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In an attempt to better understand how the navigation part of the brain works and to possibly create smarter and more reliable
navigation systems, many papers have been written in the �eld of biomimetic systems. �is paper presents a literature survey
of state-of-the-art research performed since the year 2000 on rodent neurobiological and neurophysiologically based navigation
systems that incorporate models of spatial awareness and navigation brain cells. �e main focus is to explore the functionality of
the cognitive maps developed in these mobile robot systems with respect to route planning, as well as a discussion/analysis of the
computational complexity required to scale these systems.

1. Introduction

�is paper reviews the current state of research in mobile
robot navigation systems that are based on the rodent’s
specialized spatial awareness and navigation brain cells.
Speci�cally, these cells include place cells, grid cells, border
cells, and head direction cells. �e advantages of using a
neurobiologically based system include the possible perfor-
mance rewards that may be realized in the future pertaining
to navigation and smart systems, as well as the bene�ts of
using accurate models of the brain for other, related research
[1, 2]. For arti�cial intelligence to take a major leap forward,
machines will at minimum need to learn and think the
way humans do. �is will require computational elements
that behave similarly to, and are as compact as, the neurons
and accompanying dendrites and axons found in the human
brain.

Although there is a need for new technical paradigms in
arti�cial intelligence, this paper does not propose or present
new methods but outlines work that may be a path to such
answers. �e most important attributes of the neurobiology
based navigation systems covered are the types of cognitive
maps produced by these systems and how they are, or can
be, used for route planning. �us, the focus of the analysis

of the reviewed literature will be centered on mapping and
route planning capabilities of these neurobiologically based
systems.

Most papers that have reviewed such systems came
around or before the year 2000, such as [3–5]. However, since
2000, much advancement has taken place in the miniaturiza-
tion of electronic packaging (Moore’s Law), thus increasing
the practicality of placing better sensors and processors and
algorithms andmore memory and so forth onmobile robots.
In addition, the discovery of the grid cell by the Mosers in
2005 [6–9] added more insight as to how rodents navigate.
�erefore, this paper �lls the gap on a needed formal review
of the state-of-the-art neurobiologically based navigation
systems researched and developed from 2000 and on. On the
nonneurobiological (classical) side of navigation in mobile
robots, a good source that reviews map-learning and path
planning strategies can be found in a paper by Meyer and
Filliat, 2003 [10], aswell asmany books on the topic (e.g., [11]).

�us, the outline of this survey proceeds as follows:
Section 2 discusses the basics of the simultaneous localization
and mapping (SLAM) method of navigation, as well as
some fundamental issues that plague every navigation system
(neurophysiologically based or not); Section 3 gives a brief
review of the de�nitions of the neural cells that will be the
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center of focus in this paper; Section 4 covers state-of-the-art
research that has been performed on neurobiologically based
navigation systems (only those that have been realized in
working, prototype mobile robot systems) with a critique of
the cognitive maps developed for route planning algorithms
at the end of each subsection; Section 5 presents an overall
a general analysis and discussion of the research performed
in the literature; and Section 6 covers neural networks and
addresses scalability of the neurophysiologically based fea-
tures in a mobile robot platform.

2. General Robot Navigation Background

2.1. Simultaneous Localization and Mapping. For a mobile
robot to be truly autonomous, it needs to be able to operate
and navigate without human intervention and in a non-
specially engineered environment. More speci�cally, the fol-
lowing needs to be true: a mobile robot must be able to locate
itself in an unknown location of an unknown environment
by incrementally building a map of its environment, while
simultaneously locating itself in that environment by use
of the derived map. �is process is known as simultaneous
localization and mapping (SLAM) [15–18]. As described in
[18], the fundamental parts of a classical SLAM system
are (1) landmark extraction, (2) data association, (3) state
estimation, (4) state update, and (5) landmark update. Of
course, to be able to accomplish these SLAM steps the system
requires hardware, used by the agent to interact with the
environment and make decisions with them (i.e., sensors,
actuators, processor, etc.), plus any �lters and/or methods
required to adequately perform these 5 tasks (e.g., sensor
noise suppression, error correction algorithms). SLAM is not
unique to just classical systems. It is accomplished, in some
similar form, by rodents by use of their hippocampus [2, 19–
21]. �e special neurons or brain cells which accomplish this
will be covered in Section 3.

2.2. Fundamental Navigation Issue: Sensor Error. �ere are
fundamental issues which plague every navigation system
(neurobiologically based or not) [25]. �ese issues, largely
path integration related, propagate up into the mapping
and localization phases, levels L0 to L1 in Figure 1. In a
neurobiological or neurophysiologically based navigation
system, this is equivalent to either lesions introduced into
hippocampus and related areas, lack of allothetic stimuli, or
other similar targeted manipulations on rats [9, 23, 26]. �e
outcome, thus, has a negative eect on the accuracy of the
overall navigation system.

