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The switching frequency of power converters is continuing to increase with the demand for their increased power
density. Therefore, the frequency band of the electromagnetic interference (EMI) generated by power converters ranges
from several kilohertz to 100 MHz or more, thereby increasing the importance of EMI countermeasures in power con-
verters. In addition, with the practical applications of smart grids and microgrids and the introduction of 5G technology,
cases wherein power converters and information communication devices are placed in close proximity are continuing
to increase. Thus, in societies wherein power converters and information communication devices are highly integrated,
it is necessary to ensure electromagnetic compatibility based on a different concept. This paper presents a review on
modeling and suppression techniques for the EMI generated by power converters and discusses future prospects in this
field.
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1. Introduction

In terms of efficiency and controllability, power convert-
ers that are based on the switching operation of power semi-
conductor devices continue to expand their range not only to
industries and home appliances, but also to automobiles and
aircraft. On the other hand, high dv/dt or di/dt associated with
high-speed switching of power semiconductor devices causes
electromagnetic interference (EMI) which brings about mal-
functions and failures of peripheral devices (1)–(4). Hence, re-
searches have been actively conducted on clarifying the EMI
generation mechanism generated by power converters and ef-
fective suppression methods (5)–(10).

In recent years, wide-bandgap (WBG) power semiconduc-
tor devices based on silicon carbide (SiC) and gallium nitride
(GaN) have been rapidly promoted into practical use.

WBG power devices realize 10 times or more faster
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switching than the silicon IGBT (insulated-gate bipolar tran-
sistor) that has been widely used in the past. Hence, it
is expected that the power converter will achieve dramati-
cally higher efficiency and smaller size (11)–(15). However, fur-
ther high-speed and high-frequency drive of power convert-
ers bring about widening broadband and high-frequency EMI
generated by power converters (16)–(18). In addition, discussions
have been actively held in the recent years to expand the
bandwidth to 150 kHz or less, which is the international stan-
dard for EMI generated by power converters. With this back-
ground, it will be required to suppress the EMI generated by
power converters over a wide range of bandwidth from sev-
eral kHz to 100 MHz or more in the near future.

Furthermore, ensuring a stable supply of electrical energy
and building and utilizing advanced information and com-
munication networks are stipulated as important. To achieve
these, practical application of smart grids and microgrids that
control energy transfer by fusing power conversion technol-
ogy, and communication network technology and full-scale
introduction of 5G communication technology are expected.
Against this background, the number of cases where informa-
tion and communication devices are placed near power con-
verters is increasing, and it is necessary to discuss how to
ensure electromagnetic compatibility that considers mutual
interference between the power converters and the informa-
tion communication devices, which is different from the EMI
generation mechanism that targets only conventional power
conversion systems (19).

The purpose of this paper is to provide a review of the
advances in EMI modeling and suppression techniques and
to provide future prospects in this field. The structure of
this paper is as follows. First, in Chapter 2, the effect of
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the switching speed of power semiconductor devices on the
frequency spectrum of the switching waveform of the power
converter is shown. Chapter 3 presents a review of EMI mod-
eling techniques. Chapter 4 provides a comprehensive review
of EMI suppression techniques. Chapter 5 summarizes this
paper, and Chapter 6 presents future prospects based on the
technological trends related to EMI shown in this paper.

2. Frequency Spectra of Switching Waveforms

In general, a power converter outputs a square wave volt-
age of cycle T based on the switching operation of a power
semiconductor device. Since the actual power semiconductor
device has a voltage rise time τr and voltage fall time τf , the
output voltage waveform of the power converter is a trape-
zoidal wave as shown in Fig. 1. The amplitude of the nth har-
monic component obtained by expanding the Fourier series
of the waveform in Fig. 1 can be expressed by the following
equation (1) (20).

|A(n)| = 2A
τ

T

∣∣∣∣∣ sin(nπτ/T )
nπτ/T

∣∣∣∣∣
∣∣∣∣∣ sin(nπτr/T )

nπτr/T

∣∣∣∣∣ · · · · · · · · · (1)

Where, the duty cycle is 0.5 and τr = τf . In the above equa-
tion, if n = fT, the following equation (2) which expresses
equation (1) with respect to frequency f, is obtained.

