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Error estimation and control are critical ingredients for improving the reliability of computational simulations.

Adjoint-based techniques can be used to both estimate the error in chosen solution outputs and to provide local

indicators for adaptive refinement. This article reviews recent work on these techniques for computational fluid

dynamics applications in aerospace engineering. The definition of the adjoint as the sensitivity of an output to

residual source perturbations is used to derive both the adjoint equation, in fully discrete and variational

formulations, and the adjoint-weighted residual method for error estimation. Assumptions and approximations

made in the calculations are discussed. Presentation of the discrete and variational formulations enables a side-by-

side comparison of recent work in output-error estimation using the finite volume method and the finite element

method. Techniques for adapting meshes using output-error indicators are also reviewed. Recent adaptive results

from a variety of laminar and Reynolds-averaged Navier–Stokes applications show the power of output-based

adaptivemethods for improving the robustness of computational fluid dynamics computations. However, challenges

and areas of additional future research remain, including computable error bounds and robust mesh adaptation

mechanics.

I. Introduction

T HE accessibility, fast turnaround time, and almost arbitrary test
conditions offered by computational fluid dynamics (CFD)

make it an attractive tool in aerospace design. CFD simulations with
sophisticated physical modeling are now used regularly to reduce
design cycle costs and to improve final product design. This
prevalence of CFD has been driven by increasing computational
power, by improvements in numerical methods, and by the need to
model complex physical phenomena such as transition and turbu-
lence, to the extent that simulations on general three-dimensional
geometries are now routine.

Such powerful simulation capability is a remarkable achievement
for CFD, but it also comes with a new liability: ensuring that the
computed solutions are sufficiently accurate, where at the broadest
level, accuracy is measured with respect to the real physical system.
Typically, this liability is managed by practitioners knowledgeable
about the assumptions and limitations of the models and discretiz-
ation. Quantifying the validity of the models used in simulations in
reference to actual experiments, a task that may indeed require expert
judgment, is part of ongoing research in the area of uncertainty
quantification and validation [1–3] and is beyond the scope of the
present review. Instead, this review focuses on estimating numerical
errors caused by finite dimensional discretizations of continuous
systems. In this regard, even very experienced practitioners cannot
reliably quantify the error in a discrete approximation of a complex

flowfield. In addition, reliance on best-practice guidelines for mesh
generation and on previous experience is an open-loop solution that
leaves the door open to large amounts of numerical error for
computations on novel configurations.

Even for relatively standard simulations, questions arise regarding
the robustness with which CFD methods can accurately compute
outputs of interest. An example is the American Institute of Aero-
nautics and Astronautics Drag PredictionWorkshop (DPW) [4,5], in
which force and moment outputs for a representative set of wing
body geometries and flow conditions were compared across codes
used in industry, government labs, and academia.‡ Results from
submissions have consistently shown a wide degree of scatter in
computed outputs. For example, drag coefficient variations of 0.0025
observed in the third DPWon a DLR-F6 wing body (Fig. 1) translate
to a difference of over 100 passengers on a large transport aircraft
[6,7]. The results from this workshop constitute only a slight
improvement over the results from the two previousworkshops [4,5],
even though computational power has increased substantially.
Moreover, additional tests in the third DPW show that discrepancies
persist even for simple wing-only geometries. For these geometries,
results obtained using the same code, in particular with the same
turbulence model, but on independently generated meshes appear to
converge to different output values with uniform mesh refinement
[8]. The lack of grid convergence is illustrated in Fig. 2 and indicates
that the highly disparate length scales in this three-dimensional flow
are not adequately resolved even with some of the finest a priori
generated meshes.

The observations above suggest that not only is the numerical error
from CFD unacceptable for absolute output prediction on today’s
configurations, but also that gains in computational power coupled
with best-practice expert mesh generation will be insufficient to
reliably decrease numerical error to acceptable levels in the
increasingly complex problems of the future. As such, error
estimation and control are critical ingredients for improving the
reliability of computational simulations. Control of errors is likely to
be done most efficiently through adaptive methods in which the
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discretization is iteratively improved through local mesh refinement
and/or increased order of accuracy in regions that most contribute to
the solution error. A key feature of error estimation is the ability to
identify such regions.

The general idea of error estimation is not a new concept, and a
number of previous works have reviewed the subject. In the context
of error estimates that also provide local indicators, Verfürth analyzes
a posteriori error estimates for elliptic partial differential equations
and shows an equivalence between estimates based on local residuals
and on solutions of local problems [9]. Ainsworth andOden focus on
mechanics and consider a posteriori energy norm error estimates for
linear elliptic boundary value problems [10]. Johnson [11] and
Johnson et al. [12] note a marked gap between theory and practice in
error estimation for CFD, and they derive quantitative discretization
error estimates for laminar flows. They note that for high Reynolds
number flows, computation of reliable error estimates is difficult
because the Navier–Stokes equations become increasingly ill-
conditioned, in that outputs are highly sensitive to initial conditions.
Johnson suggests that turbulence modeling can alleviate this
conditioning problem [11], and error estimation for turbulentflows is
an ongoing area of research. Finally, in a recent work, Roy reviews
various strategies for using discretization error estimates to drive
mesh adaptation [13].

The idea of error estimation has also been deemed important
enough to be explicitly addressed by journals publishing results of
numerical computations. In particular, the AIAA journal has a six-
point editorial policy on numerical accuracy. The error estimation
methods reviewed in this work are related primarily to the fourth
point in this policy, which concerns the identification of spatial
convergence errors. Currently accepted best-practice guidelines in
this regard call for demonstration of mesh convergence using
multiple grids or orders. However, adjoint-based output-error
estimates could provide an alternative for quantifying the effect of
spatial discretization errors. In addition, although not reviewed in
depth in this work, temporal accuracy can also be addressed through

unsteady adjoint methods, and this approach would address the fifth
point in the AIAA editorial policy.

As we describe in this review, adjoint-based techniques can be
used to both estimate error in solution outputs (such as lift and drag)
and provide local indicators for adaptive methods. Becker and
Rannacher present a thorough review of the adjoint-weighted
residual method for a posteriori error estimation in finite element
discretizations of elliptic, parabolic, and hyperbolic equations [14].
In addition, Giles and Pierce [15,16] describe adjoint correction
techniques and Giles and Süli [17] review a posteriori output-error
estimation for finite element methods applied to linear and nonlinear
partial differential equations relevant to CFD. Hartmann and
Houston also provide a recent overview of the application of the
discontinuous Galerkin finite element method to output-based
adaptation for aerodynamic flows [18]. Complementing these pre-
vious works, the purpose of this paper is to review output-error
estimation and mesh adaptation techniques in the context of
aerospace CFD applications and to present a collection of recent
results for aerospace problems. We address output-error estimation
techniques that are applicable to both finite element and general
discretizations including finite difference and finite volumemethods.
Fully discrete and variational approaches are presented side-by-side
to highlight their similarities and differences. Inviscid, laminar, and
Reynolds-averaged Navier–Stokes results for problems including
high-lift, hypersonic heating, sonic boom, and launch abort vehicles
show thematurity of thesemethods.We concludewith a presentation
of remaining challenges and ongoing research, which includes a
discussion of robust mesh adaptation.

The structure of the paper is as follows. Section II introduces
output adjoint solutions for both fully discrete and variational
problems. Section III then reviews the adjoint-weighted residual
method for output-based error estimation. Error localization and
mesh adaptation techniques are reviewed in Sec. IV. Section V
presents recent implementations and results for aerospace engineer-
ing applications. Finally, challenges and ongoing research are
discussed in Sec. VI.

II. Outputs and Adjoints

Since the work of Aubin and Nitsche in a priori optimal order
convergence proofs [19], adjoint solutions have been used in a
variety of contexts, ranging from design optimization [20–25] to
output-error estimation [26–39]. Adjoint solutions are desirable in all
of these contexts for the output-sensitivity information that they
provide. Starting from the output-sensitivity property, this section
derives the adjoint equations in discrete and variational formulations.

A. Fully Discrete Formulation

Consider a partial differential equation discretized into Nh,
possibly nonlinear, algebraic equations

R h�uh� � 0 (1)
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Fig. 1 DPW III results: total drag coefficient predictions for the DLR-

F6 wing body at M � 0:75, CL � 0:5, Re� 5 � 106. The solution index

differentiates between different codes, turbulence models, and mesh

types [169].

Fig. 2 DPW III wing-only results: total, pressure, and skin friction drag convergence for two families of grids of two wing geometries, at M � 0:76,
�� 0:5�,Re� 5 � 106. One set of grids was generated byCessna Aircraft Co. and the other by the University ofWyoming. Reproducedwith permission

from [8].
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where uh 2 R
Nh is the vector of unknowns and Rh 2 R

Nh is the
vector of residuals that must be driven to zero. The subscript h
denotes thefineness of the discretization and encompasses bothmesh
size and approximation order. Given a scalar output Jh�uh�, the
associated adjoint vector,  h 2 R

Nh , is the sensitivity of Jh to an
infinitesimal residual perturbation, �Rh 2 R

Nh , added to the
nonlinear system:

�Jh � Jh�uh � �uh� � Jh�uh� �  Th�Rh (2)

where �uh is the infinitesimal solution perturbation satisfying

@Rh

@uh
�uh � �Rh � 0 (3)

which is obtained by linearizing Eq. (1). The linearization assumes
the discrete equations are differentiable. Further, assuming that the
output is also differentiable

�Jh �
@Jh

@uh
�uh � 

T
h�Rh �� Th

@Rh

@uh
�uh (4)

where Eqs. (2) and (3) were used in the second and third equalities,
respectively. In order for Eq. (4) to hold for all perturbations, we
require

@Jh

@uh
�� Th

@Rh

@uh
(5)

from which  h must satisfy the discrete adjoint equation

�
@Rh

@uh

�
T

 h �

�
@Jh

@uh

�
T

� 0 (6)

B. Variational Formulation

In a variational setting, consider a general semilinear form arising
from a Galerkin weighted residual statement: determine uh 2 Vh
such that

R h�uh; vh� � 0; 8 vh 2 Vh (7)

where Vh is a finite dimensional space of functions. The subscript h
indicates a discretization of the computational domain, such as a
triangulation in a finite element method. Rh��; ��: Vh � Vh ! R is
assumed to be a semilinear form, linear in the second argument. A
scalar output of interest is denoted by J h���: Vh ! R, where the
subscript h is included because the output calculation may involve
discretization-dependent terms.

