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A B S T R A C T

The continuous combustion of non-renewable fossil fuels and depletion of existing resources is

intensifying the research and development of alternative future energy options that can directly abate

and process ever-increasing carbon dioxide (CO2) emissions. Since CO2 is a thermodynamically stable

compound, its reduction must not consume additional energy or increase net CO2 emissions. Renewable

sources like solar energy provide readily available and continuous light supply required for driving this

conversion process. Therefore, the use of solar energy to drive CO2 photocatalytic reactions

simultaneously addresses the aforementioned challenges, while producing sustainable fuels or

chemicals suitable for use in existing energy infrastructure. Recent progress in this area has focused

on the development and testing of promising TiO2 based photocatalysts in different reactor

configurations due to their unique physicochemical properties for CO2 photoreduction. TiO2

nanostructured materials with different morphological and textural properties modified by using

organic and inorganic compounds as photosensitizers (dye sensitization), coupling semiconductors of

different energy levels or doping with metals or non-metals have been tested. This review presents

contemporary views on state of the art in photocatalytic CO2 reduction over titanium oxide (TiO2)

nanostructured materials, with emphasis on material design and reactor configurations. In this review,

we discuss existing and recent TiO2 based supports, encompassing comparative analysis of existing

systems, novel designs being employed to improve selectivity and photoconversion rates as well as

emerging opportunities for future development, crucial to the field of CO2 photocatalytic reduction. The

influence of different operating and morphological variables on the selectivity and efficiency of CO2

photoreduction is reviewed. Finally, perspectives on the progress of TiO2 induced photocatalysis for CO2

photoreduction will be presented.

ã 2015 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

1.1. Scope of the review

The pressures arising from the need for improved living

standards triggered mainly by economic and population growth

have detrimental effects on the environment through the

continuous consumption of finite fossil fuel reserves linked to

increasing CO2 emissions [1,2]. The need to meet global energy

demand predicted to increase due to a rising global population has

led to the development of different strategies by which CO2

emissions can be reduced. These can be achieved through the use

of non-fossil fuels such as hydrogen, renewable and nuclear

energy, increased energy efficiency, reduced deforestation and

capture and storage of CO2 emissions or by using a combination of

these options. Although nuclear energy can supply low carbon

energy, there are concerns with regards to waste generation [3,4].

Public acceptance and limited water availability are also key issues

associated with this technology. There are several challenges,

including capital cost, source and seasonal availability, economic

barriers, geographical distribution and environmental issues as

major constraints in the use of renewable energy like biomass,

hydropower, solar and wind energy [1,5].

Conversely, the use of hydrogen energy eliminates the

constraints associated with environmental impacts, but requires

full optimization and energy input as its production is mainly from

steam reforming and water electrolysis. Additional drawbacks are

related to storage and hydrogen fueling infrastructures such as fuel
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cell vehicles and fueling stations which are still being developed

[6]. Carbon dioxide capture and storage (CCS) serve as a means of

reducing CO2 emissions, where CO2 is removed and captured from

large point sources of industrial processes, such as petrochemical

plants, power generation, cement, iron and steel production and

others. This is followed by its subsequent transport, injection and

storage in various sinks, such as geological storage (underground

saline aquifers, depleted oil and gas reservoirs and deep coal

seams), mineral carbonation and ocean storage. The CO2 separated

and captured is then considered to be stored for prolonged periods

ranging from centuries to millions of years [7]. Although the

technologies associated with CO2 capture and separation show

great potential with regards to reducing cost and energy penalty

[8], they still require further development. Bachu et al. compared

the aforementioned storage options and identified geological

storage as the preferable option owing to the significant quantity of

CO2 that can be sequestered, long retention time and great depth of

experience from the oil and gas industry that would accelerate the

immediate deployment after full-scale implementation [9]. CCS

still needs optimization in order to fill the gap in knowledge with

regards to the location and capacity of possible geological locations

and possible leakage that could occur during or after injection.

Public acceptance has also been recognized as a key factor that can

pose barriers to the implementation of geological storage as the

public can accelerate CCS development [9,10].

As CCS is still in the demonstration phase and may be

uneconomical for emissions from small to medium sized sources,

other sustainable alternatives with little or no environmental

impacts and zero CO2 emissions need to be developed. These

technologies which can offset the cost associated with CO2 capture

and utilize CO2 for chemicals and fuels production rely solely on

technological breakthroughs and market competitiveness due to

their versatile applications. At present, utilization of CO2 accounts

for approximately 2% of emissions and forecasts predict 700 mega-

tons of CO2/year could be mitigated [11]. Alternatives processes

such as photocatalysis, direct photolysis, and electrochemical

reduction can utilize CO2 as opposed to geological storage [12,13].

The separated CO2 stream from the capture plant will serve as a

feedstock for these conversion methods. The synthesized products

such as methane, methanol, ethanol etc., can be used as chemicals,

feedstock in fuel cells or hydrogen sources for electricity.

Mikkelsen et al. have highlighted the difference between photo-

catalysis and electrochemical reduction as the source of electrons

which is obtained from irradiating semiconductors under light in

the former and the application of an applied current in the latter

[14]. Although electrochemical cells can convert CO2, Yano et al.

reported low efficiencies resulting from the deactivation of

electrodes as a major drawback. This is due to the deposition of

poisoning species, i.e., adsorbed organic compounds, on the

electrode [15,16]. The need for an inexpensive hydrogen source

and high energy photons have been reported as drawbacks in

direct hydrogenation and photolysis [17,18].

In this review, CO2 utilization by direct catalytic conversion of

CO2 driven by light energy is described. Although CO2 conversion

to energy rich and chemically useful products is endothermic,

renewable carbon free sources like solar energy provide readily

available and continuous light supply required for driving this

conversion process under ambient conditions. Thus, carbon based

fuels and chemicals suitable for end-use infrastructure can be

produced from the conversion of CO2 and water by semiconductor

photocatalysts capable of simultaneously driving chemical reac-

tions and utilizing solar energy. These value added products can be

used directly or supplement feed stocks in hydrocarbon production

or chemical processes. Amongst semiconductor photocatalysts,

titanium dioxide (TiO2) has been frequently used for UV induced

photocatalysis due to its abundance, low cost and chemical

stability. However, its use is limited due to its large band gap; as it

can only be activated by ultraviolet (UV) light which represents

2–5% of sunlight [19]. Attempts to improve the efficiency of this

catalyst for CO2 photocatalysis are limited to the overall process

efficiency being largely dependent on two factors—the physico-

chemical properties of the catalyst and reactor configuration. The

optical and electronic properties of TiO2 can be modified through

the addition of metals or their oxides such as Cu [20], Ag [21], Pd

[22] and Rh [23] and non-metals, such as nitrogen [24] and iodine

[25]. When these metal and non-metal atoms occupy the

interstitial sites, replace Ti in the substitutional sites or form

aggregates on the surface of TiO2, they can cause changes in the

properties of TiO2 [26], where the band structures and properties

of TiO2 have been reported to be tailored by this process. These

metals also serve as a source of charge-carrier traps which can

increase the life span of separated electron–hole pairs, and thus

enhancing the efficiency and product selectivity for CO2 photore-

duction [13]. Furthermore, the textural properties such as the

surface and bulk crystal structure, particle size and morphology

can also be modified. However, it still remains largely unknown

how the interaction of metal dopants or their oxides modify the

surface chemistry and reaction mechanism of TiO2 for CO2

photoreduction. The configuration of catalyst particles in a

photoreactor system is also another factor that can influence the

overall photocatalytic efficiency of TiO2 [27,28]. This review

discusses the current conditions, limitations, correlations and

possibilities of existing systems i.e., photocatalysts and reactors.

The concept and mechanism of CO2 photocatalysis using titanium

dioxide (TiO2) is presented in Section 1. Section 2 is focused on the

route by which the physicochemical properties of TiO2 can be

modified. The influence of different operational variables i.e.,

reductant, temperature, pressure and particle size, on the photo-

activity of TiO2 is addressed in Section 3 while Section 4 reviews

various techniques for the fabrication of immobilized semicon-

ductor photocatalysts. Section 5 covers different catalyst config-

urations by which the textural properties of TiO2 can be enhanced.

Section 6 describes the current conditions, limitations and

possibilities of existing photoreactor configurations available for

CO2 photocatalysis. Comparative analyses of existing systems

crucial to the field of CO2 photocatalytic reduction are discussed

under Sections 4–6. Finally, Section 7 summarizes the review with

future projections required for driving the field of CO2 photo-

catalysis.

1.2. CO2 photocatalysis

Since CO2 is a chemically stable compound due to its carbon–

oxygen bonds (bond enthalpy of C¼O in CO2 is +805 kJ/mol), its

conversion to carbon based fuels requires substantial energy input

for bond cleavage [29]. Renewable carbon free sources like solar

energy provide readily available and continuous energy supply

required for driving this conversion process. CO2 photocatalysis

offers the possibility of utilizing captured CO2 to synthesize

chemicals and fuels with the aid of semiconductor catalyst(s)

under light irradiation. Apart from solar energy, other readily

accessible light sources can be used. Fig. 1 highlights the typical

photocatalytic process showing band gap formation in a typical

semiconductor photocatalyst when exposed to light radiation. As

shown in Fig. 1, the band gap is the energy region extending from

the bottom of the empty conduction band (CB) to the top of the

occupied valence band (VB). When an electron excited by light

energy migrates from the fully occupied valence band of the

semiconductor located at an energy level (Ev) to a higher energy

(Ec) empty conduction band, electron–hole pairs are created if the

absorbed light energy (hv) is greater than or equal to the band gap

(Eg) of the semiconductor [12,30]. Eq. (1) presents the formation of
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electron–hole pairs [31] where e�, hv and h+ represents the

conduction band electron, photon energy and hole in the valence

band, respectively.

Photocatalyst !
hne�þhþ

(1)

e� + h+
! heat (2)

Eg = Ec � Ev (3)

Eq. (2) shows that the charge carriers may also recombine in the

surface or bulk before reacting with adsorbed species, dissipating

energy as heat or light while Eq. (3) shows the band gap energy (Eg)

which is equal to the difference between the energy of the

conduction (Ec) and the valence band (Ev). The reduction potential

of photo-generated electrons is the energy level at the bottom of

conduction band while the energy level at the top of valence band

determines the oxidizing ability of photo-generated holes which

determine the ability of the semiconductors to undergo oxidations

and reductions [19]. The redox potential levels of the adsorbate

species and the band gap energy determine the likelihood and rate

of the charge transfer processes for electrons and holes [32]. For an

electron to be donated to the vacant hole, the redox potential level

of the donor is thermodynamically required to be above the VB

position of the semiconductor, while that of the acceptor should be

below the CB position. The reduction potentials for CO2 photore-

duction with H2O to various products with reference to NHE at pH

7 are given in Eqs. (4)–(13) below [33,34].

2Hþ
þ 2e� ! H2 E0 ¼ �0:41 (4)

H2O !
1

2
O2 þ 2Hþ

þ 2e� E0 ¼ 0:82 (5)

CO2 þ e� ! CO2
� E0

¼ �1:90 (6)

CO2 þ Hþ
þ 2e� ! HCO2

� E0 ¼ �0:49 (7)

CO2 þ 2Hþ
þ 2e� ! CO þ H2O E0 ¼ �0:53 (8)

CO2 þ 4Hþ
þ 4e� ! HCHO þ H2O E0 ¼ �0:48 (9)

CO2 + 6H+ + 6e� = CH3OH + H2O (10)

CO2 þ 8Hþ
þ 8e� ! CH42H2O þ H2O E0 ¼ �0:24 (11)

2CO2+ 8H++ 12e� = C2H4 + 2H2O (12)

2CO2 þ 9Hþ
þ 12e� ! C2H5OH þ 3H2O E0

¼ �0:33 (13)

The band gaps of some of the most commonly used photo-

catalysts are shown in Fig. 2 [35–38]. Although some of these

semiconductor photocatalysts such as hematite (Fe2O3) are low

cost and possess suitable band gap energies for visible light

absorption, they suffer from different limitations. Metal chalco-

genides semiconductors e.g., CdS, PbS, CdSe etc., have been

reported as being susceptible to photocorrosion and low stability

especially in aqueous media [31,39]. The addition of sulphide or

sulfite to the contacting solution has been described to suppress

photocorrosion. These semiconductors have also been reported to

show some toxicity [40]. Since semiconductors like WO3, Fe2O3

and SnO2 possess conduction band edge values below the

Fig. 1. Schematic of TiO2 photocatalyzed reaction where CB and VB represents the

conduction band, and valence band, respectively.

Fig. 2. Band gap of some photocatalysts with respect to the redox potential of different chemical species measured at pH of 7. Adapted from Refs. [35–38].
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hydrogen potential and Gupta and Tripathi pointed out the use of

an external electrical bias as a requirement needed to achieve

hydrogen evolution during water splitting [41]. Fe2O3 has also been

reported by Fox and Dulay to show lower photoactivity compared

to TiO2 and ZnO due to corrosion or the formation of short lived

ligand-to-metal or metal-to-ligand charge transfer states [42]. The

formation of Zn(OH)2 on the surface of the semiconductor ZnO

observed from its dissolution in water has been reported by

Bahnemann et al. to cause instability and deactivation over time

[43]. On the other hand, TiO2 appears to be corrosion resistant and

chemically stable [19].

Jeyalakshmi et al. also stated that large band gap semi-

conductors like TiO2 are more suitable for CO2 photoreduction due

to sufficient positive and negative redox potentials in the VB and

CB, respectively, compared to smaller band gap semiconductors

like CdS where the energy levels of either the VB or CB tend to be

unsuitable for water oxidation and/or CO2 photoreduction [44].

The photogenerated electrons and holes may recombine to

generate heat energy or become trapped in surface sites, where

reactions with electron accepting or donating species adsorbed on

the surface of the semiconductor photocatalyst can occur [30,45].

For redox reactions to take place, electron–hole recombination

must be minimized.

Several researchers have studied CO2 photoreduction using

different semiconductors, including single catalysts like TiO2 [46]

and ZrO2 [47], double catalysts like Cu–Fe/TiO2–SiO2 [48] and

Cu–ZnO/Pt–K2Ti6O13 [49], metal and compound oxides such as

CuO [50], LaCoO3 [51], Ga2O3 [52] and ATaO3 where A represents

Na, Li and K [53]. The basic characteristics of an ideal

semiconductor photocatalyst were reviewed by Refs. [13,54–59].

These properties include the presence of a large surface area, cost-

effectiveness, accessibility, resistance to photocorrosion or pro-

duction of toxic by-products and the ability of the redox potentials

of the photogenerated valence band and conduction band to be

positive and negative in order for the electrons to act as an acceptor

and donor, respectively. The most frequently used semiconductors

are ZnO, CdS, TiO2, WO3 and NiO. However, compared to these

semiconductors, TiO2 still remains the most researched semicon-

ductor photocatalyst due to its availability, chemical stability, low

cost, high photocatalytic activity and resistance to corrosion.

