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Abstract
Time-series forecasting is a significant discipline of data modeling where past observations of the same variable are ana-
lyzed to predict the future values of the time series. Its prominence lies in different use cases where it is required, including 
economic, weather, stock price, business development, and other use cases. In this work, a review was conducted on the 
methods of analyzing time series starting from the traditional linear modeling techniques until the automated machine learn-
ing (AutoML) frameworks, including deep learning models. The objective of this review article is to support identifying the 
time-series forecasting challenge and the different techniques to meet the challenge. This work can be additionally an assist 
and a reference for researchers and industries demanding to use AutoML to solve the problem of forecasting. It identifies 
the gaps of the previous works and techniques used to solve the problem of forecasting time series.

1 Introduction

Although research in time series analysis found a place in 
the past [1, 2], its significance increased recently with the 
growth of data volumes resulting from users, industries, 
and markets. The research in time series data has a rich 
background with pivotal importance in different applica-
tions including economic, weather, stock price, business 
development, and other use cases. Due to this significance, 

there is an increasing and high demand for robust, scalable, 
and accurate forecasting tools. The past decade has shown 
an increase in the number of proposed models to be used 
in forecasting [3–5]. However, the uncertainty in the time-
series data like temperatures, wind speed, network traffic, 
stock price, etc. makes modeling this type of data a difficult 
task. We categorize the methods that can be used to fore-
cast time series values into three categories: linear mod-
eling, deep learning (DL), and Automated machine learning 
(AutoML). Linear models which are the simplest and usually 
the fastest to execute can perform predictions [6] but might 
result in low prediction accuracy. DL models can perform 
better [7] but as with all machine learning methods [8–10], 
DL requires experience to tweak hyperparameters and set up 
the model [11]. Moreover, the number of hyperparameters to 
optimize might become large and require considerable effort 
to optimizing. AutoML strives to solve this problem by auto-
matically finding a suitable ML model and optimizing it 
[12]. There are many AutoML frameworks can be utilized to 
forecast time-series data including EvalML [13], AutoKeras 
[14], and AutoGluon [15], and others [16, 17]. However, 
AutoML for time-series is still in the development stage 
[18] and requires efforts from researchers to reach maturity. 
Examples of recent significant efforts on reviewing the meth-
ods to be utilized in modeling time-series include [19–21]. 
These works reviewed the usage of machine learning and 
DL techniques but didn’t discuss the AutoML techniques 
that appeared recently as a promising tool to facilitate the 
forecasting process with minimal human intervention and 
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high accuracy. Recent advancements should soon provide 
the power to deal with time-series data efficiently.

This work is reviewing the research works done recently 
on time series forecasting using linear modeling, DL, and 
AutoML. It also reviews the different AutoML frame-
works that can be utilized for forecasting. Its key contri-
bution lies in overcoming the problem by reviewing more 
models, AutoML frameworks, and extending the concept 
of AutoML. Moreover, it contributes by filling the gap in 
between the earlier studies conducted in this area of research 
by exploring more advanced learning approaches. The pre-
sent paper can act as a reference guide for the growing body 
of AutoML since it is reviewing different frameworks.

2  Literature Review

2.1  Time‑Series Forecasting

The availability of massive amounts of time-series data 
opens new opportunities for knowledge extraction and deci-
sion-making for companies and practitioners. Linear models 
[22, 23] for time-series forecasting such as ARIMA [24] 
have been prominent for a long time and many research-
ers still rely on such models as they can predict efficiently 
and provide interpretability. However, advances in machine 
learning research concluded that DL and neural networks 
can be more powerful models [25], as they can give higher 
accuracy [7]. Most machine learning algorithms require 
extensive domain knowledge, pre-processing, feature selec-
tion, and hyperparameter optimization to be able to solve a 
forecasting task with a satisfying result [26]. Analysts with 
both machine learning and domain expertise are relatively 
rare, which makes engagement with time series forecasting 
methods expensive for organizations. This gap fostered a 
growing demand for frameworks automating the ML pipe-
line [27]. AutoML provided solutions to build and validate 
machine learning pipelines minimizing user intervention 
[28] where analyzing data with limited human interven-
tion became an interest to researchers and industries [29]. 
However, finding a procedure that automates the entire ML 
process for forecasting is not yet a mature field of research, 
and time-series data also have constraints and oddities (e.g., 
trend, seasonality, outliers, drifts, abrupt changes) and 
should be handled in special ways [18].