�erefore, for any navigation system to work adequately,
the mobile robot’s sensor data error must be within a usable
margin and be reset periodically by allothetic information,
whether visual, tactile, olfactory, or others. Idiothetic data is
the most basic navigational data for the robot to use to track
its movements and is the basis for path integration [28–30].
�e inherent issue with any ground based robot navigation
system is the mobile robot’s measurement accuracy with
respect to distance traveled and directionality (idiothetic
data), since this data is used to derive the robot’s pose. Sources
of classical and most neurobiologically based navigation
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Figure 1: A generic SLAM based hierarchal architecture that can
apply to both classical and neurobiologically based mobile robot
systems.

systems’ measurement errors come from the data obtained
from odometry devices, inertial measurement units (IMUs),
distance sensors, and other position/pose measurement sys-
tems (use of idiothetic stimuli only). �e sources of these
errors fall into two categories, as described in [30, 31], of being
either systematic or nonsystematic. Additionally, these errors
accumulate over time [18, 28, 30–32], making environment
localization and mapping inaccurate if these measurements
are used directly. Methods in error correction of odometry
and related position/pose data have been, and still are, a
major topic of research. However, probabilistic �lters (e.g.,
extendedKalman �lter (EKF)) or particle �lters, as well as use
of allothetic stimuli (e.g., landmarks), are used with SLAM
algorithms in classical systems to help correct these errors in
the pose data and location estimation.

Similarly, whether animals, insects, or animats, these
navigation systems require path integration (PI) systems
with corrective error mechanisms [6, 23, 33]. In the case of
animats, or, more speci�cally, the neurophysiological mod-
eled navigation systems reviewed in this paper, it is shown
that visual data is key to keeping PI errors to a workable
minimum.�is will also be touched on in Section 5.

3. Navigation Related Cells Review

�e following is a review of the de�nitions and characteristics
of the specialized navigation neurons or cells, as found in
the hippocampus and entorhinal cortex of a rodent brain,
as well as the human brain [34]. �is material is covered in
other literatures [6, 20, 21, 35, 36] but is included here for
completeness.

3.1. Place Cells. Place cells in rodents were discovered by
O’Keefe and Dostrovsky in 1971 [37, 38]. Each of these cells,
primarily located in the CA1-CA3 regions of the hippocam-
pus, �res at a devoted location in a rodent’s roaming area.�e
place cell’s �ring location is invariant to the head direction
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or body pose of the rodent. �e �ring area of each place cell
also seems to follow the summation of two or more Gaussian
distribution curves, one for each salient distal cue [34].

3.2. Head Direction Cells. Head direction cells were discov-
ered in rodents more than a decade a�er the place cells
[39, 40]. �ese cells are place invariant and each has a
preferred direction with respect to the rat’s head direction in
the horizontal plane, where it will �re at a maximum rate.
�ey are silent for all other directions, except for a small
region (±a few degrees) of their preferred direction angle.
�e head direction cells only �re as a function of the rat’s
head direction and not its body. Additionally, although the
cells have dierent preferred directions, they seem to fall
into a �nite set of directions (e.g., N, NE, and SW). �e
directionality is relative, such that they will align relatively
to a dominant external cue of the environment the rat is
introduced to, if available, else it will set a direction based on
other unknown origins [23, 41].

3.3. Border Cells. A border cell can be thought of as a spe-
cialized place cell, where it only �res with respect to a certain
border or barrier [42, 43]. �e area covered by a border cell
can vary drastically, with respect to each other. Similar to
the place cell, the �ring characteristic of the border cell is
invariant to the rat’s head direction.

3.4. Grid Cells. �e grid cell was discovered by Edvard and
May-Britt Moser in 2005 [6–9].�is set of special, navigation
related brain cells, which is the most recent to be discovered,
is located in the medial entorhinal cortex. Grid cells have a
very interesting �ring characteristic, as compared to the place
cells and border cells. Single place cell and border cell only �re
at a speci�c location/region, whereas a single grid cell �res at a
geometrical constellation of locations/regions. �ese regions
within the rodent’s roaming area form hexagonal/equilateral
triangles, where each �ring location is at a particular vertex
of the equilateral triangles. �e hexagonal lattice of each grid
cell’s �ring �eld is de�ned within a very short time of a rodent
being introduced to a novel area. It appears that the lattice is
anchored in orientation and phase to external landmarks and
geometric boundaries of its environment [6, 7, 44].

4. State-of-the-Art Research in
Neurobiologically Based Navigation
Systems for Mobile Robots

�is section covers state-of-the-art research in neurobio-
logically based navigation systems, where the systems have
been implemented in a mobile robot since the early 2000s.
Although some of the systems covered rely on external CPUs
to perform neurophysiological simulation for the robot (e.g.,
Khepera mobile robot platform), they have been included
anyway. However, by the de�nition of autonomous mobile
robot used in this paper, these systems would be considered
nonautonomous because of the need to communicate with
external computers.�us, the autonomy classi�cation of each
robot presented will be included in Table 1.

�e neurophysiologically based navigation systems fall
into three categories, based on the centric navigation cell
that is being functionally emulated.�ese categories are place
cell centric, theoretical cell centric, and grid cell centric
categories. �e theoretical cell uses one or more true neural
navigation cells (one being the place cell typically) to create a
new, �ctional cell that is at the center of its navigation system.
Although �ctional, these cells, or functions, may indeed be
plausible and real in one form or another. Basic features and
capabilities of these systems are summarized in Table 1.