1.3. TiO2

The most common crystalline phases of TiO2 are rutile, anatase

and brookite. The bulk properties of the crystalline forms of TiO2

are presented in Table 1. Anatase and rutile have lattice parameters

(a and c) of 0.3733/0.4584 nm and 0.9370/0.2953 nm, respectively,

in the unit cell based on the body centered tetragonal structure.

The anatase form is the most suitable for photocatalytic reactions

due to its larger surface area, stability and higher activity compared

to the rutile form [60–63]. The brookite form is not commonly

accessible, difficult to synthesize and has not been proved for

photocatalytic reactions [64], [65]. Bouras et al. reported that

optimal photocatalytic efficiency can be obtained from a mixture of

anatase with a small percentage of rutile through a synergistic

effect between the two crystalline phases as electron hole

recombination is prevented by the creation of energy wells which

serve as an electron trap formed from the lower band gap of rutile

[62]. Although TiO2 has several unique features, its use is limited

due to its large band gap (see Table 1); as it can only be activated by

ultraviolet light which represents 2–5% of sunlight [54,66]. Since

visible light accounts for 45% of the solar spectrum [51,67], there is

a need to develop titania based photocatalysts which are active

under the visible light spectrum.

2. Modified TiO2 catalysts

Since the time scale of electron–hole recombination of TiO2 has

been reported to be higher than the desirable redox reactions [33],

it is crucial to modify the physicochemical properties of TiO2 to

improve process efficiency. Suitable modification of the optical and

electronic properties of TiO2 results in not only the reduction of the

band width via the incorporation of addition energy levels but

increased lifetime of the photogenerated electrons and holes via

effective charge carrier separation and suppression of electron–

hole recombination. Furthermore, the textural properties such as

the surface and bulk crystal structure, particle size and morpholo-

gy can also be modified. The photocatalytic activity of TiO2 for

visible light can be increased by using organic and inorganic

compounds as photosensitizers (dye sensitization), coupling

semiconductors of different energy levels or doping with metals

or non-metals to suppress recombination rate and thus increasing

quantum yield [54,56,68,69]. Table 2 highlights a summary of

literature on CO2 photoreduction using TiO2 modifications

[20,22,25,70–121]. All these strategies are described below.

2.1. Dye sensitization

Dye sensitization is a means of increasing absorption toward

the visible light region through the inducement of the photo-

excited dye molecule [19,56,122,123]. Various dyes which harvest

visible light that have been used as sensitizers include rhodamine

B, porphyrins, thionine, rose bengal, erythrosine B etc. [124–126].

Electrons are transferred from the dye molecule to the conduction

band of the semiconductor when the energy level of the dye

molecule was more negative than the semiconductor. Fig. 3 and

Table 1

Structural properties of crystalline structures of TiO2.

Properties Crystalline forms

Anatase Rutile Brookite

Crystalline structure Tetragonal Tetragonal Rhombohedral

Lattice constants (nm) a = b = 0.3733

c = 0.9370

a = b = 0.4584

c = 0.2953

a = 0.5436

b = 0.9166

c = 0.5135

Bravais lattice Simple, Body centred Simple, body centred Simple

Density (g/cm�3) 3.83 4.24 4.17

Melting point (�C) Turning into rutile 1870 Turning into rutile

Boiling point (�C) 2927a – –

Band gap (eV) 3.2 3.0 –

Refractive index (ng) 2.5688 2.9467 2.8090

Standard heat capacity, Cop 55.52 55.60 –

Dielectric constant 55 110–117 78

a Pressure at pO2 is 101.325 KPa.
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Table 2

Modifications of TiO2 for CO2 photoreduction.

Modifications Photocatalyst Light source Reductant Products References

Dye sensitization Dye sensitized (perylene diimide derivatives) Pt

impregnated on TiO2

75 W daylight lamp H2O 0.74 mmol/gcatal CH4 [70]

N3 dye (RuII(2,20-bipyridyl-4,40-dicarboxylate)2–Cu

(0.5 wt%)–Fe (0.5 wt%)/TiO2

Solar concentrator H2O vapor 0.617 mmol/gcatalh CH4 [71]

Ru/RuOx sensitized TiO2 Solar simulator H2O 900 mL h�1 CH4 [72]

N719/TiO2 300 W Xe lamp H2O/2 M NaOH 0.1781 mmol/cm2 CH3OH

0.1292 mmol/cm2 CH2O

[73]

Semiconductor

coupling

CdSe quantum dot (QD)-Pt/TiO2 films 300 W Xe arc lamp,

�100 mW/cm2

H2O 48 ppmg�1h�1 CH4,

3.3 ppmg�1h�1 CH3OH

[74]

23.2 wt% AgBr–TiO2 150 W Xe lamp 0.2 M KHCO3 128.56 mmol g CH4

77.87 mmol g CH3OH

13.28 mmol g C2H5OH

32.14 mmol g CO

[75]

PdS quantum dot (QD)-Cu/TiO2 300 W Xe lamp H2O 0.82 mmol g�1h�1 CO

0.58 mmol g�1h�1 CH4

0.31 mmol g�1h�1 C2H6

[76]

CdS/TiO2 nanotubes

Bi2S3/TiO2 nanotubes

500 W Xe lamp 0.8 g NaOH

2.52 g Na2SO3

159.5 mmol g/catal CH3OH

224.6 mmol g/catal CH3OH

[77]

CeO2/TiO2 SBA-15 300 W Xe lamp H2O <12mmol/g catal CH4 [78]

45 wt% CdS/TiO2 125 W Hg lamp H2O �16 mmol g/catal CH3OH

�3 mmol g/catal CH3OH

[79]

TiO2/ZrO2 8 W Hg lamp 0.2 mpl/L NaOH �16 mmol g /catal CH4

�175 mmol g /catal H2

[80]

GaP/TiO2 1500 W Xe lamp H2O 118 mM/gcatal CH4 [81]

Metal doping 0.5 wt% Ru–TiO2 100 W Hg lamp 1 M 2-propanol 200 mmolg-Ti�1 CH4

�250 mmol g-Ti�1 H2

[82]

TiO2 pellets UVC lamp H2O vapor 0.16 mmol/h H2

0.25 mmol/h CH4

[83]

1 wt% Ag–TiO2 Solar concentrator H2O vapor 4.12 mmol/gcatalh CH3OH [84,85]

3 wt% CuO–TiO2 6 (10 W) UV lamps,

2450 mW/cm2

H2O 2655 mmol/gcatal CH3OH [20,86]

2 wt% Cu–TiO2 8 W Hg lamp 0.2 M NaOH 1000 mmol/gcatal CH3OH

�20 mmol O2

[87,88]

TiO2 pellets 3 UVC lamps H2O 0.25 mmol h�1 CH4 [89]

5.2 wt% Ag–TiO2 300 W Hg lamp 0.2 M NaOH >10 mmol/gcatal CH4+ CH3OH [90]

0.15% Pt–TiO2 nanotubes 8 W Hg lamp H2O 4.8 mmol h�1/g Ti�1 CH4 [91]

Pd/RuO2/TiO2 450 W Xe short arc lamp 0.05 M NaOH

0.05 M Na2SO3

72 ppm HCOO� [92]

2 wt% Pd–TiO2 500 W Hg lamp H2O 24.7 � 10�8mol CH4 [22]

2 wt% Cu–TiO2-SBA 15 400 W halide lamp 0.1 M NaOH and

H2O

627 mmol g�1h�1 CH4 [93]

0.5 wt% Cu/TiO2–SiO2 Xe arc lamp, 2.4 mW/cm2 H2O 60 mmol g�1h�1 CH4,

10 mmol g�1h�1 CO

[94]

Kaolinite/TiO2 8 W Hg lamp 0.2 M NaOH 4.5 mmol gcatal CH4,

2.5 mmol gcatal CO,

�5 mmol gcatal H2

[95]

0.1 wt% Y–TiO2 300 W Hg lamp 0.2 M NaOH 384.62 mmol gcatal HCHO [96]

1 wt% and 3 wt% Ce–TiO2 SBA 15 450 W Xe lamp H2O 1 mmol g�1 CO [97]

3 wt% Ag–TiO2 8 W Hg lamp H2O �100 mmol/gcatal H2

�6 mmol/gcatal CH4

�14 mmol/gcatal C3H6

[98]

Ni–TiO2 (0.1 mol%) 6 (3W/cm2) UV lamps H2O 14 mmolgcatal CH4 [99]

La2O3/TiO2 300 W Xe Lamp H2O 4.57 mmol CH4 [100]

CeF3–TiO2 500 W Xe lamp H2O 162 mmolgcatal CH3OH [101]

1.5 wt% NiO–TiO2 200 W Hg lamp H2O 19.51 mmol/gcatalh CH3OH [102]

8.7 at% Pt/9.6 at% Cu–TiO2 AM 1.5G solar simulator H2O >180 ppm/cm2h H2

49 ppm/cm2h CH4

<25ppm/cm2h CO

[103]

Ce–TiO2 8 W Hg lamp 0.2 N NaOH 16 mmol/gcatal CH4

750 mmol/gcatal H2

[104]

Pt/TiO2 500 W Xe Lamp H2O 389.2 ppm H2

277.2 ppm CH4

12.4 ppm C2H6

785.3 ppm O2

[105]

Ti-KIT-6/Si-Ti = 100 300 W UV lamp H2O 4.14 mmol/gcatalh CH4

2.55 mmol/gcatalh H2

1.45 mmol/gcatalh CO

[106]

Pt/SrTiO3–Rh/Pt/CuAlGaO4

WO3

AM 1.5G 2 mM FeCl2/FeCl3 0.52 mmol CH3OH

0.12 mmol H2

�5 mmol O2

[107]

Pt/SrTiO3–Rh/Pt/CuAlGaO4

WO3

AM 1.5G 2 mM FeCl2/FeCl3 8 mmol/g CH3OH

�1 mmol/g H2

12 mmol/g O2

[108]

Degussa P25 TiO2 1000 W Xe lamp H2O [109]
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Eqs. (14)–(16) illustrate the reactions involved, including photo-

excitation, injection of electrons and regeneration of dyes,

respectively [122].

dye !hndye� (14)

dye !TiO2dye
þ

þe� (15)

dyeþ þ e� ! dye (16)

As shown in Fig. 3, the transferred electron reduces the organic

electron acceptor (EA) adsorbed on the surface. An ideal

photosensitizer must undergo slow backward reactions and fast

electron injection to attain high efficiency [122]. The

photosensitizer must also have high absorption spectrum in the

visible light and infrared regions, with the excitation state having a

long lifetime as well [69,127,128]. The rate of electron injection and

back electron transfer reactions from the dye molecule to the

photocatalyst depend on the characteristics of the dye molecule

and the properties of TiO2 and its interactions with the dye. Gupta

and Tripathi [41] reported TiO2 as an ideal semiconductor for dye

sensitized solar cells due to its stability, high refractive index which

facilitates increased light absorption, high dielectric constant for

electrostatic shielding of the injected electron from the dye

molecule to the electrolyte and suitable conduction band edge

below the energy level of several dyes. Grätzel et al. conducted CO2

photoreduction using Ru/RuOx sensitized TiO2 and obtained

approximately 900 mL h�1 of methane using a solar simulator

with light intensity of 0.08 W cm�2 [72]. Ozcan et al. also

demonstrated the effect of dye sensitized (perylene diimide

derivatives) Pt impregnated on TiO2 films on CO2 photoreduction

[70]. It was observed that methane production rate was enhanced

to a maximum value of 0.74 mmol/gcatal by adsorbing dye

molecules to Pt–TiO2. When Pt was not loaded on TiO2 films,

inactivity was observed in the presence of dye sensitizers. The

N3 dye (RuII(2,20-bipyridyl-4,40-dicarboxylate)2–(NCS)2) coated

with Cu–Fe/TiO2 utilized by Nguyen et al. was found to be capable

of visible light absorption, producing 0.617 mmol/gcatalh of CH4

after 5.5 h [71]. Data comparison between this sample and one

without dye showed the stability of N3 dye sample over a wide

light spectrum. Yuan et al. investigated the photoreduction of CO2

with H2O using a Cu(I) dye sensitized TiO2 based system [129]. The

introduction of the Cu(I) bipyridine complex was reported to be

beneficial for charge separation in TiO2 under full sun illumination

(AM 1.5G). Maximum CH4 production rate of ca. 7 mmol/g�1 was

observed following 24 h of visible light irradiation with no CH4

detected when the pure Cu(I) dye complex was used. However,

instability, light and thermal degradation of dye molecules and

Table 2 (Continued)

Modifications Photocatalyst Light source Reductant Products References

0.1 mmol/h CH4

1.4 mmol/h H2

2.7 mmol/h CO

Ag/BaLa4Ti4O15 400 W Hg lamp H2O 0.7 mmol HCOOH

10 mmol H2

22 mmol CO

16 mmol O2

[110]

CeO2/TiO2 500 W Xe lamp H2O 2.75 mmol/g h H2/CH4

1.28 mmol/g h O2

[111]

Pt/MgO/TiO2 nanotubes 300 W Hg lamp 0.1 mol/L KHCO3 100.22 ppm/h cm2 CH4

10.4 ppm/h cm2 CO

[112]

In/TiO2 500 W Hg lamp H2O 244 mmolg�1h�1 CH4

81 mmolg�1h�1 CO

[113]

TiO2 (20%)/KIT6 300 W lamp H2O 44.56 mmol/g H2

44.56 mmol/g CH4

1.09 mmol/g CH3OH

120.54 mmol/g CO

[114]

Non-metal

doping

N doped TiO2/Ni 15 W UV lamp/

incandescent lamp

0.2 mol/L NaOH

and Na2SO3

482 mmolgcatal CH3OH [115]

N doped TiO2/Pt–Cu AM 1.5 outdoor sunlight,

75–102 mW/cm2

H2O 111 ppm/cm2h (CO,H2, etc.) [116]

N doped TiO2 nanotubes 500 W tungsten/ halogen

lamp

0.1 N NaOH 1132.6 mmolgcatal CH3OH

921.6 mmolgcatal HCHO

12475.8 mmolgcatal HCOOH

[117]

C doped TiO2 175 W Hg lamp Na2SO3 2610.98 mmolgcatal HCOOH [118]

I doped TiO2 450 W Xe lamp H2O 2.4 mmolg�1h�1 CO [25]

TiO2/N-100 – H2O 23 mmolg�1h�1 CH3OH [119]

g-C3N4–N–TiO2 (CT–70) 300 W Xe Lamp H2O 14.73 mmol CO [120]

N–TiO2/spirulina 13 W lamp H2O 144.99 mmol/g H2

0.48 mmol/g CH4

0.12 mmol/g C2H4

0.17 mmol/g C2H6

[121]

Fig. 3. Excitation steps with a photosensitizer, where A and D represent the

electron acceptor and electron donor, respectively.