Consider an infinitesimal perturbation, �Rh�vh�, added to the
weak statement in Eq. (7), where �Rh���: Vh ! R. An adjoint
 h 2 Vh can be defined as the sensitivity of the output to the residual
perturbation by the following relationship:

�J h � J h�uh � �uh� � J h�uh� � �Rh� h� (8)

The infinitesimal state and residual perturbations are related via the
statement:

R 0
h	uh
��uh; vh� � �Rh�vh� � 0; 8 vh 2 Vh (9)

where the prime denotes a Fréchét linearization with respect to the
arguments in the square brackets. Also linearizing the output

�J h � J 0
h	uh
��uh� � �Rh� h� � �R0

h	uh
��uh; h� (10)

where Eqs. (8) and (9) were used in the second and third equalities,
respectively. For these linearizations to exist, both the semilinear
form and the output are assumed to be differentiable. In order for
Eq. (10) to be true for general perturbations, the adjoint must satisfy
the statement: find  h 2 Vh such that

R 0
h	uh
�vh; h� � J 0

h	uh
�vh� � 0; 8 vh 2 Vh (11)

Once a basis is chosen for the weighted residual statements, Eqs. (7)
and (11) are equivalent to their discrete counterparts, Eqs. (1) and (6),
respectively. However, the variational formulation is more rigorous
for error estimation, where the concept of a finer solution space is
required as discussed in Secs. III.B and III.C. The construction of
such a finer space in the fully discrete approach requires more
information about the problem, specifically a state prolongation
matrix, than just the coarse space discrete system.

C. Adjoint Consistency

Equations (6) and (11) yield the discrete adjoint  h, either as a
vector or as a function in afinite dimensional space. Of interest is how
this discrete solution compares to its infinite dimensional (“exact”)
counterpart. Given the exact primal solution, u 2 V, satisfying

R �u; v� � 0; 8 v 2 V (12)

for an appropriately defined spaceV, the exact adjoint 2 V satisfies

R 0	u
�v; � � J 0	u
�v� � 0; 8 v 2 V (13)

For simplicity,we have assumed that bothu and are inV. However,
the space for the adjoint solution does not have to be the same as the
space for the primal solution [40].

The exact adjoint can be regarded as a Green’s function relating
source perturbations in the original partial differential equation to
perturbations in the output [41,42]. To demonstrate this inter-
pretation, a sample adjoint solution is illustrated in Fig. 3 for subsonic
flowover a lifting airfoil. Upstreamof the airfoil, the adjoint is seen to
vary rapidly across the stagnation streamline. This behavior was
suggested in the analysis of Giles and Pierce who found that a square
root singularity with respect to distance from the stagnation
streamline exists for sources that perturb the stagnation pressure [41].

To be precise, the adjoint field depicted in Fig. 3 is the discrete
adjoint solution on a fine mesh. It can only be regarded as a faith-
ful representation of the exact adjoint if the discretization is in
some manner consistent with the exact adjoint problem. Primal
consistency in the variational problem requires that the exact
solution u satisfy the discrete variational statement

R h�u; v� � 0; 8 v 2 Wh (14)

where Wh � Vh � V � fh� f� g: f 2 Vh; g 2 Vg. Similarly,
the combination of the discrete semilinear form Rh and the
functional J h is said to be adjoint consistent if [40,43,44]

R 0
h	u
�v; � � J 0

h	u
�v� � 0; 8 v 2 Wh (15)

Discretizations that are not adjoint consistent may still be asymp-
totically adjoint consistent if Eq. (15) holds in the limit h! 0, by

Fig. 3 x: momentum component of the lift adjoint for a NACA 0012

airfoil at M � 0:4, �� 5�. A positive residual perturbation to the x-
momentum equation increases the lift where the adjoint is positive (black

shading) and decreases the lift where the adjoint is negative (white

shading).
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which we mean the limit of uniformly increasing resolution, over
suitably normalized v 2 Wh. For nonvariational discretizations, the
definition of consistency must involve an approximation operator
to map exact solutions into discrete spaces [45].

Adjoint consistency has an impact on the convergence of not only
the adjoint approximation but also the primal approximation
[17,40,43,44,46–48]. In error estimation, an adjoint-inconsistent
discretization can lead to irregular or oscillatory adjoint solutions that
pollute the error estimate with noise and lead to adaptation in
incorrect areas [40]. Enforcing adjoint consistency imposes restric-
tions on the output definition and on the interior and boundary
discretizations that enter into the semilinear form. These restrictions
have been studied by several authors in the context of the dis-
continuous Galerkin method [40,43,46]. In general, discretizations
that are found to be adjoint inconsistent can often be made adjoint
consistent by adding terms to either the semilinear form or the output
functional.

D. Adjoint Implementation

The discrete adjoint is obtained as the solution to the linear system
in Eq. (6). Since this system requires a linearization about the primal
solution, the primal problem in Eq. (1) is generally solved before the
adjoint problem. Concurrent primal-adjoint solutions, however, have
been investigated with certain superconvergence properties in the
output estimates [49].

The implementation of the adjoint solve varies depending on the

structure of the code. When the full Jacobian matrix, @Rh

@uh
, and an

associated linear solver are available from solution of the primal
problem, the transpose linear solve can be implemented in a
straightforward manner. For example, if a Krylov method is used for
the linear solve, the adjoint solve will require transpose applications
of the matrix and the preconditioner, which generally pose little

difficulty when @Rh

@uh
is stored.

Conversely, when the Jacobian matrix is not stored, the discrete
adjoint solve is more involved. The fact that the Jacobian matrix is
transposed in Eq. (6) means that all operations in the primal solve
must be linearized, transposed, and applied in reverse order for use in
the adjoint solve. For example, if a finite volume code calculates
residuals by reconstructing the flow state and then computing
nonlinear fluxes, the adjoint residual must be obtained by first
applying the transpose of the linearized fluxes and then the transpose
of the reconstruction operator. The required linearizations are often
calculated analytically by hand, although automatic code differ-
entiation techniques are becoming increasingly sophisticated
[50,51]. Multistage and multigrid solution schemes have to be
modified to ensure that the asymptotic stability of the adjoint solver is
equal to that of the original primal flow solver [52]. Implicit schemes
employing point or line relaxation also have to be modified to
preserve discrete duality, as discussed by Nielsen et al. [53].

Adjoint approximations can also be developed by deriving the
adjoint partial differential equations and then discretizing them. This
approach is referred to as the continuous adjoint technique, as
opposed to the discrete adjoint techniques described above. The
continuous approach was pioneered for aerospace applications by
Jameson [20], shortly before the discrete approach became popular
as well [54,55]. No barriers exist preventing the application of the
continuous adjoint method to output-error estimation. Indeed in a
recent work, Duraisamy et al. [56] compare output-error estimation
using both the discrete and the continuous adjoint for the com-
pressible Euler equations. In their results, they find that the discrete
adjoint is better at estimating the fine-space output, while the
continuous adjoint is marginally better at estimating the analytical
output when the computational space is well resolved.

III. Error Estimation

A. Forms of Error Estimation

The error in a solution can be quantified by various means.
Discretization error is the difference between the discrete solution
and the exact solution. Its magnitude is governed by the size of the

spatial and temporal mesh spacings, and it can be measured locally
on individual elements or globally under a chosen norm. For general
problems, the exact solution is unknown and the discretization error
must be estimated, often using reconstructions based on smoothness
assumptions. Another error estimate relies on the residual, which is
obtained by substituting the approximate solution into the underlying
partial differential equation [57–59]. Nonzero residuals, calculated
pointwise or integrated on an enriched space, indicate regions where
the governing equations are not strongly enforced. Residual error
estimates can also be expressed locally or integrated globally under a
norm, although care must be taken in the choice of norm for
hyperbolic problems to prevent uncontrollable growth in the vicinity
of a shock [57].

Error estimates can be used to define indicators for adaptive
refinement of the discretization with the goal of reducing the error in
question. For simulations of predominantly elliptic equations, such
as those of structural elasticity or low-speed flows, adaptive
indicators based on local errors are often sufficient [9]. However,
many aerospace CFD applications are dominated by convective
transport and hence involve equations of hyperbolic character, for
which such estimates lose their efficacy. Zhang et al. compare
adaptive results using discretization error and residual indicators for
the Euler equations [60,61]. For one-dimensional, subsonic flows,
Zhang et al. find that a residual indicator is more efficient compared
with a discretization error indicator in driving the adaptation to
reduce the total solution error. However, for transonic or multi-
dimensional flows, neither indicator is adequately effective. In
general, error estimates based on residual or discretization errors fail
to capture propagation effects that are inherent in convection-
dominated problems [62]. For these types of problems, the residual
and discretization errormay not necessarily be large in certain crucial
areas that significantly affect the solution downstream and the
computed outputs. For example, for separated flow over an airfoil,
small perturbations in certain upstream areas may have large effects
on the location of the separation point, which in turn has a large effect
on the calculated lift and drag. Stated another way, engineering
outputs can be highly sensitive to discretization or residual errors in
areas that may not be easily identifiable a priori.

Output-error estimates based on adjoint analysis help to address
these problems by quantifying how residual errors impact the output,
accounting for propagation effects in the process. The resulting error
estimate can be used to determine if the engineering output has been
computed to sufficient accuracy, and to drive an adaptive method
when the output error is not below a user-specified tolerance. This
section reviews such existing output-error estimation techniques.We
begin in Sec. III.B by introducing the adjoint-weighted residual
method that connects residuals to output error for variational dis-
cretizations. Then, we show how these techniques can be extended to
general discretizations using an algebraic approach in Sec. III.C.
Finally, Secs. III.D–III.F describe various aspects that impact the
practical implementation of these error estimates including the
approximation of fine mesh primal and adjoint states, the effectivity
of error estimates, and the impact of shocks.