4.1. Place Cell Centric Systems

4.1.1. Arleo and Gerstner 2000. �e study article by Arleo
and Gerstner, 2000 [12], has had an in�uence, in one form
or another, on many future works covered in this section,
particularly [2, 13]. �e references used in [12] fall into the
categories of both neuroscience: O’Keefe and Nadel, 1978
[45]; Taube et al. 1990 [39]; Redish, 1997 [4]; and so forth
and neurophysiological inspired circuits andmodels: Burgess
et al. 1994 [26]; Brown and Sharp, 1995 [46]; Redish and
Touretzky, 1997 [47], Zrehen and Gaussier, 1997 [48]; and
so forth, which form a basis of references used by the other
proceeding studies/articles. More references can be found in
Arleo and Gerstner, 2000 [12] and 2000 [49]. Additionally,
this paper’s presentation and functional use of neurobiolog-
ical specialized spatial navigation cells found in the rodent’s
hippocampus, for modeling in robotic navigation, are central
to the theme of all of these papers covered.

(1) System Architecture. In [12], the Khepera robot system
used consists of the following: an onboard camera for vision
based self-localization (90∘ �eld of view in horizontal plane),
eight infrared (IR) sensors for obstacle detection and light
detection, a light detector for measuring ambient light, and
an odometer for sensing self-motion signals. �e neurobio-
logically based navigation system models two crucial spatial
navigation cells: head direction cells and place cells. �is is
performed on an external computer.

(2) Head Direction and Place Cells for Spatial Navigation.
In Figure 2, the allothetic inputs consist of data from the
onboard camera, which is used for the place cells in the
sEC submodule, as well as data from the eight IR sensors
and the ambient light sensor, which are used by the visual
bearing cells in the VIS submodule (le� side of Figure 2).
�e neural networks (Sanger’s [50]) to the place cell from
the camera input are programmed o�ine during an initial
unsupervised, Hebbian learning phase [51]. During this
initial, exploration/neural network training phase, each place
cell location is learned by dividing images taken into smaller
32× 32 pixels, running the reduced image through 10 dierent
visual �lters of 5 set scales each. �is is done for the north,
west, south, and east views of the robot’s arena from each
snapshot/place cell location. �e networks of each cell are
then trained with the reduced images and adjusted for
maximum response for each image location. �us the place
cells are programmed neural networks with the onboard
camera image, divided into four quadrants of 32 × 32 pixels
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Figure 2: A functional overview of the directional system [12].

each, at the input, and will allow for self-localization in the
online mode.

A light source is added to one wall of the robot’s arena,
where the IR sensors and ambient light sensor can lock onto
this global direction (with the help of neural networks for
�ne-tune positioning to the light source). �is allows for
calibration of the robot’s directional module (right side of
Figure 2), which bounds the accumulated error in direction-
ality.

�e robot uses three dierent neural populations of cells
(right side of Figure 2) to calculate its head direction from its
current angular velocity and anticipated angular velocity and
feedback from the system output and calibration cells. �e
end result is a set of quantized, directional cells to drive the
robot’s motors for proper heading.

(3) Computational Complexity. �e computational complex-
ity of this system is a bit more involved than brie�y covered
here. Further details can be found in [12, 49, 52]. However,
any neural network system is going to have a relatively high
to extremely high computational complexity, based on the
number of neural networks and the processing status of
o�ine and online/real-time learning. �e environment is
somewhat engineered and needs to be static. �is is true
though of any system in the initial stages of wringing out
system integration errors, model problems/accuracy, and so
forth.

(4) Mapping and Route Planning. Visual based mapping,
through the use of snapshot recognition (place cells), is used
to help correct head direction error and not for obstacle
avoidance or route planning. �erefore, true mapping and
any form of route planning are not addressed in [12, 49].

4.1.2. Fleischer et al. 2007

(1) System Architecture. �e neurophysiological modeled
navigation system for Darwin XI mobile robot designed by
Fleischer et al. [27] is not autonomous, by the de�nition
used in this paper, due to the use of external computers to
simulate a detailed neurophysiology based system. However,
the system pushes the limit on simulating large scale features
of vertebrate neuroanatomy andneurophysiology (themedial
temporal lobe speci�cally) in real time. �rough the use of a
Beowulf cluster of 12 1.4GHz Pentium IV computers running
a Linux operating system, sensor data is communicated on
a wireless link from the mobile robot to one of the cluster
computers, while motor data is sent back to the robot.
�e simulation processing cycle from sensor data input to
motor command output is approximately 200ms of real
time. �e simulator, referred to as the brain-based device
(BBD), simulates 57 neural areas, 80,000 neuronal units, and
approximately 1.2 million synaptic connections.

Darwin XI is equipped with a visual system (camera),
a head direction system (compass) plus wheel odometry
(current head direction), a laser range �nder system (facing
downward to detect neuronal reward), and a whisker system
which reads bumps along the plus-maze walls.