22 O. Ola, M.M. Maroto-Valer / Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16–42



disposal of undesired intermediates formed during reactions have

been reported as a major drawbacks associated with dye

sensitization [41,74,130].

2.2. Coupling of semiconductors

During heterojunction formation in semiconductor based

photocatalysts, the direction of transfer of photogenerated charge

carriers from the coupled semiconductors will depend on the

position of the CB and VB. TiO2 can be coupled with semi-

conductors via direct or indirect Z scheme. In direct Z-scheme,

spatial charge separation occurs when electrons and holes are

injected to CB and VB of different semiconductors in opposite

directions (Fig. 4A), while charge separation does not occur in

indirect Z-scheme due to electron and hole transfer occurring in

the same direction for different semiconductors (Fig. 4B)

[122,131–133]. The coupling of these semiconductors result in

the balance of their Fermi levels (i.e., energy midway between the

conduction and the valence band edges) such that electron flow is

from the semiconductor with the higher Fermi level to the one

with the lower Fermi level [134]. Excess negative charges are

created in the semiconductor with the lower Fermi level while

excess positive charges are created in the semiconductor with the

highest Fermi level due to charge transfer. Thus, coupled semi-

conductors benefit from extended band widths in the visible light

and increased charge separation. Sigmund et al. [134] reported that

the injection of electrons or holes and their direction is dependent

on the Fermi level and the band gap combination of the

semiconductors. The requirements for successful coupling of

semiconductors are efficient and fast electron injection; ability

of the small band gap semiconductor to be excited by visible light

with its conduction band being more negative than that of the

other semiconductor; proper positioning of the Fermi energy level

and insusceptibility of the semiconductors to photocorrosion

[56,134].

Wang et al. [74] conducted studies of CO2 photocatalytic

reduction over CdSe quantum dot (QD) loaded with Pt impregnat-

ed TiO2 films. Typical product yields of 48 ppm g�1h�1 (methane)

and 3.3 ppm g�1h�1 (methanol) were observed in gas phase using

visible light irradiation of 420 nm. They observed that charge

injection into TiO2 was facilitated by the shift of the conduction

band of CdSe into higher energy which initiated CO2 reduction.

Process efficiency was also increased via charge separation due to

electron transfer from CdSe to TiO2. No activity was recorded when

both semiconductors were used independently and using the same

wavelength of light. Recently, ordered mesoporous silica SBA-15/

TiO2 composites with varying ratios of CeO2 were synthesized by

Wang et al. [78] for the reduction of CO2with H2O under simulated

solar irradiation. The addition of CeO2 was found to not only

influence the light harvesting properties of TiO2 toward the visible

Fig. 4. Coupling of TiO2 with semiconductors (SC) illustrating direct (A) and indirect (B) Z-scheme.
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light region but enhance the photocatalytic performance as well.

The improved performance was ascribed to the separation of

photogenerated charge carriers induced from the drift of TiO2

electrons to CeO2.

Li et al. [77] utilized either CdS or Bi2S3 in the modification of

the properties of TiO2 nanotubes for CO2 reduction under visible

light irradiation. The addition of either semiconductor was found

to enhance visible light absorbance and photocatalytic activity of

TiO2 nanotubes, with Bi2S3 exhibiting superior activity due to

better surface area and CO2 adsorption. Optimum methanol yields

of 224.6 mmol/gcatal and 159.5 mmol/gcatal was observed using TiO2

nanotubes coated with Bi2S3 and CdS, respectively. Heterojunction

formation between the semiconductors was reported to play a

crucial role in prolonging the lifetime of charge carriers and

preventing electron/hole recombination. Despite its promising

results, this technique is not widely applied due to its drawbacks.

These include photo-corrosion in aqueous phase which affects the

durability and stability of the catalyst through leaching out of

dopant [135,136] and difficulty in finding appropriate semicon-

ductor pairs such that recombination of charge carriers can be

reduced [137].

2.3. Metal and non-metal modifications

The optical and electrochemical properties of TiO2 can be

enhanced by the addition of metal and non-metal ion(s). The band

gap and properties of TiO2 have been reported to be modified when

metals or non-metals occupy non-lattice sites (i.e. interstitial),

replace Ti in the substitutional sites or form aggregates on the

surface of TiO2 [26]. The redox potential of photogenerated charge

carriers and visible light absorption will be determined by the

spectral distribution of the modified photocatalysts, which is

invariably determined by their chemical states [137]. Apart from

these metals possessing their own catalytic activity, they also serve

as a source of charge-carrier traps which can increase the life span

of separated electron–hole pairs, and thus enhance the efficiency

and product selectivity for CO2 photoreduction [13,32].

Whether the metal ions are present in the lattice or TiO2 surface

is dependent on two key factors: the preparation procedure where

the amount and homogeneity of the metal ions in its host oxide are

key parameters and the firing temperatures to which the samples

have been subjected. Diffusion of the metal ions in TiO2 lattice is

influenced by temperature; with higher temperatures favouring

diffusion due to high thermal energy of the atoms. The mecha-

nisms for metal and non-metal modification are described below.

2.3.1. Metal doping

Neamen [138] described doping as the process of adding foreign

or impurity atoms into the crystal lattice of a semiconductor

material. Alterations to the properties of the semiconductor can

occur when controlled amounts of dopants are added to the

semiconductor. Fig. 5 shows the schematic representation of these

lattice defects. When these impurity atoms are located at normal

lattice sites i.e., substitution of the host atom occurs, they are

referred to as substitutional doping. Substitutional doping can

occur when one or more of the following criteria are met: the

differences in atomic radii of the atom types are less than 15%,

dopant and host metals have similar crystal structures and

electronegativity or comparable valences to ensure solubility

[139,140]. Conversely, when these impurity atoms are present

between normal lattice sites, they are referred to as interstitial

doping i.e., the host atom dislodged from its normal lattice sites is

forced into voids between atoms [138,139]. The likelihood of an

atom occupying an interstitial site can be predicted by comparison

of the radii of the interstitial dopant to the host metal [140]. The

greater difference between these atomic radii results in the

dopants positioning itself in an interstitial site. The ionic radius

ratio of the cation/anion (r+/r�) determines the preference of

cations to occupy certain interstitial sites [140]. Interstitial sites

may consist of cations with coordination numbers such as 4

(tetrahedral), 6 (octahedral) etc., based on the radius ratio of these

ions. As the values of the ionic radius ratio increase, the number of

anions packed around the cation increase. In tetrahedral holes, the

cations are packed between planes of anions in close-packed

structures if the ionic radius ratio falls within 0.225 and 0.414.

Whilst the radius ratio falls within 0.414 and 0.732, if they are

packed in octahedral holes [138].

According to Pagot and Clerjaud [141] and Seebauer and Kratzer

[142], the local distortion of the crystal lattice can occur in

substitutional and interstitial doping due to the difference in the

atomic radii of the dopants compared with the host atoms and

their chemical affinity with their surrounding atoms. In these

lattice defects, the change in electric properties is caused by the

disruption of the chemical bonding between the atoms and

distortion of the geometric arrangement of atoms [138]. Vacancies

may be created during the catalyst preparation process due to

impurity atoms hopping from one vacancy to the other, thus

remaining permanently in the substitutional lattice sites after

calcination. Dopants can be introduced into sol–gel derived

samples at molecular level through the mixing of titanium

precursors with soluble dopant compounds. The introduction of

dopants has been found to alter the degree of crystallinity and

phase transformation, thereby, subsequently altering the peak

heights, areas and relative intensities [143]. Phase transformation

can be facilitated or inhibited by substitutional dopants when

cations enter the anatase lattice and cause an increase or decrease

in the level of oxygen vacancies through valence or reduction/

oxidation effects. This leads to the subsequent rearrangement of

atoms in the lattice of TiO2 through the substitution of Ti4+ with

cations. Conversely, the formation of Ti interstitials may distort the

anatase lattice thus restricting the lattice contraction involved in

the phase transformation to rutile [143]. The reactions of metal

doping are described by the following equations, where Mn

represents the metal ion dopant [56].

Mn+ + hn ! M(n+1) + e�CB (17)

Mn+ + hn ! M(n�1) + h+
VB (18)

Mn+ + eCB
� M(n�1)+ as electron trap (19)

Mn+ + h+
VB M(n+1)+ as hole trap (20)

Fig. 5. Two dimensional representation of a single TiO2 crystal lattice showing

substitutional and interstitial doping.
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Eqs. (17) and (18) depict the formation of energy levels in the band

gap of TiO2, while (19) and (20) represent the transfer of electrons

between TiO2 and metal ions. However, the energy level (Mn

+/M(n�1)+) must be less negative than conduction band (CB) of

TiO2, while the energy level (Mn+/M(n+1)+) must be less positive

than valence band of TiO2. The influence of iodine doping on the

phase transformation and photocatalytic activity of TiO2 for CO2

reduction was evaluated by Ref. [25]. The anatase fraction of their

iodine doped samples was found to increase with increased iodine

concentration and calcination temperature while the brookite

fraction was found to decrease under the aforementioned

conditions. They attributed the optimal visible light activity of

their 5 wt% I–TiO2, calcined at 648 K sample to combinational

effect of increased surface area, improved visible light absorption

and enhanced charge separation from the substitution of Ti4+ with

I5+ which led to the generation of titania surface states trapping

electrons and suppressing recombination. The incorporation of

substitutional or interstitial metal dopants in the titania structure

generates trap levels in the band gap and thus modifying the band

gap after doping. As shown in Fig. 6, the trap levels usually in the

form of narrow bands are located below the lower conduction band

edge. After modification, required energy level becomes hn 	 (Eg
� Et) where Et represents lower edge of the trap band level as

opposed to hn 	 Eg which is required for photon excitation before

modification [134]. Consequently, electrons excited at these levels

become trapped, with the holes having enough time for OH�

generation such that electron/hole recombination is suppressed

and overall process efficiency improved. The choice of metal

dopant is determined by the ability of the metal to exhibit multiple

oxidation states, possess ionic radii and Mn+/M(n+1) energy levels

closer to Ti4+ and the capacity to trap either electrons or holes.

The type of metal dopant added will determine whether the

dominant charge carrier in the semiconductor will be either holes

in the valence band or electron in the conduction band [138]. Koci

et al. [12] reported doping as a means of increasing the level of

holes in the band gap to permit the excitation of electrons where

mobile holes are created in the valence band (p-type) or addition of

an energy level fully occupied with electrons in the band gap which

accelerates excitation into the conduction band (n-type). Carp et al.

[19] described n-type and p-type dopants where the former acts as

a donor centre of electrons and the latter conversely acts as

acceptor centers of holes. Recombination centers are formed in p-

type dopant as they have an affinity for hole formation once

negatively charged, while electron–hole recombination in n-type

occurs due to increase in concentration of conduction electrons.

They also reported that charge separation could be improved by co-

doping to produce an overall beneficial effect.

Extensive studies on the improvement of the electronic

structure of TiO2 have been performed by doping with high

energy transition metals by several researchers [130,144–147].

Their results established that the amount and type of metal dopant

as well as the method of synthesis were key factors in determining

photocatalytic activity and the extent of red shift that can be

achieved in the visible light region. Comparisons between the

absorption spectra of metal doped TiO2 synthesized by chemical

doping (impregnation) and metal ion implantation were made.

Samples synthesized by the latter method exhibited shifts in their

absorption band toward visible light region (�600 nm) caused by

intense distance interaction between the metal ion and TiO2. In

contrast, the samples prepared by the impregnation method

experienced no shift, but absorption shoulders in the UV/Vis

spectra. This was caused by the creation of impurity energy levels

with the amount of metal ions dopant used determining their

intensity.

The electronic structure of TiO2 doped with transition metals

(Cr, Fe, Co, V, Ni and Mn) was also examined by Umebayashi et al.

[148] using ab initio band gap calculations based on density

functional theory. According to their work, a shift of the localized

level to a lower energy was observed based on the increase of the

atomic number of the dopant. Incorporation of metal or its oxide

into TiO2 structure has been reported to cause an increase in the

recombination rate between photogenerated electrons and holes

via the impurity energy level. Therefore, doping can be effective if

the metal ions are placed near the photocatalyst surface where

efficient charge transfer of the trapped electrons and holes can

occur [41].

In the field of CO2 photoreduction, Nie et al. [149] presented the

formation of smaller particles as a way by which doping can alter

recombination rate. As smaller particles have large surface to

volume ratio, the migratory path is shorter such that the

probability of the generated electrons and holes from the bulk

undergoing recombination is reduced before reaching the surface.

The dopant loading level plays a key role in CO2 photocatalytic

activity as increased product yield can be obtained due to red shift

towards visible light [144]. However, doping at high concen-

trations results in the metal ions becoming recombination centres.

Gupta and Tripathi [41] further explained that increasing doping

concentration results in a narrowed space charge layer where

electron–hole pairs within this region can be efficiently separated

by the electric field before recombination. However, exceeding the

optimum doping concentration results in an extremely narrow

space charge layer such that light penetration depth exceeds the

width of this space charge layer. Consequently, recombination rate

increases due to the lack of a driving force to separate them.

Koci et al. [150] used different loading ratios of Ag/TiO2 and

observed an increase in product yield of methane and methanol,

with 7% Ag/TiO2 showing the highest product yield compared to

lower loading ratios of 1%, 3% and 5%. Conversely, Sasirekha et al.

[82] obtained an optimal Ru loading value of 0.5 wt%, after which

photocatalytic activity decreased for 1.0 wt% due to increased

electron–hole recombination. Slamet et al. [20,86] also reported

that Cu dopant in excess of 3 wt% could reduce photocatalytic

activity by reducing the depth of light penetration, and thus

inhibiting interfacial charge transfer. When the doping content of

Fe3+ exceeded 0.03 wt%, Xin et al. [151] recorded a decrease in

photocatalytic activity due to electron–hole recombination, while

the opposite was observed for lower loading content (<0.03 wt%).

Regarding product formation, extensive studies into the use of

doped TiO2 in CO2 photocatalysis have been conducted using

various metals such as chromium [152], copper [86,153], silver

[154], platinum [91], palladium [155] and ruthenium [92]. Several

Fig. 6. Band structure of titania (a) before doping and (b) after doping where Eg,Ef,

F, x, and s represent the band gap energy, Fermi level, work function, electron

affinity and semiconductor. Reprinted from Ref. [134] with permission.
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primary products with their yields includes methane

(4.8 mmol h�1/gTi
�1 [91], methanol (2655 mmol/gcatal [86] and

4.12 mmol/gcatal [84] and formate (72.3 ppm [92]), respectively

have been obtained. However, thermal instability and increase in

recombination centers are drawbacks linked with this process

[24,156].