2.2  Time‑Series Prediction Models

Selecting the prediction model with time-series has a 
remarkable significance and affects the whole process of 
prediction, where machine learning models used to pre-
dict data behavior can be classified into linear models and 
non-linear models (including DL) depending on whether 

the present value forms a linear or non-linear function of 
preceding values. For example, univariate linear models 
try to find the future value of a particular time series using 
the historical performance of a dependent variable and 
non-linear models try to find complex hidden patterns in 
the data and non-linear relations between dependent and 
independent variables.

2.2.1  Machine Learning (Linear Modeling)

The simplest approach to forecast time-series is the linear 
naive approach [30], in which, forecasting the value at time 
t + 1 is given as the latest available observation at time t 
without predictions or adjusting the factors. Another simple 
approach is the mean model, where the forecast value at 
time t + 1 is the average of all previous values up to time t. 
Although the simplicity of linear models, some of which like 
ARIMA proved efficiency in prediction with high accuracy 
[31]. The mainly used linear models for time-series data 
include Auto-Regressive (AR), Moving Average (MA), and 
Linear Regression (LR). Combining AR and MA models 
constitute another model called the Auto-regressive Mov-
ing Average (ARMA) [32, 33]. Another similar, but more 
advanced, model to ARMA is the Auto-Regressive Inte-
grated Moving Average (ARIMA) [7, 34]. These five mainly 
used linear models are elaborated below:

2.2.1.1 AR Model AR model calculates the future value 
of a variable using a linear formula of the historical val-
ues of the same variable [32, 33, 35]. The term “auto-
regression” indicates regression of the variable against 
itself, i.e., yt = f

(

yt−1, yt−2, yt−3,… , yt−p
)

. The autoregres-
sive model AR(p) that is affected by the ‘p’ of its earlier 
values is calculated as:

where εt is the error term and p is the parameter that indi-
cates the number of previous values to consider in predic-
tion. When p = 0, AR(0) becomes yt = c, a constant where 
no previous values to consider. When p = 1, AR(1) becomes 
yt = ϕ1yt−1, only one previous value will be considered. And 
so on for other values of p [32]. We need to find the best 
value of p for prediction where the model yields optimal 
prediction. This can be done using ACF and PACF tests.

2.2.1.2 MA Model In the MA model, rather than using the 
earlier values of a variable for prediction, it uses earlier pre-
dictions error terms which result when regressing a series 
from its past values. MA model uses these error terms in 
the following predictions instead of using the past values. 
MA(q) is represented as a function of former error terms as:

(1)yt = c + ϕ1yt−1 + ϕ2yt−2 +…+ ϕpyt−p + εt
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where q is the number of previous error terms to consider 
in prediction. It is required to find the optimal value of q for 
forecasting [32]. This can be done using ACF and PACF 
tests.

2.2.1.3 ARMA Model Autoregressive (AR) and moving 
average (MA) can be used together to form a new model 
called the ‘Auto-Regressive Moving Average (ARMA)’, 
i.e., AR + MA = ARMA [32, 36, 37]. ARMA (p,q) model 
is given as:

where p and q respectively are the number of previous values 
and the number of previous error terms to consider in predic-
tion. These best values of p and q can also be found using 
ACF and PACF plots.

2.2.1.4 ACF and PCF Plots An important step while select-
ing a prediction model is to determine its ideal parameters. 
Plotting the ACF and PACF plots against the successive 
time lags is a simple method to finding the parameters of the 
model. ACF and PACF are statistical techniques that indi-
cate the relationship between observations in a time series 
with one another [38, 39] and aid in determining the param-
eters of AR and MA models.

ACF [40] is a function that gives values of autocorrela-
tion of any series with its lagged values. ACF plot describes 
how highly the present value of a series is connected to its 
past values.

PACF [40] is a partial autocorrelation function where 
instead of finding correlations of the present with lags, it 
finds a correlation of the residuals (which remains after 
removing the effects which are already explained by the 
earlier lag(s)). In PACF, we correlate the “parts” of yt and 
yt−3 that are not predicted by yt−1 and yt−2.

In the case of ‘AR models’, ACF for time series will 
shrink exponentially, so PACF is plotted to identify the order 
of ‘p’ [32]. In the case of ‘MA models’, the ‘PACF’ for time-
series will shrink exponentially, so ACF is plotted to identify 
the order of ‘q’ [32].