B. Adjoint-Weighted Residual Method

Consider a variational solution on a “fine” discretization,uh 2 Vh,
that satisfiesRh�uh; vh� � 0, 8 vh 2 Vh, and a variational solution
on a coarser discretization, RH�uH; vH� � 0, 8 vH 2 VH . The
discretization spaces are assumed to be nested, VH � Vh, so that
�uh � uH � uh 2 Vh. Such a situation is illustrated in Fig. 4 for a
one-dimensional finite element solution.

To connect the output error to residuals for finite perturbations, the
adjoint equation in Eq. (11) is generalized using a mean-value
linearization [14,35,37,38]. Specifically, the mean-value adjoint
 mv
h 2 Vh is the solution to

�R h	uh;uH 
�vh; 
mv
h � � �J h	uh;uH
�vh� � 0; 8 vh 2 Vh (16)

where �Rh: Vh � Vh ! R and �J h: Vh ! R are defined by
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�Rh	uh;uh � �uh
�vh;wh� �

Z
1

0

R0
h	uh � ��uh
�vh;wh� d�

�J h	uh;uh � �uh
�vh� �

Z
1

0

J 0
h	uh � ��uh
�vh� d� (17)

for vh, wh 2 Vh. Since

�Rh	uh;uh � �uh
��uh;wh� �Rh�uh � �uh;wh� �Rh�uh;wh�

�J h	uh;uh � �uh
��uh� � J h�uh � �uh� � J h�uh�

the output perturbation can be related to the residuals

J H�uH� � J h�uh� � J h�uH� � J h�uh�

� �J h	uh;uH 
��uh�

� � �Rh	uh;uH 
��uh; 
mv
h �

� �Rh�uH; 
mv
h � �Rh�uh; 

mv
h �

) J H�uH� � J h�uh� � �Rh�uH; 
mv
h � (18)

The assumption that J H�uH� � J h�uH� was made above, which is
generally true as long as any geometry used for the output calculation
does not change between the two spaces. In the last step, the fact that
uh is a solution to the original weighted residual statement is used, so
that Rh�uh;wh� � 0, 8 wh 2 Vh. The name “adjoint-weighted
residual method” (also referred to as the dual-weighted residual
method [31]) describes Eq. (18): the adjoint solution weights the
residual of the coarse solution to produce the output error. The
method is also referred to as “goal-oriented” [36,63] or “output-
based” error estimation.

By Galerkin orthogonality of the variational formulation, an
arbitrary function in VH can be subtracted from  mv

h in Eq. (18)

J H�uH� � J h�uh� � �Rh�uH; 
mv
h � vH�; 8 vH 2 VH

(19)

This form of the adjoint-weighted residual shows that when  mv
h is

well-approximated by the coarse space, the output errorwill be small.
Further, applying this result locally, in regions where the fine mesh
adjoint is well-approximated by the coarse space, the contribution of
local residual errors to the output will be small.

C. Fully Discrete Adjoint-Weighted Residual Method

The adjoint-weighted residual method for error estimation can
also be applied in a fully discrete formulation. Again, two dis-
cretization levels are assumed: afine onewithNh degrees of freedom,
and a coarse onewithNH degrees of freedom.A representation ofuH
on the fine space is assumed to be given by uHh � IHh uH, where
IHh 2 R

Nh�NH is a suitably chosen prolongation matrix. In a standard
finite element discretization, IHh is the natural injection operator. In
the general case,IHh should be consistentwith the discretization used.
The perturbation in the fine solution relative to the prolongated
coarse solution is �uh � uHh � uh.

The discrete mean-value adjoint,  mv
h 2 R

Nh , satisfies

� �Rh	uh;u
H
h 
�

T mv
h � � �Jh	uh;u

H
h 
�

T � 0 (20)

where �Rh 2 R
Nh�Nh and �Jh 2 R

Nh satisfy

�Rh	uh;uh � �uh
 �

Z
1

0

@Rh

@uh
	uh � ��uh
 d�

�Jh	uh;uh � �uh
 �

Z
1

0

@Jh

@uh
	uh � ��uh
 d� (21)

Since

�Rh	uh;uh � �uh
�uh �Rh�uh � �uh� �Rh�uh�

�Jh	uh;uh � �uh
�uh � Jh�uh � �uh� � Jh�uh�

the output perturbation can be related to the residuals

JH�uH� � Jh�uh� � Jh�u
H
h � � Jh�uh�

� �Jh	uh;u
H
h 
�uh

��� mv
h �T �Rh	uh;u

H
h 
�uh

��� mv
h �TRh�u

H
h � � � mv

h �TRh�uh�

) JH�uH� � Jh�uh� � �� mv
h �TRh�u

H
h � (22)

The output for the coarse discretization is assumed to be given by the
evaluation of the output on the fine level discretization using the
prolongated solution, i.e., JH�uH� � Jh�u

H
h �. Further, in the last step,

Rh�uh� � 0 is used.
This adjoint-weighted residual in Eq. (22) can be split into two

parts by expressing the mean-value adjoint on the fine level as a
correction from a prolongated coarse adjoint, mv

h � H;mv
h � � mv

h ,
giving

JH�uH� � Jh�uh� � �� H;mv
h �TRh�u

H
h �

|�������������{z�������������}

computable correction

��� mv
h �TRh�u

H
h �

|�������������{z�������������}

remaining error

(23)

 H;mv
h � IHh 

mv
H refers to the prolongated coarse adjoint. The first

term, which would be zero due to Galerkin orthogonality for a
variational formulation, is often called the computable correction
since it can be computed without solving the primal or the adjoint on
the fine level (only a residual evaluation on the fine level is required).
In particular, it is nonzero for reconstruction-based finite volume
schemes. While the computable correction could be used as an
adaptive indicator, previous results indicate that adapting on the
computable correction is not significantly better than heuristic
indicators [64,65]. This could be because the remaining error
converges at a higher-order rate so that mesh refinement is more
efficient when targeting this term. Thus, in practice, the approach
taken in finite volume applications has been to adapt on the
remaining error while including the computable correction in the
estimate of the output [66].

D. Approximations

Evaluating the output perturbation in Eq. (18) requires a residual
evaluation on the fine space Vh, weighted by the mean-value adjoint,
 mv
h (note: the same issues apply to the fully discrete adjoint-

weighted residual method, but for simplicity we refer only to the
variational formulation in this section). A residual evaluation onVh is
tractable, but solving Eq. (20) to calculate mv

h requires both a primal
and an adjoint solve on Vh. These calculations on Vh are expensive
and defeat the purpose of estimating the error since J H � J h could
be calculated directly if uh were available. While such an approach
can still be useful for obtaining an accurate indicator for adapta-
tion [63], for error estimates and often for adaptive indicators,
approximations are made to the above formulations.

One approximation is to avoid the mean-value linearization and to
estimate the output error with the following second-order method

J H�uH� � J h�uh� �Rh�uH; � h� � R�2��k�uhk; k� hk� (24)

where � h �  H � h,  h is the solution to Eq. (11), and
R�2��k�uhk; k� hk� is a remainder term that is second order in the

u

x

δu
hu

H

u
h

Fig. 4 Comparison in onedimension of afine solutionuh 2 Vh, a coarse

solution uH 2 VH , and the difference �uh � uH � uh 2 Vh. In this
example, the solution spaces consist of piecewise linear functions on

uniform elements, and Vh is nested in VH with four times as many

elements. One coarse element is shown.
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primal error and � h.  H 2 VH is arbitrary, but to make the
remainder term small, it is chosen as the solution to the coarse adjoint
problem

R 0
H 	uH 
�vH; H� � J 0

H 	uH 
�vH� � 0; 8 vH 2 VH (25)

This approach has been used in both finite element [14,67] and finite
volume [68,69] applications. In finite volume applications, the
computable correction must also be included in the error estimate.
Becker and Rannacher [14] show that the error estimate can be
improved to third order by including the residual of the adjoint
problem

J H�uH� � J h�uh� �
1

2
Rh�uH; � h� �

1

2
R
 
h 	uH 
��uh; H�

� R�3��k�uhk; k� hk� (26)

where

R
 
h 	uH 
�vh;wh� � R0

h	uH 
�vh;wh� � J 0
h	uH 
�vh� (27)

andR�3��k�uhk; k� hk� is a remainder that is third order in the primal
and adjoint error.AswithEq. (24), this formof error estimate has also
been used with both finite element [7,40,70–72] and finite volume
[39,65,66,73–79] discretizations.

While the error estimates in Eq. (24) and (26) remove the need for
themean-value linearization, h is still required to determine � h. In
addition, uh is required in Eq. (26) to determine �uh.

One approach for approximating uh is to reconstruct uH on Vh
using a higher-accuracy stencil. In the finite element setting, this
could be least squares patch reconstruction [7,37,40,67]. Such
reconstruction makes use of a superconvergence property [80,81],
which requires a smoothness assumption that loses validity near
discontinuities. In addition, without limiting, no guarantees exist that
reconstructed solutions will remain physical for nonlinear problems.
An alternate approach is therefore to project uH into Vh and to apply
several steps of an iterative solution scheme [71,72]. In either case,
the difference between the approximated uh and uH can be used
directly in Eq. (26) to compute the error estimate.
 h can be approximated in several ways. Just as uh, it can be

reconstructed from  H using a higher-accuracy stencil
[37,40,66,67]. In the standard finite volume setting, this recon-
struction is typically performed with quadratic approximation on a
uniformly refined mesh. The least squares problem can be tailored to
penalize first derivative differences, increasing the robustness to
oscillations in the presence of underresolved or discontinuous
features [66]. In high-order finite element methods, the recon-
struction can be simplified by using an approximation order
increment on the same mesh [40]. Reconstruction on a fine space
obtained by both uniform mesh refinement and approximation order
increase has also been investigated [82]. A disadvantage of the
reconstruction approach is that it does not incorporate physics of
the problem, which can be important for convection-dominated
equations. A more robust approach is therefore to solve the adjoint
problem exactly on the chosenfine space [37,38], although in general
this is a costly proposition. We note that for certain highly nonlinear
problems, such as turbulent flows, the fine-space adjoint solution can
be comparable or cheaper than the primal solve because the adjoint
equations are linear. The particulars of this tradeoff depend on
the solvers used, computing architecture, memory available, and
problem-specific factors. When an inexpensive iterative solver is
available, a cheaper alternative is, as in the primal problem, to inject
 H into the fine space and to apply several steps of the iterative
solver, with the linearization based on an approximation of uh

[71,72]. With more effort, the mean-value linearized adjoint,  mv
h ,

can be approximated by employing numerical quadrature in the path
integration for the adjoint problem mean-value linearization [37].