2.3.2. Metal semiconductor modification

The overall efficiency and surface properties of a semiconductor

can be altered by the addition of a metal which is not chemically

bonded to TiO2 [134]. These metals act as an electron scavenger and

thus facilitate the generation of holes. Ren and Valsaraj [157] and

Usubharatana et al. [13] described the addition of metals as a

source of charge-carrier traps which increased the life span of

separated electron–hole pairs and enhanced reaction rate. Fig. 7

illustrates the band structure of TiO2 before and after contact with

a metal. As shown in Fig. 7, the comparison of a semiconductor

with work function Fs to a metal with work function Fm > Fs

results in the Fermi level of the semiconductor, EFs being higher

than the Fermi level of the metal EFm. When this metal is brought in

contact with TiO2 (Fig. 7b), electrons will flow from the

semiconductor to the metal until the two Fermi energy levels

reach an equilibrium. This results in an upward band bending

formed due to an excess of positive charges in TiO2 generated from

the migrating electrons [158]. Consequently, this bending at the

metal–semiconductor interface creates a small barrier known as

the Schottky barrier [32]. The Schottky barrier serves as an electron

trap which prevents migrating electrons from crossing back to the

semiconductor and thus preventing recombination. The schematic

in Fig. 8 also illustrates the mechanism of a metal modified

semiconductor for photocatalysis where recombination is

suppressed by the Schottky barrier of the metal in contact with

the surface of the semiconductor.

As a result of this trapping mechanism, the photogenerated

electrons then diffuse to the surface of the adsorbed species where

reduction takes place. Photoreactivity can be negatively influenced

by either a high concentration of metallic islands on the

semiconductor surface or an enhancement of their size [158].

When this occurs, reduced surface illumination of catalysts and

increased recombination rate is observed. Krejcikova et al. [90]

conducted CO2 reduction studies using different loading ratios of

Ag/TiO2and observed increased product yield of methane in the gas

phase and methanol in the liquid phase with increasing Ag

concentration under 254 nm UV irradiation over a 24 h period. The

increase in product yield compared to both commercial and

synthesized pure TiO2 was attributed to higher Fermi level of TiO2

and Schottky barrier formation which facilitated electron transfer

from the TiO2 conduction band to Ag particles and improved

charge separation, respectively. Tseng et al. [87] synthesized Cu

loaded TiO2 nanoparticles for the photocatalytic reduction of CO2

under UV irradiation using NaOH as a reductant. CH3OH

production was found to increase with increasing Cu concentra-

tion, after which a markedly decrease was observed when the

loading ratio exceeded 2 wt%. Optimum CH3OH production of

118 mmol/g was obtained using the 2 wt% Cu–TiO2 sample

following 6 h of UV illumination. The formation of the Schottky

barrier between Cu and TiO2 and the electric charge redistribution

via semiconductor–metal contact was reported to facilitate

electron trapping and thus promoting improved photo-efficiency.

Other than Schottky barrier, loading of noble metals such as Ag

[159], Cu and Au [160] on the TiO2 can enhance visible light

absorption via localized surface plasmonic resonance (SPR) effect.

This phenomenon can occur either by collective oscillation of

valence electrons in plasmonic nanostructures in resonance with

electric field part of inbound radiation or metallic elements

creating trap sites that propagates light within the semiconducting

material [161]. Morphology and size of the plasmonic nano-

structures influence the SPR frequency and intensity as well as the

resonant wavelength. Gas-phase photochemical reduction of CO2

using mesoporous TiO2 modified with bimetallic Au/Cu nano-

structures was studied for CH4 production under UV irradiation

[162]. The bimetallic nanocomposites were reported to exhibit

higher activity (CH4 yield of �11 mmol/gcatal) compared to Au/TiO2

and Cu/TiO2 (CH4 yield <4 mmol/gcatal).

2.3.3. Non-metal modification

Doping with non-metals creates heteroatomic surface struc-

tures and can modify the properties and activity of TiO2 toward

Fig. 7. Band structure of titania (a) before contact and (b) after contact with a metal,

where the Schottky barrier is formed. (Fm and Ef
int represent the metal work

function and Fermi level if titania is an intrinsic semiconductor respectively.

Reprinted from Ref. [134] with permission.

Fig. 8. Metal modified semiconductor photocatalyst.

26 O. Ola, M.M. Maroto-Valer / Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16–42



visible light [137]. Some of the non-metals that have been used

include nitrogen (N) [24], carbon (C) [118], sulphur (S) [163,164],

fluorine (F) [165]. Asahi et al. [24] and Asahi and Morikawa [156]

described doping with anions as being more efficient for photo-

catalytic activity compared to cations because they do not form

recombination centers caused by the presence of d states deep in

the band gap of TiO2. Liu et al. [137] reported that effective band

gap narrowing can only occur by anion dopants if the non-metal

has a comparable radius with O atoms and lower electro-

negativities than O, with the aim of facilitating uniform distribu-

tion and elevating the valence band.

The band gap energy of TiO2 has been reported to be narrowed

by a mixture of p states of the non-metal dopant with the O 2p

states of TiO2 via substitutional or interstitial doping [24,156].

Conversely, Valentin et al. [166,167] proposed that substitutional

doping with N results in the formation of localized levels within

the band gap, with the catalyst synthesis conditions determining

whether either interstitial or substitutional nitrogen exists in the

lattice of TiO2. On the other hand, Serpone et al. [168] attributed

the origin of visible light absorption in their titania samples to the

existence of color centers instead of band gap narrowing via

mixing of states, as proposed by Liu et al. [137].

First principle calculations by Asahi et al. [24] using anions (F, N,

P, S and C) indicated the superior activity of N owing to the p states

influencing band gap narrowing through combination with O 2p

states. Although S doping showed similar photoresponse as N, they

found the ionic radius of S too bulky to be integrated into the lattice

of TiO2. Zhang et al. [25] tested iodine doped TiO2 synthesized by

the hydrothermal method and found that the calcination

temperature influenced the rate of CO2 photoreduction under

visible light irradiation. They observed that increased calcination

led to reduced surface area. An optimal yield of CO (2.4 mmol g�1

h�1) was observed for the 10 wt% sample calcined at 375 �C. Xue

et al. [118] examined carbon doping for CO2 photoreduction using

citric acid as the carbon source and Na2SO3 as the reductant. After

6 h irradiation using high pressure 175W mercury lamp,

2610.98 mmol/gcatal of CH2O2 was produced. This was significantly

higher than the undoped TiO2.

Compared to other non-metals, N doped TiO2 (TiO2�xNx) has

been extensively studied because of its photoactivity toward

visible light [137,169]. Zhao et al. [117] prepared N doped TiO2

nanotubes via hydrothermal method at different calcination

temperatures. N doping into TiO2 nanotube framework was found

to be effective for increasing the photoactivity of TiO2 in the visible

light region compared to pure TiO2 and N doped TiO2. Optimum

total organic carbon content (sum of the product yields of

formaldehyde, methanol and formic acid) of 14,530 mmol/gcatal
was observed using a N–TiO2 nanotube sample calcined at 500 �C

for CO2 reduction with 0.1 N NaOH as reductant following 12 h of

light irradiation.

Since its quantum efficiency of anion doping is still low,

investigations have been conducted by codoping with metals to

enhance the reaction rate [170,171]. Several transition metals such

as Pd, Fe and Pt have been used in the photodegradation of

pollutants and dyes [172–174]. The results of these researchers

showed the increased photocatalytic activity and absorbance of

visible light by the metal ion modified TiO2�xNx compared to bare

TiO2�xNx. CO2 photoreduction studies have been carried out by

Varghese et al. [116] using N–TiO2 nanotube arrays with metals (Pt

and Cu) under outdoor AM 1.5 sunlight. They found the optimal

nitrogen concentration to be 0.75 atom% with Cu doping generat-

ing greater hydrocarbon product yield of 104 ppm/ (cm2h)

compared to Pt doping. As both Pt and Cu have varying effects

toward product selectivity; the combination of both metals

resulted in an optimal yield of 111 ppm/cm2h.

2.3.4. Co-doping

The properties of TiO2 can also be modified via co-doping,

which can be achieved via the combination of metal/metal, non-

metal/metal or non-metal/non-metal pairs. A synergistic effect can

be obtained with an appropriate combination of co-dopants

compared to their single ion doped or undoped TiO2 [128]. During

co-doping, the non-metal can cause a red shift in the visible light

region, while the metal can facilitate the transfer of photo-

generated charge carriers thus suppressing recombination. Apart

from co-dopants facilitating band gap narrowing, their combina-

tion can result in the formation of different heterostructures (i.e.,

different electronic structures) with respect to TiO2 [44]. A

heterostructure consisting of different combinations of non-metal

and metal has the capacity for improved charge separation (metal)

and visible light absorption (non-metal). Factors crucial for

successful co-doping are the selection of the compatible co-

dopants and the method of introducing the dopants which affects

the doping level [44]. Several metallic and non-metallic combi-

nations such as N–I [175], C–vanadium (V) [176] and Ag–V [177]

have been used in the photodegradation of pollutants and dyes.

The results of these researchers showed the increased photo-

catalytic activity and absorbance of visible light by the metal

combinations compared to un-doped and single doped TiO2

systems.

For metallic combinations for CO2 reduction, the catalytic

activity of sol–gel derived Mn–Cu/TiO2 nanocomposites of varying

metal concentrations was evaluated by Richardson et al. [178].

After 24 h of UV irradiation, the photocatalytic activity of CO2 using

0.1 M NaOH and 0.25 M KHCO3was found to be promoted based on

the coupling of Mn and Cu doped titania photocatalysts compared

to either commercial TiO2–P25 or single metal loaded samples.

Improved results were due to electron transport to the dopant

which suppressed electron/hole recombination. Maximum CH3OH

yield of 238.6 mmol/gcatal was achieved using the 0.22 wt%

Mn/0.78 wt% Cu–TiO2 sample. The same trend was observed in a

further study conducted by Richardson et al. [179] using different

sol–gel derived Cu–Ga/TiO2 nanocomposites of varying metal

concentrations. The photocatalytic activity was improved when Cu

and Ga doped photocatalysts were used such that the 0.78 wt%

Cu/0.22 wt% Ga–TiO2 sample gave the maximum HCHO yield of

394 mmol/gcatal when compared to single metal loaded samples or

TiO2–P25. They reported that their optimized results were due to

the rapid transfer of high energy electrons in their catalytic

structures.

For metallic and non-metallic combinations in CO2 reduction,

co-doped N and Ni were introduced onto TiO2 framework for CO2

reduction using 0.2 mol/L of NaOH and Na2SO3 [115]. An increased

red shift toward the visible light was observed using the co-doped

samples compared to pure titania and individually doped samples

of Ni–TiO2 and N–TiO2. An optimal methanol yield of

482 mmol/gcatal was observed after 8 h of UV light irradiation

using the 4 wt% N–6 wt% Ni/TiO2 sample compared to the

methanol yield of the individually doped samples of

245.4 mmol/gcatal of 4 wt% N–TiO2 and 214.4 mmol/gcatal of Ni–

TiO2. They suggested that improved activity was due to the

improved properties (surface area and crystallinity) of the co-

doped samples and the synergy created by the metal (Ni) acting as

an electron trap and the non-metal (N) facilitating increased

visible light absorption.

Li et al. [180] demonstrated that co-doped mesoporous Pt–N/

TiO2 photocatalysts had some inherent advantages over undoped

TiO2. Using the optimum loading ratio of 0.2 wt% Pt for the

synthesis of the co-doped samples under NH3 atmosphere, they

observed increased CH4 evolution rate with increasing nitridation

temperature up to 525 �C. After this temperature was exceeded; a

subsequent decrease in CH4 evolution was observed. Optimal CH4
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production rate of ca. 2.6 mmol/gcatal
�1 was observed using the

0.2 wt% Pt–TiO2 sample when the amount of doped N was 0.84% on

the basis of lattice oxygen atoms under visible light irradiation.

Improved activity under increasing nitridation temperature was

due to the doping of more N atoms in the lattice position of oxygen

in TiO2, which gave rise to improved visible light absorption. Above

the optimum N doping concentration, decreased photocatalytic

activity was observed due to increased defect sites and non-

stoichiometry of the samples.

Co-doped samples were synthesized by Wang et al. [74] using

commercial P25 TiO2 nanoparticles and CdSe quantum dots (QDs).

Pt was further incorporated by the wet impregnation methods

onto the CdSe–TiO2 samples for the experimental investigation for

CO2 reduction using H2O. They found that the use of co-catalyst, Pt

with CdSe quantum dot (QD)-sensitized TiO2 heterostructures led

to increased visible light absorption greater than their individual

photoresponse. No photocatalytic activity was also observed when

either CdSe or Pt doped on TiO2 was employed for CO2 reduction.

However, the synergy between CdSe–Pt/TiO2 heterostructures was

found to influence methane and methanol production under

visible light irradiation with wavelength of 420 nm. In order to

further demonstrate the need for heterostructure formation in co-

doped samples, Wang and co-workers synthesized PbS–Cu/TiO2

samples with different sizes of quantum dots. Although they

achieved optimal activity with the 4 nm co-doped heterostructure,

the drawback of photocorrosion observed from oxidation in their

previous and current studies could not be surmounted. Zhang et al.

[181] prepared co-doped Cu/I–TiO2 samples with different

concentrations using wet impregnation and hydrothermal meth-

ods. Under UV–vis and visible light irradiation, the photoactivity of

the co-modified sample was found to be higher than either of the

single ion modified catalysts (Cu–TiO2/I–TiO2). For CO production

under visible light, the optimum yield of 6.74 mmol/g�1 was

observed on the 1 wt% Cu–10 wt% I–TiO2 while the optimum yield

of 12 mmol/g�1 was observed on the 0.1 wt% Cu–10 wt% I–TiO2

sample under UV–vis light irradiation. The presence of the dopant

was reported to reduce the crystal size and influence visible light

absorption while Cu facilitated charge transfer and enhanced CO2

reduction.

3. Influence of operating parameters on CO2 reduction

The following operating parameters listed below have been

shown to influence CO2 photoreduction: type of reductant,

temperature, pressure and particle size. These factors are discussed

in the following sections.

3.1. Effect of reductant

Several types of reducing agents such as H2O, NaOH, and

C3H7OH amongst others have been tested for CO2 photocatalytic

reduction [182–184]. For CO2 photoreduction using TiO2 to become

economically feasible, readily available sources of hydrogen are

needed. H2O still remains the most naturally abundant source of

hydrogen that is available and inexpensive [13]. Other reductants

such as NH3, pure H2 gas etc., which serve as hydrogen sources are

not readily available as primary feedstock and require prior

preparation [185]. However, the drawback of utilizing water is the

low solubility of CO2 in H2O (2 g/L) and the competition of the CO2

photoreduction process with hydrogen formation, as shown in Eqs.

(4) and (6), which indicate that it is thermodynamically more

favorable to reduce H2O than CO2 [33,186].