2.2.1.5 ARIMA Model The ARMA model is suitable for sta-
tionary time series data. However, most of the time-series 
data in the real-world show non-stationary behavior. The 
ARIMA model solves this problem by converting non-sta-
tionary data to stationary using the differencing transforma-
tion which is the process of replacing the time-series data 
values with the differences between these values and their 
preceding values at the previous time steps [32, 33, 41]. The 

(2)yt = c + εt + +θ2εt−2 +⋯ + θqεt−q

(3)

yt = (C + �
1
yt−1 + �

2
yt−2 + .. + +�pyt−p + �t)

+
(

� + �
1
�t−1 + �

2
�t−2 ⋯ + �q�t−q + �t

)

ARIMA equation is a linear equation in which the predic-
tors consist of lags of the dependent variable and/or lags of 
the error terms and is given as:

The common formula of an “ARIMA model” for yt is 
given as:

where yt is a time series and might have been differentiated 
once or more. This model is called the “ARIMA (p,d,q)” 
model, where p and q correspondingly refer to p and q of 
the ARMA model, whereas, d refers to the number of differ-
encing transformations required by the time-series to attain 
stationarity.

When d = 0, it indicates that the time-series is already 
stationary and no need to perform differencing. If d = 1, it 
indicates that the time series is not stationary, and it requires 
performing the differencing once. If d = 2, it indicates that 
the time-series requires performing the differencing twice.

To find the best values of the parameters of p, d, and 
q, a grid search algorithm [42] that tests the performance 
of ARIMA with all possible values in a range then returns 
the best combination of values that can be followed. The 
grid search can also be classified under one of the AutoML 
techniques for hyperparameters optimization which strives 
to find optimal hyperparameters for a model.

2.2.1.6 LR Model Linear regression [43] is one of the most 
commonly used prediction models. It predicts the value of 
a dependent variable given one or more independent varia-
bles. It forms an association between the dependent variable 
and independent variables by fitting a linear line with the 
data points in such a way that the overall distances of data 
points from the fitted line are minimized [44]. An example 
of fitting training data into a line using LR is given in Fig. 1.

The LR, in this case, objected to finding the line that 
models the data the best and the values of the line to be used 
in predicting the future. Data is preferred to be stationary 
when using the LR since it is assumed that the error term is 
white noise and, therefore, data should be stationary.

Overall, the previous linear models (AR, MA, ARMA, 
ARIMA, LR) are preferred to be applied to stationary 
time-series only. The next paragraph elaborates the con-
cepts of stationary and non-stationary data.

2.2.1.7 Stationary and  Non‑stationary Data After col-
lecting and cleaning the time series intending to apply 

(4)

Predicted value of Y

= aconstant and/or a weighted sum of one or more recent values of Y

and/or a weighted sum of one or more recent values of the errors.

(5)

yt = c + ϕ
1
yt−1 + ϕ

2
yt−2 + .. + +ϕpyt−p + θ

1
εt−1

+ θ
2
εt−2 +⋯ + θqεt−q + εt,
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linear models, the next preferable step is to check whether 
the series is stationary or not. Time series needs to be 
lacking trend and seasonality to be stationary where the 
trend and seasonality may affect a time series at different 
instants and result in inaccurate predictions [45]. ARIMA 
prediction efficiency relies on the stationarity of the series 
[24] as it considers the previous values of the time series 
where modeling a series with regular trends involves 
uncertainty. An approach to converting non-stationary 
data into stationary is to compute the differences between 
consecutive observations. This is referred to as differenc-
ing i.e. ( yt – yt−1 ) [32].

Many tests can be used to check whether a time series 
is stationary or not [46]. One of the most used tests is the 
Augmented Dickey-Fuller (ADF) tests.

2.2.1.8 Machine Learning (Deep Learning) Deep learning 
is a subordinate field of machine learning that uses artifi-
cial neural networks (ANNs) that are inspired by the design 
and the working mechanism of the biological brain. ANN is 
built to process and learn a large number of unknown inputs. 
An ANN contains a set of internally connected neurons that 
are designed to compute values from inputs like the biologi-
cal brain neurons [47]. The non-linear nature of ANN makes 
it useful to calculate complicated relations and patterns 
between the input and the output [48]. For this reason, it can 
be used to predict time-series cryptocurrency prices data.

ANN contains parameters and hyperparameters [49] that 
significantly control the processes of learning, the param-
eters and hyperparameters affect the whole process of pre-
dicting and determining their values significantly influence 
the model behavior. These parameters and hyperparameters 
include:

• Number of hidden layers: low number of hidden layers 
means a fast and well generalized ANN where model 
designers prefer to keep the ANN as simple as possi-
ble but at the same time, the ANN should classify the 
inputted data properly. More layers mean better accu-
racy. However, after a particular number of layers, the 

accuracy will not improve anymore by adding more and 
layers, thus it might be inconvenient to design a heavy 
ANN.