|A( f )| = 2A
τ

T

∣∣∣∣∣ sin(πτ f )
πτ f

∣∣∣∣∣
∣∣∣∣∣ sin(πτr f )
πτr f

∣∣∣∣∣ · · · · · · · · · · · · · · (2)

Where, the envelope is defined as the following equa-
tion (3) (20).

envelope of
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· · · · · · · · · · · · · · (3)

Therefore, the envelope of the harmonic component can be
expressed by the following equation (4).
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· · · · · · · · · · · · · · · · · · · · · (4)

Table 1 shows the typical switching speeds of Si-IGBT,
which is a power semiconductor device widely used in
the past, and SiC-MOSFET and GaN-Transistor, which are
WBG power semiconductor devices. Table 1 shows the
switching frequency (f sw = 1/T) when the calculation is per-
formed for each device. Figure 2 shows a comparison of
the envelopes of the Fourier series expansion of the switch-
ing voltage waveform for each device based on the switching
speed shown in the table and equation (4). Here, the ampli-
tude A of the trapezoidal wave is set to 200 V.

As shown in Fig. 2, the frequency spectra of the trapezoidal
wave decrease at a slope of −20 dB/dec from the switching
frequency, and at a slope of −40 dB/dec in the high frequency
range due to the rise time. That is, even if the rise time τr is
equal, each frequency component increases ten times when
the switching frequency is set ten times. The WBG power
semiconductor devices can switch ten times faster than Si-
IGBT. Hence, by adopting WBG power semiconductor de-
vices, the switching loss can be dramatically reduced, and by

Fig. 1. Switching waveform

Table 1. Specification of power devices

Fig. 2. Envelopes of frequency spectra of switching
waveforms

increasing the switching frequency of the power converter,
the size of the passive component can be reduced. However,
from Fig. 2, it can be seen that the output voltage amplitudes,
which was largely attenuated in the higher frequencies than
10 MHz in Si-IGBT, increase more than ten times in the fre-
quencies of several tens of MHz.

Here, the conducted EMI is generally measured as the
voltage VN applied to the resistance sensing of the line
impedance stabilization network (LISN) located on the power
supply side of the power converter. VN can be expressed by
the following equation (5) based on the voltage Vconv out-
put by the power converter and the transmission characteris-
tic Gv−v of the noise propagation path.

VN = Gv−v · Vconv · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

As shown previously, the use of the WBG power semicon-
ductor devices means an increase of Vconv in the high fre-
quency band. In other words, with the practical use of the
WBG power semiconductor devices, it is expected that the
EMI generated by power converters will increase up to a band
of about 1 GHz.

In order to suppress EMI, it is important to properly es-
timate the EMI generated by the power converter during its
design stage. For this reason, various modeling methods for
identifying transmission characteristic of the noise propaga-
tion path Gv−v have been studied until now. Moreover, as
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clarified by equation (5), in order to reduce EMI, either Gv−v

should be changed or Vconv should be reduced. Soft switching
technology and multi-level power converters can be adopted
to reduce Vconv. Gv−v can be changed by adding filter compo-
nents such as inductors and capacitors. This paper presents
a review of EMI modeling methods in the next chapter, and
Chapter 4 presents a review of EMI filtering techniques.

3. EMI Modeling Methods

As mentioned earlier, conducted EMI is measured as the
voltage applied across the sensing resistance of LISN (50Ω)
located on the power supply side of the power converter.
Conducted EMI has regulated values in the frequency band of
150 kHz to 30 MHz in CISPR, etc., and all power converters
must meet the regulated values. Therefore, it is essential to
understand the noise generation mechanism and the required
noise attenuation in the design stage of the power converter.

Circuit simulators have been used for the above purposes,
and many modeling methods have been proposed. In this
chapter, we describe time-domain modeling and frequency
domain modeling, which are typical modeling methods, as
well as behavioral modeling, which is an advanced form of
frequency domain modeling.
3.1 Time-domain Modeling In time-domain mod-

eling, the entire power conversion system including LISN
and load is built on the circuit simulator and then the sim-
ulation is executed. The frequency spectrum of the noise ter-
minal voltage is obtained by conducting frequency analysis
on the time-domain waveform of the acquired noise termi-
nal voltage (21)–(32). In this modeling method, it is necessary
to understand the stray impedances of all the components of
the system. For that reason, broadband models of passive
components (33)–(37), power cables (38)–(46) and motors (47)–(51), elec-
tromagnetic analysis of stray components generated in cir-
cuit layouts (31) (32) (52) and detailed simulation models of power
semiconductor devices (52)–(60), etc. are being investigated.

