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acid neutralization and oxidation and precipitation of 

the resulting metal flocs. Before selecting an appropriate 
treatment technology, the AMD conditions and chemis-

try must be characterized. Flow, acidity and alkalinity, 

metal, and dissolved oxygen concentrations are critical 

parameters. This paper reviews the current state of pas-

sive system technology development, provides results 

for various system types, and provides guidance for siz-

ing and effective operation.

Keywords Anoxic limestone drains · Bioreactors · 

Limestone leach beds · Low-pH Fe oxidation channels · 
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Acid Mine Drainage

Oxidation of pyritic materials during and after mining pro-

duces sulfuric acid and metal ions. These products react 

with host rock and surface and groundwater to create a 

range of water chemistries from pH 2 to 8 and elevated ion 

concentrations. Such waters have traditionally been called 

acid mine drainage (AMD) and alkaline mine drainage. 

In this paper, we use AMD when the water is acidic and 

state clearly in the text when the water being referred to is 

not acidic. When AMD enters surface water bodies, biotic 

impairment often occurs through direct toxicity, habitat 

alteration by metal precipitates, nutrient cycle alterations, 

or other mechanisms, and the water often becomes unsuit-

able for domestic, agricultural, and industrial uses. The pro-

cess of pyrite oxidation and its effects on water resources 

have been known for centuries (Nordstrom 2011; Seal and 

Shanks 2008) and AMD is a worldwide concern (Younger 

and Wolkersdorfer 2004). Damaging effects of AMD have 

been described by researchers in Asia (David 2003; Wei 

Abstract When appropriately designed and main-

tained, passive systems can provide long-term, effi-

cient, and effective treatment for many acid mine drain-

age (AMD) sources. Passive AMD treatment relies on 

natural processes to neutralize acidity and to oxidize 

or reduce and precipitate metal contaminants. Passive 

treatment is most suitable for small to moderate AMD 

discharges of appropriate chemistry, but periodic inspec-

tion and maintenance plus eventual renovation are gen-

erally required. Passive treatment technologies can be 

separated into biological and geochemical types. Bio-

logical passive treatment technologies generally rely on 

bacterial activity, and may use organic matter to stimu-

late microbial sulfate reduction and to adsorb contami-

nants; constructed wetlands, vertical flow wetlands, and 
bioreactors are all examples. Geochemical systems place 

alkalinity-generating materials such as limestone in con-

tact with AMD (direct treatment) or with fresh water up-

gradient of the AMD. Most passive treatment systems 

employ multiple methods, often in series, to promote 
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Passive treatment systems rely on naturally occurring bio-

logical, geochemical, and physical processes. Biological pas-

sive treatment relies nominally on bacterial activity, such as 

bacterially catalyzed Fe and Mn oxidation and generation of 

alkalinity and metal removal via microbial sulfate reduction, 

along with the removal of metals via adsorption and exchange 

reactions with organic matter. Geochemical passive treatment 

relies on the reaction of water with alkalinity-generating 

materials such as limestone and alkaline steel slag. The sys-

tems described here have world-wide application in treating 

polluted water from mining operations. An earlier review by 

Younger et al. (2002) described the chemistry and technology 

of passive and active treatment, as well as AMD generation. 

This overview emphasizes passive treatment options and 

design features that can enhance their effectiveness.

AMD Treatment Chemistry

AMD production is the conversion of solid-phase acidity 

(sulfide minerals) to solution-phase acidity (dissolved pro-

tons and metals, primarily Fe and Al). The low pH and high 

metal concentrations in AMD are the result of a complex 

set of oxidation, hydrolysis, and precipitation reactions that 

start with the oxidation of metal sulfide minerals. In the 
eastern coalfields, this is primarily pyrite; a simplified com-

plete reaction can be written as:

 (1)

Details regarding the mechanisms and rates of pyrite oxi-

dation can be found in Evangelou (1995) and Blowes et 

al. (2003), and references therein. For AMD treatment to 

occur, pH has to be increased and dissolved metals have to 

be removed; i.e., solution acidity decreased and solution 

alkalinity increased.

Acidity and Alkalinity

Acidity is a measure of a water’s capacity to neutralize addi-

tions of a base (Kirby and Cravotta 2005a, b). Contributors 

to acidity include protons (H+, measured as pH) and metal 

cations with the potential to generate protons by hydrolysis. 

Metal hydrolysis proceeds stepwise, but the complete reac-

tion for Fe can be written as:

 (2)

where the dissolved metal acidity (Fe or Al) has been con-

verted completely to dissolved proton acidity and removed 

from the solution as a solid. Aqueous acidity can be mea-

sured directly using the standard hot peroxide method 
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et al. 2013; Yang et al. 2007), New Zealand (Trumm and 

Ball 2014; Winterbourn et al. 2000), Europe (Casiot et al. 

2009; Gray and Delaney 2008), South America (Strosnider 

et al. 2011a, b), and the USA (Cherry et al. 2001; Klein-

mann 1989; Soucek et al. 2000). In the eastern USA alone, 

>10,000 km of streams and >72,000 ha of lakes and reser-

voirs were adversely affected by AMD prior to 1990 (Her-

lihy et al. 1990; Kleinmann 1989).

