-19 symptoms (A-line, B-line, P-lesion,
and P-effusion), namely COVID19-LUSMS, consisting of 71 patients [95]. They presented
a semi-supervised two-stream active learning (TSAL) method with multi-label learning,
and achieved high accuracies greater than 0.9 for A-line, B-line, and moderate accuracies
greater than 0.8 for P-lesion and P-effusion. Such aid of artifacts detection improved the
classification performance of the neural network.

One encouraging point about these LUS artifacts, such as B-lines, is that though they
are related to pathology in various lung diseases, deep learning techniques could identify
COVID-19 from other types of pneumonia [96]. Over a combined B-lines dataset consisting
of 612 LUS videos from 243 patients with COVID-19, non-COVID acute respiratory distress
syndrome, and hydrostatic pulmonary edema, the trained CNNs (Xception architecture)
classifiers showed AUCs of 1.0, 0.934, and 1.0, respectively, much better than physician
differentiation ability between these lung diseases [97].

3.3.3. Multi-Modality Data and Transfer Learning

Given several datasets of COVID-19 medical images are now available, the amount
of total LUS data is still highly limited due to the short time of collecting images since the
outbreak. To address the problem of scarcity of available medical images, multi-modality
data was utilized to elevate model accuracy for small datasets.

In effort to treat the heterogeneous and multi-modality medical information, a dual-
level supervised multiple instance learning module (DSA-MIL) was proposed to fuse
the zone-level signatures to patient-level representations [98]. A modality alignment
contrastive learning unit combined the representations of LUS and clinical information
(such as age, disease history, respiratory, fever, and cough). A staged representation transfer
(SRT) scheme was used for subsequent data training. Combining both modalities (LUS
and clinical information), they achieved an accuracy of 0.75 for four-level severity scoring
and 0.88 for the binary severe/non-severe classification. On the other hand, Zheng et al.
built multimodal knowledge graphs from fused CT, X-ray, ultrasound, and text modalities,
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reaching a classification accuracy of 0.98 [99]. A multimodal channel and receptive field
attention network combined with ResNeXt was proposed to process multicenter and
multimodal data and achieved 0.94 accuracy [100].

Horry et al. searched COVID-19 chest X-rays [101], CT scans (COVID-19 and non-
COVID-19) [56], and ultrasound images (COVID-19, bacterial pneumonia and normal
conditions) [59]. They compiled them into a multimodal imaging dataset for training [102].
To minimize the effect of sampling bias introduced by any systematic difference in pixel
intensity between datasets, histogram equalization to images using the N-CLAHE method
described by [103] was applied. They tried to achieve a reliable classification accuracy with
transfer learning to compensate for the limited size of the sample datasets and accelerate
the training process. Eight CNNs based models were tested: VGG16/VGG19, Resnet50,
Inception V3, Xception, InceptionResNet, DenseNet, and NASNetLarge. As a result, the
ultrasound mode yielded a sensitivity of 0.97 and a positive predictive value of 0.99 for
normal cases; and a sensitivity of 1.0 and a positive predictive value of 1.0 for distinguishing
COVID-19 from the bacterial pneumonia patients.

Karnes et al. explored a novel vocabulary-based few-shot learning (FSL) visual clas-
sification algorithm that utilized a pre-trained deep neural network (DNN) to compress
images into features and further processed them to vocabulary and feature vector [104].
The knowledge of a pretrained DNN was transferred to new applications, and then only a
few training parameters were needed, so the training dataset was largely reduced. Salvia
et al. employed residual CNNs (ResNet18 and ResNet50), transfer learning, and data
augmentation techniques for multi-level pathology gradings (four main levels and seven
sub-levels) over a dataset of 450 patients [105]. For both ResNet18 and ResNet50, and for
both four-level and seven-level classifications, the metrics were all above 0.97. By taking
advantage of transfer learning, their model could classify the COVID-19 cases even with
limited LUS data input.

A summary of the discussed AI research articles is listed in Table 2.

Table 2. Summary of research articles on AI applications of LUS for COVID-19.