• Activation functions: calculate the output of the neuron 
regarding its input and connections’ weights [50].

• Learning rate: determines the value of change on the 
model weights each time they are updated. The smaller 
the learning rate, the longer the training process needed. 
However, large learning rates cause instability in the 
training process [51].

• Number of epochs: determines how many times the neu-
ral network will train on the whole dataset. More epochs 
cause better accuracy but at the same time cause longer 
training time. At some point, further epochs will be futile 
since each further epoch will cause a very tiny enhance-
ment in the accuracy that doesn’t worth the additional 
time to be spent on training [52].

• Batch size: determines the number of inputs in each sam-
ple of the dataset, to be propagated through the neural 
network [52].

• Optimizers: algorithms utilized in updating the values of 
the neural network parameters like weights and learning 
rate to decrease the loss (difference between the fore-
casted output and the actual output during the training 
phase), to provide the most accurate possible results [53].

Examples of the most utilized DL models in modeling 
time-series data are elaborated below:

2.2.1.9 Recurrent Neural Network (RNN) RNN is a neural 
network that takes input from two sources, from the pre-
sent and the past. We can say, it has a memory. The input 
sequence information is stored as a hidden state [54] to be 
utilized recursively, as it moves forward to deal with a new 
sample of data. In other words, each RNN hidden layer takes 
its own previous state at the preceding time-step as an addi-
tional input. For this reason, it can be used to model-time 
series data where it proved efficiency in several cases. The 
architecture of an RNN is illustrated in Fig. 2.

At each given time step, t, a memory state  ht, is computed, 
depending on the preceding state, ht−1, at step (t − 1) and the 
input, xt, at time step t.

The new state, ht, is used to predict the output, ot, at step t.
There are many cases where conventional RNNs are 

poorly suited. For example, predicting succeeding value in a 
long context when we don’t only need to know the preceding 
value to make a strong prediction, but also the values from 
further back. The traditional RNN will only look at the pre-
ceding value, hence giving a reasonably poor prediction, and 
this is called the “problem of long-term dependencies” [55].

2.2.1.10 Gated Recurrent Unit (GRU) It is an enhanced ver-
sion of the ordinary RNN. It possesses two gates, an update 

0
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Fig. 1  Linear regression example
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gate and a reset gate, used to determine which information 
should be pushed to the output. They can be trained to keep 
time-series data of a long time back, without deleting it 
through time [56] (Fig. 3).

2.2.1.11 Long Short‑Term Memory (LSTM) It was designed 
to deal with long-term dependencies using its ability to 
save the information of a long time back and recall them 
when needed. It contains several memory cells. Each cell 
has three gates and a state to adjust the data flow through 
the cells. In the problem of predicting the value in a context 
of series, LSTMs perform better than RNN and GRU, due 
to the memory cell which stores information of a long time 
back [54, 57]. The architecture of LSTM is given as (Fig. 4):

2.2.1.12 Independently Recurrent Neural Networks 
(IndRNN) It was proposed by Li et  al. In 2018 [58]. The 
fundamental IndRNN structure is presented in Fig. 5.

where Weight delineates the input data processing and 
Recurrent + ReLU delineates the recurrent process with 
ReLU function, every time-step. Each neuron receives data 
only from the input and its own hidden state at the previous 
time step as context data (instead of completely linking with 

Fig. 2  Recurrent neural network 
architecture
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all other neurons in the preceding layer) and thus neurons 
are independent of each other’s history [59].

2.3  AutoML

AutoML refers to solving a machine learning task in an 
automated way so that none (or very little) manual effort is 
required [60]. AutoML aims at providing non-experts with 
the possibility of applying machine learning techniques 
to address a specific task without requiring prior techni-
cal or domain knowledge [61]. The goal of most AutoML 
approaches is to fully automatize the process of model 
selection, hyper-parameter optimization, and feature selec-
tion [62]. Previously, several approaches and strategies only 
tackled a subset of this process, whereas in recent years sev-
eral fully automated approaches arose.

2.3.1  Model Selection

Given a set of machine learning models and a dataset, the 
goal of model selection is to find models with the highest 
accuracy when trained and tested on the dataset. AutoML 
strives to select the best-fit model considering the data with-
out human intervention where AutoML can iterate through 
different models to be trained on the same input data and 
select the model that performs best [63].