By modeling each component in detail, the simulation ac-
curacy is improved, but the calculation time of the simulation
is increased. Hence, in many cases, the power semiconduc-
tor devices are replaced with ideal components or trapezoidal
wave voltage sources which simulate dv/dt of the power de-
vices are implemented as noise sources. These simplifica-
tions greatly reduce the execution time of the simulation,
however, the accuracy of the model in the high frequency
range deteriorates. Furthermore, in time-domain modeling, it
is necessary to simulate the impedance inside the power con-
verter in detail to enhance the accuracy of the model, but it is
not easy to obtain from off-the-shelf power converters.
3.2 Frequency-domain Modeling To overcome

the above issues in time-domain modeling techniques,
frequency-domain modeling methods have been investi-
gated (61)–(67). In frequency-domain modeling, the frequency
spectrum of conducted EMI is acquired by multiplying the
frequency spectrum of the noise source by the frequency
characteristics of the noise propagation path. These mod-
eling methods can significantly reduce the simulation time
compared to time-domain modeling methods. In frequency
domain modeling, modeling is often focused on either the
differential mode (DM) or common mode (CM) of the tar-
get power conversion system. The frequency spectrum of the

total conducted EMI is obtained by adding the results ob-
tained from the model for each mode.

However, even in frequency domain modeling, the simu-
lation accuracy depends on the modeling accuracy of each
component of the power conversion system. In addition, al-
though the simulation accuracy can be improved by using the
measured switching waveforms of the power semiconductor
device as a noise source, switching waveforms are not easily
available for all power converters.
3.3 Behavioral Modeling Behavioral modeling is a

modeling method investigated for the purpose of further im-
proving the accuracy of frequency domain modeling (68)–(80).
Behavioral modeling is described below using the conducted
EMI measurement setup based on the DC fed buck con-
verter shown in Fig. 3 as an example. The buck converter
is constructed using SiC-MOSFETs (SCT3020AL, Rohm)
and is operated with the following conditions: input DC
voltage 200 V, switching frequency 100 kHz, duty 0.5, and
output power 100 W. For the setup shown in Fig. 3, a be-
havioral model can be derived as shown in Fig. 4 using the
CM noise voltage source VCM, DM noise current source IDM,
CM noise propagation path impedance ZCM, and DM noise
propagation path impedance ZDM

(78). In Fig. 4, ZLISN is the
impedance of DC-LISN. These impedances are measured us-
ing an impedance analyzer or vector network analyzer, and
an equivalent circuit is constructed on the circuit simulator.
The equivalent noise source VCM and ICM can be calculated
from the measured DC bus currents IP and IN through equa-
tions (6) and (7) below (78).

VCM = (IP + IN) ·
(ZLISN

2
+ ZCM

)
· · · · · · · · · · · · · · · · (6)

IDM = (IP − IN) ·
(

ZLISN

4ZCM
+

ZLISN

ZDM
+

1
2

)
· · · · · · · · · · · (7)

Here, assuming that the voltages appearing at the measured
terminals of each DC-LISN are VLISN,P and VLISN,N, the CM
components VN,CM of the conducted EMI in this system can

Fig. 3. Experimental setup for measurement of con-
ducted EMI

Fig. 4. Generalized behavioral EMI model according to
(78)
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Fig. 5. Comparison between measured and calculated
CM component of conducted EMI

Fig. 6. Comparison between measured and calculated
DM component of conducted EMI

be expressed by the following equation (8).

VN,CM =
VLISN,P + VLISN,N

2
· · · · · · · · · · · · · · · · · · · · · · · (8)

In addition, if the transfer function Gv−v,CM from CM noise
voltage source VCM to the measured voltage across the sens-
ing resistance of LISN are obtained using circuit simulator,
the CM component of the conducted EMI can be calculated
from equation (9) below.

VN,CM,cal = Gv−v,CM · VCM · · · · · · · · · · · · · · · · · · · · · · · · (9)

Figure 5 shows a comparison between the measured results
and the calculated results of the CM component of conducted
EMI in the system in Fig. 3. From Fig. 5, it is clear that the
model reproduces the CM component of the conducted EMI
over a wide band from 100 kHz to 100 MHz.