(2) Modeled Hippocampus. A schematic of the mobile robot
mobile I/O sensors connected to the corresponding neu-
rophysiologically based navigation system can be found in
[27]. However, Figure 3 illustrates the type of connections
and simulated parts of the medial temporal lobe, including
the hippocampus entities. Figure 3 is similar to that found
in [53, 54]; however further details pertaining to the various
layers of the entorhinal cortex are lacking in this �gure.
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Although both the previous research using Darwin X [55,
56], which used a dry variant of the Morris water maze task
[57], and that usingDarwin XI, which uses the plus-maze, are
performed on rodent based navigation testing platforms, the
focus of these studies is on the formation of episodicmemory.
�rough the use of a backtrace analysis tool, several seconds
of neuronal activity and synaptic changes can be analyzed to
determine causality of a particular neural event. Both studies
showed the strongest synaptic in�uence from the entorhinal
neuronal units on episodic memory, particularly from the
performant path (ECin → DG, ECin → CA3, and ECin →
CA1 in Figure 3), while Darwin XI speci�cally focused on
journey-dependent and journey-independent memory, as
well as path prediction. A further detailed analysis can also
be found in [58].

4.1.3. Strösslin et al. 2005

(1) System Architecture. Strösslin et al. [13] use the same
mobile robot platform (Khepera) as Arleo. �e robot has
a camera, odometers, and proximity sensors. �us, the
robot only uses bodycentric, local sensor information for
navigation. �e Khepera is attached to a computer, running
the neural model, with a long cable that also provides power
to the robot and allows for sensor data to be transmitted from
the robot to the computer.

(2) Neural Model: Place Code and Cognitive Maps. In a dry
water maze, similar to that used for Darwin X, a navigation
map is learned by the place cells in 20 trials, which is similar
to the results foundwith rodents in thewatermaze [57].�us,
visual and idiothetic information feeds the external neural
model, which is composed of step cells (SCs) and rotation
cells (RCs). �ese cells make up the local view (LV) and are
fed by the visual input, a head direction (HD) system in the
postsubiculum (poSb), path integration (PI) in the medial

NAAC

HPCCPC

APC IEC PI mEC

Calibrate

HD poSb

Idiothetic
input

Visual
input

LV
SC

RC Calibrate

Figure 4: Simulated neural system. Redrawn with permission from
Strösslin et al. [13].

entorhinal cortex (mEC), and combined place code (CPC)
in the hippocampus (HPC) and subiculum. �e directional
action cell (AC) in the nucleus accumbens (NA) is what
eventually drives the navigational learning of the CPC. See
Figure 4 for connectivity.

�e cognitive map or spatial representation of the robot’s
environment is accomplished through unsupervisedHebbian
learning between the place cells and the head direction
cells. Additionally, route planning is accomplished by use of
biologically inspired reinforcement learning mechanism in
continuous state space (place cells) and ACs.

4.1.4. Hafner 2008

(1) Place Code and Cognitive Maps. In [14], Hafner uses place
cells for creating a cognitive map of a mobile robot’s area.
�e mobile robot, out�tted with only an omnidirectional
camera and a compass, produces a cognitive map during
an exploration phase, where the map is represented by
place �elds and place cells. Each snapshot taken by the
camera is converted into a 16-dimensional transformation,
which is used as the sensory input to a neural network
system. �at is, each 360∘ camera snapshot is divided up
into 16 angular, azimuth sections of 22.5∘ each, �ltered,
and sent to the place cells’ neural networks. �e weights
of each neural network, initially set to random values, take
on evolved values during the exploration phase. �e place
cells, as shown in the “output layer/map layer” in Figure 5,
become relationally connected to each other based on a self-
organizing map (SOM) methodology [59], where each single
winner of a particular snapshot becomes connected to the
previous winner and the corresponding connection weight is
increased. Since the place cells are not geometrically �xed,
they are assigned relative angles to each other, creating a
topological map. �is is all done without the use of reward
during learning. Additionally, there is no goal state.

(2) Simulated Route Planning. However, once the neural
cognitive maps have been built, they can only be used
in simulation for navigation. �e topological and metric
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Figure 5: Neural network structure as a result of learning connec-
tivity between place cells. �e input layer represents input from the
robot’s sensors [14].

information requires too much memory to reside in the
mobile robot. �us the mobile robot relies on landmark
(snapshot) recognition anduse of the SOMto reach goal spots
or areas.

4.1.5. Barrera and Weitzenfeld 2008

(1) System Overview. Barrera andWeitzenfeld [2, 22] propose
and implement a very complex, intricate, and modular
neurophysiologically based navigation model. As with Arleo
and Gerstner [12, 49], all of the proposed functionalities are
mapped back to existing neurophysiological entities. Addi-
tionally,many of thesemodules are implemented usingGaus-
sian distributions and the Hebbian learning rule/equation
for neural networks. �e main goals of this research are (1)
for the mobile robot to be able to learn and unlearn path
selections for goal locations based on changing rewards, (2)
to create a realistic neuroscience based test bed for use in
further behavior studies, and (3) to add to the existing gap
in the SLAM model between mapping and map exploitation
[2]. �e mobile robot’s test environment con�gurations are
limited to the T-maze and the 8-arm radial maze.

�e neurophysiological theory that forms the basis for
this study comes from [60]. �us, in addition to idio-
thetic and allothetic sensory inputs, there are also internal
state/incentives and aordances information sensory inputs.
Figure 6 shows the functional modules of this system, while
removing many of the underlying details of the neurophysi-
ological framework. Further details, such as model descrip-
tion, the neurophysiological framework, and equations for
each of these modules can be found in [2, 61–63].

Since the system lacks odometry and compass sensors,
the idiothetic data comes in the form of kinesthetic data that
is sent to an external motor control module, via the Action
Selection module as shown in Figure 6, which is used for
executing rotations and translations of the robot.