The acidity level, metal composition and concentrations 

of a given AMD source are controlled by the type and amount 

of sulfides and associated neutralizing minerals, such as cal-
cite and dolomite. Sulfide and carbonate mineral concentra-

tions are effective predictors of acid-producing potential of 

mine spoil (Sobek et al. 2000); where carbonates are absent, 

silica-containing minerals can provide notable amounts 

of alkalinity and should be accounted for (Ciccarelli et al. 

2009; Miller et al. 2010). However, where there is sufficient 
carbonate and silicate minerals to neutralize the acidity, sul-

fate (SO4
2−) and various metal ions will still often persist 

in alkaline conditions. For example, even at elevated pH, 

reduced metal ions such as Fe2+ and Mn2+ are much more 

soluble than the more oxidized Fe3+ and Mn4+.

Passive treatment of AMD was originally developed 

in the eastern USA’s Appalachian coalfield (Hedin et al. 
1994; Kleinmann 1985; Kleinmann et al. 1983; Wieder 

and Lang 1982), where many coal seams, especially in 

northern Appalachia, are associated with pyritic geologic 

strata. Since 1972, U.S. Federal law has required active 

mines to treat AMD prior to discharge. However, pre-law 

mining left a legacy of mine discharges that continue to 

impair the water quality of aquatic resources because 

no responsible party exists for treatment. Hence, the 

region’s coal operators, regulatory agencies, citizens, 

and researchers sought low cost methods for mitigating 

these legacy AMD sources in order to restore impaired 

watersheds. Many types of passive AMD treatment tech-

nologies were developed to fit a wide variety of water 
conditions and many are now also being used at active 

mine sites.

Passive treatment is commonly considered in set-

tings where neither the severity of AMD nor the available 

resources warrant active treatment that require continuous 

additions of alkaline chemical reagents (“active treatment”) 

such as lime (CaO), slaked or hydrated lime (Ca(OH)2), 

anhydrous ammonia (NH3), or sodium hydroxide (NaOH) 

to neutralize acidity (Johnson and Hallberg 2005; Skousen 

et al. 1998). Active treatment requires ongoing expense for 

operation and maintenance, and commonly the provision of 

electric power. It also entails the risk of unintentional release 

of stored agents such as NH3 or NaOH that can result in 

harmful environmental or human exposure. Passive treat-

ment is not subject to these problems.
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The effect on solution-phase acidity when metals are 

removed by precipitation as metal hydroxides (Fe and Al) 

is straightforward and well understood (Stumm and Mor-

gan 1996b). Metal removal by sulfide precipitation is much 
more complex than is suggested by Eqs. 4 and 6. Sulfate 

reduction reactions result in various sulfide products, but the 
alkalinity produced from these reduction reactions depends 

on the fate of the sulfide and the extent to which hydro-

gen sulfide or metal sulfides are produced. The reaction will 
reverse under oxidizing conditions, generating acidity and 

releasing metals all over again, so care must be taken to 

ensure that reducing conditions are maintained where metal 

sulfide precipitation has occurred.
The contribution of microbial sulfate reduction to alka-

linity has been criticized for failing to account for the com-

plexity of labile carbon sources (Lindsay et al. 2011), the 

potential alkalinity contributions from Fe reduction (Vile 

and Weider 1993), and incomplete consideration of the fate 

of H2S (Vile and Weider 1993). The process is influenced 
by seasonal rate variations (i.e. reduced alkalinity genera-

tion rates in cold temperatures; Kuyucak et al. 2006), but 

these reduced rates can be lessened by selecting cold-hardy 

varieties of sulfate-reducing bacteria (Janin and Harrington 

2015; Nordwick et al. 2006).

Sorption, coprecipitation, and exchange to precipitated 

Fe and Mn, organic materials, and soil-like materials are 

additional mechanisms for metal removal. Sorption to 

organic materials is important for Al and divalent transition 

metals and Pb, while sorption to precipitated Fe and Mn 

and even limestone surfaces can contribute to trace metal 

removal (e.g. Zachara et al. 1991).

Passive AMD Treatment

Passive treatment processes for AMD rely on natural bio-

logical, geochemical, and physical processes to improve 

water quality. Primary passive technologies can be broadly 

divided into biological systems and geochemical systems 

that contain inorganic materials, such as carbonates. The 

biological systems include aerobic and anaerobic con-

structed wetlands (AeWs and AnWs), vertical flow wetlands 
(VFWs), bioreactors (SRB), and Mn removal beds (MRBs). 

The geochemical systems include anoxic limestone drains 

(ALDs), open limestone channels (OLCs), limestone leach 

beds (LLBs), steel slag leach beds (SLBs), diversion wells, 

limestone sand, and low pH Fe oxidation channels. Some 

of the systems that we have classified as biological also use 
geochemical processes.

Selection of an appropriate passive system is based on 

water chemistry, flow rate, local topography, and site char-
acteristics. Figure 1 (modified from Hedin et al. 1994) 

summarizes a strategy for selecting the appropriate type of 

(APHA 1998; Kirby and Cravotta 2005b). Cravotta and 

Kirby (2004) urged commercial laboratories and research-

ers to use the Standard Methods (APHA 1998) procedure 

and report negative acidities. If pH and concentrations for 

dissolved metals are known, acidity can be estimated as 

the sum of proton acidity and the dissolved ions’ mineral 

acidities (Hedin et al. 1994; Kirby and Cravotta 2005a). 