2.3.2  Hyperparameter Optimization

Setting and tweaking hyperparameters in the right way 
can—and often will—result in a better-performing model. 
Research has also shown that a suitable set of hyper-param-
eters significantly increases the performance of models com-
pared to most default model settings [64, 65].

Hyperparameters refer to the parameters that cannot be 
updated or fine-tuned during the training process and can be 
involved in building the structure of the model, such as the 

number of hidden layers and the activation function, or in 
determining the efficiency and accuracy of model training, 
such as the learning rate, batch size, and optimizer [66]. 
These hyperparameters need tuning and set after selecting a 
model and the hyperparameters that need optimization dif-
fer from one model to another. Hyperparameter optimiza-
tion (HPO) is a significant process in machine learning and 
became necessary due to the upscaling of neural networks 
for enhanced accuracy. The optimization traditionally occurs 
based on experience, which means a possible set of hyperpa-
rameters values becomes necessary due to the upscaling of 
neural networks for enhanced accuracy requires researchers 
to have experience in training neural networks. However, 
with the lack of logical reasoning and the lack of experience, 
we lack the credibility of experimental values [66].

Common strategies of the automated hyperparameter 
optimization (HPO) include Grid-Search, Random Search, 
Bayesian Optimization, Genetic Algorithms, Gradient-
Descent, Tree Parzen Estimators, and others:

• Grid search It can be used with ARIMA and other mod-
els where it proved efficiency. It tries a set of possible 
hyper-parameters applied to the task at hand. This brute 
force approach exhaustively tries every possible combi-
nation and returns the best fitting set of hyper-parameters 
[67–69].

• Random search A random search is a different approach 
in which the possible hyper-parameters are randomly 
chosen and not predefined as in the grid search approach. 
Several studies have proven this approach to be more 
effective [70].

• Bayesian optimization An approach that gained more 
attention in the research community. It also runs models 
with different sets of hyperparameter values, but it evalu-
ates the past model information to select hyperparam-
eter values and build a newer model. Results suggest that 
hyper-parameter optimizing with this algorithm is more 
effective than the brute force paradigm of grid search and 
random search. In some applications, this approach even 
outperformed manual optimization by domain experts 
[71].

• Genetic algorithm Genetic Algorithms are a type of 
search and optimization algorithm which belongs to 
the class of evolutionary algorithms. This algorithm is 
biologically inspired by the evolution theory of Charles 
Darwin [72]. The core idea is that natural selection com-
bined with variation will cause a population to evolve 
over time. In a search algorithm, a population of possi-
ble solutions to a given optimization problem is evolved 
towards a better solution. In an iterative process, candi-
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Fig. 5  IndRNN architecture
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date solutions are evaluated and subsequently modified 
through genetic operators such as selection, crossover, 
and mutation. This heuristic approach has been proven 
to work well in large search spaces [27].

• Other strategies for hyper-parameter optimization include 
Gradient-Descent [73, 74], and Tree of Parzen Estimators 
(TPE) [75].

2.3.3  Feature Engineering

Another aspect of AutoML search is feature engineering 
where manual feature engineering is a tedious and repetitive 
task. Three systems recently introduced to fulfill this task 
automatically are ExploreKit [76], Data Science Machine 
[77], and Cognito [78]. The first uses meta-features extracted 
from previously known datasets and a machine learning-
based algorithm to efficiently rank composed features, 
whereas the data science machines can extract features from 
relational data sources leveraging deep feature synthesis. 
Cognito explores various feature construction choices hier-
archically and increases model accuracy through a greedy 
strategy.

2.4  AutoML Frameworks

In recent years several systems have been proposed that 
combine all three aspects of AutoML: model selection, 
hyper-parameter optimization, and feature engineering. For 
example: H2O [16], Auto-Sklearn [79], AutoGluon [15], 
TPOT [17, 80], Auto-Weka [81], TSPO [27], AutoKeras 
[14], EvalML [13], TransmogrifAI [82], Auto-Pytorch [83], 
and others. In the following paragraphs, a review of differ-
ent AutoML frameworks is represented and a comparison 
between the frameworks.

H2O [16] is a machine learning platform and an AutoML 
module that covers random forest, extremely randomized 
trees, generalized linear models, XGBoost, H2O gradi-
ent boosting machine, and deep neural networks with an 
automated target encoding of high dimension categorical 
variables as a pre-processing technique [18]. H2O trains a 
Random grid of algorithms using a hyperparameter space. 
Individual models are tuned using cross-validation. Two 
stacked ensembles are trained. One contains all the models 
optimized for model performance, and the other contains 
only the best-performing model from each algorithm. Then, 
it returns a sorted leaderboard of all models [16].