(2) Place Cells and Cognitive Map Generation. �e Place
Representation module in Figure 6 is where the cognitive

map is made, stored, and accessed for the mobile robot to
select movement options. �us, this module represents the
functionality of the hippocampus.�e path integration infor-
mation is combined with landmark information, through
the Hebbian learning rule, to create a place cell layer. �e
overlapping place cell �elds in this layer represent given
locations or nodes that are found in the world graph layer
(WGL), as shown in Figure 7.

�eWGLuses a simple algorithm to decide its nextmove.
It analyzes active nodes connected to the Actor Unit and,
based on the highest weight, the WGL chooses the step that
will get it closer to its learned goal or the best move for the
time when a goal has been changed or not learned yet.

(3) Computational Complexity. Because of the high com-
putational complexity of this neurophysiologically based
navigation system, most of the model runs on an external
1.8 GHz Pentium 4 PC, which communicates wirelessly with
a Sony AIBO ERS-210 4-legged robot.�us, the system is not
autonomous.

4.2. �eoretical Cell Centric Systems

4.2.1. Wyeth and Milford: RatSLAM, Version 3

(1) System Overview. Wyeth and Milford focus in [19, 20] on
a neurobiologically inspired, SLAM based, mapping system
for a mobile robot navigation system, based on models and
earlier versions of RatSLAM [13]. �eir robot, a Pioneer 2-
DXE base system, performs mock deliveries in a large, single
�oor, o�ce building using simple sensors:motor encoders for
odometry, sonar and laser range �nder for collision avoidance
and pathway centering, and a panoramic camera system for
landmark recognition. �is system, named RatSLAM, uses
the concept of place cells coupled to head direction (HD) cells
to derive, what they call, pose cells.

(2) Pose Cells. �e competitive attractor network (CAN) [4,
13] based pose cells are used with local view cells, which are
snapshots of the panoramic camera along the robot’s journey.
�us, Milford and Wyeth have added a new type of cell: the
pose cell. �e pose cell is similar to the conjunctive grid
cells, as they report, which is a combination of grid cells and
head direction cells found in the rodent brain. �e pose cells
work like weighted probabilities that each local view cell is
in the direction and location of the stored pose (averaged).
Figure 8 illustrates the connectivity of the RatSLAM, version
3, as described here and in [23].

(3) Cognitive Map. �e mapping algorithm incorporates a
loop closure and map relaxation techniques to correct PI
errors, thus creating more of a topological map than a metric
map. A loop closure event only occurs when a threshold of
consecutive local view cells matches the camera’s input, thus
allowing for a change in the pose data. So as to save original
pose data, the relaxed map is saved to an “Experience Map”
(see Figure 9 for an illustration of the ExperienceMap Space),
and the local view cells with accompanying pose cell data are
stored in a connection matrix. Due to the topological nature



Journal of Robotics 9

Sensory inputs

Motivation

(�xed critic)

Internal

state/

incentives

Path
integration

Kinesthetic

information

Landmarks
processing

Visual

information

A�ordances
processing

A�ordances

information

Place

representation

(hippocampus)

Reset

Learning

(dopaminergic

neurons)

ř

PC

EX

DX

Action selection

Motor outputs

DIR

ROT

DIS

AF

AF

Figure 6: Computational spatial cognitive model of the Barrera andWeitzenfeld neurophysiologically basedmobile robot navigation system.
Some submodules and neurophysiological framework are not shown and can be found in [22]. ř = eective reinforcement; PC = place
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logical map of the mobile robot’s environment inside the Place
Representation module.

of the Experience Map, transitions between experiences are
stored, thus allowing route planning to be possible.

�e bene�t that comes from this design is that it is
a �rst step into implementing the functionality of some
of the specialized, navigation and spatial awareness, brain
cells in a mobile robot. �e downside is that it has been
shown that the competitive attractor network can be easily
replaced by a �lter system [25], which leads to substantial
computational speedup. Additionally, even with pruning in

Landmark cues

(e.g., local view cells) 

Pose cells

Self-motion cues

(e.g., HD cells)

Experience

Map

Action

Figure 8: Connectivity diagram of the RatSLAM, version 3.

the Experience Map, data storage and processing do appear
to grow unbounded.

4.2.2. Cuperlier et al. 2007

(1) Transition Cell. Cuperlier et al. built a neurobiologically
inspired mobile robot navigation system in 2007 [24] using
a new cell type which they named the “transition cell.” �eir
cell is based on the concept of moving from one place cell
to the next over a de�ned interval of time. �us, two place
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cells are mapped to a single transition cell, creating a cell
which represents both position and direction of movement
or spatiotemporal transitions, thus a graph-like structure.