Acidity is generally expressed as a CaCO3 equivalent mass 

converted to concentration or loading. Alkalinity is a mea-

sure of a water’s ability to neutralize acid additions (Kirby 

and Cravotta 2005a, b) and, like acidity, is expressed as its 

CaCO3 equivalent.

Alkalinity can be produced and protons neutralized by 

the addition of any alkaline material. The most common 

inorganic source of alkalinity for passive AMD treatment is 

limestone (CaCO3), where the reaction is:

 (3)

Calcitic limestones are generally used in passive AMD treat-

ment because they are more readily soluble than dolomitic 

(high-Mg) carbonates. Alkalinity can also be produced by 

microbial sulfate reduction when a labile carbon source 

(CH2O) is available:

 (4)

Metal Removal

Metals can be removed from AMD by precipitation and 

sorption. Fe and Al precipitate as hydroxides (Eq. 2), 

whereas manganese (Mn) is removed by a combination of 

oxidation and precipitation.

 (5)

Mn oxidation is slow in acidic solutions but can be acceler-

ated by bacteria and catalysis by surfaces, including auto 

catalysis on MnO2 (Stumm and Morgan 1996a).

Some divalent metals (e.g. Fe, Zn, Pb) can be removed 

by precipitation as sulfide minerals following microbial sul-
fate reduction (Eq. 4). Using Fe as an example, a simple, 

complete reaction can be written as:

 (6)

FeS in this case is mackinawite, not pyrrhotite; alternatively, 

greigite (Fe3S4) may form. Both are generally precursors to 

pyrite. Thus, precipitating metals as a sulfide is typically 
repeating the cycle that placed the metals in the deposit 

originally, reversing the oxidation reaction that liberated 

them.
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metal hydroxide flocs (Fig. 2). If the water is not net-

alkaline, limestone has to be added to create net-alka-

line conditions; otherwise, the long-term efficiency and 
effectiveness of the AeW will be poor. AeWs are some-

times simply a shallow basin, although vegetation such 

as Typha (cattails) is typically planted in a loose substrate 

to improve wildlife habitat and aesthetics, and to promote 

slow flow and attachment sites for floc. Wetland vegeta-

tion also encourages more uniform flow for more effec-

tive treatment. Mn oxidation occurs more slowly than 

Fe oxidation, and is sensitive to the presence of Fe2+, 

which will inhibit or reverse Mn oxidation (Luan et al. 

2012; Wildeman et al. 1993). Consequently in aerobic, 

net-alkaline water, Fe and Mn hydroxides are removed 

sequentially with the practical result that Mn precipita-

tion occurs (if at all) mainly in the later stages of the 

system after all of the Fe has been removed. AeWs are 

also commonly used as a final treatment stage like set-
tling ponds and sometimes receive treated drainage from 

other treatment systems to capture the remaining fine sus-

pended precipitates (Fig. 2).

Metal removal was successful in six AeWs where the 

influent water pH was >6 (Skousen and Ziemkiewicz 2005). 

Removal rates were 10–20 g m−2 day−1 for Fe and 0.5–

1.0 g m−2 day−1 for Mn (Hedin et al. 1994). This estimate 

of removal efficiency remains a realistic field guideline for 
sizing AeWs, although it has been suggested that a better 

estimate of treatment effectiveness would rely on hydraulic 

retention time and influent acidity rather than surface area 
(Zipper and Skousen 2010).

AeWs remove metals by slowing the water flow and 
allowing for oxidation (often bacterially catalyzed). As Fe2+ 

is oxidized, the resulting Fe3+ precipitates as ferric hydrox-

ide in these structures as long as the pH is 3.5 or above. 

These structures also help to settle other metals that co-pre-

cipitate with the Fe.

Anaerobic Wetlands

AnWs consist of Typha and other wetland vegetation planted 

in deep (>30 cm), permeable substrates comprised of soil 

mixed with peat moss, spent mushroom compost, sawdust, 

straw/manure, hay bales, or other organic materials (Fig. 3). 

These materials are often underlain or mixed with limestone 

to aid alkalinity generation. Alkalinity is generated by car-

bonate dissolution and microbial sulfate reduction. Lime-

stone will continue to react in an anaerobic environment 

because there is no Fe3+; Fe2+ hydroxides will not form 

to coat the limestone surface. Reversion from reducing to 

oxidizing conditions will result in formation of insoluble 

Fe3+ hydroxide flocs, which will limit or prevent alkalinity 
generation and must be avoided. Several treatment mecha-

nisms are enhanced in AnWs relative to AeWs, including 

passive system and Table 1 gives recommended sizing crite-

ria. In general, AeWs are effective for removing metal pre-

cipitates from net-alkaline mine drainage. ALDs can treat 

acidic water with low concentrations of Al, Fe3+, and dis-

solved oxygen (DO), while VFWs, AnWs, flushable LLBs, 
and OLCs can treat net-acidic water with higher concentra-

tions of Al, Fe3+, and DO. The science and technology sup-

porting passive systems is increasing, which has improved 

our capacity to treat more difficult waters with appropriate 
designs and size.

Biological Systems

Constructed wetlands mimic their natural counterparts by 

creating an engineered ecosystem providing required redox, 

acid neutralization, and precipitate settling functions. They 

are often shallow excavations filled with flooded limestone 
gravel, soil, and organic matter to support wetland plants. 

Water treatment depends on dynamic biogeochemical reac-

tions as the AMD travels through the wetland. Inorganic 

neutralization is a contributor if limestone is present in the 

substrate.