Next, the DM components VN,DM of conducted EMI can
be expressed by equation (10) below.

VN,DM =
VLISN,P − VLISN,N

2
· · · · · · · · · · · · · · · · · · · · · · (10)

In addition, when the transfer functions Gi−v,DM from the
DM noise current source IDM to the measured voltage across
the sensing resistance of LISN are obtained using the circuit
simulator, the DM component of conducted EMI can be cal-
culated from the equation (11) below.

VN,DM,cal = Gi−v,CM · IDM · · · · · · · · · · · · · · · · · · · · · · · (11)

Figure 6 shows a comparison between the measured results
and the calculated results of the DM component of the con-
ducted EMI. It can be seen that the model also reproduces the

Fig. 7. Comparison between measured and calculated
conducted EMI

DM component over a wide band. It is also clear from Figs. 5
and 6 that the DM noise is dominant in 1 MHz band or less,
and the CM noise is dominant in 1 MHz band or over in this
system.

Figure 7 shows a comparison between the measured re-
sults and the calculated results of the conducted EMI. The
conducted EMI was obtained as the sum of the calculation
results of the CM and DM components of the measured ter-
minal voltage of the LISN. It is clear from Fig. 7 that the con-
structed model can reproduce the conducted EMI generated
by the system over a wide band from 100 kHz to 100 MHz.

Behavioral modeling is useful in the design of EMI filters
because of the extremely short simulation calculation time
and high accuracy over a wide band. On the other hand,
since the power converter and noise propagation path are
completely black-boxed, it becomes difficult to understand
the noise generation mechanism from the constructed model.

4. EMI Filtering Techniques

In this chapter, we review the techniques for suppressing
conducted EMI. Conducted EMI suppression techniques are
broadly divided into the use of EMI filters, changes in circuit
topologies, and improvements in modulation methods. This
paper focuses on techniques that use EMI filters. The EMI
filters can be classified into passive EMI filters consisting
of only passive components, and active EMI filters that use
active components such as complimentary transistors and/or
operational amplifiers.
4.1 Passive EMI Filters
4.1.1 Line-side Filtering Figure 8 shows the EMI fil-

ter with the most common configuration using passive com-
ponents. The EMI filter consists of a common mode inductor
(CMI), Y capacitors, which are CM noise filtering compo-
nents, differential-mode inductors (DMIs) and X capacitors,
which are DM noise filtering components. The CMI is real-
ized by applying windings with the same polarity to a mag-
netic core. The leakage inductance of CMI is often used as
the DMI to reduce the number of filter components. The most
basic EMI filter design procedure is presented in Ref. (81).
EMI filters are typically installed on the input side of the
power converter, where the inductor increases the impedance
of the noise propagation path, and the capacitor provides a
low impedance bypass path to the noise current, greatly re-
ducing the conducted EMI.

On the other hand, it has been pointed out that the EMI
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Fig. 8. Basic structure of an EMI filter

Fig. 9. Equivalent circuits of filter components

filter occupies about 30% of the volume of the entire power
converter (82)–(84). Therefore, design methods for EMI filters
that obtains the minimum volume has been widely stud-
ied (85)–(87). In particular, the volume ratio of CMI in entire
EMI filter is large. Hence, design methods that consider the
magnetic saturation of CMI have been proposed (88) (89). Fur-
thermore, in Refs. (90)– (94), an attempt is made to reduce
the filter volume by using a planar inductor with a printed
circuit board pattern as the windings.

As shown in Fig. 9, stray impedances of passive compo-
nents strongly influence on the frequency characteristics of
the filtering components. Since the inductor has a stray ca-
pacitance (Cp) and iron loss resistance (Rp), the impedance
of the actual inductor can be represented as these paral-
lel connection circuits. In capacitors, there are also stray
impedances generally known as an equivalent series induc-
tance (ESL) and an equivalent series resistance (ESR). If these
stray impedance components are considered, the impedance
of a real capacitor is represented as a series connection cir-
cuit of the capacitance C, ESL, and ESR. In general, the
impedance of an ideal inductor without a stray impedance
increases with a slope of +20 dB/dec (inductive impedance),
and the impedance of an ideal capacitor decreases with a
slope of −20 dB/dec (capacitive impedance). However, in a
real passive element in which stray impedances exist, self-
resonance occurs, and at frequencies after that, the inductor
behaves as a capacitive impedance and the capacitor behaves
as an inductive impedance.