E. Error Effectivity

In the limit of a very fine (and consistent) discretization, “h! 0”
and uh ! u, Eq. (18) yields the true output error in the solution:

J H�uH� � J �u�. In practice, however, a finite dimensional Vh is
employed, obtained from VH by uniform refinement or approx-
imation order increase. Hence, the calculated output error is
generally not equal to and not a bound for the true error. It is an
estimate whose accuracy depends on the enrichment of Vh relative to
VH . Indeed, the choice of enrichment governs the behavior of the
error effectivity

�eH �
J H�uH� � J h�uh�

J H�uH� � J �u�
(28)

An effectivity close to 1 is desirable. IfH denotes mesh size and the
output error converges as J H�uH� � J �u� � CHH

k, a choice of
h�H=2 for the enriched space yields an effectivity of
�eH � 1 � �1=2�k. Thus, even as H ! 0, the effectivity does not
approach one. Potentially, this underprediction of the true error could
be accounted for if the convergence rate k were known. Another
option is to construct the error estimate using p-enrichment. In this
case, the effectivity behaves as �eH � 1 � CkH

�k where �k is the
increase in convergence rate of uh relative to uH . Under these
assumptions, the effectivity approaches 1 as H ! 0.

F. Impact of Shocks and Artificial Stabilization

Shock waves (or other underresolved phenomena) can present a
variety of problems when estimating errors. These problems do not
necessarily reflect a breakdown of the error estimation theory, but
rather implementation challenges that occur when employing the
enabling approximations. For example, estimation of uh through
reconstruction can introduce oscillations that contaminate error
estimates. This contamination can be reduced by using monotonic
reconstruction procedures.

Another issue is the use of shock-capturing stabilization terms in
the discretization that are nonzero even when acting upon the exact
solution. In these situations, the semilinear form is inconsistent since
RH�u; v� is not necessarily zero for all v 2 V. However, for the
method to be convergent, the stabilization terms are assumed to
asymptote to zero as H ! 0. In other words, the method has
asymptotic primal consistency.

The error due to asymptotically consistent stabilization terms can
be estimated by separating the weighted residual statement into
consistent and asymptotically consistent parts

R H�uH; vH� �R�
H�uH; vH� � 0; 8 vH 2 VH (29)

where RH��; �� is a consistent semilinear form, and R�
H��; �� is an

asymptotically consistent form. Then, using Eq. (8), the output error
due to using asymptotically consistent stabilization is

�J �
H �R�

H�uH; H� (30)

where  H is the solution to Eq. (25), and where the residual
perturbation is approximated as infinitesimally small. When per-
forming error estimation, approximations to uH and  H are
available, and hence �J �

H is computable without a residual
calculation on a finer space. Dwight takes advantage of this
observation to efficiently compute the sensitivity of an output to
explicitly added dissipation for finite volume discretizations of the
Euler equations [83]. Dwight observes that in many test cases, the
artificial dissipation accounts for the majority of the output error, so
that the calculated sensitivity is a good approximation to the output
error.

IV. Mesh Adaptation

A typical adaptive solution process is illustrated in Fig. 5. The
input is an initial coarse mesh along with a user-prescribed error
tolerance for an output. The iterative process starts by solving the
primal and adjoint problems on the initial coarse mesh. Next, the
output error is estimated using the adjoint-weighted residual method
described in Sec. III.B. If the global error tolerance criterion is met,
the adaptive process terminates. Otherwise, the error estimate is
localized to the elements, and the mesh is adapted. The process then
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repeats until the tolerance is met. This process is only valid for the
case of one output, although multiple output functionals can be
treated by solving an adjoint for a weighted-sum output [84], a
process that can be augmented with the solution of an error equation
to obtain estimates of the individual output errors [85].

In output-based error estimation, the error localization is fairly
straightforward. However, numerous strategies exist for translating
the error indicator into a modified mesh. In CFD, the most popular
adaptation strategy is h-adaptation, in which only the tessellation
forming the mesh is varied. In high-order methods, additional
strategies include p-adaptation, in which the approximation order is
changed on a fixed triangulation [40,86], andhp-adaptation inwhich
both the order and the triangulation are varied [87–96]. For CFD
applications, in which solutions often possess localized, singular
features, h-adaptation is key to an efficient adaptation strategy. In
addition, most practical codes operate at one or a limited number of
orders, making h-adaptation the only practical approach. With the
growing popularity of high-order methods, however, hp-adaptation
will be an important strategy for increased efficiency in the future.

This section reviews general aspects of h-adaptation for CFD.
Many of the aspects, especially pertaining to adaptation mechanics,
incorporation of anisotropy, and general optimization strategy, are
also relevant to non-output-based adaptation.Additional information
on these topics can be found in existing reviews [97–102]. The
discussion below will focus on aspects of mesh adaptation
specifically relevant to output-based error estimation.

A. Error Localization

The output-error estimates in Eqs. (18), (24), and (26) consist of a
residual evaluation on the refined space Vh. In a finite element
method, this residual evaluation is a sum over all elements in the fine
space. Since the coarse and fine spaces are assumed nested, Eq. (24)
[with an analogous expression for Eq. (18)] can be written as

J H�uH� � J h�uh� �
X

�H2TH

X

�h2�H

Rh�uH; � hj�h � (31)

where TH is the coarse triangulation, �H=�h is an element of the
coarse/fine triangulation, and j�h refers to restriction to element �h.
Note that the coarse/fine spaces can consist of the same triangulation,
for example when only the approximation order is increased, in
which case �H � �h. Equation (31) expresses the output error in
terms of contributions from each coarse element. A common
approach for obtaining an error indicator is to take the absolute value
of the elemental contribution [14,17,37,38,66]

��H �

�
�
�
�

X

�h2�H

Rh�uH; � hj�h �

�
�
�
�

(32)

When the adjoint residual contribution is used as in Eq. (26), an
adjoint error indicator can be defined as

�
 
�H �

�
�
�
�

X

�h2�H

R
 
h 	uH
��uhj�h ; H�

�
�
�
�

(33)

This indicator targets areas of nonzero adjoint residual, weighted by a
primal approximation error estimate. Numerical experiments have

shown that the two error indicators, ��H and �
 
�H , yield similar mesh

distributions when used to drive adaptation.
The above error localization is applicable to finite volume and

discontinuous Galerkin discretizations, since weighted residuals
vanish locally on each element for these discretizations. Thus, no
systematic interelement error cancellation is expected in the output-
error estimates and the absolute value signs in Eqs. (32) and (33) are
justified. However, local residuals do not necessarily vanish for
continuous finite element discretizations. Consider for example a
continuous finite element discretization of Poisson’s equation, in
which the elemental contributions to the residual contain terms of the
form

R

�h
ruH � r h. Simply placing absolute value signs around

these terms to obtain the elemental error indicator would lead to a
systematic overestimate of the output error via a sumof the indicators
[103]. This overestimate is due to a poor bookkeeping choice for the
error and can be fixed by integrating the residual terms by parts on
each element, i.e., by using the primal residual form [43]. The result
is a set of element-interior terms containing the strong form of the
residual, and a set of face flux jump terms, which are present because
the gradient ofuH is not continuous. Both of these terms are expected
to go to zero with mesh refinement, and the flux jump terms will
dominate for low orders [104]. The face flux residuals can be pushed
back onto the elements by assigning half of the flux residual to each
of the two elements adjacent to the face [67]. For convection
equations, the continuity of uH eliminates the need for interior flux
residuals, although inflow flux residuals are still required and the
stabilization terms must be treated appropriately [34].

For systems of equations, indicators are typically computed
separately for each equation and summed together. Because of the
absolute values, the sum of the error indicators, ��

P

�H
��H , is

greater or equal to the original output-error estimate. However, it is
not a bound on the actual error, or even on JH�uH� � Jh�uh�, because
of the approximations made in the derivation. In practice, the validity
of the approximations improves with refinement, and the above
estimate becomes an accurate measure of the true error.

B. h-Adaptation Mechanics

Many approaches to adapting a mesh rely upon the application of
local operators through which the mesh is modified incrementally. A
simple example of a local operator is element subdivision in a setting
that supports nonconforming, or hanging, nodes [67,92,97,105,106].
For triangular and tetrahedral meshes, local mesh modification
operators consist of node insertion, face/edge swapping, edge
collapsing, and node movement. These operators have been studied
extensively by various authors [74,75,99,107–112] in different
contexts. The primary advantage of local operators is their
robustness: the entire mesh is not regenerated all at once, but rather
each operator affects only a prescribed number of nodes, edges, or
elements.

Another approach to adapting a mesh is global remeshing, in
which a new mesh is generated for the entire computational domain.
The original, or background, mesh is used to store desired mesh
characteristics during regeneration. For applications to adaptation,
the desired mesh characteristics are often described using a
Riemannian metric, the idea being that in an optimal mesh, all edge
lengths will have unit measure under the metric [109,111]. In a
Cartesian coordinate system of dimension d, an infinitesimal
segment �x has length �� under a Riemannian metric M

��2 � �xTM�x� �xiMij�xj (34)

where �xi are the components of �x 2 R
d,Mij are the components of

the symmetric, positive definitemetric,M 2 R
d�d, and summation is

implied on the repeated indices i, j 2 	1; . . . ; d
.
The metric M contains information on the desired mesh edge

lengths in physical space. As M is symmetric and positive definite,
the unit-measure requirement

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?

Fig. 5 Adaptive solution process flowchart. The input consists of an

initial coarse mesh and a requested error tolerance for a chosen
functional. Adaptation stops when the error tolerance is met.
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x TMx� 1

describes an ellipsoid in physical space that maps to a sphere under
the action of the metric. The eigenvectors ofM form the orthogonal
axes of the ellipsoid, i.e., the principal directions. The corresponding
eigenvalues, �i, are related to the lengths of the axes, hi, via

�i �
1

h2i
)

hi

hj
�

�
�j

�i

�
1=2

Physically, the hi are the principal stretching magnitudes. A diagram
of a possible ellipse resulting from the unit-measure requirement in
two dimensions is given in Fig. 6. Thus, the ratio of eigenvalues ofM
can be used to define a desired level of anisotropy.