Auto-sklearn [79, 84] is a machine learning platform that 
covers 15 models, 14 feature preprocessing methods, and 
4 data preprocessing methods. The models mainly include 
K-nearest neighbors (KNN), gradient boosting, stochas-
tic gradient descent (SGD), random forest, AdaBoost. It 
evaluates a set of meta-features over hundreds of datasets 
and stores the most accurate related configurations [18]. 

Auto-sklearn starts by extracting dataset meta-feature to 
find the similarity to the knowledge base relying on meta-
learning. Then, Bayesian optimization will try to find and 
select the outperforming ML pipelines. Finally, it builds 
the ensemble model based on the best ML workflow in the 
search space [79].

AutoGluon [15] is an AutoML framework that cov-
ers many models including neural networks, LightGBM, 
CatBoost, random forests, extremely randomized trees, 
and KNN. Its pre-processing includes model-agnostic pre-
processing and model-specific pre-processing techniques. 
AutoGluon requires labeled input data to perform the pre-
processing, feature engineering, and generate models based 
on the problem. It trains the generated models under differ-
ent configurations, optimizes hyperparameters, and selects 
the best of them as the final. The search strategy for the best 
set of parameters is based on a random search, grid search, 
or Bayesian optimization [15, 85].

TPOT [17] is a machine learning platform that automati-
cally designs and optimizes ML pipelines using a genetic 
algorithm. In model selection, it covers the following mod-
els: decision tree, random forest, eXtreme gradient boosting 
(XGBoost), logistic regression, and KNN. In feature selec-
tion, it covers techniques like standard scaler, randomized 
PCA, SelectKBest, and recursive feature elimination. Pipe-
line design and optimization start by generating 100 tree-
base pipelines, evaluating them, and selecting the top 20 on 
each generation. Each of these 20 pipelines is copied with 
crossovers or other mutations to produce 5 5 copies and have 
a total of 100 pipelines again. This process is repeated 100 
times until it finally outputs the top-performing models of 
the last generation [18].

Auto-Weka [81] considers selecting a learning model and 
setting its hyperparameters simultaneously, going beyond 
other models that process the two tasks in isolation. Auto-
WEKA performs a fully automated approach using the 
Bayesian optimization approach. It covers Bayes net, naive 
Bayes, LR, logistic regression, single-layer perceptron, 
SGD, SVM, KNN, decision trees, random forest, and oth-
ers [86].

Time Series Pipeline Optimization (TSPO) framework 
[27] provides an AutoML tool specifically designed to 
solve time series forecasting tasks. The framework utilizes 
a genetic algorithm to find an appropriate set of time series 
features, machine learning models, and suitable hyper-
parameters. It is a fully automated time series forecasting 
tool. It takes a raw time series, automatically decomposes 
it, extracts time series features for each decomposition 
and finds a model with a fitting hyper-parameter. It covers 
XGBoost, random forest, quantile random forest, CatBoost, 
and feed-forward neural networks.

AutoKeras [14] is an AutoML system that utilizes 
Keras API. Other than other similar AutoML frameworks, 
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Auto-Keras focuses on DL rather than simple models. It uses 
a process of searching through neural network architectures 
to best address a modeling task, referred to as Neural Archi-
tecture Search (NAS).

EvalML [13] is an open-source AutoML library writ-
ten in python that automates a large part of the machine 
learning process. It builds and optimizes ML pipelines 
using specific objective functions. It can automatically 
perform feature selection, model building, hyper-param-
eter tuning, cross-validation, etc. EvalML handles fea-
ture selection with a random forest classifier/regressor. 
EvalML tunes hyperparameters for its pipelines through 
Bayesian optimization. EvalML supports different super-
vised ML problem types: regression, binary classifica-
tion, multiclass classification, time series regression, time 
series binary classification, and time series multiclass 
classification.

TransmogrifAI [82, 87] is another AutoML framework 
that addresses ML model selection, feature selection and 
engineering, and hyperparameter optimization. The user 
has to specify the dataset, the schema, and the target 
column and the framework automatically discards input 
features that do not present a predictive value and train 
a predefined set of algorithms with a predefined set of 
hyperparameters depending on the type of problem. It 
covers the following machine learning models: decision 
trees, gradient boosted trees (GBT), LR, SVM, logistic 
regression, naïve Bayes, and random forest [82, 87, 88].

A comparison between the different AutoML frame-
works is given in Table 1.