The stray impedance also has a great influence on the atten-
uation of the EMI filter. In general, the performance of EMI
filters is evaluated with insertion loss obtained from the mea-
surement system which is terminated at 50Ω. As an example,
the insertion loss of the LC low-pass filter is shown in Fig. 10.
First, when a filter is manufactured using only ideal elements,
it shows an attenuation characteristic of −40 dB/dec from the
cutoff frequency (dotted line in Fig. 10). On the other hand,
if the stray impedance of each filter component is consid-
ered, the attenuation in the high-frequency range changes

Fig. 10. Calculated insertion loss of the EMI filter with
stray impedance components (L = 1 mH, Cp = 10 pF, Rp

= 100 kΩ, C = 100 nF, ESL = 10 nH, ESR = 1 mΩ)

significantly. From the cutoff frequency of the LC low-pass
filter to a certain frequency, an attenuation characteristic of
−40 dB/dec is shown, but at around 1 MHz, the filter inductor
occurs a self-resonance due to the stray capacitance Cp, and
the filter attenuation stops dropping at about −80 dB. In ad-
dition, the fact that the filter capacitor causes self-resonance
with ESL near 5 MHz can be confirmed. Hence, the atten-
uation of the EMI filter continues to deteriorate in the high
frequency range of 5 MHz or higher. In other words, it is im-
portant to reduce the stray impedance in order to realize an
EMI filter that has a large attenuation in the high frequency
range.

In general, the frequency characteristics of almost all ca-
pacitors can be simulated by the equivalent circuit shown in
Fig. 9. In addition, the stray impedance of the capacitor is a
parameter that is difficult to change by designers of EMI fil-
ters. On the other hand, inductors are more complicated com-
ponents whose frequency characteristics change depending
on multiple factors such as the frequency dependence of the
complex permeability of magnetic materials and winding re-
sistance. The stray impedance of inductors can be controlled
by the filter designer by selecting the magnetic material and
changing the winding arrangement. That is, the fact that the
impedance of the inductor can be estimated according to the
selected magnetic material and the winding arrangement ap-
plied to the magnetic core in the design stage is useful to
achieve an EMI filter that has a large amount of attenuation
over a wide band. To realize this, analysis models (95)–(98) and
circuit simulation models (99)–(104) for simulating the frequency
characteristics of inductors, as well as stray capacitance esti-
mation methods (105)–(112), etc. are being investigated.

It has also been pointed out that an inter-parasitic coupling
between the filtering components is also a factor that deteri-
orates the attenuation of the EMI filter in the high frequency
range (113)–(115). Attempts have also been made to reproduce
inter-parasitic coupling inside the EMI filter by performing
three-dimensional electromagnetic field analysis (116) (117).
4.1.2 Load-side Filtering In motor drive systems,

CM current icm flows through the motor stray capacitance,
thus, noise filtering techniques are often taken not only on
the input side of the power converter but also on the output
side in order to suppress the shaft voltage and bearing current
of the motor, as well as the radiated noise from the power ca-
ble. Here, filtering techniques for suppressing the output side
noise are described taking the three-phase inverter fed motor
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Fig. 11. Three-phase PWM inverter fed motor drive
system

Fig. 12. Common-mode inductor installed at the output-
side of the motor drive system

Fig. 13. Common-mode transformer for damping the
resonance of the output-side common-mode current

drive system shown in Fig. 11 as an example.
The simplest noise filtering technique on the output side is

installing CMI (118)–(120). In this technique, as shown in Fig. 12,
a three-phase CMI is installed on the output side of the mo-
tor drive system and the CMI current icm is suppressed by
increasing the CM impedance. However, in many cases, the
CMI with a very large CM inductance is required to suffi-
ciently suppress the CM current. Hence, the turn numbers of
the CMI increases, resulting in an increase in winding stray
capacitance. By using magnetic materials with high rela-
tive permeability such as nanocrystalline as the magnetic core
material of CMI, the decrease of the turns can be expected.
However, the relative permeability of these magnetic materi-
als decreases from several tens of kHz (28) (120)–(122). For this rea-
son, the volume of CMIs fabricated under the condition that
the switching frequency of the motor drive system is set to
about 200 kHz is larger than that of the CMI fabricated under
the condition that the switching frequency of the drive is set
to 20 kHz (122). In addition, as shown in Fig. 13, a technique for
damping the resonance of the CM current by short-circuiting
with resistance the secondary winding of a common-mode
transformer (CMT) which is realized by adding a secondary
winding to the three-phase CMI has also been proposed (7).
This technique is effective in suppressing the peak value of
CM current, but it cannot reduce the rms value. Furthermore,
an increase in loss due to the addition of damping resistance
can also be a problem.

