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Abstract

The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062
new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the
recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical
particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and
search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics
such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter,
Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new
or heavily revised, including new reviews on Pentaquarks and Inflation.

The complete Review is published online in a journal and on the website of the Particle Data Group
(http://pdg.1bl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer
includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions
of some of the review articles is also available.
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Highlights of the 2016 edition of the Review of Particle Physics

HIGHLIGHTS OF THE 2016 EDITION OF THE REVIEW OF PARTICLE PHYSICS

721 new papers with 3062 new measurements

117 reviews (most are revised)

e Over 332 new papers from LHC experiments
(ATLAS, CMS, and LHCD).

e Extensive up-to-date Higgs boson coverage

from 79 new papers with 172 measurements.

e Supersymmetry: 82 new papers with major

exclusions.
e Top quark: 55 new papers.

e Latest from B-meson physics: 133 papers

with 542 measurements.

e New 7 branching fractions fit in collabora-
tion with the HFAG-Tau group.

e New limits on neutrinoless double-( decays.

e Updated and new results in neutrino mixing

on Am? and mixing angle measurements.

e Experimental Tests of Gravitational Theory
review includes LIGO observation of gravita-

tional waves.

e Cosmology reviews updated to include 2015

Planck results.

e Periodic Table 7th row completed; signif-
icantly revised Atomic-Nuclear Properties

website.

e New reviews on:

- Inflation
- Pentaquarks
- Pole Structure of the A(1405) Region

e Significant update/revision to reviews on:

- Higgs Boson Physics

- Grand Unified Theories

- Dark Energy, Dark Matter and CMB

- Cosmological Parameters, Astrophysi-
cal Constants and Parameters

- Neutrino Mass, Mixing, and Flavor
Change

- Neutrino Cross Section Measurements

- W' and Z' bosons searches

- Searches for Quark and Lepton Com-
positeness

- Leptonic Decays of Charged Pseu-
doscalar Mesons

- Particle Detectors for accelerator and
non-accelerator physics, including new
section on Accelerator Neutrino Detec-
tors

- High-Energy Collider Parameters

See pdgLive.lbl.gov for online access to PDG database.

See pdg.lbl.gov/AtomicNuclearProperties for Atomic Properties of Materials.
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INTRODUCTION

1. Overview

The Review of Particle Physics is a review of the field
of Particle Physics and of related areas in Cosmology. It
consists of “Summary Tables”, “Particle Listings”, and
“Reviews, Tables, and Plots”. The latter covers a wide
variety of theoretical and experimental topics and provides a
quick reference for the practicing particle physicist.

The Summary Tables give our best values and limits
for particle properties such as masses, widths or lifetimes,
and branching fractions, as well as an extensive summary
of searches for hypothetical particles and a summary of
experimental tests of conservation laws.

The Particle Listings are a compilation/evaluation of
data on particle properties. They contain all the data used
to get the values given in the Summary Tables. The Particle
Listings also give information on unconfirmed particles
and on particle searches, as well as reviews on subjects
of particular interest or controversy. In this edition, the
Particle Listings include 3,062 new measurements from 721
papers, in addition to the 35,436 measurements from 9,843
papers that first appeared in previous editions [1]. Because
of the large quantity of data, the Particle Listings are not an
archive of all published data on particle properties. We refer
interested readers to earlier editions for data now considered
to be obsolete.

The book version of the Review is published in even-
numbered years. This edition is an updating through
January 2016 (and, in some areas, well into 2016). The
content of this Review is available on the web and is updated
between printed editions.

We organize the particles into six categories:

Gauge and Higgs bosons

Leptons

Quarks

Mesons

Baryons

Searches for monopoles, supersymmetry,

compositeness, extra dimensions, etc.

The last category only includes searches for particles that
do not belong to the previous groups; searches for heavy
charged leptons and massive neutrinos, by contrast, are with
the leptons.

In Sec. 2 of this Introduction, we list the main areas of
responsibility of the authors of the Particle Listings. Our
many consultants, without whom we would not have been
able to produce this Review, are acknowledged in Sec. 3. In
Sec. 4, we mention briefly the naming scheme for hadrons.
In Sec. 5, we discuss our procedures for choosing among
measurements of particle properties and for obtaining best
values of the properties from the measurements.

The accuracy and usefulness of this Review depend in
large part on interaction between its users and the authors.
We appreciate comments, criticisms, and suggestions
for improvements of any kind. Please send them to the
appropriate author, according to the list of responsibilities
in Sec. 2 below, or to pdg@lbl.gov.

The complete Review is published online in a journal and
on the PDG website (http://pdg.1bl.gov). In addition to
the online publication, the Review is available in different
formats:

e The printed PDG Book contains the Summary Tables
and all review articles. In contrast to previous editions,
the detailed tables from the Particle Listings are no
longer printed.

e The Particle Physics Booklet includes the Summary
Tables and abbreviated versions of some of the review
articles in a pocket format.

e pdgLive (http://pdglive.1bl.gov) is a web application
for online access to the PDG database.

e Files that can be downloaded from the PDG website
include a table of masses, widths, and PDG Monte Carlo
particle ID numbers; PDF files of the entire PDG Book
and Booklet; individual review articles; all figures; and
an archive file containing the complete PDG website
(except for pdgLive).

Copies of the PDG Book or the Particle Physics
Booklet can be ordered from our website or directly at
http://pdg.1bl.gov/order. For special requests only,
please email pdg@lbl.gov in North and South America,
Australia, and the Far East, and pdg-products@cern.ch in
all other areas.