Huntsman et al. (1978) and Wieder and Lang (1982) first 
noted amelioration of AMD following passage through nat-

urally-occurring Sphagnum bogs in Ohio and West Virginia. 

Studies by Brooks et al. (1985), Samuel et al. (1988), and 

Sencindiver and Bhumbla (1988) documented similar phe-

nomena in Typha wetlands. Although evidence suggests that 

some wetland plants show long-term adaptation to low pH 

and high metal concentrations, AMD eventually degrades the 

structure and function of natural wetlands. Instead, wetland 

systems should be designed and constructed to mimic the natu-

ral wetland functions that are responsible for AMD treatment 

with the intent of providing low cost, low maintenance AMD 

treatment (Kleinmann 1991). The three predominant styles are 

AeWs, AnWs, and VFWs. Thousands of wetlands have been 

constructed to receive AMD from active and abandoned mines.

Passive metal retention mechanisms include: (1) metal 

oxidation facilitated by Fe and Mn oxidizing bacteria, 

hydroxide floc formation, precipitation, co-precipitation of 
trace metals with Fe hydroxide and Mn oxide, and capture; 

(2) reduction of metals and formation of metal sulfides in 
an organic matter layer; (3) complexation with organic mat-

ter; (4) sorption; and (5) direct uptake by living plants. Our 

approach herein is to define and describe each treatment 
type, outline the treatment mechanisms, review treatment 

efficiency from literature sources, and then add further com-

mentary and summaries.

Aerobic Wetlands

AeWs are used to collect water and provide residence 

time for Fe oxidation, hydrolysis, and settling of the 
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Vertical Flow Wetlands

VFWs were developed in the late 1980s (Hendricks 1991) 

and described by Duddleston et al. (1992). Kepler and 

McCleary (1994) advanced the term successive alkalinity 

producing systems (SAPS), while other researchers have 

referred to them as reducing and alkalinity producing sys-

tems (RAPS, Watzlaf et al. 2000a), or vertical flow ponds. In 
a VFW, acidic water is ponded to a depth of 1–2 m over 0.2–

0.6 m of an organic substrate, which rests on a 0.5–1 m layer 

of limestone (Fig. 4). The water’s hydraulic head drives it 

through the organic substrate, where O2 is consumed, pro-

ducing anoxic conditions. The major function of the organic 

layer is reduction of all Fe to Fe2+, which prevents coating 

of the underlying limestone with ferric hydroxide. Acid neu-

tralization occurs in the organic layer by sulfate reduction 

and in the limestone base.

A series of perforated drainage pipes below the limestone 

conveys the water into an aerobic wetland or settling pond 

where Fe and Mn are precipitated. Initially, these systems 

were sized to allow 16–24 h of retention time in the lime-

stone layer, based on the sizing criteria for ALDs (Hedin et 

al. 1994), but later studies of performance suggested that an 

areal sizing parameter was appropriate (Rose 2006). As a 

result, many early VFWs were not adequately sized to treat 

their inflow.
Reported VFW treatment efficiencies for acidity range 

from almost no treatment to 800 g m−2 day−1 (Jage et al. 

2000, 2001; Ji et al. 2008; Kepler and McCleary 1994; 

LaBar et al. 2008; Rose 2003, 2004a, b, 2006; Rose and 

formation and precipitation of metal sulfides, microbial 
generation of alkalinity by sulfate reduction reactions, metal 

exchange and complexation reactions, and continuous for-

mation of carbonate alkalinity due to limestone dissolution 

under anoxic conditions. Therefore, AnWs are suitable for 

the treatment of net-acidic water.

Like their aerobic counterparts, AnWs are most suc-

cessful when used to treat small AMD flows of moderate 
acidity. Sizing criteria have been based on incoming Fe 

load (10 g m−2 day−1, Hedin and Nairn 1992) or acid load 

(3.5 g m−2 day−1, Hedin et al. 1994). Ziemkiewicz et al. 

(2003) showed that 17 AnWs removed acidity at an average 

rate of 16.6 g m−2 day−1.

AnWs generally work well if not overwhelmed with acid 

or metal loads. As the substrate is consumed or filled with 
metal oxyhydroxides, AnWs decline in treatment efficiency, 
so a maintenance schedule is needed for systems treat-

ing high metal loads. Renovation can be accomplished by 

removing the floc and substrate and replacing it with fresh 
organic material and limestone. If the materials removed 

from the AnWs are a mixture of limestone, organic mate-

rial, and Fe and Al hydroxides, they can be used as a soil 

material for disturbed area reclamation when spread on the 

surface and allowed to dry. However, if large volumes of 

the floc were anaerobic, they will contain sulfides. These 
sulfides can oxidize and release acidity, so care should be 
taken to dispose of these materials in an anaerobic environ-

ment. Floc materials from metal mine drainage treatment 

may contain high levels of metals and therefore may not be 

suitable for application to land.