By using an LC CM filter consists of CMI and Y capacitors

Fig. 14. Output-side LC filter with DC feedback

Fig. 15. Passive canceller based on coupled inductors
and a common-mode transformer

with feedback neutral point of capacitors to DC link, the vol-
ume of the core of the three-phase CMI needs only have a
size that does not saturate against the CM voltage output by
the inverter (123) (124). Hence, compared to the method of insert-
ing only the three-phase CMI, volume miniaturization can be
expected. However, in using a Y capacitor, short-circuit is
necessary at the output of the inverter with a capacitor. Be-
cause of this, a large current may flow between the phases of
the inverter. To prevent this, a DMI must be inserted in each
inverter output phase, as shown in Fig. 14. Normally, the size
of the DMI is increased such that its design does not saturate
against the load current of the motor drive system. Also, if
the percentage impedance of the DMI is large compared to
the motor inductance, most of the inverter output voltage will
be applied to the DMI. In order to solve the above problem, a
method has been proposed to draw out the neutral point of the
three-phase motor and feed it back to the DC bus (125). In this
method, although it is necessary to change the structure of the
motor, the advantage is that the large DMI can be omitted by
actively using the motor inductance (125)–(129). There have been
detailed reports regarding this method, such as the suppres-
sion effect towards the leaked current from the heat sink (128),
and the suppression effect towards the bearing current (127).

Figure 15 shows the measures against CM noise on the
output side of a motor drive system that uses a passive can-
celler (130). This method is characterized by the sensing of the
CM voltage generated by the inverter using three coupled in-
ductors. An ideal coupled inductor has a large impedance
towards the DM component and no impedance towards the
CM component. Hence, by using coupled inductors, the CM
voltage can be sensed by a relatively large Y capacitor. By
applying the sensed CM voltage to the CMT with a winding
ratio of 1 : 1, the CM voltage output by the inverter can be
cancelled. In addition, techniques such as combining a pas-
sive canceller with an LC filter (131), or with an active feedback
circuit (132) have been proposed.
4.2 Active EMI Filters Active EMI filters that use
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Fig. 16. Feedforward voltage compensation type active
EMI filter

Fig. 17. Feedforward current compensation type active
EMI filter

active components have been proposed in order to improve
the attenuation characteristic of passive EMI filters and sig-
nificantly reduce their size and weight (133)–(152). Active EMI fil-
ters are roughly classified into the feedforward method (133)–(141)

and feedback method (142)–(152).
Feedforward active EMI filter is roughly classified into two

types: voltage compensation method (133)–(135) and current com-
pensation method (136)–(141). Active common noise canceller
(ACC) has been proposed as a typical example of a feedfor-
ward voltage compensation active EMI filter (133). As shown in
Fig. 16, the ACC senses the CM voltage output by the three-
phase PWM inverter and cancels the CM voltage by applying
a reverse phase voltage to the CMT via a buffer composed
of a push-pull emitter follower. It has been proven that the
ACC can almost completely suppress the CM current on the
output side in a motor drive system. On the other hand, one
issue with this is that the applications to which the ACC can
be applied are limited due to the withstand voltage of com-
plementary transistors. Hence, there is a study aimed at in-
creasing the withstand voltage of ACC (134). Also, in order
to improve the deterioration of the CM voltage suppression
performance that arises from the crossover distortion of the
push-pull emitter follower, a method using an active feedback
circuit in combination has also been proposed (135).