2. Particle Listings responsibilities

* Asterisk indicates the people to contact with questions or
comments about Particle Listings sections.
Gauge and Higgs bosons

¥ C. Grab, D.E. Groom*
Gluons R.M. Barnett,” A.V. Manohar
Graviton D.E. Groom*

W, Z A. Gurtu,* M. Griinewald*

K. Hikasa, G. Weiglein*
S. Pagan Griso,” M. Tanabashi

Higgs bosons
Heavy bosons

Axions K.A. Olive, F. Takahashi, G. Raffelt*
Leptons
Neutrinos M. Goodman, C.-J. Lin,* K. Nakamura,
K.A. Olive, A. Piepke, P. Vogel
e, C. Grab, C.-J. Lin*
T K.G. Hayes, K. Monig*
Quarks
Quarks R.M. Barnett,* A.V. Manohar
Top quark R.M. Barnett,* Y. Sumino
ot R.M. Barnett,* Y. Sumino
Free quark S. Pagan Griso*
Mesons
m™n D.A. Dwyer,* C. Grab

C. Amsler, M. Doser,* S. Eidelman,*
T. Gutsche, C. Hanhart, B. Heltsley,
J.J. Hernéndez-Rey, A. Masoni,
R.E. Mitchell, S. Navas, C. Patrignani,
S. Spanier, N.A. Térnqvist,
G. Venanzoni

K (stable) G. D’Ambrosio, C.-J. Lin*

D (stable, no mix.) J. Rademacker, C.G. Wohl*

DY mixing D.M. Asner, W.-M. Yao*

Unstable mesons
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Baryons
B (stable) A. Cerri,* P. Eerola, M. Kreps,
Y. Kwon, W.-M. Yao*
Stable baryons C. Grab, C.G. Wohl*
Unstable baryons V. Burkert, E. Klempt, M. Pennington,
L. Tiator, R.L. Workman*
Charmed baryons J. Rademacker, C.G. Wohl*
Bottom baryons A. Cerri,* P. Eerola, M. Kreps,
Y. Kwon, W.-M. Yao*

Miscellaneous searches

Monopole D. Milstead*

Supersymmetry H.K. Dreiner,* A. de Gouvéa,
M. D’Onofrio, F. Moortgat,
K.A. Olive

Technicolor K. Agashe,* M. Tanabashi

Compositeness M. Tanabashi, J. Terning*

Extra Dimensions D.A. Dwyer,” T. Gherghetta
WIMPs and Other K. Hikasa*

3. Consultants

The Particle Data Group benefits greatly from the
assistance of some 700 physicists who are asked to verify
every piece of data entered into this Review. Of special
value is the advice of the PDG Advisory Committee which
meets biennially and thoroughly reviews all aspects of our
operation. The members of the 2016 committee are:

A. Seiden (UCSC)

T. Carli (CERN)

L. Hall (UC Berkeley/LBNL)
J. Olson (Princeton)

A. Slosar (BNL)

J. Tanaka (Tokyo)

We have especially relied on the expertise of the following

people for advice on particular topics:

e E. Accomando (Southampton University)
e D. Akerib (SLAC)

e J. Alcaraz (Madrid)

o A. Ali (DESY)

e B. Allanach (University of Cambridge)

o L. Althaus (La Plata University)

e V. Anisovich (Petersburg Nuclear Physics Institute)
e F. Anulli (INFN, Rome)

e S. Aoki (Kyoto University)

e S. Arceo Diaz (Colima University)

e M. Artuso (Syracuse University)

e S. Arzumanov (Moscow)

e H. Bachacou (IRFU, Saclay)

e H. Band (Yale)

e A. Barabash (ITEP Moscow)

o W. Barletta (MIT)

e R. Battye (Manchester University)

e J. Beatty (Ohio State University)

e C. Beck (Queen Mary University of London)
e R. Beck (University of Bonn)

o Y. Bedfer (CEA, Saclay)

e M. Beneke (Aachen)

e J. Bernauer (MIT)

e M. Bertolami (MPI, Garching)

o V. Bezerra (Paraiba University)

e E. Bloom (SLAC)

e J. Bliimlein (DESY)

e D. Boscherini (INFN, Bologna)

o T. Bose (Boston University)

o C. Bozzi(INFN, Ferrara)

o A. Bressan (Triese University)

e R. Briere (Hawaii University)

e P. Brun (DAPNIA, Saclay)

¢ O. Bruning (CERN)

e D. Bryman (TRIUMF)

e M. Buckley (Rutgers University)
o A. Cabrera (APC, Paris)

e J. Cao (IHEP, Beijing)

e J. Carlstrom (Chicago University)
e M. Casolino (INFN, Tor Vergata)
e D. Cassel (Cornell University)

o F. Cerutti (LBNL)

e J. Chou (Rutgers University, Piscataway)
e W. Chou (Fermilab)

o M. Chrzaszcz (H. Niewodniczanski Inst.; U. Zurich)

e D. Cinabro (Wayne State University)
e G. Colangelo (University of Bern)

e J. Collar (Chicago University)

e J. Conrad (Stockholm University)

e J. Conway (UC Davis)

e N. Craig (UCSB)

e K. Cranmer (NYU)

e O. Cremonesi (INFN, Milan Bicocca)
e M. Crisler (FNAL)

o C. Csaki (Cornell University)

e P. Cushman (Minnesota University)

o G. Cvetic (Santa Maria U., Valparaiso)
o M. Czakon (RWTH Aachen)

o T. Dafni (Zaratoga University)

e S. Davidson (IPN, Lyon)

e C. Davies (University of Glasgow)

e D. Denisov (FNAL)

e A.V. Derbin (INP St. Petersburg)