(2) Computation Complexity. Multiple neural networks span
the system’s architecture, as shown in Figure 10, from the
landmark extraction/recognition stage to the cognitive map
and motor transition stages. �e many inputs of video, place
cells, and so forth into a system of neural networks require

many calculations to be carried out during each time step.
�is complexity is similar to Arleo and Gerstner [12, 49]
and Barrera and Weitzenfeld [2, 22, 63], covered in the
previous section. To illuminate the amount of processing
that is required it is stated in [24] that the system uses 3x
Dual Core Pentium 4 Processors which run at 3GHz each.
Azimuth angles are measured using an onboard compass,
displacement is obtained fromwheel encoders, and the visual
is obtained from a panoramic camera.
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�e navigation process starts at the le�most part of
Figure 10, where a single, potential landmark is selected
and analyzed at a given time. �is occurs up to � times
per snapshot, where � is set to a value to help balance
the algorithm’s e�ciency with its robustness. �erefore, as
expected in any visual extraction/recognition system, a fair
amount of processing time and power is spent during this
stage. Additionally, during the initial exploration phase,
weighted neural network coe�cients are calculated for each
potential landmark (32 × 32 pixels) and azimuth grid value,
so that these small local views can be learned online. Formore
details on the calculations performed to arrive at the place
cells from the landmark-azimuth matrix (PrPh) consult [24].

(3) Cognitive Map. Each place cell (center of Figure 10) is
connected to each neuron of the landmark-azimuth matrix,
where each connection has its own, unique, learned weights
for that landmark-azimuth-place cell combination, as well as
temporary scalars for the current, potential landmark view.
However, it is very likely that several place cells will be active
enough at a given location.�epaper states thatwhen awhole
area has been mapped, during the initial exploration phase,
the place cells are divided up into their own areas to eliminate
these overlaps; see Figure 11, thus, creating a cognitive map.

An assumption is made about the average number of
possible place cell transitions from any particular place cell
for the test conducted in [24]. �is is done to reduce � × �
neural network based, transition matrix to 6 × �, where �
represents the number of possible transition place cell targets,
thus, greatly reducing the computational complexity from
O(N2) to O(N). However, this value may not work for all test
cases, or in-�eld use.

(4) Route Planning. �e robot’s cognitive map built during an
initial exploration phase, as previously described, consists of

Figure 12: Topographical cognitive map in the form of a graph is
produced in the system, as illustrated. Permission for replication
given by Dr. Cuperlier et al. [24].

nodes and edges, as shown in Figure 12, and is thus a graph:� = (�, �). Each node is a transition cell and an edge signi�es
that the robot has traveled between the two transition cells
or nodes. �e edges hold weight value (e.g., function of use)
and the nodes hold activity values.�e recorded nodes/edges
of the cognitive map are used in a neural network version of
the Bellman-Ford algorithm [64] to �nd themost direct route
from a motivation point to the single source destination,
while several types of motivations (drink, eat, sleep, etc.) are
used to initiate the robot’s travel to the proper destination
source.�e satisfaction level of the motivations changes with
time and distance traveled, while increasing at the source.

4.3. Grid Cell Centric Systems. Perhaps due to the fact that
the grid cell was not discovered until 2005, or due to its
complex nature and unknown functionality/contribution to
navigation, there are a sparse number of robot navigation
systems that are based on the grid cell. Instead related
research in grid cells comes from computational/oscillational
models [36, 53, 65–68].

�ere are currently two prevailing computational model
classes for describing the stimuli con�guration required
for the grid cell �ring pattern. �e �rst is the attractor
network which follows along the lines of what was covered
under the RatSLAM navigational model [53]. �e second
is a much more computationally complex model called
oscillating interference [69]. �e oscillating interference
model is typically simulated using spiking neural networks
on nonrobotic systems [36, 67, 68]. Both working models
have strong pros and cons to their validity. �e continuous
attractor model, as introduced in [19, 20, 70], will be brie�y
covered in the next section on neural networks, while
the computational model for a neurophysiological correct
oscillating interference model is beyond the scope of this
paper.



12 Journal of Robotics

As covered in the previous section, Milford and Wyeth
[19, 20] use pose cells in their neurobiologically based navi-
gation model RatSLAM, which are based on the conjunctive
grid cells found in the deeper layers of the medial entorhinal
cortex (MEC), as further described in [70, 71]. Additionally,
the wrapping connectivity of the pose cell grid creates a grid
cell type pattern. However, there ismuch scienti�cally backed
detail missing pertaining to the functionality of regular,
nonconjunctive grid cells found at the super�cial layers of
the MEC, as well as the speci�cs of the conjunctive grid cells’
connectivity based on attributes of scale, orientation, and
phase modeled. �us, this work will remain in the theoretic
cell section.

Additionally, Gaussier et al. [72, 73] used a mathematical
model of the grid cell for their mobile robot navigation
system. However, the grid cell’s �ring pattern is a modulo
projection of the path integration input. �e tests performed
on the mobile robot show poor patterns for the grid cell
�ring when relying on just path integration with growing
accumulated errors as expected. Adding visual input to reset
and recalibrate the path integration �xes the noisy path
integration input, thus sharpening the �ring pattern of the
grid cells. �e grid cells are thus used more as a test pattern
for various arenas and path integration degradation settings.
�e grid cells do not aid in themapping and route planning of
themobile robot.�us, this study does not fully �t this section
and will not be covered in any more detail.

5. Literature Survey Analysis

As stated previously, the main focus of this paper is to
present research on state-of-the-art mobile robot navigation
systems that are based on true rodent neurobiological spatial
awareness and navigation brain cells. More speci�cally, this
paper critiques how closely these navigation systems emu-
late neurobiological entities (e.g., posterior parietal cortex,
dorsolateral medial entorhinal cortex, hippocampus, basal
ganglia, place cells, and head direction cells) and the systems’
autonomy classi�cation, as well as their cognitive mapping
and route planning capabilities. A summary of the answers
to these questions can be found in Table 1, as well as critiques
at the end of each source surveyed.