Water with

Low Al, Fe, and Mn

Determine Flow

Analyze Water Chemistry

Calculate Loads

Evaluate DO,

Fe3+and Al If Mod
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If Net Alkaline If Net Acid
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Area  

If Slope 
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Settling Pond
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Establish Water Treatment Goals

ALD

LLB or 
SLB

Aerate
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Discharge Water

Re-evaluate Design; 
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Low-pH
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If Net Acid

If Net Acid
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Fig. 1 Flow chart for selecting 

a passive AMD treatment sys-

tem based on water chemistry 

and flow (adapted from Hedin 
et al. 1994). By necessity, this 

flow chart does not include 
all possibilities. For example, 

Mn removal beds (MRBs) are 

very often used after the Fe and 

Al have been 1 " -->removed 

by the other passive treatment 

options and can also be used in 

water that is slightly acidic as 

long as the limestone suffi-

ciently increases the pH. Please 

consult the text for more details 

on all of these approaches
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An important modification to the original VFW design 
is the addition of 10–25 % by volume of fine limestone 
particles into the organic substrate. With this modification, 
VFWs are capable of treating water with high Fe and Al 

concentrations. For example, installation of such a substrate 

at a Pennsylvania mine site caused water pH to increase 

from 2.8 to 7.4, and reduced both Fe and Al concentrations 

from >36 to <1 mg L−1 (Hedin et al. 2010, 2013). Effluents 
were net alkaline (pH > 7.4) for 6 years.

In 2010, the PA DEP sampled about 140 VFW systems. 

Of the sites built since 2004 using a sizing criterion of 

35 g m−2 day−1, at least 60 % released net alkaline water 

(Rose 2013). Older sites, designed on retention time in the 

limestone, had a higher likelihood of releasing net acid 

effluent. Rose (2013) in his evaluation of 20 VFW systems 

selected from the PA DEP survey for poor performance 

found that >50 % did not treat the influent AMD to a net 
alkaline state, often due to faulty design or construction or 

to a lack of essential maintenance (Supplementary Table 1). 

Of those with correct designs, all removed ≥85 % of influent 
acidity. At several of these VFW treatment sites, the receiv-

ing stream has returned to fishable status, even if the treat-
ment system did not remove all of the acidity.

VFWs are an effective AMD treatment method when 

properly designed and constructed. But these systems 

require periodic maintenance (Hedin et al. 2013), such 

Dietz 2002; Rose et al. 2001; Skousen and Ziemkiewicz 

2005; Watzlaf et al. 2000a). In general, performance is high-

est after start-up, especially if fine limestone is added to the 
compost layer. For VFW design purposes, a long-term acid-

ity removal rate of 35 g m−2 day−1 has been proposed by 

Rose and coworkers after an extensive review of more than 

30 VFWs in the Appalachian region (Rose 2003, 2004b; 

Rose et al. 2004, 2007).

Watzlaf et al. (2000a) reported acidity removal rates for 

six VFWs ranging from 20 to 62 g m−2 day−1 and that lime-

stone dissolution dominated the neutralization process. An 

analysis of performance data for 30 VFWs found that a few 

achieved removal rates ≥40 g m−2 day−1 (Rose and Dietz 

2002), but later evaluation indicated that 35 g m−2 day−1 is 

a more accurate performance standard (Rose 2004a, 2006). 

Fifteen VFWs in WV decreased acidity at rates ranging from 

2 to 800 g m−2 day−1, with an average of 87 g m−2 day−1 

(Skousen and Ziemkiewicz 2005).

In addition to their use as a stand-alone treatment, VFWs 

can be coupled with other treatment systems to manage unique 

AMD situations. Water with high metal loads can be passed 

through multiple VFWs in series, separated by sedimentation 

basins for metal floc removal. Since DO concentrations are 
often a design limitation for other AMD passive treatment sys-

tems, a VFW can be used as pre-treatment to reduce the DO, 

for instance, before the water is introduced into an ALD.

System type Design factors References

Biological

Aerobic wetland (AeW) 10 g Fe m−2 day−1; 1 g Mn m−2 day−1 Skousen and Ziemkiewicz (2005), 

Hedin et al. (1994)

Anaerobic wetland (AnW) 3.5 g acidity m−2 day−1 Skousen and Ziemkiewicz (2005)

10 g Fe m−2 day−1 Hedin and Nairn (1992)

Vertical flow wetland (VFW) 35 g acidity m−2 day−1 Kepler and McCleary (1997), 

Rose (2006), Watzlaf et al. 

(2002)

Mn removal beds 2–10 g Mn m−2 day−1 Rose et al. (2003a, b)

Bioreactors Low flow rates; readily degradable 
organics

Neculita and Zagury (2008), 

Gusek (2004)

Geochemical

Anoxic limestone drain 

(ALD)

15 h residence time; 50 g of acidity 

t−1 day−1
Watzlaf et al. (2000b), Skousen 

and Ziemkiewicz (2005)

Open limestone channel 

(OLC)

Acid load and residence time; 30 g of 

acidity t−1 day−1
Ziemkiewicz et al. (1997), Skou-

sen and Ziemkiewicz (2005)

Limestone leach bed (LLB) 2 h residence time; 10 g acidity 

t−1 day−1
Skousen and Ziemkiewicz (2005)

Steel-slag leach bed (SLB) 1000 g acidity t−1 day−1 Skousen and Ziemkiewicz (2005)

Diversion wells Acid load equivalence Arnold (1991), Ziemkiewicz and 

Brant (1997)

Limestone sand Two times acid load; applied two to 

four times per year

Zurbuch (1996), McClurg et al. 