¢ S. Derenzo (LBNL)

e G. De Rijk (CERN)

e P. De Simone (Frascati)

e A. Di Canto (CERN)

e S. Dobbs (Northwester University)

e A. Dolgov (INFN, Ferrara)

e J. Donini (Clermont-Ferrand University)
e T. Dorigo (INFN, Padova)

e V.P. Druzhinin (BINP SB RAS, Novosibirsk)
e V.A. Duk (INR RAS, Moscow)

e G. Edda (University of Geneva)

e G. Efstathiou (Cambridge University)
e G. Eigen (University of Bergen)

e D. Ejlli (Gran Sasso)

e C. Enss (University of Heidelberg)

e R. Essig (SUNY)

e W. Fischer (BNL)

e K. Fissum (Lund University)

e B. Franke (MPQ, Munich)

o K. Freese (U. of Michigan; Nordita, Stockholm)
o B. Fujikawa (LBNL)

o G. Gabrielse (Harvard University)
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e P. Gambino (INFN, Torino)

e A. Gando (Tohoku University)

o I. Garcia Irastorza (University of Zaragoza)
e R. Garisto (PRL)

e A. Giammanco (Louvain)

o S. Giovanella (INFN, Frascati)

e T. Girard (Lisbon University)

e T. Golling (Yale University)

o G. Gonzdlez (Louisiana State University)
e M. Gonzalez-Garcia (SUNY)

o E. Goudzovski (Birmingham University)
e P. Grannis (SUNY)

e G. Gratta (Stanford University)

e M. Grazzini (University of Zurich)

o M. Gumberidze (GSI)

o . Halzen (Wisconsin University)

e D. Harris (FNAL)

o F'. Harris (Hawaii University)

e P. Harris (Sussex Univerisity)

e M. Harrison (BNL)

e K. Hayasaka (Niigata University)

e H. Hayashii (Nara Women’s University)
o J. Heitger (Munster University)

e D. Hertzog (University of Washington)
e K. Hicks (Ohia State University)

e J. Hietala (Minnesota University)

e R. Hill (Chicago University)

e A. Hinzmann (University of Zurich)

e A. Hoang (University of Vienna)

e K. Homma (Hiroshima University)

e A. Tanni (Gran Sasso)

e P. Janot (CERN)

o X. Ji (University of Maryland)

e C. Joram (CERN)

o J. Jowett (CERN)

e A. Jung (Purdue)

e J. Kaminski (Universit of Bonn)

e S. Kanemura (Toyama University)

o L. Kardapoltsev (Novosibirsk State University)
e D. Karlen (University of Victoria)

¢ S.G. Karshenboim (MPQ, Munich; Pulkovo Obs.)
o V. Kekelidze (JINR, Dubna)

o Y. Kharlov (IHEP, Serpukhov)

e J. Kim (Seoul National University)

e Y. Kim (Sejong University)

e E. Klempt (University of Bonn)

o T. Kobayashi (KEK)

o P. Koppenburg (NIKHEF)

e A. Korytov (University of Florida)

o T. Koseki (KEK)

e A. Kronfeld (FNAL)

e A. Kupsc (Uppsala University)

e G. Lambard (CPPM, Marseille)

e G. Landsberg (Brown University)

e R. Lang (Purdue University)

o L.B. Leinson (IZMIRAN, Troitsk)

e O. Leroy (CPPM, Marseille)

¢ B. Li (IHEP, Beijing)

e J. Libby (Indian Inst. Tech., Madras)
o E. Linder (LBNL)

e C.-Y. Liu (Indiana University)

e J. Liu (Shanghai Jiaotong University)
e P. Lukens (FNAL)

e X.-R. Lyu (UCAS, Beijing)

e L. Malgeri (CERN)

e G. Mandaglio (Messina University)

e G. Marshall (TRIUMF)

e S. Martin (Northern Illinois University)
e R. Martinez (Colombia University)

e P. Massarotti (University of Napoli)

e A. Melchiorri (Rome University)

o H. Merkel (Mainz, University)

e P.D. Meyers (Princeton University)

e C. Milardi (LNF-INFN, Frascati)

e M. Minowa (Tokyo University)

o A. Mirizzi (INFN, Bari)

¢ K. Miuchi (Kobe University)

e K. Miyabayashi (Nara Univ., Nara)

¢ S.-O. Moch (DESY)

e R. Mohanta (Hyderabad University)
e P. Mohr (NIST)

e S. Monteil (LPC Clermont)

e D. Morrison (BNL)

e V.M. Mostepanenko (Pulkovo Obs., St.Petersburg)
e B. Murray (University of Warwick)

o T. Nakadaira (KEK)

e M. Nakahata (Kamioka Obs.)

e T. Nakaya (Kyoto University)

e A. Nucciotti (INFN, Milano-Bicocca)
e T. Numao (TRIUMF)

e D. Nygren (UT Arlington)

e V. Obraztsov (IHEP, Serpukhov)

e H. O’Connell (FNAL)

¢ K. Oide (KEK)

e J. Olsen (Princeton)

e S. Olsen (Seoul National University)
e R. Ong (UCLA)

e Y. Onishi (KEK)

e M. Owen (Glasgow)

e P. Owen (Imperial Coll.)

o G. Pakhlova (Lebedev Inst. RAS, Moscow)
e N. Palanque-Delabrouille (Paris University)
e A. Palladino (Boston University)

e D. Parkinson (Sussex University)

e J. Paul Chou (Rutgers University)

o G. Paz (Wayne State University)

e M. Peloso (University of Minnesota)

e A.A. Penin (Alberta University)

e W. Percival (Portsmouth University)
e A. Pich (IFIC, University of Valencia)
o L. Piilonen (Virginia Tech.)

e M. Pinamonti (INFN, Udine)

o A. Pocar (UMass Ambherst)

e A. Poon (LBNL)

e J. Portoles (IFIC, University of Valencia)
e M. Pospelov (Perimeter Inst. Theo. Phys.)
e J. Pradler (OAW, Vienna)

e S. Prakhov (UCLA)

e R. Prieels (Louvain University)

e N. Priel (Weizmann Inst.)