Figure 17 shows the typical configuration example of the
feedforward current compensation type active EMI filter (136).
In this method, a bypass path for the compensation current
icomp is provided by the push-pull emitter follower so that
the CM current icm sensed using the CMT becomes zero.
This method also limits the applications that can be applied

(a)

(b)

(c)

(d)

Fig. 18. Basic structure of feedback type active EMI fil-
ters. (a) Current-sensing series-compensation (CSSC)
type. (b) Current-sensing parallel-compensation (CSPC)
type. (c) Voltage-sensing series-compensation (VSSC)
type. (d) Voltage-sensing parallel-compensation (VSPC)
type

depending on the withstand voltage of the complementary
transistor. Hence, several approaches to achieve high with-
stand voltage have been proposed (137) (138) (140).

The feedback method can be classified into the four types
shown in Fig. 18 based on the noise sensing method and com-
pensation method (152). First, in the current sensing series
compensation (CSSC) method (142) (143), shown in Fig. 18(a), the
noise current is sensed using CMT2, and the feedback com-
pensation voltage vc is inserted in series towards the noise
voltage source vcm via CMT1. The feedback compensation
voltage source is realized by a high-speed operational ampli-
fier. A merit of the CSSC method is that the feedback com-
pensation voltage source can be electrically insulated from
the power conversion circuit using two CMTs. In the current
sensing parallel compensation (CSPC) method (144) (145) shown
in Fig. 18(b), the feedback compensation voltage source is
inserted in parallel towards the noise voltage source using
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Fig. 19. The structure of the ACF installed at the output-
side of the three-phase motor drive system

compensation capacitor Ccomp. In the voltage sensing series
compensation (VSSC) method (146)–(148), shown in Fig. 18(c),
the noise voltage is the sensing target, and the feedback
compensation voltage source is inserted in series towards
the noise voltage source via the CMT. In the voltage sens-
ing parallel compensation (VSPC) method (149)–(152) shown in
Fig. 18(d), the noise voltage is sensed, and the feedback com-
pensation voltage vc multiplied by G is inserted in parallel to-
wards the noise voltage source via the compensation capaci-
tor. Unlike the other three methods, the VSPC method does
not require an additional CMT to sense and compensate for
noise signals. In general, it is difficult to realize a CMT with
a wide operating frequency range due to the frequency de-
pendence of the complex permeability of the magnetic mate-
rial and the winding stray capacitance. Therefore, the VSPC
method, which does not require CMT, is a feedback method
active EMI filter suitable for high frequency application.

In Ref. (150), active common-mode filter (ACF) which is a
VSPC active EMI filter, has been proposed. Figure 19 shows
the configuration of the ACF placed on the output side of the
three-phase motor drive system. The three-phase CMI LCM

and the compensation capacitor Ccomp make up the LC fil-
ter. The CM voltage output by the PWM inverter is sensed
by a high-pass filter circuit composed of Csense and Rsense.
The sensed CM voltage is feedbacked to the compensation
capacitor with an inverting amplifier circuit with a gain of
G times realized through a high-speed operational amplifier.
This feedback compensation increases the capacitance of the
compensation capacitor by 1 + G times in the high frequency
range. As a result, the cutoff frequency of the LC filter shifts
to the low frequency range. That is, the attenuation of the LC
filter can be increased in the high frequency range without
increasing the size of the filtering component.

In Ref. (152), a wideband CM voltage suppression method
by using ACC and ACF together is studied for three-phase
motor drive systems. Figure 20 shows the configuration of
the experimental setup in Ref. (152). The CM voltage vcm

is measured as the voltage between the shield applied to the
cable (realized by wrapping a copper tape around the three-
phase power cable) and the ground plane. The CM voltage
was measured under the conditions that the switching fre-
quency of the PWM inverter was set to 100 kHz, the output
frequency was set to 50 Hz, and the DC link voltage was set

Fig. 20. Experimental setup for measurement of CM
voltage

Fig. 21. Frequency analysis results of the measured CM
voltage waveforms

to 200 V. Figure 21 shows the frequency analysis results for
the measured CM voltage. It is clear from Fig. 21 that by ap-
plying ACC, the CM voltage generated by the inverter can be
suppressed from a fundamental frequency band of 100 kHz
to about 7 MHz. However, due to the frequency character-
istic of the CMT, the attenuation of the ACC with respect
to the CM voltage deteriorates from about 1 MHz. On the
other hand, the ACF attenuates the CM voltage by about
20 dB from about 4 to 100 MHz. In other words, by using
the ACC and the ACF together, the CM voltage generated
by the three-phase PWM inverter fed motor drive system can
be significantly suppressed over wide band frequencies from
100 kHz to 100 MHz.