(2007)

Low-pH Fe oxidation 

channels

Low pH water; slope for aeration Burgos et al. (2008), Hilton 2005

Table 1 Design factors for pas-

sive treatment technologies
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is extremely slow. However, the formation of these com-

pounds is facilitated and catalyzed in nature by common 

microorganisms (Brock et al. 1994; Ghiorse 1984; Ghiorse 

and Ehrlich 1992; Robbins et al. 1999; Tebo et al. 2005). The 

bacteria are aerobic heterotrophs that use dissolved oxygen 

(DO) to oxidize organic matter as a source of energy. For-

mation of Mn precipitates by these bacteria on rock surfaces 

in stream channels and riverbeds has been observed at many 

locations (Emerson et al. 1982; Gregory and Staley 1982; 

Lewis 1976; Marshall 1979; Mustoe 1979; Wilson 1980).

From such experience, it has been observed that Mn can 

be easily removed passively in mine water with a near-neu-

tral pH by simply providing an appropriate surface area for 

the Mn-oxidizing bacteria to populate down-gradient of the 

constructed wetland. The precipitation of additional Mn is 

then accelerated by the presence of these precipitates; the 

precipitation reaction is autocatalytic (Davies and Morgan 

1989; Rose et al. 2003a, b; Tebo et al. 2005). To create the 

right environment for Mn removal to occur, the key require-

ments are to: provide an abundant amount of rock surface 

area as a growth substrate for the bacteria; ensure that the 

water contains abundant amounts of DO; if necessary, add 

sufficient amounts of alkalinity to increase the pH of the 
mine water to at least circumneutral levels; and, to the extent 

practicable, avoid the potential impacts of large storm water 

flow events on the retention time and stability of the chan-

nel. This approach has been successfully used at many mine 

sites as a polishing step following conventional passive 

mine water treatment (e.g. Rose et al. 2003a, b; Sikora et al. 

1996; Watzlaf et al. 2004). It is increasingly common to see 

limestone-filled channels constructed downstream of mine 
water passive treatment systems that have removed virtually 

all of the dissolved Fe. Strictly speaking, any rock surface 

will do, but using limestone keeps the pH high enough to 

allow reasonably fast Mn removal.

Normally, the major obstacle to successful Mn removal 

using this mechanism is dissolved ferrous Fe because the 

Mn precipitate adsorbs the ferrous Fe, which chemically 

reduces the Mn, rendering it soluble and leaving oxidized 

Fe behind. Means and Rose (2005) and Rose et al. (2003a, 

b) studied a number of limestone beds designed for Mn 

removal. Based on these empirical observations at multiple 

sites and a range of conditions, Mn removal rates typically 

range from 2 to 10 m−2 day−1 (Rose et al. 2003a, b). The 

rates are most likely linked to the extent of bacterial activity, 

as well as factors such as water depth, DO concentrations, 

Mn concentrations, and pH. However, given the relatively 

low cost of adding additional limestone, it is generally best 

to make the limestone-filled channels as large as practical. 
Essentially all of the Fe and Al must be removed by pre-

treatment to avoid clogging and the pH must be >6 before 

Mn is removed; Mn removal proceeds much better at a 

pH ≥ 7.

as occasional agitation of the organic substrate to dis-

lodge accumulated metal flocs and flushing (Fig. 5). They 

accomplish acid removal consistent with design standards. 

Flushing systems have been devised that remove more of 

the metal floc so that less accumulates. VFWs also need 
to be inspected and cleaned out when efficiency declines 
due to compost degradation and metal floc accumulation. 
Like AnWs, the substrates will need to be removed when 

the metal flocs build up or as the substrate becomes unreac-

tive. Extensive data on hundreds of VFWs and other passive 

systems in Pennsylvania are available in the website http://

www.datashed.org.

Mn Removal Beds

Mn is thermodynamically insoluble at circumneutral pH, 

but the abiotic rate of Mn removal in natural environments 

Fig. 3 Anaerobic wetlands can treat net-acidic water because micro-

bial sulfate reduction and limestone dissolution generate alkalinity 

(Photos: J. Skousen)

 

Fig. 2 Aerobic wetlands are best suited for net-alkaline water where Fe 

and Mn are oxidized, precipitated and captured. The metal hydroxides 

are collected and retained in wetland substrates. (Photo: J. Skousen)
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good air–water contact is required, the rocks should nor-

mally project out of the water.

An added advantage of MRBs is that Mn oxide miner-

als adsorb or incorporate substantial amounts of many trace 

metals. These interactions can decrease dissolved trace 

metal concentrations by orders of magnitude, even when 

only small amounts of Mn oxide is present (Jenne 1968; 

Tebo et al. 2004). Therefore, an MRB has been constructed 

at an old vanadium mine site where dissolved Zn and occa-

sionally Ni exceeded permitted levels. The Fe concentra-

tions there were naturally low and Mn, though typically 

present at concentrations over 10 mg/L, was not regulated 

because the natural background Mn concentrations in the 

area were high. Within a few months after construction, Mn 

oxidation and removal had been established and base flow 
trace metal concentrations were no longer in exceedance. 

Mn and trace metal removal there continues to improve.

The most common problem experienced with all lime-

stone-lined channels is that the limestone bed can become 

plugged over time with silt, leaves, algae, organic matter, or 

other material (Rose et al. 2003a, b). Thus, monitoring and 

some occasional light long-term maintenance (e.g. occa-

sional raking of the channel to remove debris) may prove 

to be necessary.