e F. Proebst (MPI, Munich)

e G. Pugliese (INFN, Bari)
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e P. Pugnat (LNCMP, Toulouse)

e M. Raggi (University of Rome)

e A. Read (Universiy of Oslo)

o M. Redi (Stony Brook University)

e R. Reesman (Ohio State University)

e G. Rico (ICREA, Barcelona)

e T. Rizzo (SLAC)

o K. Rolbiecki (IFT Madrid)

e M. Roney (Victoria University)

o G. Rossi (Rome University Tor Vergata)
o L. Roszkowski (Sheffield University)

e D. Rousseau (LAL, Orsay)

e B. Sadoulet (LBNL, University of Berkeley)
o B. Safdi (MIT)

e V.D. Samoylenko (IHEP, Protvino)

o V. Sanz (University of Sussex)

e X. Sarazin (LAL, Orsay)

e M. Schmitt (Northwestern University)

e A. Schukraft (Fermilab)

e D. Schulte (CERN)

e C. Schwanda (HEPHY, Vienna)

o A. Serebrov (INP St. Petersburg)

o K. Seth (Northwestern University)

e Q. Shafi (University of Delaware)

e B. Shwartz (Budker Institute of Nuclear Physics)
e P. Sikivie (University of Florida)

e E. Solodov (BINP, Novosibirsk)

o Y. Stadnik (New South Wales University)
e S. Stapnes (Oslo University)

o I. Strakowsky (George Washington University)
e A. Studenikin (Moscow State University)
e O. Suvorova (INR, Moscow)

o A. Suzuki (Tohoku University)

o A. Svarc (Boskovic Inst., Zagreb)

o A. Takeda (Tokyo University)

e A. Tapper (Imperial College London)

e R. Tenchini (INFN, Pisa)

e R. Tesarek (FNAL)

e J. Thomas (LBNL)

o W. Tornow (TUNL, Durham)

e D. Toussaint (Arizona University)

e K. Trabelsi (KEK)

e T. Trippe (LBNL)

o S. Troitsky (INR Moscow)

o K. Tullney (Mainz University)

e V. Vagnoni (INFN, Bologna)

e J. Valle (IFIC, Valencia)

e C. van Eldik (Erlangen University)

e R. Van Kooten (Indiana University)

e J. van Tilburg (NIKHEF, Amsterdam)
e G. Velev (FNAL)

o K. Vellidis (FNAL)

e L. Verde (ICREA, Barcelona)

e N. Vinyoles Vergés (CSIC, Spain)

e M. Whalley (Durham University)

o G. Wilkinson (Oxford University)

o S. Willocq (University of Massachusetts, Amherst)
e M. Wing (University College London)

e H. T.-K. Wong (Taiwan Inst. Phys.)

e T.T. Yanagida (IPMU)

e Q. Yue (Tsinghua University)

o G. Zavattini (INFN, Ferrara)

e G. Zeller (FNAL)

o D. Zerwas (LAL, Orsay)

e C. Zhang (Inst. High Energy Phys., Beijing)
o Y. Zhang (Caltech)

e K. Zioutas (CERN)

o R. Zwaska (FNAL)

4. Naming scheme for hadrons

We introduced in the 1986 edition [2] a new naming
scheme for the hadrons. Changes from older terminology
affected mainly the heavier mesons made of u, d, and s
quarks. Otherwise, the only important change to known
hadrons was that the F'* became the DF. None of the
lightest pseudoscalar or vector mesons changed names, nor
did the ¢€ or bb mesons (we do, however, now use x. for the
cc x states), nor did any of the established baryons. The
Summary Tables give both the new and old names whenever
a change has occurred.

The scheme is described in “Naming Scheme for
Hadrons” (p. 130) of this Review.

We give here our conventions on type-setting style.
Particle symbols are italic (or slanted) characters: e~, p,
A, 7, Kz, D, b. Charge is indicated by a superscript:
B~, A**. Charge is not normally indicated for p, n, or
the quarks, and is optional for neutral isosinglets: 1 or n°.
Antiparticles and particles are distinguished by charge for
charged leptons and mesons: 7, K. Otherwise, distinct

. . o . - _ =0
antiparticles are indicated by a bar (overline): 7, ¢, D, K,

and T° (the antiparticle of the ¥7).

5. Procedures

5.1. Selection and treatment of data : The Particle
Listings contain all relevant data known to us that are
published in journals. With very few exceptions, we do not
include results from preprints or conference reports. Nor do
we include data that are of historical importance only (the
Listings are not an archival record). We search every volume
of 20 journals through our cutoff date for relevant data. We
also include later published papers that are sent to us by the
authors (or others).

In the Particle Listings, we clearly separate measure-
ments that are used to calculate or estimate values given
in the Summary Tables from measurements that are not
used. We give explanatory comments in many such cases.
Among the reasons a measurement might be excluded are
the following;:

e [t is superseded by or included in later results.

e No error is given.

e [t involves assumptions we question.

e [t has a poor signal-to-noise ratio, low statistical
significance, or is otherwise of poorer quality than other
data available.

e [t is clearly inconsistent with other results that appear
to be more reliable. Usually we then state the criterion,
which sometimes is quite subjective, for selecting “more
reliable” data for averaging. See Sec. 5.4.

e It is not independent of other results.

e It is not the best limit (see below).

e [t is quoted from a preprint or a conference report.
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In some cases, none of the measurements is entirely
reliable and no average is calculated. For example, the
masses of many of the baryon resonances, obtained from
partial-wave analyses, are quoted as estimated ranges
thought to probably include the true values, rather than as
averages with errors. This is discussed in the Baryon Particle
Listings.

For upper limits, we normally quote in the Summary
Tables the strongest limit. We do not average or combine
upper limits except in a very few cases where they may be
re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that particle and antiparticle
share the same spin, mass, and mean life. The Tests of
Conservation Laws table, following the Summary Tables,
lists tests of C PT as well as other conservation laws.

We use the following indicators in the Particle Listings
to tell how we get values from the tabulated measurements:

e OUR AVERAGE—From a weighted average of selected
data.

e OUR FIT—From a constrained or overdetermined multi-
parameter fit of selected data.

e OUR EVALUATION—Not from a direct measurement, but
evaluated from measurements of related quantities.

e OUR ESTIMATE—Based on the observed range of the
data. Not from a formal statistical procedure.

e OUR LIMIT—For special cases where the limit is evaluated
by us from measured ratios or other data. Not from a
direct measurement.