A successful approach for generating simplex meshes based on a
Riemannian metric is mapped Delaunay triangulation, in which a
Delaunay mesh generation algorithm [102] is applied in the mapped
space, allowing for the creation of stretched and variable-size
triangles or tetrahedra [113]. This method is implemented in the
bidimensional anisotropic mesh generator (BAMG) [114,115],
which has been used in various finite volume [39,116] and dis-
continuous Galerkin [71,72,117] applications requiring anisotropic
meshes. Examples of output-adapted meshes obtained using BAMG
are shown in the results section of this paper.

C. Overview of Adaptation Strategies

In h-adaptation, the determination of which elements to refine or
coarsen has important implications for practical simulations: too
little refinement at each adaptation iteration may result in an
unnecessary number of iterations; too much refinement may ask for
an expensive solve on an overly refined mesh. Aftosmis and Berger
discuss adaptation strategies in terms of error distribution histograms
[118], in which elements are binned according to the error indicator

[Eq. (32) for output-based adaptation]. The assumption made in
virtually all adaptation strategies is that in an ideal mesh the user-
prescribed error tolerance is satisfied and the error is equidistributed
among the elements [99]. This situation corresponds to a “delta”
histogram, in which all elements lie in the same bin. In contrast, the
initial coarse mesh will generally have some distribution of error
indicators, as illustrated in Fig. 7. The goal of an adaptation strategy
is then to drive the histogram towards the ideal delta distribution.
Note that this characterization of adaptation strategies also holds for
runs in which a maximum element count is specified instead of an
error tolerance. The ideal mesh in this case is one for which the error
is equidistributed among a number of elements within the element
budget.

Nemec et al. [69] discuss two adaptation strategies based on either
a constant or a decreasing refinement threshold. In a constant
threshold strategy, depicted in Fig. 7, all elements with error above a
certain fixed value are refined in the same manner. This strategy is
simple but potentially expensive: initial refinement targets virtually
all of the elements and leads to a rapid growth in the mesh size in the
first few iterations, while elements with the highest error (in the right
tail of the histogram) are likely to be among the last elements to have
their error reduced to the target level. In contrast, with a decreasing
threshold, shown in Fig. 8, elements with the highest error are
targeted for refinement first so that the mesh size grows more slowly
andmultiple expensive solves on thefinestmeshes are avoided.Note,
general adaptive mechanics that do not employ the same level of
refinement for each element are not limited to these strategies. For
example, when using global remeshing, all elements could be refined
or coarsened based on their error indicators.

Most adaptation optimization methods follow some variation of a
decreasing threshold strategy. For example, afixed-fraction approach
prescribes a fraction of elements with the highest error indicator to be
refined at each adaptation iteration, such that the decreasing
threshold is a function of the shape of the error histogram. Then, the
elements targeted for adaptation are typically refined in a locally
uniform manner, e.g., by splitting all edges in half. This simple
approach has been applied to output-based adaptation in several
studies [31,37,38,63,68,96] The fixed-fraction parameter is often
chosen heuristically in a tradeoff between an excessive number of
iterations and a risk of overrefinement. Nevertheless, the method
works quite well for practical problems.

D. Incorporating A Priori Analysis and Anisotropy

The fixed-fraction adaptive strategy with locally uniform
refinement does not account for the rate at which the error decreases
with mesh refinement in a given adaptive iteration. This disregard for
the error convergence rate could lead to overrefinement of the mesh
or to an excessive number of adaptive iterations to achieve the desired
target error. Adaptation strategies have been developed that attempt
to meet the global tolerance while equidistributing the error among
elements through the incorporation of a priori error analysis. In the
context of isotropic, output-based adaptation, Venditti and Darmofal
[66] developed such a method based on the previous work of

e
2

h2

e
1

h1

Fig. 6 Ellipse representing requested mesh sizes implied by equal
measure under a Riemannian metric M. Also shown are the principal

directions, ei, and the associated principal stretching magnitudes, hi.

Fig. 7 Sample error indicator histogramand a constant-threshold refinement strategy; a and b refer to the sets of cellsmarked for refinement at the first

(1) and second (2) adaptive iterations, respectively. The starred letters refer to the sets of new cells created after refinement. Reproduced with permission

from [69].
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Zienkiewicz and Zhu [119]. In this method a permissible element
error e� � e0=N is defined at each adaptation iteration, where e0 is
the user tolerance, andN is the current number of elements. Coupled
with an a priori error estimate that the error converges as O�hr�,
where r is the a priori estimated convergence rate, element size
requests can be made that equidistribute the error.

An important ingredient in h-adaptation for aerodynamic compu-
tations is the ability to generate stretched elements in areas such as
boundary layers, wakes, and shocks, where the solution exhibits
anisotropy, which refers to variations of disparate magnitudes in
different directions. While stretched elements can be created to a
limited extent with hanging-node refinement, by optimally choosing
the refinement direction [120,121], unstructured triangular and
tetrahedral grids offer the most flexibility in anisotropic refinement.
The first output-based adaptive method to incorporate anisotropy
was proposed by Venditti and Darmofal [39] and Venditti [122],
and applied to a nominally second-order accurate finite volume
algorithm. Their approach was to combine the isotropic, output-
based approach using a priori estimates with existing Hessian-based
methods for anisotropic adaptation.

For spatially second-order methods, the dominant method for
detecting anisotropy involves estimating the Hessian matrix H of a
scalar solution u [109,111,113,123]. The components ofH are given
by

Hij �
@2u

@xi@xj
; i; j 2 	1; . . . ; d
; d� spatial dimension

The second derivatives can be estimated by, for example, a quadratic
reconstruction of a linear solution. For the Euler or Navier–Stokes
equations, the Hessian of the Mach number has been found to
perform sufficiently well as the scalar u.

The metric is obtained from the Hessian by requiring that the
approximation error estimate of the scalar quantity u be the same in
any chosen spatial direction. For linear approximation of u along the
segment �x, the maximum approximation error can be bounded by
the second derivative of u along �x. The Hessian matrix stores
precisely this information, so that requiring the approximation error
bound to be approximately constant independent of the direction of
�x, leads to the metric choice

M � CjHj (35)

where C is a constant independent of direction, and jHj is the
positive, semidefinite form of the Hessian: jHj � Vj�jV�1 for
H� V�V�1. Two intervals, �x1 and �x2, having the same measure
under this M will have the same estimated approximation error
bounds.

To fully define the metric, the absolute mesh size, i.e., the constant
C in Eq. (35), has to be determined. While in pure Hessian-based
adaptation a global value for C is used, the output-based method of
Venditti and Darmofal sets C locally according to the output-error
indicator [39]. As a result, the smallest mesh length is controlled by

the output-error indicator while the anisotropy is controlled by the
solution Hessian.

The definition of a metric tensor becomes difficult for high-order
methods because the standard Hessian matrix approach assumes
linear approximation of the scalar quantity. For general order p, the
approximation error is governed by the order p� 1 derivatives. One
possible extension of theHessian approach is based on constructing a
metric around the direction ofmaximump� 1st derivative [7,70]. In
two dimensions, the anisotropy stretching ratio is set equal to the
p� 1 root of the ratio between this maximum derivative and the
derivative normal to this direction. This approach has the dis-
advantage of requiring a search over all directions to determine the
maximump� 1derivative. In three dimensions, the approachwould
require two searches and seems impractical. More recently, Pagnutti
and Ollivier–Gooch developed a method to calculate a metric for
general p using a Fourier series representation of p� 1 order terms
[124]. This approach appears to extend to three dimensions quite
readily, though to date has not been implemented. Another
alternative to searching for the maximum p� 1 derivative directly is
to compute the order p� 1 derivative tensor that is analogous to the
Hessian for p� 1. When adaptation choices are limited, such as for
hanging-node refinement of quadrilateral or hexahedral elements,
only the diagonal entries of this tensor are necessary to make the
adaptation decision [125]. In addition, for discontinuous solution
approximations on quadrilateral or hexahedral meshes, a surrogate
heuristic for the order p� 1 derivatives is interelement jumps in the
solution. Anisotropic adaptation using this jump information has
been found to be comparable to using derivative information for
several problems of aerodynamic interest [125].

An additional problemwith higher-order discretization is the need
for curved mesh elements and high-fidelity geometry representa-
tions. Recent work by Oliver [72] explores a novel implementation
approach for high-order metric-driven meshing, in which the
adaptation is performed on a mapped linear-triangle mesh. An
elasticity analogy is then used to transform the linear mesh to a
curved, boundary-conforming mesh around the true geometry. The
robustness of this approach relies on the success of the linear
meshing, which may not be guaranteed for highly anisotropic
boundary-layer meshes. Recently, Persson and Peraire developed an
approach to curved meshes based on a nonlinear elasticity analogy
using Lagrangian solid mechanics [126]. This approach appears
quite robust, though involves solution of a nonlinear set of equations
to perform the mesh motion.

The metric tensor may also be used to guide an adaptation
procedure based on local operators. In the context of pure Hessian-
based adaptation, Castro–Diaz et al. [109] present a two-dimensional
algorithm that uses the metric-based edge length to decide which
operation to apply. Specifically, edge splitting, edge collapsing, edge
swapping, and node movement are applied to make all edges
approximately the same length when measured using the metric
tensor. Habashi et al. [111], Ait-Ali-Yahia et al. [127], Dompierre
et al. [128], andXia et al. [112] present similar algorithms, with slight
modifications in Hessian definition and in the local operators. Park

Fig. 8 Adaptation strategy using a decreasing threshold. As in Fig. 7 , a and b refer to the sets of cellsmarked for refinement at the first (1) and second (2)
adaptive iterations, respectively. The starred letters refer to the sets of new cells created after refinement. Reproduced with permission from [69].
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[74,75] extends these local mesh modification operators to output-
based mesh adaptation, in both two and three dimensions.