Articles Time Datasets Techniques Main Tasks Results

Born et al. [59] May 2020

POCUS dataset [59]: 64
videos (39 COVID-19, 14

bacterial pneumonia, and 11
healthy controls)

VGG16
Classifying frames/videos

as COVID-19, bacterial
pneumonia, or healthy.

* AUC: 0.94
Accuracy: 0.89
Sensitivity: 0.96
Specificity: 0.79
F1-score: 0.92

Roy et al. [62] August
2020

35 patients (17 COVID-19, 4
COVID-19 suspected, and 14

healthy controls)

Spatial Transformer
Networks (STN) &

U-Net

Scoring frames/videos;
Segmenting COVID-19
imaging biomarkers.

Accuracy: 0.96
Recall: 0.6 ± 0.07

Precision: 0.7 ± 0.19
F1-score: 0.61 ± 0.12

Horry et al.
[102]

August
2020

Multimodal dataset of X-ray,
ultrasound, and CT

(COVID-19, pneumonia, and
Normal)

VGG16/19,
ResNet50, Inception

V3, Xception,
InceptionResNetV2,

NASNet, and
DenseNet121

Classifying COVID-19,
pneumonia, and normal

cases with limited datasets.

Recall: 1.0
Precision: 1.0
F1-score: 1.0

Born et al. [60] September
2020

139 recordings (63 COVID-19,
41 non-COVID-19

pneumonia, and 35 healthy
controls)

VGG16

Classifying COVID-19 US
videos;

Localizing
spatio-temporally

pulmonary biomarkers.

AUC: 0.94 ± 0.03
Recall: 0.98 ± 0.04

Specificity: 0.91 ± 0.08
Precision: 0.91 ± 0.08

MCC: 0.89 ± 0.06
F1-score 0.94 ± 0.04

Hou et al. [86] October
2020

2800 images (740 A-line, 1150
B-line and 910 consolidation

images)

Adjusted Bias (Saab)
multilayer network

Classifying consolidation
vs A-line vs B-line. Accuracy: 0.97
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Table 2. Cont.

Articles Time Datasets Techniques Main Tasks Results

Roberts et al.
[74]

November
2020 POCUS dataset [59] VGG16 & ResNet18

Classifying COVID-19,
bacterial pneumonia, and

control cases.

Accuracy: 0.86
AUC: 0.90

Carrer et al.
[66]

November
2020

Subsets of the ICLUS-DB
database [66]: 29 cases (10

negatives, 15 positives, and
four suspected COVID-19)

SVM
Detecting pleural line

automatically;
Scoring LUS images.

Accuracy: 0.85–0.98
Sensitivity: 0.85–0.93
Specificity: 0.95–0.99

Liu et al. [95] November
2020

71 patients with 6836 images
sampled from 678 videos ResNet50

Classifying A-line, B-line,
pleural lesion, and pleural

effusion.

Accuracy: 0.98
Sensitivity: 0.99
Specificity: 0.92

Baloescu et al.
[93]

November
2020

2415 subclips rated for
severity of B-lines, from 0

(none) to 4 (severe)

Custom-designed
CNNs

Detecting B-lines from LUS
clips to evaluate COVID-19

severity.

AUC: 0.97
Sensitivity: 0.81–0.98
Specificity: 0.84–0.99

Kappa: 0.79–0.97

Che et al. [90] February
2021

POCUS dataset and
ICLUS-DB: 51 COVID-19, 13
pneumonia, and 12 healthy

subjects

ResNet Classifying COVID-19 from
LUS data.

Accuracy: 0.95
Recall: 0.99

Precision: 0.96
F1-score: 0.9

Muhammad
et al. [89]

February
2021

121 videos (45 for COVID-19,
23 for bacterial pneumonia,

and 53 for healthy);
40 images (18 for COVID-19,

7 for bacterial pneumonia,
and 15 for healthy)

ResF module
Classifying COVID-19,

bacterial pneumonia, and
healthy cases.