Liu et al. [182] investigated the role of solvents on the product

selectivity for CO2 reduction in an attempt to increase reaction

yield. Their results indicated that the use of solvents with low

dielectric constants, such as CCCl4 and CH2Cl2, led to CO2
– anion

radicals being strongly absorbed on Ti sites due to the anions

showing little solubility in these solvents of low polarity and

therefore, CO was the major product observed during this reaction.

When a high dielectric solvent such as H2O was used, CO2
� – anion

radicals were greatly stabilized by the solvents which led to weak

interactions with the surface of the photocatalyst, and thus

formate was observed, as the main product via the reaction of a

proton with the carbon atom of the CO2
.– anion radical.

Zhao et al. [187] employed titania supported cobalt phthalocy-

anine (CoPc) nanoparticles for CO2 reduction in either NaOH or

Na2SO3 solutions. Maximum production of formic acid and

formaldehyde was observed at concentration of 0.15 M due to

increased solubility of CO2 in NaOH and the OH� ions produced

from NaOH acting as strong hole scavengers during the OH radical

formation. They further explained that electron/hole recombina-

tion could be suppressed through the longer decay time of

electrons, since the holes are preoccupied in HCO3
� formation in

the CO2 saturated system. Further addition of an optimal

concentration of Na2SO3 (0.1 M) led to an increase in formal acid

production through increased hole scavenging and proton

concentration within the semiconductor particle for CO2 reduc-

tion. The same phenomenon was also observed by Tseng et al. [87]

in their CO2 reduction studies using NaOH solution.

The study conducted by Koci et al. [188] demonstrated the

influence of the volume of reductant on CO2 photocatalytic studies

using TiO2. The use of NaOH was reported to not only enhance CO2

solubility, but also facilitate improved CO2 reduction via OH�

radical formation, which promoted the longer decay time of

electrons. The production rate of CH4 and CH3OH was found to

increase when the volume of NaOH increased from 50 to 100 mL,

and then markedly decreased above these values. For example, the

CH4 yield increased from 7.5 mmol/gcatal to >8 mmol/gcatalwhen the

volume of NaOH increased from 50 to 100 mL, then decreased to

<2 mmol/gcatal when 250 mL of NaOH was used. Ti-MCM-

41 mesoporous photocatalysts with Si/Ti molar ratios of 50,

100 and 200 were tested for CO2 photoreduction using NaOH,

deionized H2O and monoethanolamine (MEA) as reducing agents.

For the best photocatalyst within the series tested (Ti-MCM-

41 with Si/Ti ratio of 50), maximum CH4 yield of 62.42 mmol/gcatal
was observed when MEA was used as a reductant compared to

5.62 mmol/gcata of CH4 over H2O after 8 h of UV illumination. The

lowest CH4 yield of 1.96 mmol/gcatal over NaOH was due to the

formation and precipitation of sodium bicarbonate (NaHCO3) in

solution after contact with CO2 gas stream. Although the use of

solvents other than water as hole scavengers can increase product

selectivity and yield, they still remain economically unsustainable

due to their potential to increase cost.

3.2. Effect of temperature

CO2 photocatalysis is generally conducted at ambient con-

ditions, i.e., room temperature because solubility decreases with

increasing temperature and the formation of electron/hole pairs

occurs by photon (light energy) activation. An increase in reaction

rate has been reported to occur at high temperatures due to

increased collision frequency and diffusion rate [188]. The

optimum temperature required for photocatalysis is within

293–353 K, with decreasing activity occurring outside this range

[189]. This is due to exothermic adsorption of reactants being the

rate limiting step as the temperature approaches the boiling point

of H2O. Yamashita et al. [190] demonstrated that photocatalytic

reactions proceed more efficiently at temperatures higher than

275 K by using anchored titanium oxide catalysts for CO2

reduction. They observed increased production rates of CH4, CO

and CH3OH under UV irradiation at 323 K compared to 275 K.

Saladin and Alxineit [191] studied the effect of temperature on CO2
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reduction using titania samples irradiated under UV light for 4 h.

They found that the production rate of CH4 increased when the

temperature rises from 298 to 473 K. Based on model calculations,

the reaction rate was not expected to be substantially improved

after the maximum temperature of 473 K due to hindered

absorption of reactants. They also concluded that thermal

activation processes such as product desorption played a crucial

role in improved reaction rate at 473 K. Product desorption readily

occurred at higher temperatures (473 K) compared to lower

temperatures (298 K).

Guan et al. [49] investigated the use of a hybrid catalyst Pt

loaded potassium hexatitanate (K2Ti6O13) combined with Fe based

catalyst supported on Y zeolite (Fe–Cu–K/day) for CO2 reduction

under concentrated sunlight. They found that the Pt/K2Ti6O13

catalyst produced H2 from water decomposition, while the

Fe–Cu–K/day catalyst reduced CO2 with the resulting H2 converted

into CH4, HCOOH and HCHO. The reaction temperature was found

to promote the generation of the products listed above in addition

to C2H5OH and CH3OH over the hybrid catalyst on temperature

increase from 534 to 590 K. They claimed that the simultaneous

supply of photons and thermal energy from the solar concentrator

was responsible for the optimal production of reaction products

observed at 590 K. The same phenomenon with higher production

rate was also observed by Guan et al. [192] when they used a hybrid

catalyst Pt loaded potassium hexatitanate (K2Ti6O13) combined

with Cu/ZnO catalyst under concentrated sunlight at 583 K.

Increased methanol yield on temperature increase within the

range of 333–373 K was also observed by other researchers during

CO2 reduction studies [20,193].

Photoreduction studies conducted by Kaneco et al. [194]

demonstrated that temperature had no effect on the catalytic

activity of their samples. The photocatalytic activity of TiO2

suspended in supercritical CO2 was investigated. Formic acid

production observed in the liquid phase was attributed to the

reaction of water with reaction intermediates on the surface of TiO2.

An increase in temperature at the rate of 278 K from 308 to 323 K led

to the steady state formation of formic acid. Koci et al. [188] reported

that a temperature increase of 10 K from 299 K to 309 K did not

influence the hydrocarbon production rate for the photocatalytic

reduction of CO2using TiO2 following 4 h of UV irradiation. Although

increasing reaction temperatures have been reported to facilitate

increased production rates, the cost of fabricating sophisticated high

temperature photoreactor systems capable of maintaining the

selected optimum temperatures and the source of thermal energy

required to heat up solvents i.e., water has a high specific heat

capacity, still poses a problem.

3.3. Effect of pressure

Improved product selectivity has been reported to occur due to

increased CO2 concentration resulting from an increase in CO2

pressure in aqueous media [188]. Experimental studies conducted

by Mizuno et al. [195] demonstrated the effect of CO2 pressure on

CO2 reduction using TiO2 suspensions in H2O and NaOH. CH4, C2H4

and C2H6 were observed in the gas phase under pressurized

conditions (2500 kPa), with no hydrocarbon production detected

under ambient pressure. CH4 production was found to increase

sharply with increased CO2 pressure from 500 to 2500 kPa. Slight

increase in formic acid production was observed in the liquid phase

under similar pressurized conditions. Overall, increased CO2

pressure accelerated CO2 reduction when both H2O and NaOH

were used.

On the other hand, CHOOH and CH3OH production was

observed in the liquid phase at ambient pressure. While a linear

increase of formic acid was observed with slight pressure increase,

CH3OH yield was found to reach an optimal rate at 1000 kPa.

Overall, the gross amount of hydrocarbons produced in the liquid

phase exceeded that of the gaseous phase. Similar trend of

increased hydrocarbon production was observed when NaOH was

used as the hole scavenger under CO2 pressurized conditions.

Additional reaction products such as C2H5OH and CH3CHO were

also detected in the liquid phase. They suggested that improved

reaction yield was due to the availability of CO2 on the surface of

TiO2, which accelerated CO2 reduction.

Koci et al. [188] demonstrated that the pressure influenced the

rate of product yield obtained. They observed that the amount of

CH3OH yield in the liquid phase increased when CO2 pressure was

increased from 110 kPa (0.75 mmol/gcatal) to 130 kPa (1.5 mmol/

gcatal). Further pressure increase to 140 kPa led to reduced CH3OH

yield. Conversely, CH4 yield in the gas phase increased with

increasing CO2 pressure from 120 kPa (2.75 mmol/gcatal) to 140 kPa

(4.5 mmol/gcatal). Kaneco et al. [186] studied the photocatalytic

reduction of CO2 under various pressures using TiO2 suspended in

iso-propyl alcohol medium. The results show that the pressure

increase from 200 to 2800 kPa can increase CH4 production

linearly. Conversely, the increased pressure conditions were found

to inhibit CHOOH production, with reaction product observed at

only 750 kPa. The lack of C2H4 formation was attributed to the

accelerated formation of CH4. An increase in CH3OH formation

from 175 to 230 mmol/g-cat was observed by Tseng et al. [87] when

the CO2 pressure increased from 110 kPa to 125 kPa. Further

pressure increase above 125 kPa led to decreased CH3OH produc-

tion rate of 85 mmol/g-cat. Cost of fabricating sophisticated high

pressure systems must be considered when selecting parameters

for reactor designs in CO2 reduction.

3.4. Effect of particle size

Particle size is a key parameter in photocatalytic processes

since the interaction between the amount of absorbed and

reflected photons and the reactants depends on it. Apart from

nanostructured photocatalyst possessing high surface area, they

also benefit from low refractive index which minimizes light

reflection, high surface to volume ratio and rapid charge transfer

[196,197]. Several researchers have established that photo-

catalysts in the form of nanoparticles are more effective than

bulk powders [198–200]. The rate of electron–hole recombina-

tion has been reported to be controlled by particle size since

extremely small ultrafine particle (within the diameter range of

few nanometres) experience surface recombination as opposed

to large particles where volume recombination predominates

[200]. The problem of volume recombination can be overcome

by reducing the particle size. During surface recombination,

most of electron–hole pairs photogenerated close to the surface

undergo rapid recombination due to their shorter migratory

paths, abundant surface trapping sites and limited driving force

for charge separation [138]. This phenomenon has been reported

to occur within certain size reduction. Zhang et al. [200] further

demonstrated that the number of available active surface sites

and transfer rate of surface charge carrier increased with smaller

particle sizes due to their larger surface area. They observed

increased photoactivity in the decomposition of CHCl3 when

TiO2 particle size decreased from 21 to 11 nm. Decreased

photoactivity was also observed when the particle was further

reduced to 6 nm. Optimal photoactivity was demonstrated with

the 10 nm particle. On the other hand, Koci et al. [198] proposed

that the 14 nm TiO2 particle was the optimal value for CO2

reduction, since they obtained maximum CH4 and CH3OH

production using this particle size. A decrease was observed

on further increase to 29 nm. They attributed the decreased

photoactivity observed in samples with particle size <14 nm to

rapid flocculation which decreased availability of active sites.
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The model developed by Almquist and Biswas [199] was used

to elucidate the effect of particle size on TiO2 activity for the

photo-oxidation of phenol. Particle sizes ranging from 5 to

165 nm were prepared from flame synthesized TiO2 and

commercially available P25 and anatase TiO2. The results also

highlighted the strong dependence of particle size on photo-

activity. Increased photo-oxidation occurred when the particle

size increased from 5 to 30 nm and decreased when the particle

size increased beyond this value. The optimal particle size range

reported was within the range of 25–40 nm. Band gap of

photocatalysts has been reported to be influenced by particle

size [41,138,197]. They proposed that semiconductor particles

within the nanometre range experienced energy shift according

to the size quantum effect which could accelerate reduction and

oxidation reactions via the conduction and valence band,

respectively. This size quantization effect expected to cause an

increase in the band gap energy results in a shift to larger redox

potentials, which increases rate constants for surface charge

transfer. Banerjee [201] also reported that the large fraction of

surface atoms and high surface to volume ratio found in

nanoparticles are responsible for enhanced light absorption

through indirect electron transition at the boundary of the crystal

i.e., surface or interface between two crystals. Particle size of

photocatalysts must be carefully considered during catalyst

synthesis since it is invariably linked to surface area and

photocatalytic efficiency.

4. Catalyst configuration: supports

TiO2 can be synthesized as powders (nanospheres, micro-

spheres), crystals, films or immobilized by dip or spin coating onto

substrates such as fibers, membranes, glass [202], monolithic

ceramics [155], silica [203] and clays such as zeolite [204],

kaolinite [95], montmorillonite [205] etc. Several materials have

been used as TiO2 support for CO2 reduction. The use of supports

eliminates the need for post treatment separation, provides high

surface area and mass transfer rate [202]. The product selectivity,

structure and electronic properties of TiO2 can be modified by the

use of supports. However, the photocatalyst must be strongly

adhered to the support and have light absorption properties to be

effective. An ideal support must be resistant to degradation

induced by the immobilization technique and should provide firm

adhesion between the support and the catalyst [206,207]. Mass

transfer limitations and low light utilization efficiency due to little

or no light absorption in the pores or channels of the catalyst

coated supports are key limitations that have been identified with

the use of supports [208]. Many researchers have focused on ways

of anchoring photocatalysts onto supports since high photo-

conversion efficiencies and improved light harvesting can only be

achieved through the combined use of optimized photoreactor and

photocatalyst configurations. An overview of some commonly

used supports is presented below, including glass, optical fibers

and monoliths.

4.1. Glass

Several types of glass substrates such as beads [209], plates

[210], microfiber filter [94,98,211] and plates [102] have been used

for CO2 reduction due to the transparency of the substrates to light

irradiation. The use of conductive materials like glass as supports

have been extensively studied due to their ability to prevent total

internal reflection through surface roughening which also provides

better catalyst adhesion to the glass substrate and increases the

amount of immobilized catalyst per unit area [28]. Furthermore,

Ray and Beenackers [28] reported that utilizing conductive

materials serve as a means by which light can be transmitted to

the catalyst film which is connected to an external potential that

can move excited electrons, and thereby, reducing electron–hole

recombination to improve efficiency.

Highly dispersed titanium oxide anchored onto Vycor glass

was tested for the photocatalytic reduction of CO2with H2O [190].

The supports were prepared through facile reaction between

surface OH groups of a transparent porous Vycor glass and TiCl4.

UV irradiation of the support led to the formation of C1

compounds such as CH4, CH3OH and CO as major products and

trace amounts of C2 compounds (C2H4 and C2H6) at 323 K. Cu

nanoparticles were deposited on transparent conductive fluori-

nated tin oxide (FTO) glass substrates for CO2 reduction to CH4

under UV irradiation [212]. Cu–TiO2 films were reported to

exhibit higher yields compared to pure TiO2 and TiO2 P25.