5.1. Which Comes First, Technological Advances in Robotics or
Insight for Neuroscientist? �e question as to what aspects
of these models covered in the literature surveyed may
bene�t technological advances in robotics versus generation
of new insights and testable predictions for biologists and
neuroscientists needs addressing. To answer this question,
it is the authors’ beliefs that current and future state of
computational technology are what drives the answer to this
question.

�e systems covered in this paper generally fall into two
categories: (1) robots with external computers linked to them,
which run relatively large scale neurophysiologically based
navigation models (neural simulators) and (2) robots with
onboard computers to run smaller, partial neurally based
models. �e neurophysiological models that ran on external
computers in the covered work obviously had the advantage

of having more detailed models, as well as the capability for
backtracing (e.g., [27, 55, 56]), which is a type of neuralmodel
debugging. It is these types of systems that have the most
potential for giving biologists and neuroscientists data that
will help in gaining new insights and testable predictions.
Having a physical robot to gather sensor data and react to
motor commands also helps add a dimension that cannot
easily be realized, or issues that cannot be anticipated, in a
simulator.

However, it requires ingenuity and thinking out of the
box to implement a neurally based system within con�ned
parameters. It is most likely that these types of systems would
aid in technological advances in robotic systems �rst. For
example, as will be covered in theNeural Networks, the use of
graphics processor units for massively parallel, general pur-
pose computing (GPGPU) is being introduced into robotic
systems, primarily for deep learning. Deep learning has the
advantage of being a powerful application for visual object
recognition, speech recognition, object detection, and many
other applications. Additionally, deep learning is key to place
recognition for visual SLAM [74].

5.2. Importance of Visual Recognition in Navigation. As dis-
cussed in Section 2 and exempli�ed in the literature sum-
marized above, it is quite apparent that there is a strong
correlation between the visual recognition capabilities and
the overall navigation capabilities of the neurobiologically
based mobile robot. Navigation that is accomplished mainly
by visual cues is referred to as taxon navigation, and it
applies to animals, humans, insects, and so forth, as well as
classical and neurobiologically basedmobile robot navigation
systems. �is comes as no surprise as it has been shown
that the specialized navigation and spatial awareness cells
of a rodent are dependent to some degree on visual cues
[23, 54, 75–77]. Additionally, biological systems, such as those
found in rodents, can navigate on nonvisuals cues as well.
�ese can be auditory, olfactory, and/or somatosensory cues.

5.3. Possible Future Directions in Model Computation. Who
knows what type of new, neural network based, computa-
tional system might be realized in the future from these
studies? Certainly, a neural network based system should be
composed of processing elements and connectivity networks
that more greatly resembles that of a brain, thus reducing
power and size requirements. Such a radically new, yet famil-
iar, processing system would require the �ndings from both
large, detailed models run on external computer clusters, as
well as from smaller system implementations.

6. Neural Networks

For completeness, we present a discussion on the computa-
tional complexity of the various neural networks used, such
as the continuous attractor network of the RatSLAM, the
Hebbian learning rule and how it relates to the type of arti�-
cial neural networks (ANNs) used in the literature, and deep
learning, which was not used but has interesting possibilities
given current computational technologies. Additionally, the
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computational limitations due to scalability of these types of
navigation systems are covered.

6.1. Continuous Attractor Network. To keep on track of the
target of of closely modeling neurophysiological systems,
both allothetic and idiothetic stimuli are fed into ANNs in
all of the literature. �e one dierence is with the RatSLAM
system [19, 20, 78, 79], which uses a variant of ANN system
called the (3D) continuous attractor network (CAN) system
(see Figure 9). Although the CAN is a type of ANN, it is less
computationally complex to update due to the fact that the
activity values of the CAN units are varied between 0 and 1,
thus keeping the weighted connections �xed. However, the
statistical nature of the RatSLAM cell calculations, as covered
shortly, will tax the processing system. Changes in the CAN
cell’s activity level Δ� is given in [20] by

Δ� = � ∗ 	 − 
 (1)

or

Δ���,�� ,�� = ∑
�
∑
�
∑
	
��,�,		
,�,� − 
, (2)

where � represents the activity matrix of the network, 	 is
the connection matrix, ∗ is the convolution operator, and
the constant 
 is used to create global inhibition and general
inhibition in the connection matrix. At the CAN cell level,
as described in (2), ��� ,�� ,�� is the change in activity level
for each cell, and 	
,�,� is the 3D Gaussian distribution of
weighted connections equation that creates local excitation
and inhibition at the cell level, where �, , and � are wrap-
around functions of �, �, and �, respectively. Greater detail
can be found in [70].

Another dierence between the RatSLAM system com-
pared to the rest of the systems presented in the literature
review section is that the other systems useANNs throughout
their navigational system (thus increasing the computational
complexity but staying with the neurophysiological model
theme), while RatSLAM only uses the CAN for mobile robot
pose determination.�e visual snapshot matching appears to
be of a non-ANN based algorithm, hence the scaling down
of neurophysiological realism due to onboard computational
constraints.