AUC: 0.99
Accuracy: 0.92

Recall: 0.93
Precision: 0.92

Dastider et al.
[88]

February
2021

ICLUS-DB: 58 videos (38 with
a convex probe, and 20 with a
linear probe) scored based on

a 4-level scoring system

DenseNet-201 Scoring LUS images.

Accuracy: 0.79 ±
0.06/0.68 ± 0.03

Sensitivity: 0.79 ±
0.06/0.68 ± 0.03

Specificity: 0.90 ±
0.03/0.77 ± 0.14
F1-score: 0.79 ±
0.06/0.67 ± 0.03

Arntfield et al.
[97]

February
2021

243 patients (81 hydrostatic
pulmonary edema (HPE), 78

non-COVID ARDS
(NCOVID), and 84

COVID-19)

Xception
Classifying COVID-19,

NCOVID and HPE
pathologies.

AUC: 0.97
Sensitivity: 0.92
Specificity: 0.88
Precision: 0.71
F1-score 0.81

Tsai et al. [77] March
2021

70 patients (39 abnormal and
31 normal) STN Classifying normal vs

pleural effusion classes.

Accuracy: 0.92
Recall: 0.88
F1-score: 0.9

Hu et al. [100] March
2021

Multicenter and multimodal
ultrasound data from 104

patients
ResNeXt

Scoring lung sonograms
based on classifications of

pathology indicators.

Accuracy: 0.94
Sensitivity: 0.76
Specificity: 0.96
Precision: 0.82

Xue et al. [98] April 2021
313 patients classified into
four types (mild, moderate,
severe, and critical severe)

VGG

Classifying severity of
COVID-19 patients from

LUS and clinical
information.

Accuracy: 0.88
Recall: 0.85

Precision: 0.8
F1-score: 0.87

Gare et at. [84] April 2021
Four patients (three

COVID-19 positives and one
control)

U-net

Segmenting A-line, B-line,
and pleural line;

Classifying normal vs.
pneumonia vs. COVID-19.

Accuracy: 0.85
Recall: 0.91

Precision: 0.89
F1-score: 0.90

Mento et al.
[78] May 2021 1488 videos from 82 patients,

scored 0-3 scales
STN & U-Net and

DeepLab v3+ Scoring LUS videos. Accuracy: 0.86

Yaron et al.
[76] June 2021

35 patients (17 COVID-19, 4
COVID-19 suspected, and 14

healthy controls)
Resnet18 Scoring LUS frames. F1-score: 0.69

Raghavi et al.
[71] June 2021

765 images (266 positive
COVID-19 and 499 negative

cases)
ANN Classifying a LUS dataset. Accuracy: 0.84
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Table 2. Cont.

Articles Time Datasets Techniques Main Tasks Results

Awasthi et al.
[85] June 2021

POCUS dataset: 64 videos (11
healthy, 14 pneumonia, and

39 COVID-19 patient)
MobileNet

Classifying COVID-19,
bacterial pneumonia, and

healthy cases.

Accuracy: 0.83
Sensitivity: 0.92
Specificity: 0.71
Precision: 0.83
F1-score: 0.87

Zheng et al.
[99] June 2021

Multimodal dataset: 1393
doctor–patient dialogues and

3706 images for COVID-19
patients; and 607 dialogues

and 10,754 images for
non-COVID-19 patients

Temporal NN Classifying COVID-19 vs.
non-COVID-19 casese.

Accuracy: 0.98
Sensitivity: 0.99
Specificity: 0.99
Precision: 0.99

AUC: 0.99
F1-score: 0.99

Sadik et al. [91] July 2021 POCUS dataset [59]

DenseNet-201,
ResNet-152V2,

Xception, VGG19,
and ImageNet

Classifying COVID-19,
pneumonia, and normal

cases.

Accuracy: 0.91
Sensitivity: 0.91
Specificity: 0.90
F1-score: 0.90

Barros et al.
[87]

August
2021

185 videos (69 COVID-19, 50
bacterial pneumonia, and 66

healthy controls)

POCOVID-Net,
DenseNet, ResNet,

Xception, and
NASNet

Classifying COVID-19,
pneumonia, and normal

cases.