Bioreactors

Bioreactors, which are sometimes called sulfate-reducing 

bioreactors (SRB), are similar to VFWs except that organic 

matter is the main reactant, commonly with limestone 

completely mixed with the organic matter (Gusek 2004). 

Microbial sulfate reduction is the primary form of treat-

ment (Neculita et al. 2007). These systems are capable of 

handling very acidic and metal-rich water, including mine 

drainage with transition and other metals. However, flow 
rates through these systems are slow, so they are most 

applicable to small flows or to relatively large systems; 
sometimes, multiple units are operated in parallel. Most 

bioreactors are used to treat metal mine drainage (e.g. Rut-

kowski et al. 2013), but a few have been constructed to treat 

acidic coal mine effluent, typically to remove selenium 
(Sandy and DiSante 2010). Other examples of bioreactors 

treating AMD from coal-mined sites include the Jennings 

site in PA, which plugged after 8 years but was restored by 

mixing and adding new reactants (Rose 2004a); the Fran 

site (Gusek and Schueck 2004); the Strattanville, PA, site 

where the system worked satisfactorily for 2 years but then 

failed in part because of lack of maintenance (Rose 2010); 

and the Reed site, which effectively treated a large flow for 
at least a year (Rose 2010).

Experiments on the effectiveness of a wide variety of 

organic materials are summarized in Table 2 and discussed 

further below. Commonly, relatively fine limestone or other 

These MRBs superficially resemble OLCs and LLBs, 
but the mechanisms and requirements are different. OLCs 

are generally installed where there is a relatively high slope 

so that Fe precipitates can be scoured from the limestone. 

Mn removal will occur in OLCs if all of the dissolved Fe is 

removed, but it is rare that dissolved Fe concentrations get 

sufficiently low. Also, scouring of precipitated Mn is dis-

couraged since the precipitated Mn catalyzes additional Mn 

removal.

Likewise, Mn removal will also occur in LLBs if all of 

the dissolved Fe is removed, but LLBs are typically at least 

a meter deep; observations indicate that Mn precipitation is 

more rapid near the water surface, probably because of DO 

depletion with depth. Therefore, MRBs are typically shal-

low channels filled with fist-sized limestone rock. Because 

Fig. 5 Flushing systems can be placed at the outlet of VFWs to 

remove accumulated flocs in limestone. (Left) an operator opens a 

below-ground flushing valve; (right) flushed water emerges with vis-

ible flocs (Photos: J. Skousen)

 

Fig. 4 Vertical flow wetlands have perforated pipes embedded in a 
limestone layer at the bottom of the system and overlain by organic-

matter substrate. Water is ponded on the surface which drives the water 

through the substrate, limestone and out through the pipes. (Photos: J. 

Skousen)
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flushed VFWs and Al accumulation on top of the limestone 
bed suggests that manual flushing is not a complete solu-

tion to rejuvenating VFWs when Al is present. Vinci and 

Schmidt (2001) proposed the use of automatic flushing 
siphons to increase flushing frequency from manual flush-

ing, typically on a monthly schedule or to shorter intervals 

depending on flow rate. These siphons trigger when the 
pond fills to its pre-determined level. Flushing siphons have 
been successfully used at several sites.

A more recent flushing technology is the Agri-Drain 
Smart Drainage system (Agri-Drain Corp., Adair, IA). This 

system is programed to open a valve at certain time intervals 

or water levels to flush accumulated floc. Solar panels pro-

vide power so flushing can be as frequent as several times a 
week. This technology has been used successfully at a num-

ber of sites (Wolfe et al. 2010).

More elaborate underdrain systems have been designed 

to improve precipitate removal. Weaver et al. (2004) evalu-

ated processes removing flocs during flushing, such as flow 
velocity, and provided design criteria for a double-layer-

flushing underdrain system to provide maximum flow veloc-

ity. The upper layer of pipes is near the top of the limestone 

layer where Al hydroxides are presumed to accumulate. A 

pilot experiment using an automatic flushing siphon flushed 
about 80 % of the Al floc from a limestone bed, in contrast 
to the <5 % found for manual flushing at monthly intervals. 
Danehy et al. (2002) described systems with two layers of 

underdrain pipes in the limestone bed, divided into as many 

as eight subsystems capable of being flushed separately. 
This system has been used with improved results at several 

sites but is relatively expensive to construct.

Organic Materials

Since organic materials play such a crucial role in biologi-

cal passive systems, a variety of organic materials have 

been evaluated (Place et al. 2006; Neculita et al. 2007; Rose 

2010). Organic materials provide sorption sites for metals, 

and nutrients and attachment sites for microorganisms that 

perform essential functions, including DO consumption. A 

community of microorganisms is needed to degrade recalci-

trant components and produce simpler organic compounds 

for use by the sulfate-reducing bacteria.

A wide range of organic materials have been tested for 

effective sulfate reduction (Table 2). These materials can be 

classified as: (1) easily-available substances (soluble sugars, 
starch, amino acids, and proteins), (2) cellulose and hemicel-

lulose, and (3) lignin (Gibert et al. 2004). The first group are 
consumed relatively easily and rapidly by sulfate-reducing 

bacteria and their associated microbes but are commonly 

depleted during the first months of AMD treatment (Place 
et al. 2006). Cellulose is degraded slowly to simpler organic 

compounds by fermenting bacteria and other cellulose 

calcareous materials (mussel shells, calcareous wastes, etc.) 

are mixed with the organic matter to help maintain the pH 

in a better range for sulfate reducers and to help neutralize 

the acidity. Amounts of carbonate range from a few percent 

to several tens of percent by volume.