6.2. Hebbian Learning Rule. Hebbian based ANNs used in
the research literature covered in this paper can be described
by the general equations of

�� = ∑
�
�����, (3)

Δ��� = �����, (4)

where �� is the output from neuron �, �� is the �th input,
and ��� is the weight from �� to ��. �e scalar � is known
as the learning rate and it may change with time. �e
Hebbian learning rule (Δ���) is named a�erHebb [51] and his
theory that the connection or synapse between two neurons
strengthens as a result of a repeated pre- and postsynaptic
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Figure 13: Single layer ANN with two inputs, two outputs, and two
neurons.

neuron �ring relationship. Incorporating a bias or threshold
term �0 and some transfer function � results in the Hebbian
rule, as shown in [80–82], in the form of

�� = �(∑
�
����� − �0) . (5)

�e transfer function � is typically a discrete step function:

sgn (�) = {{{
0 if � < 0,
1 if � ≥ 0 (6)

or a smooth “sigmoid”; for example

� (�) = (1 + �−�)−1 , (7)

�e sigmoid, as well as the tanh, and recti�ed linear unit
(ReLU) functions are typical nonlinear neurons used. �e
ReLU is currently a very popular activation neuron in deep
learning.

�e Hebbian general equation is inherently unstable,
where all the synapses can either reach their maximum
allowed value or transition to zero [83–85]. �us, a simple
alternative equation to (4), such as that used in [12, 13, 86],
is as follows:

Δ��� = ����� (1 − ���) . (8)

�e neural networks used in the literature surveyed
typically use no more than a single hidden layer and are
feedforward neural networks; see Figure 13. �ese ANNs
are adequate for simple, discrete input/output combinations,
such as heading and turn angle.

6.3. Deep Learning. Deep learning is a growing variant of
the previously described simple ANNs. �is is due to its
ability to �nd intricate structure in large data sets. Deep
learning network accomplishes this through added multiple
nonlinear processing layers. �ese processing, or hidden,
ANN layers are able to extract various object feature layers. As
previously stated, deep learning has oered advances inmany
domains, such as image recognition, speech recognition,
reconstructing brain circuits, natural language understand-
ing, and relational data. Speci�cally, for navigation, it is
the visual object recognition ability of deep learning and
deep convolutional networks (e.g., tra�c sign recognition,
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detection of pedestrians) which allow autonomous mobile
robots and self-driving cars [87] to be realized.

Further details on speci�cs of the structure of deep
learning neural networks, backpropagationmathematics, and
so forth are beyond the scope and theme of this paper; thus
they will not be covered here.

6.4. Computational Complexity Limiting Realism Scalability.
When determining the computational complexity of a neural
network, there are three important parameters to consider:
size, depth, and weight of the network. �e size is the number
of neurons and the depth is the length of the longest path from
an input point to an output neuron, while the sum total of
the absolute values of the weights represents theweight of the
network.

�e training of the ANNs that are used for complex
pattern recognition, such as those found in interfacing
allothetic stimuli to the navigation system, can really only
be accomplished o�ine. �e processing power and time
required would have too large of an impact on mobile robot
resources and usability. �is is due to the many forward
propagation and back propagation cycles required to set the
weights of the ANN to the most optimum values possible
(given set number of cycle constraints) for each training
sample in the training phase. �is is particularly true for
deep neural networks, which have many hidden layers. �us,
the time complexity will be a function of network size
and particularly depth. An example of a simple two-input,
two-output, single layer ANN is given in Figure 13. Further
examples can be found in the literature surveyed.

Ways in which to add neurobiologically based entities,
such as allothetic stimuli, other percepts, and/or controlling
in�uences (e.g., nucleus accumbens, grid cells) from various
parts of the brain, while maintaining a usable mobile robot
footprint, are as follows:

(1) Use of mobile GPGPU of more complex ANNs.

(2) Removing ANNs from simpler parts of the system
that can be easily replaced by a good, cheap sensor
(e.g., head direction ANN in [12] with MEMs gyro-
scope).

(3) Creating an application speci�c integrated circuit
(ASIC) that models ANNs.

Option (3)would be themost expensive but also themost
e�cient in power, size, and processing capabilities. Option(1) is a more �exible option but still requires a great deal
of power and special programming expertise. An example of
what is available is NVIDIA’s� Tegra� K1 Mobile GPU with
192 lightweight parallel processor cores. NVIDIA GPUs can
be programmed using CUDA or cuDNN. Option (2) takes
the system away from the realism of a neurobiological system,
but some tradeos need to bemade tomodel portions that are
most important to the research.

7. In Brief

Certainly, one of the most important neurobiologically
inspired systems in use today is the ANN. It oers a new

paradigm in computation that is nearly impossible to recre-
ate. Our computers are best for arithmetic computations and
following a sequence of code. Visual and pattern recognition
applications are too complex to program. �us, research
being done in this area, especially with the bene�ts found
from deep learning, will continue to contribute to the �eld
of arti�cial intelligence.

It is the hope of many researchers that work being
performed in neurobiologically based navigation and spatial
awareness systems will oer added technological advances to
the autonomous navigation capabilities of mobile robots, as
well as to better understanding of at least a small portion of
the brain.
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