We give a personal recommendation to utilize EvalML 
to the process of AutoSearch for the best-fitting models 
concerning the data for the following reasons:

• Domain-specific: A missing feature in most of the 
AutoML framework where EvalML allows to specify 
the domain of the problem while searching. For exam-
ple, we can specify our problem as ‘time-series regres-
sion’. Once determining the domain for the business, 
EvalML can optimize by defining a custom objective 
function.

• Data checks and warnings: EvalML helps in identify-
ing the problems in data before setting it up for mod-
elling. It can give recommendations on required data 
pre-processing.

• Pipeline building: EvalML helps in constructing a 
highly optimized pipeline including state-of-the-art 
data pre-processing, feature engineering, feature selec-
tion, and other modelling techniques.

• Model understanding: EvalML provides a broad level 
of understanding about the model it builds, for the 
purpose of presentation.

• Low code interface: EvalML provides a simple easy-
to-use low code interface to create a model and use 
those models to make accurate predictions.

3  Related Research

Li et al. [48] conducted a review on using AI and artificial 
neural networks (ANNs) for stock market time-series pre-
diction and found that ANNs are effective forecast tools in 
financial economics owing to the learning, generalization, 
and nonlinear behavior properties.

Mitra et al. [89] surveyed machine learning methods 
to process the textual input from News stories, determine 
quantitative sentiment scores, and predict abnormal behav-
ior of the time series of stock.

Changqing et al. [90] reviewed the methods that focus 
on forecasting linear and stationary process presenting 
a review of the advancements in non-linear and non-
stationary time series forecasting models and compar-
ing their performances in real-world manufacturing and 
health informatics applications. They concluded that there 
had been an increased interest in nonparametric models 
for forecasting nonlinear and non-stationary time series, 
where adapting the principles of nonlinear dynamic sys-
tems into nonparametric modeling approaches can provide 
an attractive means to further advance in forecasting.

Peng et al. [91] used text mining with word embeddings 
and neural networks to extract information from financial 
News and detect stocks movements. They demonstrated 
that the proposed methods improved the accuracy of pre-
diction over the baseline system that uses the historical 
time-series price information solely.

Many works including Huang et al. [90] and Prosky 
et al. [92] used sentiment analysis techniques with deep 
network models to boost the performance of predicting 
time series stock trends.

Many works compared DL with linear models in pre-
dicting time-series data like cryptocurrency and stock mar-
ket prices. McNally et al. [93], Phaladisailoed et al. [94], 
Ahmad et al. [7, 95]. The results in all of the four works 
showed that DL-based models are more accurate compared 
to linear models.

Yan et al. [97] proposed a time series prediction model 
to capture complex features such as non-linearity, non-
stationary and sequence correlation by combining Wavelet 
analysis with LSTM neural network. Their results showed 
that both Wavelet decomposition and reconstruction can 
improve the generalization ability of the LSTM and the 
prediction accuracy of long-term dynamic trend.
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Ji et al. [96] evaluated various state-of-art DL models 
to predict time-series Bitcoin prices. Experimental results 
showed that LSTM-based prediction models slightly out-
performed the other models in regressing while deep neu-
ral network (DNN) models performed better for classify-
ing and predicting price ups and downs.

Dutta et al. [97], inspected different machine learning 
models including LSTM and GRU to predict time-series 
Bitcoin prices. Their results concluded that GRU yielded 
better accuracy than LSTM in predicting.

Pintelas et al. [98] investigated the efficiency of DL in 
predicting time-series cryptocurrency prices and whether 
there is a proper validation method of the prediction models. 
Their results provided evidence that DL models are not able 
to solve this problem effectively.

Iqbal et al. [99] used several linear models for cryptocur-
rency time-series analysis including ARIMAX, FBProphet, 
and XG Boosting. ARIMAX was found as the best model 
of forecasting Bitcoin prices with an MAE of 227 while 
FBProphet and XG Boosting scored an MAE of 323 and 
470, respectively.

Hamayel et al. [100] proposed three types of RNN models 
including GRU, LSTM, and Bi-LSTM to predict the prices 
of cryptocurrencies. Bi-LSTM performed the lowest com-
pared to the other two models where GRU performed the 
best yielding the lowest MAPE and RMSE.

Awoke et al. [101, 102] implemented LSTM ad GRU to 
predict Bitcoin. They concluded that GRU-based models are 
more efficient in forecasting a highly volatile time series. 
However, LSTM was better at a sliding window of size 12 
or smaller than 7. In other words, when using the prices of 
the previous 12 days or the previous 7-or-less days to predict 
the next day price, LSTM performs better.