An experimentalist who sees indications of a particle will
of course want to know what has been seen in that region
in the past. Hence we include in the Particle Listings all
reported states that, in our opinion, have sufficient statistical
merit and that have not been disproved by more reliable
data. However, we promote to the Summary Tables only
those states that we feel are well established. This judgment
is, of course, somewhat subjective and no precise criteria can
be given. For more detailed discussions, see the minireviews
in the Particle Listings.

5.2. Awerages and fits: We divide this discussion
on obtaining averages and errors into three sections:
(1) treatment of errors; (2) unconstrained averaging;
(3) constrained fits.

5.2.1. Treatment of errors: In what follows, the “error”
dx means that the range x & dx is intended to be a 68.3%
confidence interval about the central value z. We treat
this error as if it were Gaussian. Thus when the error is
Gaussian, dx is the usual one standard deviation (1o). Many
experimenters now give statistical and systematic errors
separately, in which case we usually quote both errors, with
the statistical error first. For averages and fits, we then add
the the two errors in quadrature and use this combined error
for dz.

When experimenters quote asymmetric errors (§z)*
and (0x)” for a measurement z, the error that we use
for that measurement in making an average or a fit with
other measurements is a continuous function of these three
quantities. When the resultant average or fit T is less than
x—(6x)~, we use (6x); when it is greater than x+ (6z)", we
use (0z)". In between, the error we use is a linear function
of x. Since the errors we use are functions of the result, we
iterate to get the final result. Asymmetric output errors are

determined from the input errors assuming a linear relation
between the input and output quantities.

In fitting or averaging, we usually do not include
correlations between different measurements, but we try
to select data in such a way as to reduce correlations.
Correlated errors are, however, treated explicitly when there
are a number of results of the form A; & o; = A that have
identical systematic errors A. In this case, one can first
average the A; +o; and then combine the resulting statistical
error with A. One obtains, however, the same result by
averaging A; + (07 + A?)Y/2 where A; = UZ-A[Z(l/U?)Pﬂ.
This procedure has the advantage that, with the modified
systematic errors A;, each measurement may be treated
as independent and averaged in the usual way with other
data. Therefore, when appropriate, we adopt this procedure.
We tabulate A and invoke an automated procedure that
computes A; before averaging and we include a note saying
that there are common systematic errors.

Another common case of correlated errors occurs when
experimenters measure two quantities and then quote the
two and their difference, e.g., my, ma, and A = mo — my.
We cannot enter all of mq, mo and A into a constrained fit
because they are not independent. In some cases, it is a good
approximation to ignore the quantity with the largest error
and put the other two into the fit. However, in some cases
correlations are such that the errors on my, mo and A are
comparable and none of the three values can be ignored. In
this case, we put all three values into the fit and invoke an
automated procedure to increase the errors prior to fitting
such that the three quantities can be treated as independent
measurements in the constrained fit. We include a note
saying that this has been done.

5.2.2. Unconstrained averaging: To average data, we use
a standard weighted least-squares procedure and in some
cases, discussed below, increase the errors with a “scale
factor.” We begin by assuming that measurements of a given
quantity are uncorrelated, and calculate a weighted average
and error as

T 40T = i Ty (Cwi )2 (1)

22 Wi

where

w; = 1/(62;)° .

Here x; and dx; are the value and error reported by the
ith experiment, and the sums run over the N experiments.
We then calculate x? = 3 w;(F — z;) and compare it
with N — 1, which is the expectation value of x2 if the
measurements are from a Gaussian distribution.

If x2/(N — 1) is less than or equal to 1, and there are no
known problems with the data, we accept the results.

If x2/(N — 1) is very large, we may choose not to use the
average at all. Alternatively, we may quote the calculated
average, but then make an educated guess of the error, a
conservative estimate designed to take into account known
problems with the data.

Finally, if x2/(N — 1) is greater than 1, but not greatly
so, we still average the data, but then also do the following;:

(a) We increase our quoted error, 6% in Eq. (1), by a
scale factor S defined as

1/2

S=[x*/(N-1)] (2)
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Our reasoning is as follows. The large value of the y? is
likely to be due to underestimation of errors in at least one
of the experiments. Not knowing which of the errors are
underestimated, we assume they are all underestimated by
the same factor S. If we scale up all the input errors by this
factor, the x2 becomes N — 1, and of course the output error
0T scales up by the same factor. See Ref. 3.

When combining data with widely varying errors, we
modify this procedure slightly. We evaluate S using only the
experiments with smaller errors. Our cutoff or ceiling on dx;
is arbitrarily chosen to be

5 = 3N'? sz,

where 0T is the unscaled error of the mean of all the
experiments. Our reasoning is that although the low-
precision experiments have little influence on the values T
and 6Z, they can make significant contributions to the 2,
and the contribution of the high-precision experiments thus
tends to be obscured. Note that if each experiment has the
same error dx;, then 0T is 5a:i/N1/2, so each dx; is well
below the cutoff. (More often, however, we simply exclude
measurements with relatively large errors from averages and
fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there
are two values with comparable errors separated by much
more than their stated errors (with or without a number of
other values of lower accuracy), the scaled-up error 0 T is
approximately half the interval between the two discrepant
values.

We emphasize that our scaling procedure for errors in
no way affects central values. And if you wish to recover the
unscaled error §, simply divide the quoted error by S.

(b) If the number M of experiments with an error smaller
than &g is at least three, and if x2/(M — 1) is greater than
1.25, we show in the Particle Listings an ideogram of the
data. Figure 1 is an example. Sometimes one or two data
points lie apart from the main body; other times the data
split into two or more groups. We extract no numbers from
these ideograms; they are simply visual aids, which the
reader may use as he or she sees fit.

Each measurement in an ideogram is represented by
a Gaussian with a central value x;, error dx;, and area
proportional to 1/§z;. The choice of 1/dx; for the area is
somewhat arbitrary. With this choice, the center of gravity
of the ideogram corresponds to an average that uses weights
1/6z; rather than the (1/d2;)? actually used in the averages.
This may be appropriate when some of the experiments
have seriously underestimated systematic errors. However,
since for this choice of area the height of the Gaussian for
each measurement is proportional to (1/5x;)?, the peak
position of the ideogram will often favor the high-precision
measurements at least as much as does the least-squares
average. See our 1986 edition [2] for a detailed discussion of
the use of ideograms.