Accuracy: 0.91–0.93
Recall: 0.84-0.97

Specificity: 0.90–1.0
Precision: 0.89–1.0
F1-score: 0.86–0.95

Diaz-Escobar
et al. [73]

August
2021

3326 images (1283 for
COVID-19, 731 for bacterial

pneumonia, and 1312 for
healthy controls)

VGG19, InceptionV3,
Xception, and

ResNet50

Classifying COVID-19,
pneumonia, and normal

cases.

AUC: 0.97 ± 0.01
Accuracy: 0.89 ± 0.02

Recall: 0.86 ± 0.03
F1-score: 0.88 ± 0.03
Precision: 0.9 ± 0.03

Ebadi et al.
[81]

August
2021

300 patients (100 for each
ARDS feature: A-line, B-line,

and consolidation)
3D ConvNet

Classifying A-line, B-line,
and consolidation and/or

pleural effusion from
videos.

AUC: 0.91–0.96
Accuracy: 0.9

Recall: 0.86–0.92
Precision: 0.93–0.98
F1-score: 0.87–0.94

La Salvia et al.
[105]

August
2021

450 patients (278 positive and
172 negative cases) ResNet18, ResNet50 Classifying four/seven

classes of LUS.

AUC: 0.98–1.0
Accuracy: 0.98–1.0

Recall: 0.97–0.99
Precision: 0.98–0.99
F1-score: 0.97–0.99

Panicker et al.
[94]

September
2021

5000 images from seven
subjects (1000 images per

class)
VGG16

Detecting pleura and
generating acoustic

features;
Classifying five classes of

LUS images.

Accuracy: 0.97
Sensitivity: 0.92
Specificity: 0.98

Mento et al.
[79]

September
2021

100 patients with 133 LUS
exams scored to four levels

STN & U-Net and
DeepLab v3+ Scoring LUS videos. Accuracy: 0.82

Al-Jumaili et al.
[70]

October
2021

2995 images (988 COVID-19,
731 pneumonia, and 1276

regular images, available on
Kaggle)

SVM & Resnet18,
Resnet50, GoogleNet,
and NASNet-Mobile

Detecting pathology
features from LUS images;

Classifying COVID-19,
pneumonia, and regular

cases.

Accuracy: 0.99
Sensitivity: 0.99
Specificity: 0.99
F1-score: 0.99

Karnes et al.
[104]

October
2021

13103 normal, 4900
pneumonia, and 8633

COVID-19 frames
LDA & MobileNet

Classifying COVID-19,
pneumonia, and healthy

cases.
AUC: 0.95

Demi et al. [80] December
2021

220 patients (100 positive
patients and 120

post-COVID-19 patients)
STN & U-Net Testing protocols for

grading LUS. Accuracy: 0.80

Roshankhah
et al. [82]

Decemberc
2021

32 patients (14 confirmed
COVID-19, 4 suspected cases

and 14 controls)
U-Net

Scoring severity in 4-scale
stages;

Investigating the impact of
various training/test

splitting schemes.

Accuracy: 0.95/0.75

Wang et al. [69] January
2022

27 cases (13 moderate, seven
severe, and seven critical

cases of COVID-19)
SVM

Scoring the severity of
COVID-19 pneumonia by
pleural line and B-lines.

AUC: 0.88–1.0
Sensitivity: 0.93
Specificity: 1.0
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Table 2. Cont.

Articles Time Datasets Techniques Main Tasks Results

Durrani et al.
[83] July 2022 28 patients (10 unhealthy and

18 healthy) STN & U-Net
Detecting

Consolidation/Collapse in
LUS videos/frames.

AUC: 0.73 ± 0.3
Accuracy: 0.89 ± 0.16

Recall: 0.84 ± 0.23
Precision: 0.59 ± 0.28
F1-score: 0.67 ± 0.25

* Area under curve (AUC).