E. Direct Optimization Adaptation

The output-based adaptive approaches described in Sec. IV.D rely
upon a priori analysis to estimate desired grid characteristics. Further,
the approximation error assumptions are made without regard to the
output of interest by using a single scalar, such as the Mach number,
to control the anisotropy for a system of equations. While the Mach
number choice has worked well so far, it is arbitrary. Castro–Diaz
et al. [109] propose choosing an intersection of metrics derived from
all variables in the system, although this choice relies on the variables
used (e.g., conservative versus primitive), and using more variables
can make the resulting intersected metric too restrictive. More
generally, for output-based adaptation, the assumption that the
directional approximation error must be equidistributed for one or
more scalar variables at each point in the domainmay not be valid. Of
interest are only the approximation errors that create residuals that
affect the output. This observation has motivated research into
adaptation algorithms that more directly target the error indicator.

Formaggia et al. [129,130] and Formaggia and Perotto [131]
combine Hessian-based approximation error estimates with output-
based a posteriori error analysis to arrive at an output-based error
indicator that explicitly includes the anisotropy of each element.
However, for the purpose of mesh adaptation, a metric is still defined
using the resulting element modification requests. In a recent work,
Richter derives a posteriori directional output-error estimates and
presents an associated anisotropic adaptation strategy for quadri-
lateral and hexahedral elements [132]. Schneider and Jimack [133]
calculate the sensitivities of the output-error estimate with respect to
node positions and formulate an optimization problem to reduce the
output-error estimate by redistributing the nodes. The sensitivities
with respect to node positions are calculated efficiently by solving an
additional adjoint problem. This approach directly targets the output-
error estimate and automatically leads to anisotropic meshes where
appropriate. Schneider and Jimack [133] then combine this node
repositioning with isotropic local mesh refinement sequentially in a
hybrid optimization/adaptation algorithm.

For unstructured meshes, Park [79] introduces an algorithm that
directly targets the output error through local mesh operators of
element swapping, node movement, element collapse, and element
splitting. Using the output-error indicator to rank elements and
nodes, these operations are performed in sequence and automatically
result in mesh anisotropy. The details of the adaptation are also given
in an earlier work, in the context of approximation error [134].While
the grids produced by this technique lack the regularity of those
produced using metric-based adaptation, their accuracy is com-
parable. Houston et al. [135] also present a direct optimization
approach for output-error reduction, using anisotropic discrete
refinement options on quadrilateral elements, an approach which has
also been applied to compressible flows [18]. This idea, with certain
theoretical and implementation modifications, is also extended to
aerodynamic simulations on body-fitted grids in a recent work by
Ceze and Fidkowski [136].

F. Cut-Cell Methods

A successful adaptation algorithm relies on automation and
robustness of the mesh generation or modification. Standard
boundary-conforming meshers must ensure both geometry fidelity
and mesh validity, a task that becomes difficult, for example, for
anisotropicmeshes around curvedgeometries. An alternate approach
to mesh generation is based on the idea of cut cells, in which the
computational domain is formed by intersecting the geometry of
interest with a volume-filling background mesh. Without the
boundary-conforming constraint, generation or adaptation of
the volume-filling background mesh is straightforward. However,
the burden of robustness is transferred to the computational geometry
problem of intersecting the background mesh with the geometry.

The most common cut-cell technique is the Cartesian method, a
name that refers to the rectangular or hexahedral cells on a regular

lattice used for the background mesh (see Fig. 9). The Cartesian
method was pioneered in the early days of CFD [137–141], has been
used in industry [142–144], and is the subject of ongoing research
[68]. Recently, the cut-cell technique has also been applied to
simplex background meshes, which provide greater flexibility in
directional resolution [70,134,145].

The advantage of cut-cell methods for mesh adaptation is the
automation that results from removing the boundary-conforming
constraint. In a Cartesian method, hanging-node refinement is the
single practical option for adaptation, and has been implemented
efficiently [146]. In simplex cut-cell methods, adaptation can also be
performed through global remeshing [70] or through local operators
[134]. Cut-cell methods have been successfully applied to output-
based adaptive simulations of Euler flows and to moderate Reynolds
number viscous flows [70]. For boundary-layer viscous flows, the
Cartesian method quickly becomes inefficient at achieving the
desired anisotropic resolution. While simplex cut-cell methods
alleviate this problem, current research has only been with linear
background meshes, which eventually become inefficient for high
Reynolds number flows around curved geometries.

V. Implementations and Results

A. Finite Volume Methods

1. High-Lift RANS (Venditti and Darmofal)

Venditti and Darmofal apply output-based error estimation and
mesh adaptation to a range of inviscid and viscous aerodynamic cases
in two dimensions [39,66]. They use a node-based, unstructured
finite volume solver and solve the linear adjoint equations by time
marching, similarly to the forward problem. They adapt on the
remaining error in Eq. (23) and use an average of the primal and
adjoint residual localizations for the adaptive indicator. For aniso-
tropic meshing, they use the Hessian of the Mach number to define a
metric, and they remesh the domain using BAMG.

A representative example from the work of Venditti and Darmofal
[39,66] is that of adaptive simulation for turbulent flow over an
advanced energy-efficient-transport (EET) airfoil. In this example, a
sequence of lift-adapted meshes is compared with meshes adapted
using only the Hessian of the Mach number with no output-error
information. The resulting convergence of the lift output is shown in
Fig. 10a. The corrected output in both runs was calculated using the
computable correction in Eq. (23). The improved convergence of the
runs adapted on the output error compared with those adapted on
the Hessian is clear. The finest adapted meshes from both runs are
shown in Fig. 10b. Note the increased resolution of the output-
adaptedmesh near themain-element leading edge and over the upper
surface of the main element. Also note that the Hessian-based mesh
predicts the lower slat wake in a different location and does not
resolve the flow in the cavity region of the main element.

2. Launch Abort Vehicle (Nemec et al.)

Nemec and Aftosmis [68] and Nemec et al. [69] apply an output-
based adaptive framework to a Cartesian, cut-cell, finite volume
code. They solve the discrete adjoint equations bymarching to steady

Cut Cell

Geometry
Boundary

Fig. 9 Sample Cartesian mesh in two dimensions. The square lattice
mesh does not conform to the geometry. Cut cells are portions of

intersected elements that lie inside the computational domain (above the

geometry boundary in this case).
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state with the same Runge–Kutta scheme and multigrid solver used
for the flow solution. The adjoint solve requires transpose line-
arizations of the residual evaluation applied in reverse order, and this
process is simplified by freezing the limiter used for the spatial
reconstruction. Details on the adjoint implementation are given in
[147].

For the fine space Vh in output-error estimation, Nemec and
Aftosmis [68] and Nemec et al. [69] use an embedded grid obtained
by uniformly refining each hexahedral cell in the Cartesian grid.
They then obtain an error indicator by weighting the residual of the
coarse, linearly reconstructed solution on the embedded grid with an
adjoint error that is the difference between piecewise linear and
piecewise constant reconstructions of the coarse adjoint solution.
Results in [68] compare the performance of this error estimate versus
one that employs a more rigorous quadratic reconstruction of the
adjoint and show reduced accuracy of the constant/linear output-
error estimate but simpler implementation.

Nemec and Aftosmis [68] and Nemec et al. [69] then define a
refinement threshold error level for adaptation and at each iteration
refine cells with error above this threshold, using the decreasing
threshold strategy described in Sec. IV.C. The Cartesian hanging-
node adaptation makes use of the robust cut-cell mesh generation
capability in the code [146], allowing for adaptive results with
complex geometries. A representative example is that of aero-
dynamic analysis of a launch abort vehicle (LAV), illustrated in
Fig. 11. The output of interest for this case consists of a linear
combination of the normal (N) and axial (A) force coefficients

J� CN � 0:2CA

where the weight on the linear combination was determined
empirically as one that yielded adequate results for both forces and
moments. Note, the forces and moments are evaluated on the
“metric” portion of the geometry, as specified in Fig. 11.

The robustness and automation of the mesh generation process
allowedNemec andAftosmis [68] andNemec et al. [69] to consider a

range ofMach numbers and angles of attack.A representative case, at
M1 � 1:1, ���25, is shown in Fig. 12. Also shown in the figure
is a contour plot of the adaptive indicator, where regions shown in
gray-scale fall below the refinement threshold. Areas marked for
refinement include the edges of the heat shield and the vicinity of the
abort motors. Note that only moderate refinement is requested at the
shocks, which often attract excessive refinement with heuristic
feature-based indicators.

An example of a final mesh generated by the adaptive process is
shown in Fig. 13.As expected from the error indicator, the refinement
concentrates on the edges of the heat shield and on the abort motors.
The convergence of the output for this case is shown in Fig. 14 on the
left. Included on the same plot is the corrected output, calculated as
described in Eq. (23). The right plot in Fig. 14 shows the convergence
of the output-error estimate. The jump in the error estimate on the
final mesh is due to an incompletely converged adjoint solution
caused by the appearance of small-scale unsteadiness in the primal
problem. Nevertheless, unsteady simulations on the final mesh show
that the time-averaged coefficients are in good agreement with the
steady results for this case [69]. Note, however, that no benchmark
experimental or numerical data are available to verify the adaptive
results for this case.

3. Sonic Boom (Park)

Park presents output-based, adaptive results for an unstructured,
cut-cell finite volume method [79]. The method is node-based, and
the cut-cell approach allows for automated mesh generation. Park
solves the linear adjoint equation using a dual-consistent time-
marching method [52,53] and adapts on the remaining error
(Eq. (23)) using quadratic reconstruction to obtain the fine-space
solutions. He adapts on an indicator computed from the average of
the localized primal and adjoint residuals. The tetrahedral grid
adaptation is based on anisotropic local mesh modification operators
combined with mesh movement, as described in Sec. IV.E.

An example case from Park’s work is shown in Fig. 15. The case
consists of a delta wing body used in existing wind tunnel

Fig. 10 Advanced energy-efficient-transport airfoil,M
1
� 0:26, �� 8�, Re� 9 � 106. Comparison of lift convergence for output-based and Hessian-

based adaptation, and near-field views of the final adapted meshes. Note that the output-adapted results agree very well with experiment and other fine-

resolution numerical studies. Reproduced with permission from [39].