5.2.3. Constrained fits: In some cases, such as branching
ratios or masses and mass differences, a constrained fit may
be needed to obtain the best values of a set of parameters.
For example, most branching ratios and rate measurements
are analyzed by making a simultaneous least-squares fit to
all the data and extracting the partial decay fractions P;,
the partial widths I';, the full width I (or mean life), and the
associated error matrix.

Assume, for example, that a state has m partial decay
fractions P;, where > P; = 1. These have been measured
in N, different ratios R,, where, e.g., R = Pi/P2, Ra
= P1/Ps, etc. [We can handle any ratio R of the form
S ai P/ > Bi Py, where o; and (3; are constants, usually 1 or
0. The forms R = P;Pj and R = (P;P;)'/? are also allowed.]
Further assume that each ratio R has been measured by Ny
experiments (we designate each experiment with a subscript
k, e.g., R1). We then find the best values of the fractions P;
by minimizing the x? as a function of the m — 1 independent
parameters:

Ny Nlc 2
Ry —R
=33 (B @
where the R, are the measured values and R, are the fitted
values of the branching ratios.

In addition to the fitted values P;, we calculate an error
matrix (§P; 0P;). We tabulate the diagonal elements of
6 P; = (6 P; 6 P;)'/? (except that some errors are scaled
as discussed below). In the Particle Listings, we give the
complete correlation matrix; we also calculate the fitted
value of each ratio, for comparison with the input data,
and list it above the relevant input, along with a simple
unconstrained average of the same input.

WEIGHTED AVERAGE
0.006 + 0.018 (Error scaled by 1.3)

X2
-+ SMITH 75B WIRE 0.3
- - NIEBERGALL 74 ASPK 1.3
- FACKLER 73 OSPK 0.1
HART 73 OSPK 0.3
MALLARY 73 OSPK 4.4
BURGUN 72 HBC 0.2
GRAHAM 72 OSPK 0.4
MANN 72 HBC 3.3
WEBBER 71 HBC 7.4
CHO 70 DBC 1.6
- - BENNETT 69 CNTR 11
- LITTENBERG 69 OSPK 0.3
JAMES 68 HBC 0.9
- FELDMAN 67B OSPK 0.3
AUBERT 65 HLBC 0.1

- - BALDO-... 65 HLBC
- FRANZINI 65 HBC 0.2
22.0

(Confidence Level = 0.107)
J

-0.2 0 0.2 0.4 0.6

Figure 1: A typical ideogram. The arrow at the top
shows the position of the weighted average, while the
width of the shaded pattern shows the error in the
average after scaling by the factor S. The column
on the right gives the x? contribution of each of the
experiments. Note that the next-to-last experiment,
denoted by the incomplete error flag (L), is not used
in the calculation of S (see the text).
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Three comments on the example above:

(1) There was no connection assumed between mea-
surements of the full width and the branching ratios. But
often we also have information on partial widths I'; as well
as the total width I'. In this case we must introduce I"
as a parameter in the fit, along with the P;, and we give
correlation matrices for the widths in the Particle Listings.

(2) We try to pick those ratios and widths that are as
independent and as close to the original data as possible.
When one experiment measures all the branching fractions
and constrains their sum to be one, we leave one of them
(usually the least well-determined one) out of the fit to make
the set of input data more nearly independent. We now do
allow for correlations between input data.

(3) We calculate scale factors for both the R, and
P; when the measurements for any R give a larger-than-
expected contribution to the x2. According to Eq. (3), the
double sum for x? is first summed over experiments k = 1
to Ng, leaving a single sum over ratios x? = > x2. One
is tempted to define a scale factor for the ratio r as S2 =
x2/{x?). However, since (x?2) is not a fixed quantity (it is
somewhere between Ny and Ny_1), we do not know how to
evaluate this expression. Instead we define

Np, = \2
2 1~ (B —Ry)
TN ; (R — Ry)%) W

With this definition the expected value of S is one. We can
show that

<(Rrk - R7‘)2> = <((5Rrk)2> - (‘SET)Q ) (5)

where 0 R, is the fitted error for ratio r.

The fit is redone using errors for the branching ratios
that are scaled by the larger of .S, and unity, from which new
and often larger errors 5?; are obtained. The scale factors
we finally list in such cases are defined by S; = 5?2-/ /6P;.
However, in line with our policy of not letting S affect the
central values, we give the values of P; obtained from the
original (unscaled) fit.

There is one special case in which the errors that are
obtained by the preceding procedure may be changed. When
a fitted branching ratio (or rate) P; turns out to be less than
three standard deviations ((5?1-/ ) from zero, a new smaller
error (5?1»”)’ is calculated on the low side by requiring
the area under the Gaussian between P; — (& ﬁiﬂ)’ and P;
to be 68.3% of the area between zero and P;. A similar
correction is made for branching fractions that are within
three standard deviations of one. This keeps the quoted
errors from overlapping the boundary of the physical region.

5.3. Rounding: While the results shown in the Particle
Listings are usually exactly those published by the exper-
iments, the numbers that appear in the Summary Tables
(means, averages and limits) are subject to a set of rounding
rules.

The basic rule states that if the three highest order
digits of the error lie between 100 and 354, we round to
two significant digits. If they lie between 355 and 949, we
round to one significant digit. Finally, if they lie between
950 and 999, we round up to 1000 and keep two significant
digits. In all cases, the central value is given with a precision

that matches that of the error. So, for example, the result
(coming from an average) 0.827 £ 0.119 would appear as
0.83 + 0.12, while 0.827 £ 0.367 would turn into 0.8 £ 0.4.