4. Challenges and Perspectives

AI-based medical imaging has shown great potential in evaluating COVID-19 pneu-
monia [106,107], which could possibly be integrated within a user interface (UI) for decision
support and report generation [108]. LUS is a safe, cost-effective, and convenient medical
imaging modality, which has demonstrated the potential to serve as the first-line diag-
nosis tool, particularly in resource-challenged settings. The blooming of ML and DL on
LUS is encouraging. Several ML architectures have been developed to differentiate and
grade the COVID-19 in a standardized and accurate manner. Therefore, ML algorithms
may gain growing value and set a new trend on shaping the LUS into a more reliable
and automated tool for COVID-19 evaluation. The high accuracy auto-detection will
largely save the clinicians time and effort in decision making and help to reduce possible
interobserver errors.

Though many AI publications focused on binary classifications to differentiate COVID-
19 from normal or other pneumonia cases, a few multiscale ML classifiers aimed to score
stages of pneumonia and diagnose pathology severity quantitatively [62,78–82,88,93,98,105].
These severity scores could be used in the triage and management of patients in clinical
settings. Moreover, LUS can be routinely scanned if needed, without the risk of radiation
exposure [16] and the burden of an over-complicated disinfection process [109]. Thus,
these scores could also be used for monitoring the progress of the disease. It would be of
interest to see more attempts on AI severity scoring from LUS and subsequent AI-enabled
monitoring and triage workflow of COVID-19 patients.

Though AI-based LUS has many great advantages in the current COVID-19 pandemic,
some challenges should be addressed. First, ultrasound poses a major limitation of the
incapability of sound waves to penetrate deep into the lung tissues [23], so the deep lesions
inside the lung cannot be properly reflected and reconstructed via LUS [110]. Besides poor
penetration of sound wave signals for lung tissues, LUS results can be susceptible to the
expertise of operators and thus induce low inter-annotator agreement [62,111]. Though
ML and DL models aim to diagnose LUS free from human intervention, the training sets
still require manual labeling, which may undermine the results. Cautions need to be taken
during the labeling phase.

Another limitation comes from the dataset. It is difficult to find annotated LUS images
from a large population of patients. This is because not only the online LUS datasets are
scarce, but also the annotating process is time-consuming. Though many DL methods
were proposed to address the problem, such as transfer learning on multimodal data, the
generality of trained models is questionable with intrinsically small datasets. Besides the
size of training datasets, the quality of input images could also impact the performance of
ML algorithms. A recent study found that the performance of a previously validated DL
algorithm worsened on new US machines, especially for a lower IQ, hand-held device [112].
Thus, all researchers are encouraged to contribute to large and comprehensive datasets.
Despite these limitations, AI-based LUS is still highly valued in fast and sensible scans.

Nowadays, lightweight, portable ultrasound and telehealth are widely explored dur-
ing the COVID-19 pandemic. Some studies use AI-robotics to perform tele-examination
of patients [113,114], including a telerobotic system to scan LUS on a COVID patient [115].
These robot-assisted systems can increase the distance between sonographers and patients,
thus minimizing the transmission risk [116]. In addition, Internet of Things (IoT) technolo-
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gies are integrated with cloud and AI to monitor and prognose COVID-19 disease [117,118].
In such cases, integration of AI-LUS with telerobotic systems and IoT could automate the
process from acquiring imaging data to pneumonia diagnosis and disease monitoring,
which will largely increase the efficiency of healthcare systems. Such AI-assisted clinical
workflow promises great potential in the context of COVID-19 or other pandemics in
the future.

5. Conclusions

AI-based LUS is an emerging technique to evaluate COVID-19 pneumonia. To improve
the diagnosis efficiency of LUS, scoring systems and databases of LUS images are built
for training ML models. An increasing number of ML architectures have been developed.
They were able to achieve fairly high accuracy to differentiate the COVID-19 patients from
both bacterial-related and other pneumonia cases and grade the pathology severity. In the
future, with the increase of LUS datasets, more reliable AI algorithms could be developed
and potentially help to diagnose and monitor viral pneumonia to reduce the tremendous
burden to the global public health system.
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