Enhanced light absorption and increased diffusion length of

photoinduced electrons were amongst some of the reasons for

enhanced CO2 photoconversion rates. TiO2 pellets (Aerolyst 7708)

were affixed to a flat glass tray by Tan et al. [83,89,213] to increase

absorption capacity and contact area for CO2 photoreduction. The

product yield of CH4 (200 ppm) using ultraviolet light C (UVC)

wavelength of 253.7 nm was reduced to values lower than

100 ppm on switching to ultraviolet light A (UVA) wavelength of

365 nm after 48 h of irradiation.

Platinum (Pt)–TiO2 nanostructured thin films with different

deposition times were prepared by Wang et al. [213] for

immobilized onto indium tin oxide (ITO)-coated aluminumosi-

licate glass using RF magnetron sputtering and gas-phase

deposition method. The films which had a one-dimensional

structure of TiO2 single crystals with ultrafine Pt nanoparticles

(NPs, 0.5–2 nm) were found to exhibit enhanced CO2 photore-

duction efficiency with selective CH4 yield of 1361 mmol/gcatalh.

The fast electron-transfer rate in TiO2 single crystals and the

efficient electron–hole separation by the Pt NPs were the main

reasons reported to be attributable for this enhancement.

Mesoporous Cu–TiO2 nanocomposites synthesized by a one-pot

sol–gel method were loaded onto glass fiber filters as thick films

for CO2 photoreduction to CO and CH4 [94]. CH4 and CO peak

production rates of 10 and 60 mmol/gcatalh were achieved over

the 0.5% Cu/TiO2–SiO2 composite. Improved results were reported

to be influenced by the synergistic effect resulting from the

combination of the SiO2 substrate and Cu deposition loaded onto

the glass fiber filter.

The effect of Ag/TiO2 nanoparticles deposited on glass

microfiber filter for UV light induced CO2 photoreduction using

water vapor as electron donor was performed by Collado et al.

[98]. Deposition of Ag on TiO2 surface led to an enhancement in

the production of C1–C3 compounds which increased as Ag

loading increased from 1.5–3.0 wt%. Better catalytic performance

and selectivity were observed over glass filters containing Ag

samples prepared by wet impregnation than incipient wetness

impregnation procedure. Enhanced hydrocarbon production was

reported to be due to lower recombination rates and synergistic

effect between TiO2 and Ag nanoparticles. The transparency of the

glass material used can also limit the overall efficiency due to the

catalyst receiving insufficient light e.g., Pyrex glass can cut off UV

light below 300 nm [214]. On the other hand, quartz glass is a

better alternative as a light conducting material because of its

excellent light transmission properties and its ability for

increased contact efficiency, thus creating more active sites.

4.2. Optical fibers

The use of a single or bundle of optical fibers for the remote

delivery of light to reactive sites of coated photocatalysts has been

studied by several researchers for wastewater treatment and CO2

photocatalysis [48,154,215–217]. All researchers observed
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increased degradation and conversion rates when the optical fibers

were simultaneously used as a support and light distributing

guide. In optical fiber, light is transmitted along the fiber core by

the cladding with lower refractive index that traps light in the core

through total internal reflection. Light can be primarily emitted at

the end of the fiber (end emitting) or through the leakage of light as

it travels from the fiber core to the cladding via the side surfaces

(side emitting) [218].

Catalytic performance of 120 catalyst coated optical fibers

was evaluated for CO2 reduction under 365 nm UV irradiation.

Maximum CH3OH yield of 0.45 mmol/gcatalh was achieved using

1.2 wt% Cu–TiO2 catalyst coated fibers. Properties of the optical

fibers such as external surface area and light transmittance were

reported to influence the processing capacity of the catalysts.

The influence of the optical fibers in delivering photons required

to activate different catalyst combinations such as Cu–Fe/TiO2,

Cu–Fe/TiO2–SiO2 and N3 dye–Cu–Fe/TiO2 was further demon-

strated [48,71,219]. Overall, maximum CH4 production rate of

1.86 mmol/gcatalh was obtained using Cu (0.5 wt%)–Fe (0.5 wt

%)/TiO2–SiO2 catalyst coated fibers while ethylene production

rate of 0.575 mmol/gcatalh was achieved with Cu (0.5 wt%)–Fe

(0.5 wt%)/TiO2 coated fibers under UVA irradiation. During gas

phase CO2 reduction studies, Wang et al. [193] obtained yields of

11.3 mmol/gcatalh and 11.3 mmol/gcatalh for methanol production

under visible light irradiation and sunlight, respectively, when

the optical fibers were coated with NiO/InTaO4.

32 optical fibers coated with inverse opal Cu–TiO2 inserted in a

stainless tube were tested for the photoreduction of CO2 to CH3OH

[157]. CH3OH product rate of 0.036 mmol/gcatalh was achieved

after UV irradiation with light intensity of 113.65 mW/cm2. The

inverse opal configuration was reported to enhance catalyst

activation via increased contact time of light within the photo-

catalyst. Although high catalyst loading and direct light excitation

of coated catalyst films can be achieved when a bundle of optical

fibers are coated, fragility of the optical fibers and the durability of

their coatings has been described as drawbacks associated with

their use [197]. The durability and performance of these fibers are

directly related to the adhesion of the catalyst coatings on the

fibers and thickness of the coated layer which may not withstand

severe gas/liquid continuous flow conditions [220,221]. Even

though roughening of the fiber surface has been reported to

increase durability of these coatings, the problem of uneven

catalyst and light distribution has also emerged [220,221]. Heat

build-up from the bundled array of fibers can result in catalyst

deactivation [222].

4.3. Monoliths

The use of interconnected three-dimensional structures like

honeycomb monoliths containing parallel straight channels has

been exploited for industrial processes due to its potentially high

surface to volume ratio, easy of scale-up through an increase of its

dimensions and channels, control of structural parameters (i.e.,

pore volume, pore size and surface area) etc. [223,224]. Different

types of metal oxides and mesoporous materials have been

immobilized on TiO2 coated monolithic materials to improve

catalytic performance for CO2 photoreduction. Tahir and Amin

[225] deposited montmorillonite (MMT) based TiO2 onto

monolithic structure to improve surface area and adsorption of

gaseous species for CO2 photoreduction with H2O. The addition of

MMT into TiO2 matrix was reported to increase surface area from

42.98 m2/g for pure TiO2 to 51.79 m2/g for MMT/TiO2. Higher CO

(52 mmol/gcatal
�1h�1) and CH4 (139 mmol/gcatal

�1h�1) production

was achieved over the MMT/TiO2monolith compared to pure TiO2

(CO, 47 mmol/gcatal
�1h�1 and CH4, 82 mmol/gcatal

�1h�1) after 10 h

of UV light irradiation. Photocatalytic activity was reported to be

influenced by increased CO2 adsorption originating from surface

hydroxyl (OH) groups in MMT/TiO2 framework. The effect of

monolithic geometry such as cell density and channel length on

UV induced CO2 photocatalysis was further evaluated. The

product rates were reported to be influenced by the geometry

of the monolith since maximum product rates of CO and CH4were

observed over the monoliths with lower cell density of 100 cells

per square inch (cpsi) and channel length of 2.5 cm compared to

the monolith with higher cell density (400 cpsi) and lengths of

1.2, 1.7 and 5 cm. The monolith channel length was reported to be

linked to light distribution. The effect of In loading on TiO2 coated

monoliths was further tested for photocatalytic reduction of CO2

under UV irradiation by the same research group [226]. The

introduction of indium to TiO2 framework not only increased

surface area and reduced particle size, but also facilitated charge

transfer. Maximum CH4 production rate of 55.4 mmol g�1h�1 was

observed over 10 wt% In/TiO2 monolith with 100 cpsi after 10 h of

UV irradiation.

Photocatalytic studies conducted using monoliths as catalytic

support for wastewater treatment, NO and CO2 reduction have

identified low light utilization efficiency due to little or no light

absorption in the pores or channels of the honeycomb monolith

as a major drawback associated with its use [155,208,223]. Not all

immobilized photocatalyst may be activated due to limited light

distribution arising from the catalyst coated on the outer surface

absorbing most of the light and its intensity decaying rapidly

along the opaque channels of the monolith [207,227]. In a

Fig. 9. Schematic of light propagation in a single channel of a coated honeycomb monolith threaded with a non-coated side light emitting optical fiber.
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mathematical model developed by Hossain et al. [228] for influx

of UV light within a square channel monolith, half of the incoming

light flux was reported to be lost due to light shadowing effect at

the entrance of the channel of the monolith wall. The UV light flux

was also reported to decrease sharply with increasing distance in

the monolith channel. A strategy for improving light distribution

in monolithic structures was originally proposed by Du et al.

[220], where non coated side-light emitting fibers were evenly

distributed in each TiO2 coated channel to ensure light refracted

out of the surface of the fiber could reach the catalyst–reactant

interface without attenuation. Fig. 9 shows the schematic where

the gaseous reactants diffuse into each coated interconnected

monolithic channel, adsorb and react with catalyst activated by a

non-coated side-light fiber to form desorbed products and

intermediates which diffuse back into the bulk gas stream (CO2

saturated with H2O).

In recent years, studies on CO2 reduction using non coated

side-light emitting fibers with geometric notches in the core–

cladding system were reported to improve photocatalytic activity

[229,230]. Vapor phase CO2 with H2O was reduced to CH3OH by

NiO/InTaO4 coated monoliths containing no fibers, bare fibers and

fibers with tip-reflection and mid-carves under visible light

irradiation. Highest CH3OH rate of �0.16 mmol g�1h�1 was

observed over 1 wt% NiO/InTaO4 monolith containing fibers with

tip-reflection and mid-carves compared to the monolith con-

taining no fibers and bare fibers. The results are linked with fibers

with tip-reflection and mid-carves having the highest side light

emission percentage of 98% compared to no fiber (84%) and bare

fiber (93.8%) amongst configurations. Overall, maximum acetal-

dehyde conversion rate of 0.3 mmol g�1h�1was achieved with the

2.6 wt% NiO/InTaO4 monolith containing fibers with tip-reflection

and mid-carves by simulated sunlight AM1.5G at 70 �C. The

loading of different metal-based TiO2 nanomaterials onto

monolithic structures threaded with optical fibers were tested

for UV and visible light induced CO2 photocatalysis [102,230]. The

loading of metal or metal oxide on the surface of TiO2 via the

introduction of defects into the lattice was reported to tailor its

band width towards the visible light and alter its particle

properties. For example, sol–gel derived 1 wt% Ni2+-based TiO2

monolith containing optical fibers showed improved CH3OH

production rate of 13 mmol/gcatalh compared to pure TiO2 coated

monolith. Addition of Ni2+ influenced activity and selectivity of

TiO2 toward UV and visible light region due to the substitutional

metal ions not only causing changes in the electronic structure

and light absorption properties of TiO2, but also altering the

surface area, grain size and degree of phase transformation.

4.4. Other supports

The effect of co-catalyst (Cu–Pt)-sensitized TiO2 nanoparticle

wafer on CO2 photocatalytic conversion was studied under full

sun illumination (AM 1.5G) [103]. Coated wafers which had

randomly connected pores were used as flow through membrane

such that reactants (CO2 and H2O) pass through one end of the

membrane and products collected at the other end. Improved

product rates were achieved due to back reactions limited by the

diffusion of reaction products to the outlet. Optimum amount of

catalyst loading on the TiO2 wafer were 9.6 at% Cu and 8.7 at% Pt.

Hence, maximum conversion of CO2 to CH4 (49 ppm/cm2h) was

achieved over TiO2 wafer sputtered with both Cu and Pt layers

than Pt (�28 ppm/cm2h) and Cu (38 ppm/cm2h). Thin layer of

CdS–TiO2 nanocomposite was coated on a stainless steel support

to improve CO2 reduction performance. Performance of catalyst

coated supports was dependent on metal concentration and size

of the nanoparticles. Maximum CO and CH4 production rates of

10.5 and 1.5 mmol/gcatal under visible light irradiation were

observed for the stainless steel support coated with 45% CdS–TiO2

nanocomposite.

The direct conversion of CO2 over TiO2 coated stainless steel

webnets of varying sizes was investigated under UV irradiation

[231]. High surface area and good utilization of UV light were

observed on TiO2 films deposited on the webnets. An increase in

mesh size resulted in increased TiO2 surface area and reduced

penetration of UV light. Evaluation of the photocatalytic activities

of TiO2 coated on three different mesh sizes of stainless steel

webnets for CO2 photoreduction resulted in higher product rate

for TiO2 coated on 120 mesh size than TiO2 coatings on 60 and 200

mesh sizes. Nishimura et al. [232] dip coated TiO2 on a silica–

alumina gas separation membrane to obtain 3.5 ppmV/h of CO

after 336 h, while Pathak et al. [233] used the hydrophilic

structural cavities in Nafion-117 membrane films to host TiO2

coated with nanoscale silver and obtained 0.071 mg�1 and

0.031 mg�1 of methanol and formic acid after 5 h. Reproducible

results were obtained when these films were reused. Cybula et al.

[234] employed a flat perforated steel or plastic tray as a support

for the dispersion of TiO2 in a tubular reactor designed for CO2

photoreduction studies. They observed that the type of support

used not only played a critical role in determining the amount of

immobilized catalyst but also influenced the photoconversion

rate when the same coating procedure was used. A decrease in

catalyst loading and methane production (from 90 ppm to

34 ppm) was observed when the support was switched from

steel to plastic due to weaker adhesion of TiO2 on plastic

compared to steel. CO2 photoreduction studies by Shioya et al.

[203] and Li et al. [94] employed silica as supports due to its even

composition and orderly mesoporous structure with small

channels. Sasirekha et al. [82], Yang et al. [93] and Li et al. [94]

attempted to improve this arrangement by doping with metals

such as Ru and Cu. They found that the combination of metals

with mesoporous silica enhanced the reaction rate due to

effective TiO2 dispersion and improved absorption of CO2 and

H2O on the surface of SiO2. Product yields of 60 mmol g–

TiO2
�1h�1 and 10 mmol g–TiO2

�1h�1 were obtained for CH4

and CO, respectively, in a continuous flow photoreactor at an

optimal doping ratio of 0.5 wt% Cu using Xe arc light source [94].