Rounding is not performed if a result in a Summary Table
comes from a single measurement, without any averaging.
In that case, the number of digits published in the original
paper is kept, unless we feel it inappropriate. Note that,
even for a single measurement, when we combine statistical
and systematic errors in quadrature, rounding rules apply
to the result of the combination. It should be noted also
that most of the limits in the Summary Tables come from a
single source (the best limit) and, therefore, are not subject
to rounding.

Finally, we should point out that in several instances,
when a group of results come from a single fit to a set of
data, we have chosen to keep two significant digits for all the
results. This happens, for instance, for several properties of
the W and Z bosons and the 7 lepton.

5.4. Discussion: The problem of averaging data
containing discrepant values is nicely discussed by Taylor in
Ref. 4. He considers a number of algorithms that attempt
to incorporate inconsistent data into a meaningful average.
However, it is difficult to develop a procedure that handles
simultaneously in a reasonable way two basic types of
situations: (a) data that lie apart from the main body of the
data are incorrect (contain unreported errors); and (b) the
opposite—it is the main body of data that is incorrect.
Unfortunately, as Taylor shows, case (b) is not infrequent.
He concludes that the choice of procedure is less significant
than the initial choice of data to include or exclude.

We place much emphasis on this choice of data. Often we
solicit the help of outside experts (consultants). Sometimes,
however, it is simply impossible to determine which of
a set of discrepant measurements are correct. Our scale-
factor technique is an attempt to address this ignorance by
increasing the error. In effect, we are saying that present
experiments do not allow a precise determination of this
quantity because of unresolvable discrepancies, and one
must await further measurements. The reader is warned of
this situation by the size of the scale factor, and if he or
she desires can go back to the literature (via the Particle
Listings) and redo the average with a different choice of data.

Our situation is less severe than most of the cases Taylor
considers, such as estimates of the fundamental constants
like h, etc. Most of the errors in his case are dominated by
systematic effects. For our data, statistical errors are often
at least as large as systematic errors, and statistical errors
are usually easier to estimate. A notable exception occurs in
partial-wave analyses, where different techniques applied to
the same data yield different results. In this case, as stated
earlier, we often do not make an average but just quote a
range of values.

A brief history of early Particle Data Group averages
is given in Ref. 3. Figure 2 shows some histories of our
values of a few particle properties. Sometimes large changes
occur. These usually reflect the introduction of significant
new data or the discarding of older data. Older data are
discarded in favor of newer data when it is felt that the newer
data have smaller systematic errors, or have more checks
on systematic errors, or have made corrections unknown
at the time of the older experiments, or simply have much
smaller errors. Sometimes, the scale factor becomes large
near the time at which a large jump takes place, reflecting
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the uncertainty introduced by the new and inconsistent data.
By and large, however, a full scan of our history plots shows
a dull progression toward greater precision at central values
quite consistent with the first data points shown.

We conclude that the reliability of the combination of
experimental data and our averaging procedures is usually
good, but it is important to be aware that fluctuations
outside of the quoted errors can and do occur.
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Figure 2: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of
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ONLINE PARTICLE PHYSICS INFORMATION
Updated Nov. 2015 by T. Basaglia (CERN), A. Holtkamp

abbreviated set of reviews and the summary tables from the most

(CERN). recent edition of the Review of Particle Physics.
The PDF file of the booklet can be downloaded:
1. Introduction . . . . . . . . . . . .. ... 20 http://pdg.1bl.gov/current/booklet.pdf
. The printed booklet can be ordered:
2. Particle Data Group (PDG) resources . . . . . . . . 20 )
http://pdg.1bl.gov/2015/html/receive_our_products.html
3. Particle Physics Information Platforms . . . . . .. 20 e PDGLive: A web application for browsing the contents of the PDG
4. Literature Databases . . . . . . . . . . . .. 20 database that contains the information published in the Review of

Particle Physics. It allows one to navigate to a particle of interest,

5. Particle Physics Journals and Conference see a summary of the information available, and then proceed to the

Proceedings Series . . . . . . . . . . . . .. 21 detailed information published in the Review of Particle Physics.
Data entries are directly linked to the corresponding bibliographic
6. Conference Databases . . . . . . . . . . . . . .. 21 information in INSPIRE.
http: live.1bl.
7. Research Institutions . . . . . . . . . . . . . .. 21 ttp://pdglive.1bl.gov
e Computer-readable files: Data files that can be downloaded
8 People . . . ... 21 from PDG include tables of particle masses and widths, PDG
9. Experiments 21 Monte Carlo particle numbers, and cross-section data. The files are
' P o s updated with each new edition of the Review of Particle Physics.
10. Jobs . . . ..o 21 http://pdg.1bl.gov/current/html/computer read.html
11. Software Repositories . . . . . ... ... ... 22 3 Particle Physics Information Platforms
12. Data repositories . . . . . . . . . . . . . L. 23 e INSPIRE: The time-honored SPIRES database suite has in
November 2011 been replaced by INSPIRE, which combines the
13. Data preservation activities . . . . . . . . . . .. 23 most successful aspects of SPIRES - like comprehensive content and

14. Particle Physics Education and Outreach

Sites . . . ..o 24

1. Introduction

The collection of online information resources in particle physics and
related areas presented in this chapter is of necessity incomplete. An
expanded and regularly updated online version can be found at:

http://library.web.cern.ch/particle physics
_information

Suggestions for additions and updates are very welcome.
2. Particle Data Group (PDG) resources

e Review of Particle Physics (RPP) A comprehensive report
on the fields of particle physics and related areas of cosmology
and astrophysics, including both review articles and a compila-
tion/evaluation of data on particle properties. The review section
includes articles, tables and plots on a wide variety of theoretical
and experimental topics of interest to particle physicists and
astrophysicists. The particle properties section provides tables of
published measurements as well as the Particle Data Groups best
values and limits for particle properties such as masses, widths,
lifetimes, and branching fractions, and an extensive summary of

searches for hypothetical particles. RPP is published as a 1500-page
book every two years, with partial updates made available once each

year on the web.