Fig. 11 Definition of metric components for the launch abort vehicle (LAV) model. Reproduced with permission from [69].
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experiments [148], atM1 � 1:68, �� 0. Of interest is the pressure
signature 3.6 body lengths away from the geometry. Specifically the
output consists of an integral of the square of the pressure deviation
from freestream, taken over the measurement region. The triangular
surfacemesh in Fig. 15a is the geometry representation that is used in
the cut-cell method. The initial background mesh from which the
geometry was cut contained 2800 control volumes, while the final
adapted background mesh in Fig. 15b contained 4.9 million control
volumes. Note the alignment of the cells in the final mesh with the
propagated signal.

The adaptation history of the output is shown in Fig. 16a, where
the error bars denote the remaining error estimate. Note that the error
is severely underpredicted on the very coarse initial meshes. As the
shock is resolved, the error estimate becomes more accurate and
begins to decrease in the latter stages of adaptation. The pressure
signature 3.6 body lengths away is shown in Fig. 16b. The dotted
lines indicate signatures at intermediate grids during adaptation. The
computed signature on the final adapted meshes agrees well with
experimental data.

B. Discontinuous Galerkin Methods

1. Point Error in Transonic Flow (Hartmann and Houston)

Hartmann and Houston compare two types of error indicators for
p� 1 discontinuous Galerkin solutions of the compressible Euler
equations [38]. The first, type I, indicator is derived from the adjoint-
weighted residual method described in this paper. The second, type
II, indicator is an unweighted residual indicator, in which a priori
bounds are placed on the adjoint values, eliminating the need for the
adjoint solution. Adaptive results show the superior performance of
using the adjoint-weighted, type I, indicator.

An example case considered by Hartmann and Houston [38] is the
converging-diverging nozzle problem shown in Fig. 17. Hartmann
and Houston use a damped Newton method to obtain p� 1 primal
and adjoint solutions on a geometry represented by quadratic (q� 2)
elements. As the fine space for error estimation, they use orderp� 2
approximation on the same mesh. They adapt the quadrilateral
meshes based on the indicators with fixed-fraction, hanging-node
refinement and coarsening. Figure 18 shows adapted meshes for the
two types of error indicators. The type II error indicator, which does
not use the adjoint solution, refines mainly the region near the shock.
On the other hand, the type I error indicator leads to refinement along
the characteristics upstream of the point of interest. This targeted
refinement yields a lower output error with fewer degrees of freedom
compared with the type II refinement.

Also in this same paper, Hartmann andHouston [38] demonstrated
the first application of output-based error estimation for dis-
continuous Galerkin discretizations to inviscid, transonic and
supersonic airfoil flows. Later, they extended their approach to
viscous flows [149] and demonstrated applications to a variety of
laminar, aerodynamic flows including shock waves (Hartmann
[150]).

2. Hypersonic Heat Transfer (Barter and Darmofal)

Barter and Darmofal apply output-based error estimation and
mesh adaptation to discontinuous Galerkin solutions containing
shocks, using a discretization stabilized with smooth artificial-
viscosity [71,151]. In this discretization, the artificial viscosity on
each element is interpolated with the same polynomial basis as the
state, and the coefficients for these polynomials are agglomerated
into the unknown state vector. The necessary additional equation is

Fig. 12 LAV Mach number contours, M
1
� 1:1, ���25�. and the localized error indicator. Reproduced with permission from [69].

Fig. 13 Initial and adapted meshes for the LAV, at M
1
� 1:1,

���25�. The initial mesh contains 3700 cells, while the final mesh after

eight adaptation iteration contains almost two million cells. Reproduced

with permission from [69].

Fig. 14 Output functional convergence for the LAV, at M
1
� 1:1, ���25�. Reproduced with permission from [69].
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obtained by discretizing a diffusion partial differential equation for
the artificial viscosity.

Barter and Darmofal [71,151] use several sweeps of a block-
Jacobi smoother to approximate  h on a space enriched to order

p� 1. As in related work, the adaptive indicator is formed by
averaging localized primal and adjoint output-error estimates.

The artificial viscosity stabilization enables Barter and Darmofal
[71,151] to adaptively solve transonic, supersonic, and hypersonic
flowproblems. A representative example is that of hypersonicflow at
M1 � 17:605,Re� 376; 930 over a cylinder geometry, also studied
in previous work [152]. The problem setup and the initial mesh for
adaptation are shown in Fig. 19. The output used for adaptation is the
integrated heat flux to the cylinder, calculated in an adjoint consis-
tent manner, and nondimensionalized to form the average Stanton
number on the surface

Qwall �

Z

qwall ds; �Ch �
1
�R
Qwall

cp	1V1�Tt;1 � Twall�

Fig. 15 Delta wing body sonic boom prediction, M
1
� 1:68, �� 0�. Surface geometry mesh and an output-adapted mesh colored by pressure.

Reproduced with permission from [79].
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Fig. 16 Delta wing body sonic boom prediction, M
1
� 1:68, �� 0�. Pressure integral output history with error estimates and pressure signature

convergence. Reproduced with permission from [79].

Fig. 17 Converging-diverging nozzle geometry. The output of interest

is the density immediately before the shock. Reproducedwith permission
from [38].

Fig. 18 Converging-diverging nozzle: a) mesh adapted using the type I error indicator, based on the adjoint-weighted residual, with 172,880 degrees of

freedom and an output error of 6:947 � 10�6. b) mesh adapted using the type II error indicator, with 341,648 degrees of freedom and an output error of

2:842 � 10�5. Reproduced with permission from [38].
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BAMG is used as the mesh generator for the metric-driven
adaptation, where an anisotropy metric is defined using the Mach
number approximation error. To create meshes with curved (q� 3)
anisotropic elements for the thin boundary layer around the cylinder,
Barter and Darmofal [71,151] perform adaptation in a mapped,
rectangular space, transforming the requestedmetric appropriately as
described in [72]. Figure 20 shows the final adapted mesh for p� 2
and the output convergence history compared with uniform refine-
ment. The final adapted mesh exhibits refinement in the bow shock,
but only to the extent that it impacts the heat flux on the cylinder.
Refinement is also seen in the stagnation streamline, an area towhich
the heat flux output is highly sensitive. The convergence history
shows that the adapted run converges to an output within 0.02% of
the final value with approximately three million degrees of freedom.

3. Laminar Flows Using Simplex Cut Cells (Fidkowski and Darmofal)

Fidkowski and Darmofal use an output-based adaptive indicator
to drive cut-cell h-adaptation for a high-order discontinuous
Galerkin discretization of the compressible Navier–Stokes equations
[70,117]. They use an implicit solution procedure for the primal
problem that stores the full, compact-stencil, residual linearization,
so that the discrete adjoint solution requires only one transpose
application of the same linear solver. The fine-space adjoint solution
 h is approximated by reconstructing the coarse adjoint, H , on the
same mesh with order enriched to p� 1. The adaptive indicator is
formed by averaging localized primal and adjoint output-error
estimates.

The cut-cell method, illustrated in Fig. 21, employs simplex
elements and metric-driven global remeshing of the background
domain to enable automated and anisotropic mesh adaptation.
Meshing is performed using BAMG with anisotropy based on
approximation error in the Mach number. Fidkowski and Darmofal
[70,117] apply the cut-cell adaptive method to several inviscid and
viscous flows. A representative example is that of viscous flow
around a NACA 0012 airfoil at M1 � 0:5, �� 2, Re� 5000.

Drag-adapted meshes for cubic, p� 3, solution approximation are
shown in Fig. 22 for both the cut-cell method and a boundary-
conforming method. The boundary-conforming meshes are
generated by curving boundary elements of an unstructured linear
mesh, a process that is susceptible to failure for anisotropic meshes.
In both sets of meshes, areas of refinement include the boundary
layer, a large extent of the wake, and, to a lesser extent, the flow in
front of the airfoil.

Figure 23 compares adaptive convergence histories of the drag
error for approximation orders p� 1, 2, 3. The boundary-
conforming and cut-cell runs converge to the same drag value, and
the histories are similar. In both sets of runs, p� 3 requires only
slightly fewer degrees of freedom than p� 2, while p� 1 remains
the most expensive.

4. Multitarget Adaptation (Hartmann)

As discussed in Sec. IV, the output-error estimation framework is
designed for one scalar output quantity. However, in many
engineering simulations, multiple scalar outputs are of interest. The
presented framework would require separate adaptive runs, with
individual adjoint solutions (auxiliary problems) and mesh se-
quences, for each output. To address this issue, Hartmann develops a
strategy for multitarget error estimation and adaptation that only
involves one mesh sequence and the solution of two auxiliary
problems at each adaptation iteration [85]; see also Hartmann and
Houston [84] for initial work with the inviscid Burgers’ equation.
The first auxiliary problem is a linearized error equation that enables
the calculation of output errors for an arbitrary number of outputs.
The second auxiliary problem is an adjoint equation for a quantity
that is a weighted-sum of the individual outputs, where the weights
can be relative or absolute.

Hartmann compares the multitarget approach to separate adap-
tations on individual quantities for a laminar viscous flow discretized
with the discontinuous Galerkin method [85]. The case is a NACA
0012 airfoil at M1 � 0:5, �� 2, Re� 5000. The initial coarse

ExtrapolationExtrapolation

No slip

Full state

R=1

a) Domain and BCs b) Initial mesh

Fig. 19 Hypersonic flow over a 2-D half-cylinder atM
1
� 17:605, Re� 376; 930: domain with boundary conditions and initial mesh for adaptation.

Note, flow is from top to bottom. Reproduced with permission from [71].
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mesh contains 400 quadrilateral elements, and p� 1 solution
approximation and hanging-node isotropicmesh refinement are used
for all the runs. The adjoint equations are solved exactly on an
enrichedp� 1 space. Figure 24 shows the results of this comparison
for four output quantities: pressure drag coefficient, skin friction drag
coefficient, lift coefficient, and moment coefficient. Prescribed
absolute factors were used for the weighted-sum output in this case,

with all outputs weighted using a factor of 1, except for the lift
coefficient which was weighted with 1=10. These factors are based
on assumed industrial accuracy requirements, which prescribe
tolerances of 5 � 10�4 for the drag and moment coefficients and
5 � 10�3 for the lift coefficient.