Maximum CH4 production of 627 mmol g�1h�1 was observed by

Yang et al. [93] with 2 wt% Cu after 8 h reaction time. Improved

surface area and better dispersion of cerium (Ce)–TiO2 on

mesoporous silica (SBA-15) was also demonstrated by Zhao

et al. [97] in their CO2 photoreduction studies following 4 h of

UV–vis irradiation. They found that an optimal amount of 3%

Ce–TiO2 dispersed on the silica matrix (Ti:Si—1:4) not only

facilitated improved textural properties compared to pure TiO2,

but also resulted in an order of magnitude increase in CO

(7.5 mmol g�1) and CH4 (7.9 mmol g�1) production. They reported

that the adsorption properties of silica resulting from its unique

mesoporous structure was one of the contributing factors due to

the increased localized CO2 concentration near TiO2 surface

where photocatalysis could occur. Clays have been extensively

used as supports in photocatalytic studies because of their low-

cost and strong absorption capacity [235]. Koci et al. [95] used

kaolinite/TiO2 in CO2 photoreduction and obtained CH4 and

CH3OH yields of 4.5 mmol/gcatal and �2.5 mmol/gcatal after 24 h of

irradiation. Kaolinite prevented particle aggregation and modi-

fied the acid–basic properties of the surface of TiO2. The use of

montmorillonite as support in CO2 photoreduction has also been

examined by Kozak et al. [205]. CH4, CH3OH and CO production

were observed over ZnS after 24 h of irradiation. Carbon based

materials such as graphene/graphene oxide [236–239], carbon

nanotubes (CNT) [240] and fullerenes amongst others have

attracted wide attention as support materials for TiO2 induced

CO2 photocatalysis, due to their high specific surface area,
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electronic properties and enhanced transport of photogenerated

electrons and visible light absorption [241–244]. Recently, hollow

spheres consisting of alternating titania (Ti0.91O2) and graphene

nanosheets were tested for CO2 reduction to CO and CH4 in the

presence of water vapor [243]. CH4 and CO production rates over

Ti0.91O2–graphene were 1.14 and 8.91 mmol/g h, respectively,

which was reported to be five times higher than Ti0.91O2. Multi

walled CNT (MWCNT)/TiO2 nanocomposites were reported to

exhibit superior photocatalytic activity for CO2 photoreduction

compared to anatase TiO2 and pure MWCNT [244]. Maximum CH4

yield of 0.178.91 mmol/gcatalh was achieved after 6 h of visible

light irradiation. Thus, the choice of an adequate support is of

utmost importance since the overall process efficiency of the

photoreactor is predominantly determined by the amount of

activated photocatalysts. It is therefore imperative to utilize

versatile materials with excellent light transmission properties

that can simultaneously serve as catalyst carrier and provide high

light transfer area via light distribution from the source to the

photocatalyst present within the photoreactor.

5. Support immobilization techniques

TiO2 based catalysts can be deposited on structured substrates

through aqueous or gaseous routes. Some examples of aqueous

methods include sol–gel and electrophoretic deposition, while gas

phase methods include spray pyrolysis deposition, chemical vapor

deposition and physical vapor deposition. Table 3 highlights the

advantages and disadvantages of different methods used for

immobilising TiO2 catalysts [245–247].

5.1. Sol–gel method

Sol–gel technique is amongst the most widely used procedure for

preparing TiO2photocatalysts. This technique is not only noteworthy

for achieving excellent chemical homogeneity but, also deriving

unique stable structures at low temperatures as well [30,248–250].

The compositional and microstructural properties of the nano-sized

samples can be tailored through the control of the precursor

chemistry and processing conditions. Inorganic metal salts like

titanyl sulphate, titanium tetrachloride etc., (non-alkoxide) and

metal alkoxides e.g., titanium(IV) butoxide are usually employed as

chemical precursors. Conversion from the liquid sol phase into the

solid gel phase occurs due to solvent loss and complete polymeriza-

tion. The pH of the reaction medium, water:alkoxide ratio and

reaction temperatures are factors that influence the sol–gel

procedure [251]. Watson et al. [64] demonstrated the preparation

of more uniform and pure photocatalysts via the alkoxide route,

while Sivakumar et al. [252] used ammonium nitrate and titanyl

sulphate as precursors. The rapid hydrolysis rate of titaniumalkoxide

has been reported as a major drawback that makes this process

difficult to control [253]. The sol–gel process is initiated via

hydrolysis and polycondensation of metal precursors

(Eqs. (21)–(25)) where R stands for C4H9 [254,255].

Apart from esterification, the hydrolysing water can also be

introduced and controlled through oxolation, as shown in Eq. (22).

During condensation, the crystal of the metal oxide can be formed

when the constituent particles of the gel are pulled into a compact

mass. Additionally, acetic acid modifies and stabilizes the hydrolysis

process by altering the alkoxide precursor at molecular level and

acting as a chelating ligand, such that Ti��OH bonds were formed

when the bidental ligand was broken off (Eq. (25)). The decrease in

the hydrolysis rate results in the formation of fine particles of titania

which are uniformly dispersed in solution. Appropriate amount of

metal precursor(s) can also be introduced within the hydrolysis and

polycondensation phase depending on the weight percent loading

calculated from the amount of precursors used in the procedure. Sols

are usually deposited on the substrates via dip-coating, spin coating,

doctor blade techniques amongst others. The withdrawal speed of

the substrate, number of coating cycles and the sol viscosity

determines the catalyst film thickness. TiO2 was immobilized onto

gas separation membrane by sol–gel dip coating method to study the

CO2 reduction performance [256]. The gas separation membranes

were dipped into TiO2 sol with different withdrawal speeds.

Maximum CO production yield of >250 ppm V was observed over

the TiO2 film coated with the withdrawal speed of 0.66 mm/s after

72 h of UV irradiation. The improved activity using this optimum

coating condition was attributed to TiO2 films being thin and even.

The synthesized nano-sized TiO2 films have been to have special

catalytic properties due to the integration of the active metal during

the gelation stage.

& Esterification:

ROH + CH3COOH H2O + RCOOC2H5 (21)

& Oxolation:

Ti(OR)3 (OH) + Ti(OR)3 (OH) ! (RO)3 Ti�O�Ti(OR)3+ H2O (22)

Table 3

Advantages and disadvantages of different methods used for immobilizing TiO2 photocatalysts.

Catalyst preparation

method

Advantages Disadvantages References

Sol–gel High purity of materials Hydrolysis rate is difficult to control [248–251]

Homogeneity Longer processing time compared to CVD and PVD

Versatile means of processing and control of parameters Calcination at high temperatures results in the decomposition of

substrates

Large surface area Multiple coating cycles is required depending on the sol viscosity

Chemical bonding results in strong adherence of coating to

the substrate

Physical vapor

deposition

Does not require complex chemical reactions Expensive as vacuum systems are used [19,245]

Low to medium deposition temperature Difficulty in deposition of multiple source precursors due to various

evaporation times

Chemical vapor

deposition

Suitable for uniform and pure films with high deposition

rate

Could be expensive if vacuum systems are used [245–247]

Short processing time Difficulty in deposition of multiple source precursors due to various

evaporation times

High deposition temperature (>600 �C) is required
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& Hydrolysis:

Ti(OR)4 + H2O ! Ti(OR)3 (OH) + ROH (23)

& Condensation dehydration:

Ti(OR)3 (OH) + Ti(OR)4! (RO)3 Ti�O�Ti(OR)3 + ROH (24)

& Chelation:

-4  ROH  + 2CH3COO H

H R

O

ORRO

Ti

O

H R

ORRO

O

R

Ti

O

R

H3C C

O

O

CH3

O

O

C

(25)

The series of Cr doped TiO2 samples synthesized by the sol–gel

method was found to promote the CO2 reforming performance of

TiO2. Under their experimental conditions, the Cr-doped samples

showed improved photoresponse in the visible light in their study

compared to the pure TiO2 film. Optimum product yields of

92.5 mmol/gcatal (CO), 15.1 mmol/gcatal (CH4) and 19.1 mmol/gcatal
(C2H6) were obtained using the 7 wt% sample. Copper supported

on unstructured and inverse opal titania (templates of polystyrene

spheres) films coated onto optical fibers by sol–gel dip-coating

technique were employed for the photoreduction of gaseous CO2 to

CH3OH in the presence of water vapor and UV light [157]. Although

the methanol production rates of the Cu films supported on inverse

opal titania (0.0364 mmol/gcatalh) were comparable to the films

supported on unstructured titania, much higher quantum effi-

ciency was achieved using the inverse opal film due to improved

photon utilization rate observed at a lower light intensity.

5.1.1. Thermal treatment

Calcination is one of the means by which crystal growth can be

controlled. The crystal growth influences the phase, shape, size and

surface area of photocatalysts. Sol–gel derived precipitates tend to

be amorphous in nature and require heat treatment to remove

organic molecules from the final products and induce crystalliza-

tion [251,255]. Amorphous TiO2 can be converted to anatase phase

due to pore collapse and crystal growth of the TiO2 powder during

calcination. With increasing temperatures, calcinations may result

in phase transformation, reduced surface area, grain growth and

particle aggregation, which affects the microstructure and textural

properties (crystallinity, surface area, morphology) of TiO2

[41,255]. The removal of organics has been reported to occur at

temperatures 	 673 K [254]. Conversely, well crystallized anatase

TiO2 films can be synthesized by the peptization of tetraisopropyl

orthotitanate in acidic conditions at low temperatures [257].

Since photoconversion can only occur when the photogen-

erated holes and electrons are present on TiO2 surface, the surface

phase of TiO2 exposed to reactant and light has been found to play a

critical role in determining the rate of photoconversion by several

researchers [62,75,258]. Consequently, a reasonable calcination

temperature must be selected such that increased crystallinity is

achieved with the surface area remaining intact and unchanged. Su

et al. [255], Vijayan et al. [259] and Schulte et al. [260]

demonstrated that their optimum activities were strongly depen-

dent on the crystallinity of their nanostructures. Su et al. [255]

showed that optimal photocatalytic activity for decomposition of

salicylic acid can be achieved with the sample calcined at 773 K.

The photoactivity decrease was observed beyond this temperature

due to reduced surface area and decreasing anatase fraction. The

anatase to rutile fraction was found to decrease with increasing

temperatures.

Conversely, Vijayan et al. [259] observed increased methane

production using titania nanotubes calcined between 473–673 K

for CO2 reduction owing to the combined effects of crystallinity

and surface area. Declined activity was observed on further

temperature increase. The anatase content was also found to play a

critical role in the UV activation of nanotubes prepared by Schulte

et al. [260] for CO2 reduction. They also observed declined

reactivity with increasing calcination temperature. Increased rutile

content at near 953 K was found to tune the photoresponse toward

the visible light region which further optimized reactivity of the

samples. Amongst the crystalline phases of titania that can be

formed during calcination, anatase has been reported to possess

better photocatalytic activity for CO2 reduction compared to rutile

due to higher surface areas and improved hole trapping arising

from steeper band bending [251]. Phase transformation from

anatase to stable rutile can occur upon thermal treatment between

temperatures of 623–1373 K owing to different processing

methods, precursors and techniques of determining this transition

temperature [143,261]. The presence of mixed crystalline phases of

titania (i.e., anatase and rutile) has also been reported to show

improved photocatalytic activity due to synergistic effect derived

from better charge separation and high surface area [262].

Improved charge separation and high reactivity at the anatase

to rutile interface occurs during electron transfer from rutile to

anatase at this interface where defect sites with unique charge

trapping and adsorption properties can be created [62,262,263].

Zhang et al. [258] further investigated the relationship between

the effect of calcination temperature and time on the surface

phases and photocatalytic activities of TiO2. The transformation

from anatase bulk phase to rutile occurred at 823 K, with the

anatase phase still being maintained on the surface till 680 �C.

Further temperature increase to 	973 K led to the complete

conversion of the bulk anatase phase into rutile, with only 44% of

the anatase phase being present on the TiO2 surface. Maximum

hydrogen production was observed for samples calcined between

973–1023 K due to catalyst's surface consisting of a mixed phase of

anatase and rutile particle, with the bulk consisting of almost pure

rutile. Similar results were also observed for the samples calcined

at 873 K for different time periods between 20 and 80 h. These

results were due to the formation of the surface-phase junction

which was found to promote electron transfer from the conduction

band of rutile to the trapping sites of anatase. Cybula et al. [234]

synthesized titania nanoparticles using TiO2 P25 and found the

rate of CO2 photoreduction to methane was much higher on
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temperature increase from 353 to 393 K and drying times from 5 to

20 h. A marked decrease in photoreduction efficiency was observed

on further temperature increase to 433 K and drying time of 35 h.

Asi et al. [75] synthesized AgBr doped TiO2 that exhibited good

crystallinity and optimal hydrocarbon production rate for the

photoreduction of CO2 under visible light at calcination tempera-

ture of 773 K and doping concentration of 23.2 wt%. They found

that increasing the calcination temperature to 973 K resulted in the

aggregation of the doped nanoparticles which explained the

decreased in hydrocarbon production rate.

5.1.2. Influence of organic contaminants

Organic impurities originating from chemical precursors used

during catalyst synthesis have been reported to influence the

activity and selectivity of CO2 photoreduction. These organic

compounds in the form of carbon and chlorine species which

adsorb on the surface of TiO2 can serve as a carbon or chlorine

source for the formation of hydrocarbons or undesired products

such as CH3Cl. By using a combination of in situ diffuse

reflectance infrared Fourier transform spectroscopy (DRIFTS)

with isotope labelled 13CO2, Yang et al. [264] demonstrated that

carbon residues present on the catalyst surface were involved in

the photocatalytic reduction of CO2 to CO. It was observed that

prolonged exposure of the catalyst surface to UV irradiation and

H2O vapor was more effective for removal of these carbon

residues which originated from Ti alkoxides and polyethylene

glycol (PEG) than thermal treatment in air. Since adsorbed 12CO

species were observed as the main product compared to 13CO

over Cu(I)/TiO2 in the absence of 12CO2, it was concluded that 12C

originating from carbon residues was the predominant carbon

source. Isotopic labelling results of Ag, Au and Pd–TiO2 samples

tested for CO2 reduction also confirmed that CH4 was formed

from organic impurities rather than 13CO2 [265]. The formation

of chloromethane (CH3Cl) as a result of CO2 photoreduction with

Cu/I–TiO2 synthesized from a chlorinated precursor (CuCl2) was

observed [181]. CH3Cl was formed from the reaction of methyl

radical (CH3
�) with chlorine radical (Cl.). Adsorbed carbon

species were reported to be intermediates for CH4 and CH3Cl

formation.

Several authors have employed different spectroscopic tech-

niques such as DRIFTS, GC–MS, NMR or LC–MS with isotope

labelled 13CO2 as the reactant for verifying the carbon source of

final products generated from photocatalytic CO2 reduction. For

example, Yui et al. [266] observed that CO2 and CO3
2� were the

main carbon sources of CH4 produced using Pd–TiO2 treated by

calcination and washing procedures. Signal of m/z = 17 attributed

to 13CH4 detected by the GC–MS when 13CO2was used as a reactant

clearly demonstrated that CH4 formation was from CO2 photore-

duction and not from residual carbon species. To verify the source

of evolved CO and O2 from CO2 photoreduction with H2O,

Teramura et al. performed labelling experiments with 13CO2 and

H2
18O as reactants using GC–MS [267]. After photo irradiation,

peaks of 16O18O and 13CO were detected. The effect of several

solvents on CO2 photoreduction with Q-TiO2/SiO2 films was also

studied by using 13C NMR and 13CO2 to identify the carbon source

for CO and C1–C2 oxygenates [268]. Labelling experiments

confirmed formate and CO were produced from CO2 and not from

the solvents (CCl4, 2-propanol and acetonitrile). Fu et al. used

isotopic 13CO2 for the photocatalytic reduction of CO2 over

titanium metal organic framework (MOF) catalysts where

obtained products were identified by 13C NMR spectroscopy

[269]. Isotopic 13CO2 reaction confirmed that the reduced product,

HCOO� originated from CO2 rather than residual carbon species.