5. Summary

This paper reviewed the evolution of modeling and sup-
pression techniques for EMI in power conversion systems.

First, Chapter 2 presented the effect of the switching
speed of WBG power semiconductor devices such as SiC-
MOSFETs and GaN-transistors on the frequency spectrum
of the switching waveform of power converters. Analysis re-
sults showed that, by adopting the WBG power devices, the
output voltage amplitude, which was significantly attenuated
in 10 MHz or over band in conventional Si-IGBT, increases
10 times or over in more than several tens of MHz. Hence,
along with the practical application of the WBG power semi-
conductor devices, the EMI generated by power converters
will increase to a band of about 1 GHz. In other words,
EMI countermeasures become even more important in power
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converter designs.
Chapter 3 presented a review of the EMI modeling meth-

ods. The three methods, namely, time-domain modeling,
frequency-domain modeling, and behavioral modeling were
outlined. The usefulness of the DC fed buck converter was
presented as an example of behavior modeling.

Chapter 4 presented a comprehensive review of EMI sup-
pression techniques in power converters. The suppression
technique that used the most widely adopted EMI filter was
described in this paper. EMI filters are broadly classified into
the passive EMI filters which used passive components, and
active EMI filter which used active components. First, the ba-
sic configuration of the passive EMI filter was shown, then it
was stated that the high frequency characteristics of the filter
deteriorate due to stray impedance, and that volume mini-
mization design has been actively studied. The filtering tech-
niques that suppress the output side noise of the motor drive
system was also summarized. Next, it was stated that ac-
tive EMI filters can be broadly divided into the feedforward
and feedback methods. In addition, it was also shown that
the feedback method can be classified into four types accord-
ing to the noise sensing and compensating method. Taking a
three-phase inverter fed motor drive system as an example, it
was shown that by combining a feedforward active EMI fil-
ter (ACC) and a feedback active EMI filter (ACF), the CM
voltage output by the three-phase inverter can be suppressed
by about 20 dB over wide band frequencies from 100 kHz to
100 MHz.

6. Future Perspective

Important future research topics related to EMI in power
conversion systems are described below.
• Simulation model: In many simulation models, the ef-

fect of electromagnetic coupling between the compo-
nents that make up the power converter on EMI is not
considered. Hence, in many models, the simulation ac-
curacy deteriorates in 10 MHz or over high frequency
band. It is necessary to improve the simulation accuracy
by realizing a model that considers parasitic coupling.
In addition, it is important to establish a power con-
verter design method that optimizes component place-
ment from the perspective of EMI reduction based on
the model.
• Passive EMI filter: Further research is needed on the

thermal model of filtering components, circuit simula-
tion model that considers the mutual coupling between
filtering components, and optimum design that consid-
ers the stray impedance of filtering components.
•Active EMI filter: The problem with active EMI filters is

that the reliability of the entire system is reduced when
active components are adopted. In particular, a detailed
evaluation of the stability, loss, and power supply of ac-
tive EMI filters is needed.
• Conducted EMI for a frequency range below 150 kHz:

DM noise becomes dominant in the low frequency band
of several tens of kHz. Hence, a very large EMI filter is
required to suppress EMI in this band. To reduce the fil-
ter size, it is necessary to study an active EMI filter that
can reduce EMI in the low frequency band of 150 kHz
or lower.

• Radiated EMI: With power converters turning to high-
frequency drive, the radiated EMI that they generate in
several tens of MHz band or higher will increase signif-
icantly. Therefore, it is necessary to study the radiated
EMI generation mechanism, the analysis model of radi-
ated EMI based on the generation mechanism, and effec-
tive radiated EMI suppression methods.
• EMI for multiple power converter systems: The EMI

generation mechanism at the system level such as distri-
bution networks (systems that consist of multiple power
converters and loads such as microgrids) should be in-
vestigated and modeling methods must be established.
•Mutual interference between power converters and in-

formation communication equipments: With the recent
practical application of smart grids and microgrids and
the introduction of 5G communication technology, many
information communication devices are being placed
near power converters. For this reason, it is necessary
to discuss how to ensure electromagnetic compatibility
with respect to mutual interference between the power
converters and the information communication devices,
which is different from the EMI generation mechanism
that targeted only conventional power conversion sys-
tems.
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