The comparison in Fig. 24 shows that the multitarget adaptation
performs similarly to adaptation on the individual force outputs, at a
reduced cost. Specifically, industry accuracy requirements are
satisfied after the same number of adaptive iterations in each case.
The cost reduction of the multitarget approach is due to solving only
two auxiliary problems per adaptation iteration, instead of one
adjoint per output, and to only constructing one mesh sequence. In
the present case of four outputs, the compute time reduction was
almost a factor of 2. Clearly, the benefit of the multitarget approach
improves as the number of output quantities increases.

5. Anisotropic Hierarchical Refinement (Leicht and Hartmann)

As described in Sec. IV.D, Leicht and Hartmann developed a
method for anisotropic refinement of discontinuous Galerkin
solutions based on the relative strength of solution jumps across
element faces [125]. Their implementation begins with a body-
aligned mesh of quadrilateral elements. Elements requiring
refinement are determined by an adjoint-based error indicator. Then,
given theseflagged elements, the anisotropy indicators are calculated
for each face. Adaptation occurs either by splitting the flagged
element in two along a particular grid direction or in four along both
grid directions depending on the relative strength of the jump
indicators. Hanging nodes are allowed, but with at most one level of
refinement difference between neighboring elements.

Spline−edge
intersection

Spline
geometry

Cut edge
Embedded
    edge

Fig. 21 Illustration of the simplex cut-cell method used in [70] for h-
adaptation on high-order discontinuous Galerkin solutions. Curved cut

cells are obtained by intersecting a cubic spline geometry representation
with a triangular backgroundmesh generated using BAMG.High-order

integration rules are derived on the resulting irregularly shaped cut cells.

a) Boundary-conforming: 1929 elements b) Cut-cell: 1840 elements

Fig. 22 NACA 0012M
1
� 0:5, �� 2�, Re� 5000, p� 3 approximation. Final boundary-conforming and cut-cell meshes adapted on drag [70].
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More recently, this approach was extended to three-dimensional
flows and applied to the DLR-F6 wing body geometry using RANS
with a k-! turbulence model [18]. To the authors’ knowledge, this
was the first output-based adaptive simulation for 3-DRANS using a
discontinuous Galerkin method. The surface grid and the mass
adjoint after two adjoint-based refinements targeting the lift
coefficient are shown in Fig. 25.

VI. Challenges and Ongoing Research

While the results shown in the previous section demonstrate the
maturity of output-based adaptive methods, challenges remain in
both the practical implementation of these methods and in their
theoretical framework. Some of these are discretization specific, such
as investigations into the effects of artificial stabilization on the
accuracy of output-error estimates. Others challenges are broader in
scope, and these are reviewed below along with relevant ongoing
efforts to address them.

A. Robust Mesh Adaptation

Performing mesh adaptation robustly and efficiently for complex
three-dimensional configurations is still a challenge and an area of
ongoing research. The lack of robust and efficient mesh adaptation is
probably the largest barrier limiting the application of output-based
adaptation to simple geometries and/or simplified physics (i.e.,
inviscid flows as opposed to viscous flows).

The main robustness issue occurs during boundary point insertion
on curved geometries: maintaining geometry fidelity can lead to
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Fig. 24 NACA 0012M
1
� 0:5, �� 2�, Re� 5; 000, p� 1 approximation: comparison of single-target versus multitarget adaptation for four output
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Fig. 25 RANS k-! solution forM � 0:5, Re� 5 � 106 flow around the

DLR-F6 wing body geometry using adjoint-based adaptation targeting

lift [18].
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invalid, negative-volume, elements on the interior, especially for
highly anisotropic meshes [74]. Currently, resolution of such situ-
ations is often attempted with iterative application of local operators
and local remeshing [153]. However, guaranteed geometric fidelity
and element validity in highly anisotropic meshes around curved
geometries has yet to be demonstrated.

Efficient adaptation refers to using available degrees of freedom as
effectively as possible. A notable example of a situation in which
efficient adaptation is important is in the resolution of curved, aniso-
tropic, solution features, as illustrated in Fig. 26. Simple isotropic
mesh adaptation in these areas, Fig. 26a, wastes resolution in
directions where the solution is not changing significantly. In three
dimensions, the additional degrees of freedom in the two directions
where the solution is not changing quickly make resolution of thin
layers impractical. Stretching elements along these directions helps
significantly, especially when the anisotropic layer is approximately
straight. When the layer is curved, however, the maximum feasible
aspect ratio of linear stretched elements is bounded by the curvature
of the layer since the geometry must be resolved, as illustrated in
Fig. 26b. Efficient resolution of very thin and curved features, such as
those encountered in Reynolds-averaged Navier–Stokes boundary
layers, must therefore employ curved elements, as shown in Fig. 26c.

Robust boundary-conforming mesh generation and adaptation
techniques currently exist for many applications requiring only
isotropic meshes [154], and such techniques have been successfully
applied to drive output-based adaptation on practical geometries
[76]. An exception here is mesh generation for high-order methods
that require curved elements on geometry boundaries, although in the
isotropic case, node movement and certain heuristics are generally
sufficient. However, robust boundary-conforming meshing and
adaptation for three-dimensional anisotropic solution features are
still areas of ongoing research. Curving elements for improved
efficiency adds another layer of complexity, especially when curved
anisotropic features occur away from the geometry.

Cut-cell techniques eliminate the requirement that the mesh needs
to respect the geometry boundary, and can be robust for complex
geometries. However, existing Cartesian methods only allow for
isotropic refinement, except in special cases when the features are
aligned with the mesh [69,146]. Simplex cut-cell methods allow for
element stretching, and hence resolution with improved efficiency
[70]. However, additional research is required to extend these
methods to stretch and curve elements so as to handle curved
anisotropic features in three dimensions.

B. Computable Error Bounds

The output-error estimate in Eqs. (18) is not a bound for the true
output error in the discrete solution because of the use of a finite
dimensional fine space,Vh. If the computational mesh is very coarse,
the fine space obtained by uniform mesh refinement or approx-
imation order increasemay still be too coarse to faithfully resolve the
output of interest. In such a case, the output-error estimate may be
severely unreliable.

An example of this effect is the pressure signature adaptation on
the delta wing body sonic boom case considered by Park [74,75], as
described in Sec. V.A.3. The vertical bars in Fig. 16a show the
pressure integral error estimate at each adaptation iteration. The
relatively small size of the error bars in the first few iterations
indicates that the output error is severely under-predicted on the first
meshes. On these meshes and the fine spaces derived from them, the
sonic boom signature is not at all resolved, and the output-error
estimate is meaningless. The estimate only becomes accurate after
six or seven adaptation iterations, which corresponds to a substantial
increase in the number of degrees of freedom. It does not start
dropping until about ten adaptation iterations. The risk of an inac-
curate error estimate on coarse meshes is that an automated adaptive
process may terminate early, without sufficiently resolving the
output of interest.

There exists a body of research that addresses this risk through the
computation of error bounds on the outputs of interest [32,155–159].
Thegoal of this research has been to derive strict, constant-free, lower
and upper bounds for outputs of interest. The bounds calculations are
based on a reformulation of the output calculation into a constrained
minimization problem with a convex objective function, with the
model equations entering the problem as equality constraints.
Initially, the bounds calculations were strict with respect to a con-
servatively refined computational mesh [32,155,156]; more recently
the calculations have been extended so that the bounds are strict with
respect to the exact weak solution of the partial differential equation
[157–159]. These calculations rely on the solution of a local adjoint
problem that transforms an infinite-dimensional minimization
problem into a finite dimensional feasibility problem [157].

This strategy has been applied to symmetric and nonsymmetric
coercive problems [155,157], certain constrained and noncoercive
problems [32], and also to problems with nonlinear outputs and
equations [156,160,161]. For nonlinear problems, the present
procedure yields bounds only for sufficiently resolved meshes,
where the required mesh resolution is not known a priori [156].

The bound gap, which is the difference between the upper and
lower bounds on the output, can be separated into positive
contributions from each element, yielding an indicator for mesh
adaptation. A strategy that refines elements with a large contribution
to the bound gap will efficiently yield a tighter estimate of the output.
The result of applying such a strategy is a solution with fully
certifiable precision of integrated outputs. Additional research in this
area is necessary to extend the bounds computations to additional
equation sets, especially for aerospace CFD applications.

C. Unsteady Applications

As output-based adaptation is applied to increasingly complex
flows, problems that include unsteadiness will naturally arise. Even
for applications targeting nominally steady solutions, unsteadiness is
likely to occur as wakes are resolved with adaptation. The work of
Nemec et al. [69] described in Sec. V.A.2 is an example of this
occurring.

δ

a) Isotropic

δ

b) Linear anisotropic

δ

c) Curved anisotropic

Fig. 26 Resolution of a thin, curved, anisotropic, two-dimensional layer using various mesh adaptation strategies. A resolution length of � is required
normal to the feature, whereas the solution does not changemuch tangentially to the feature. Stretching elements to increase their aspect ratio, defined as

the ratio of the largest to smallest element diameters, improves efficiency of the mesh, measured in terms of degrees of freedom required to resolve the

feature. Additionally curving the elements further improves efficiency by alleviating the curvature-imposed geometry resolution constraint.
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Existing work in the application of adjoint sensitivity analysis to
unsteady problems comes largely from shape optimization research,
and ranges from frequency domain methods for periodic unsteady
flows [162,163] to time-accurate continuous and discrete adjoint
methods [164–168]. Incorporation of time dependence in adjoint
analysis is theoretically a well understood problem. However, the
algorithmic issues involved in solving an unsteady adjoint are
substantial as the unsteady adjoint must be marched backward in
time from the final to the initial state. For nonlinear problems, the
solution time history must be stored or reconstructed to build the
required Jacobians and output linearizations at each time level.

Mani andMavriplis apply the adjoint-weighted residual technique
to drive time step adaptation in unsteady flow simulations with
deforming meshes [167]. For time adaptation, the time step is
allowed to vary, but the spatial mesh distribution is not changed
(except for prescribed deformation). The output error is thus
calculated by evaluating the residual of the unsteady primal solution
on a finer temporal discretization and weighting it with the adjoint
solution on that discretization. The results in Mani and Mavriplis’s
[167] work indicate a computational savings over uniform temporal
refinement for smooth unsteady problems. An area of future research
is combined spatial and temporal adaptation for problems exhibiting
nonsmooth spatial and temporal features, where the computa-
tional savings of an output-based adaptive method could be very
significant.
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