Ohno et al. also demonstrated that that CO2 was the carbon source

for CH3OH evolution with 1H NMR spectroscopy over Au–TiO2

(brookite) nanorods and hybrid photocatalyst composed of WO3

and graphitic carbon nitride [270,271]. In summary, these findings

clearly indicate that the choice of catalyst precursors must be

carefully considered during catalyst synthesis with systematically

designed control experiment [226,266,272] or carbon source

verification by GC–MS, NMR or LC–MS with isotope labelled 13CO2

in place.

5.2. Vapor deposition

Chemical vapor deposition (CVD) has been widely used in

surface coating in CO2 photoreduction and is prepared via the

vapor phase, while the formation of films in physical vapor

deposition (PVD) occurs when no chemical reaction takes place.

Silija et al. [273] described CVD as a better technique when

compared to PVD because better durability, adhesion and

uniformity can be achieved with this technique compared to the

latter. The need for aging, drying and reduction is also eliminated

with CVD. Extensive studies conducted by Choy [245] detailed

several variants of CVD and noted the complexity of chemical

process as a major difference between CVD and physical vapor

deposition (PVD) due to the chemical precursors and reactions

used. The kind of precursor and substrate used with the desired

properties serves as a determining factor for the type of variant

used. The thermal and chemical stability of the support and

operating conditions of the volatile precursors i.e., temperature

required for crystallization must be carefully considered. Thin films

are usually formed in CVD when the surface of the substrate is

exposed to volatile precursor(s) in inert atmosphere under

controlled temperature and pressure. Nishida et al. [274]

demonstrated the use of plasma enhanced CVD for the preparation

of thin films of TiO2 while Galindo et al. [246] reported the use of

pulsed injected metal organic CVD technique toward the deposi-

tion of multilayer thin films.

Wang et al. [213] synthesized platinized TiO2 films via the

aerosol chemical vapor deposition (ACVD) technique. The synthe-

sized films which have unique one-dimensional structure of TiO2

single crystals coated with Pt nanoparticles were reported to

exhibit high photoefficiency for CO2 reduction with water vapor

following 4 h of UV irradiation. Maximum CH4 yield of 1361 mmol/

gcatalh
�1 was exhibited by the Pt film with deposition time of 20 s.

Overall, high surface area, single crystallinity of the one

dimensional TiO2 films and efficient hole separation were the

main reasons described by the authors for the enhanced photo-

activity of the films compared to TiO2. Asi et al. [75] demonstrated

the visible light reduction of CO2 to fuels using AgBr/CNT

nanocomposites. Multi-walled carbon nanotubes (CNT) were

synthesized by CVD while AgBr was introduced to the CNT

framework via deposition–precipitation method in the presence of

cation surfactant. Higher product yields were obtained over AgBr/

CNT nanocomposites compared to AgBr crystals. The product yield

also increased with increasing nanotube length due to efficient

charge transport demonstrated by longer nanotubes which was

confirmed by electrochemical impedance spectroscopy measure-

ments.

6. Photoreactor design and configuration

The configuration of catalyst particles in a photoreactor

system is also another important factor that can influence the

overall photocatalytic efficiency [27,28]. Photoreactors are vessels

where reaction products are generated from the contact between

photocatalysts, reactants and photons. The two key parameters

which determine the types of photoreactors utilized in CO2

photoreduction are the phases involved (i.e., multiphase (gas–

solid, liquid–solid, gas–liquid–solid etc.) and the mode of

operation (i.e., batch, semi-batch or continuous) [158].
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Photocatalysts can be generally tested in either suspended or

immobilized forms in reactor configurations, as shown in Fig. 10.

An ideal photoreactor must have uniform light distribution

throughout the entire system in order to achieve optimum

results. Currently, comparative analysis of product yield and

reactor configurations in CO2 reduction is primarily reported in

terms of quantum efficiency. The advantages and disadvantages

of different types of photoreactor systems currently used in CO2

photoreduction are summarized in Table 4 [275–279].

6.1. Fluidized and slurry reactor designs

When powders are dispersed/suspended in a liquid medium;

the quantum efficiency of the catalyst, absorption properties of

both reactants and non-reactants in solution and surface light

intensity determines the rate of reaction [28]. Some of the key

advantages of slurry system are that there is entire external surface

illumination during reaction time if the particle size of the catalyst

is small with phase segregation not occurring if the solution is

homogeneously mixed [27]. Although slurry system designs offer

high catalyst loading and ease of construction; separation of

catalyst particles from the reaction mixture is a major drawback

[221,279]. The size of the catalyst crystals or aggregates (0.05 mm

to a few mm) will determine the nature of separation process

required which could be expensive and time consuming [158,279].

However, the penetration depth of UV light into the reaction

medium can also be limited by the strong light absorption of

organic species and catalyst particles [28,219]. A large proportion

of catalyst surface area might be inactive due to low photon energy

received, as most of the light irradiation is lost due to absorption by

liquid when light approaches the catalyst through the bulk liquid

phase [280,281]. Light distribution can be better controlled via

external or internal illumination. Hydrocarbon formation (CO,

CH3CHO and CH3CHO2) was observed over hybrid catalyst, TiO2:

Rh-LHCII tested in a stirred batch reactor under visible light

irradiation [272]. Hybrid catalyst, TiO2:Rh-LHCII was formulated

by attaching light-harvesting complexes (LHCII) extracted from

spinach to the surface of Rh-doped TiO2 (TiO2:Rh) in order to

Table 4

Advantages and disadvantages of photoreactor systems.

Reactor design Advantages Disadvantages References

Fluidized and slurry

reactor

(multiphase)

(I) Temperature gradients inside the beds can be reduced through

vigorous movements caused by the solid passing through the fluids

(I) Filters (liquid phase) and scrubbers (gas) are needed [13]

(II) Heat and mass transfer rates increase considerable due to agitated

movement of solid particles

(II) Flooding tends to reduce the effectiveness of the

catalyst

(III) High catalyst loading (III) Difficulty of separating the catalyst from the reaction

mixture

[219,220]

(IV) Low light utilization efficiency due to absorption and

scattering of the light by the reaction medium

V) Restricted processing capacities due to mass transport

limitations

Fixed bed reactor (I) High surface area (I) Temperature gradient between gas and solid surface is

common

[275,280]

(II) Fast reaction time

(III) The conversion rate per unit mass of the catalyst is high due to the

flow regime close to plug flow

(IV) Low operating costs due to low pressure drop

Variants of fixed bed designs

Monolith reactor (I) High surface to volume ratio and low pressure drop with high flow rate

can be achieved

(I) Low light efficiency due to opacity of channels of the

monolith

[276,277]

(II) Configuration can be easily modified

Optical fiber reactor (I) High surface area and light utilization efficiency (I) Maximum use of the reactor volume is not achieved [277,278]

(II) Efficient processing capacities of the catalyst (II) Heat build-up of fibers can lead to rapid catalyst

deactivation

Fig. 10. Schematic of (A) slurry reactor design with top illumination, (B) optical

fiber reactor design with side illumination and (C) internally illuminated reactor

with top illumination.
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enhance the light absorption and increase yields. The quantum

efficiency of 0.0411% was achieved using this configuration.

Slurry reactor design with two separate components for oxygen

and hydrocarbon evolution separated by a Nafion membrane was

tested by Lee at al. [107] under AM 1.5G irradiation. WO3 was

chosen as the oxidation catalyst while Pt/CuGaAlO4 and Pt/SrTiO3:

Rh as reduction catalyst. The dual photocatalyst system containing

both reduction and oxidation catalysts demonstrated higher

quantum efficiency of 0.0051% compared to the single photo-

catalyst system with Pt/CuGaAlO4 as reduction catalyst only

(0.0019%). Photocatalytic reduction of CO2 with monoethanol-

amine (MEA) as reductants to form CH4 using Ti-MCM-41 meso-

porous catalysts was studied and compared to other reductants

such as NaOH and H2O in slurry reactor designs [184]. Photore-

duction efficiency of Ti-MCM-41(50) sample 8 h of UV illumination

using H2O, NaOH and MEA as reductants were 0.83, 0.29 and 9.18%,

respectively. Copper or cobalt incorporated TiO2 supported ZSM-

5 catalysts were tested in a slurry photoreactor where 0.1 M

NaHCO3 was the reductant [282]. When Cu–TiO2/ZSM-5 was used

as the catalyst, the quantum efficiency of CH3OH reached 10.11%

after 12 h reaction time. High absorption ability of ZSM-5 was

reported to influence the photoconversion rates.

6.2. Fixed bed reactor designs

The drawback of catalyst separation can be avoided by fixed bed

reactor designs where catalysts are immobilized onto fixed

supports e.g., plate, beads, fibers, monolith etc. In these systems,

photocatalysts are coated on a support matrix placed inside the

reactor around the light source or directly on the photoreactor

wall. Light distribution becomes a limiting factor in this system

which is influenced by the geometry of the light source and spatial

distance between this light source and photocatalysts [197].

Overall, gas phase systems offer more flexibility compared to the

slurry systems if the design considers the spatial relationship

between the reactor and the light source when choosing the

support of choice. Several researchers have designed photoreactors

using optical fibers as supports [217,278,283]. The conventional

optical fiber reactor (OFR) has been modified by using fibers with

different cores and coatings [218,284], increasing their diameter to

create ease of handling and the use of cooling systems [285] to

eliminate the limitation of heat build-up. Wu et al. [154,286] have

conducted CO2 photoreduction studies using the optical fiber

reactor system. They coated optical fibers with Cu/TiO2 and

Ag/TiO2 catalysts in the gaseous phase, respectively. A maximum

yield of 0.91 mmol/gcatalh was observed using the loading ratio of

0.5 wt% Cu–Fe/TiO2 for methane production. Maximum methanol

yield of 0.45 mmol/gcatalh was observed by Wu et al. [286] using

1.2 wt% Cu/TiO2 under light intensity of 16 W/cm2 while methanol

yield of 4.12 mmol/gcatalh was observed by Wu et al. [154] using

1 wt% Ag/TiO2 under light intensity of 10 W/cm2. In particular,

previous CO2 photoreduction studies conducted by Nguyen and

Wu [219] using optical fibers coated with Cu–Fe/TiO2 catalysts in

the gaseous phase have demonstrated that the number of optical

fibers can determine the rate of ethylene production and

selectively increase or decrease the quantum yield. A maximum

yield of 0.91 mmol/gcatalh was observed using the loading ratio of

0.5 wt% Cu–Fe/TiO2 for CH4 production. CO2 photocatalytic activity

of NiO/InTaO4 catalysts dispersed in aqueous solution of NaOH

(slurry designs) and immobilized in a fixed bed reactor design

containing 216 optical fibers was evaluated by Wang et al. [193].

The quantum efficiency for methanol production was 14 times

higher in optical-fiber reactor (0.053%) than that of the aqueous-

phase reactor (0.0045%). The higher quantum efficiency was

attributed to improved light efficiency by the films coated on

optical fibers. The comparison between the photocatalytic

reduction of CO2 for 1 wt% Pd/0.01 wt% Rh–TiO2 in a slurry batch

annular reactor system and internally illuminated photoreactor

system was evaluated [155]. The quantum efficiency of the

internally illuminated monolith reactor (0.049%) was near one

order of magnitude higher than the slurry batch annular reactor

(0.002%). The performance of TiO2 for CO production was evaluated

in cell type and multichannel monolith reactor [226]. The

performance comparison between the gas phase photoreactors

revealed 8 fold higher yield of CO in the monolith compared to cell

type reactor. Quantum efficiency in microchannel monolith reactor

was 0.0301% compared to 0.0028% in the cell type reactor.

Improved quantum efficiency was reported to be due to higher

illuminated surface area, higher photon energy consumption and

better utilization of reactor volume.

7. Conclusions and future perspectives

The utilization of CO2 as a direct feedstock for photocatalytic

conversion into fuels over different variants of pure and modified

TiO2 synthesized by various routes and tested in various photo-

reactor designs has been highlighted in this review. Application of

TiO2 induced photocatalysis for the challenging conversion of CO2

remains a promising pathway as it can be activated by solar energy

at relatively mild conditions to form valuable products. Although

recent progress focused on the use of pure and modified

photoactivated TiO2 materials has induced fuel generation from

CO2 reduction with H2O; expected improvement required for

scalable fuel production has not been achieved. To this end, design

and synthesis of novel TiO2 photocatalysts with higher stability,

selectivity and efficiency requires improvements in synthetic

procedures offering improved control over physicochemical

properties. Analytical techniques such as in-situ surface and bulk

spectroscopies must be employed to provide valuable insight into

fundamental steps occurring in CO2 photocatalytic reduction, rate

limiting steps, formation and stability of surface reaction

intermediates as well as adsorption and desorption of both

reactant and product species. Besides the materials science aspect

of CO2 photocatalytic reduction, the engineering challenge of

optimal CO2 photoreactor design needs a step change transforma-

tion to reach its crucial role in the overall process performance.

From this review, it can be concluded that CO2 photocatalysis is still

not feasible due to the absence of scalable reactor designs able to

simultaneously introduce reactants, light and efficient visible light

responsive catalysts to effect production of specific fuels in

significant quantities. Since the overall process efficiency is largely

dependent on two factors—the reactor configuration and physico-

chemical properties of the catalyst, it is desirable to scale up this

system based on the design and development of these parameters

incorporating maximal light efficiency and mass transfer. Perfor-

mance of current photoreactor designs is primarily reported and

evaluated in terms of quantum efficiency without consideration of

light transport to active site which is critical for scale-up and

quantification of energy losses due to light absorption by reaction

media and reactor components. A deep understanding of

engineering aspects of CO2 reduction is still required for the

development of highly efficient photoreactor designs. In order to

achieve high conversion efficiency, photoreactor designs must take

into account the material of construction, its thickness, mass of

catalyst, reactor geometry (length, volume etc.), flow rate and the

relationship between the reactor and irradiation source. The

modelling of the effect of reactor designs and operation parameters

on CO2 reduction is also required to extrapolate results for the

design of pilot scale systems. Furthermore, this work can be

extended to include the use of flue gas generated from power

plants as a feedstock for CO2 reduction. Different compositions of

flue gas streams can be used directly or indirectly in order to
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ascertain the effect of impurities and the concentration of CO2

required to achieve maximum conversion rates. Results from using

concentrated CO2 gas streams derived from the flue gas can also be

tested and compared to pure flue gas streams to determine the

most suitable option for scalable fuel production.
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