Several comparative studies on AutoML solu-
tions [103–107] compared various frameworks against each 
other on standard tasks. The results of these studies showed 
high variance between models or no significant variance. 
However, AutoML frameworks did not significantly out-
perform traditional models or humans in easy classification 
tasks [18]. Many researchers suggested applications of ML 
and AutoML techniques and also performed the perfor-
mance analysis of different models.

Dahl [27] proposed an AutoML system and called 
it “TSPO”. It outperformed different machine learning 
benchmarks consisting of statistical benchmarks and ML 
benchmarks in 9 out of 12 randomly selected time-series 
datasets in different domains. The results indicated that the 
proposed TSPO framework can produce accurate forecasts 
without any human input [108–110]. However, researchers 
concluded that AutoML and hence TSPO rely on computa-
tionally intensive search strategies that require a high com-
putational run-time.

Xu et al. [29] organized an automated time-series regres-
sion challenge (AutoSeries) aiming at pushing forward 
research on automated time series. The challenge used 10 
time-series datasets from different domains. Competitors 
delivered a considered contribution to solving the problem 
showing efficient models compared to the baseline bench-
mark model (single LightGBM [111]). Also, showing effi-
ciency in a post-hoc evaluation compared to AutoGluon [87] 
AutoML framework benchmark where all of the winning 
solutions outperformed the vanilla AutoGluon technique. 
Most participants, except the first two winners, used default 
or fixed hyperparameters. The second winner optimized only 
the learning rate while the first winner used the hyperpa-
rameters optimization techniques of AutoML demonstrat-
ing the feasibility and efficiency of automating time series 
regression.

Paldino et al. [18] evaluated four AutoML frameworks 
(AutoGluon, H2O, TPOT, Auto-sklearn) against a bench-
mark of traditional forecasting techniques (naïve, exponen-
tial smoothing, Holt-Winter’s) on different time-series fore-
casting challenges including single variate, multi-variate, 
single-step ahead, and multi-step ahead with limiting the 
allowed computational time of AutoML methods to provide 
a fair comparison. Their results showed that AutoML tech-
niques are not yet mature to address time-series forecasting 
problems and concluded that this should encourage research-
ers to a more rigorous validation and work in the field.

Javeri et al. [112] presented a data augmentation method 
to improve the performance of neural networks and unlock 
their power on intermediate length time series. The 
researcher demonstrated that combining data augmentation 
with AutoML techniques such as Neural Architecture Search 
(NAS) can help to find the best neural architecture for a 
given time-series dataset along with significant enhance-
ment in the accuracy. In that work, the accuracies of three 
neural network-based models for a COVID-19 dataset were 
enhanced by 21.41%, 24.29%, and 16.42%, respectively.

Table 2 provides a comparison of the relevant efforts in 
time-series prediction:

The previous works used or compared a limited set of 
models to forecast time-series data. Most papers have used 
two main techniques to resolve the problem: linear mod-
eling and DL. This problem was solvable to some extent 
with acceptable accuracy by DL. There were very limited 
studies on the use of AutoML. Our work, however, aimed 
to overcome the problems by reviewing more models and 
AutoML frameworks. It extends and generalizes the concept 
of AutoML.
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4  Conclusion

The significance of time-series analysis has been growing 
in the last decade after larger amounts of data were gener-
ated calling for robust time-series modeling tools in differ-
ent applications and disciplines. However, modeling this 
type of data is a difficult task. Modeling techniques of time 
series include linear modeling, DL, and AutoML. Linear 
models are the simplest but might result in inferior predic-
tion accuracy. DL achieves higher but demands experience 
and patience to design a model and optimize hyperparam-
eters. AutoML automatically finds a reasonable ML model 
and optimizes it where many AutoML frameworks can be 
employed to forecast time-series data. However, AutoML 
for time-series is still in the evolution phase and requires 
efforts from researchers to become an answer for the prob-
lem of modeling time-series. This article introduced differ-
ent methods to be used to forecast time-series data includ-
ing AutoML. It also reviewed relevant works conducted 
to answer the problem. A comparison between different 
AutoML frameworks and techniques was provided. This 
work is novel in describing different AutoML frameworks 
that can be used to model data. However, some study limi-
tations should be acknowledged such as this work didn’t 
provide an empirical study about the potential of the differ-
ent methods. The next step should be to conduct an empiri-
cal study to compare by experiment with different ML and 
AutoML techniques to solve the problem of modeling 
time-series. 
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