All the contents of the book version of RPP are available online:
http://pdg.1bl.gov

The printed book can be ordered:
http://pdg.1lbl.gov/2015/html/receive our_products.html

Of historical interest is the complete RPP collection which can be
found online:

http://library.web.cern.ch/PDG publications/

review particle physics

Particle Physics booklet: An abridged version of the Review
of Particle Physics available as a pocket-sized 300-page booklet.
Although produced in print and available online only as a PDF
file, the booklet is included in this guide because it is one of the
most useful summaries of physics data. The booklet contains an

T Please send comments and corrections to
Annette.Holtkamp@cern.ch.

high-quality metadata - with the modern technology of Invenio,
the CERN open-source digital-library software, offering major
improvements like increased speed and Google-like free-text search
syntax. INSPIRE serves as one-stop information platform for the
particle physics community, comprising 8 interlinked databases
on literature, conferences, institutions, journals, researchers,
experiments, jobs and data. INSPIRE is jointly developed and
maintained by CERN, DESY, Fermilab, IHEP and SLAC. Close
interaction with the user community and with arXiv, ADS,
HepData, PDG and publishers is the backbone of INSPIRE’s
evolution.

http://inspirehep.net/

INSPIRE is integrated with ORCID (Open Researcher and
Contributor ID), a persistent identifier that enables researchers to

connect services and get credit for their works.
http://orcid.org/

INSPIRE is currently developing a new version of the portal,
maintaining its quality standards and introducing new functionality.
The INSPIRE Labs site is available at:

http://labs.inspirehep.net
blog: http://blog.inspirehep.net/
twitter: Q@inspirehep

4. Literature Databases
e ADS: The SAO/NASA Astrophysics Data System is a Digital

Library portal offering access to 11 million bibliographic records
in Astronomy and Physics. The ADS’s search engine also indexes
the full-text for approximately four million publications in this
collection and tracks citations, which now amount to over 80 million
links. The system also provides access and links to a wealth of
external resources, including electronic articles hosted by publishers
and arXiv, data catalogs and a variety of data products hosted by
the astronomy archives worldwide. The ADS can be accessed at

http://ads.harvard.edu/

arXiv.org: A repository of full text papers in physics, mathematics,
computer science, statistics, nonlinear sciences, quantitative finance
and quantitative biology interlinked with ADS and INSPIRE.
Papers are usually submitted by their authors to arXiv in advance
of submission to a journal for publication. Primarily covers 1991
to the present but authors are encouraged to post older papers
retroactively. Permits searching by author, title, and words in
abstract and experimentally also in the fulltext. Allows limiting
by subfield archive or by date. Daily update alerts by subfield are
available by email and RSS.
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http://arXiv.org

e CDS: The CERN Document Server contains records of more
than 1,000,000 CERN and non-CERN articles, preprints, theses.
It includes records for internal and technical notes, official CERN
committee documents, and multimedia objects. CDS is going to
focus on its role as institutional repository covering all CERN
material from the early 50s and reflecting the holdings of the CERN
library. Non-CERN particle and accelerator physics content is in
the process of being exported to INSPIRE.

http://cds.cern.ch

INSPIRE HEP: The HEP collection, the flagship of the INSPIRE
suite, serves more than 1.1 million bibliographic records with a
growing number of fulltexts attached and metadata including author
affiliations, abstracts, references, experiments, keywords as well as
links to arXiv, ADS, PDG, HepData and publisher platforms. It
provides fast metadata and fulltext searches, plots extracted from
fulltext, author disambiguation, author profile pages and citation
analysis and is expanding its content to, e.g., experimental notes.
http://inspirehep.net

e JACoW: The Joint Accelerator Conference Website publishes the
proceedings of APAC, EPAC, PAC, IPAC, ABDW, BIW, COOL,
CYCLOTRONS, DIPAC, ECRIS, FEL, HIAT, ICALEPCS, IBIC,
ICAP, LINAC, North American PAC, PCaPAC, RuPAC, SRF. A
custom interface allows searching on keywords, titles, authors, and
in the fulltext.

http://wuw. jacow.org/

KISS (KEK Information Service System) for preprints:
The KEK Library preprint and technical report database contains
bibliographic records of preprints and technical reports held in
the KEK library with links to the full text images of more than
100,000 papers scanned from their worldwide collection of preprints.
Particularly useful for older scanned preprints. KISS links are
included in INSPIRE HEP.

http://wuw-1lib.kek.jp/KISS/kiss prepri.html

e MathSciNet: This database of almost 3 million items provides
reviews, abstracts and bibliographic information for much of the
mathematical sciences literature. Over 100,000 new items are added
each year, most of them classified according to the Mathematics
Subject Classification. Authors are uniquely identified, enabling a
search for publications by individual author. Over 80,000 reviews on
the current published literature are added each year. Citation data
allows to track the history and influence of research publications.

http://www.ams.org/mathscinet

OSTI SciTech Connect: A portal to free, publicly available DOE-
sponsored R&D results including technical reports, bibliographic
citations, journal articles, conference papers, books, multimedia
and data information. SciTech Connect is a consolidation of two
core DOE search engines, the Information Bridge and the Energy
Citations Database. SciTech Connect incorporates all of the R&D
information from these two products into one search interface. It
includes over 2.7 million citations, including citations to 1.5 million
journal articles. SciTech Connect also has over 400,000 full-text
DOE sponsored STI reports; most of these are post-1991, but over
140,000 of the reports were published prior to 1990.

http://wuw.osti.gov/scitech/

5. Particle Physics Journals and Conference
Proceedings Series
e CERN Journals List: This list of journals and conference series

publishing particle physics content provides information on Open
Access, copyright policies and terms of use.

http://library.web.cern.ch/oa/where publish

¢ INSPIRE Journals: The database covers more than 3,400
journals publishing HEP-related articles.

http://inspirehep.net/collection/journals

6. Conference Databases

¢ INSPIRE Conferences: The database of more than 20,600 past,
present and future conferences, schools, and meetings of interest
to high-energy physics and related fields is searchable by title,
acronym, series, date, location. Included are information about
published proceedings, links to conference contributions in the
INSPIRE 