Bioreactors are sometimes affected by bed compaction, 

which reduces permeability and promotes short circuiting. 

It is common to add strong particles such as gravel, coarse 

sand, walnut shells, and wood chips to minimize compac-

tion and maintain permeability.

Start-up of bioreactors can be slow, while the microbial 

system adapts to the AMD composition and substrate. At the 

start, the systems may be filled with fresh water mixed with 
small amounts of AMD to initiate sulfate and Fe reduction; 

the AMD is introduced at the design flow rate as the micro-

bial system activates. The bioreactor may be inoculated 

with microbes from other functioning systems to accelerate 

effective treatment. To date, little attention seems to have 

been paid to initial establishment of specific microbial spe-

cies, such as those that degrade the organic matter into com-

pounds used by sulfate-reducers, although their importance 

is well recognized.

A significant product of bioreactors is Fe sulfide, which 
removes both Fe and S from solution. FeS precipitates in 

the organic layer, but in some cases, the FeS is also present 

in the effluent and settling pond, possibly along with native 
S. If these are present, these products must be kept in an 

anoxic environment because their oxidation will generate 

acidity. Bioreactor performance can be distinctly seasonal, 

with slower remediation in winter.

A few bioreactor systems rely on the addition of a small 

amount of organic supplement periodically to provide nutri-

ents and carbon for the microorganisms (Buccambuso et al. 

2007; Sobolewski 2010; Tsukamoto et al. 2004; Zamzow et 

al. 2006).

Flushing Systems for Biological Passive Systems

The potential for VFWs to clog with Al and Fe hydroxides 

was recognized early (Kepler and McCleary 1997) and 

structures to allow precipitates to be flushed from the lime-

stone layer and pipes were installed. The early structures 

were manually operated with an outlet valve placed below 

the water level of the pond (Supplementary Fig. 1). Results 

from this approach were mixed. Kepler and McCleary 

(2003) found that flushing improved VFW effectiveness 
and extended useful lifetime. Watzlaf et al. (2002) found 

that less than 5 % of the accumulated Al precipitate was 

removed during a flushing event. Designs that increase the 
depth of water over the organic layer to a meter or more 

would be expected to increase flushing effectiveness rela-

tive to shallow-water designs, but that expectation has not 

been tested experimentally. The decreasing effectiveness of 
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Organic substrate material References

Easily-available materials—sugars, starch, proteins, oils, liquids

Edible oil substrate (EOS), mainly emulsified soybean oil, worked well in lab tests Lindow and Borden (2004, 2005)

Cheese whey added to reactors containing cow manure and pine sawdust greatly improved 

effectiveness

Drury (1999)

Ethanol was more satisfactory than cellulosic materials at low temperature Buccambuso et al. (2007)

Methanol was effective in supporting sulfate reduction of lignite pit water Glombitza (2001)

Ethanol and methanol were effective in removing Fe at low pH Tsukamoto et al. (2004)

Glycerol-methanol waste from production of biodiesel fuel was capable of extensive sulfate  

reduction

Zamzow et al. (2006)

Crab shell chitin was highly effective Daubert and Brennan (2007), Newcombe and 

Brennan (2008)

Chitin was much more effective than lactate or compost Robinson-Lora and Brennan (2010)

Chitin, hay and corn with 20–30 % limestone were more effective than ethanol; chitin was very  

effective for Mn removal

Venot et al. (2008)

Mussel shells were very effective in AMD treatment either alone or mixed with organic materials Trumm and Ball (2014), Uster et al. (2015)

Cellulose and hemicellulose materials—manures, compost

85 % pea gravel and 15 % leaf compost worked well for at least 2 years McGregor et al. (2000)

Municipal compost from wastewater treatment was poor Gibert et al. (2004)

Sewage sludge and rye grass was better than either alone Harris and Ragusa (2001)

Organic soil and ryegrass accomplished good treatment Harris and Ragusa (2001)

Mushroom compost, waste paper sludge, and decayed oak chips were better than fresh oak chips  

and organic soil

Chang et al. (2000)

Spent mushroom compost (mix of manure, hay, straw, corncobs, wood chips and 10–15 %  

limestone) worked well

Dvorak et al. (1992)

Mixtures of leaf compost and poultry manure performed better than any of these materials 

 individually

Zagury et al. (2006)

Poultry manure with 2 % limestone was more effective than leaf compost and wood chips Cocos et al. (2002)

Sheep and poultry manure were good, oak leaves were OK, lignin poor Gibert et al. (2004)

80 % cow manure and 20 % straw performed satisfactorily in a mine-site system Nordwick et al. (2006)

80 % cow manure and 20 % straw generated sulfide and precipitated metals, and increased pH Zaluski et al. (2003)

Cow manure and rice stalks underlain by limestone in an upflow reactor removed metals until  
redox increased after 118 days

Cheong et al. (1998)

Cow manure and hay with 30 % limestone were more effective than sawdust and wood chips Smart et al. (2008)

Composted cow manure mixed with ceramic pellets was effective in removing metals by  

adsorption

Willow and Cohen (2003)

Mixtures of materials were better than pure leaf mulch, sheep manure, sewage sludge or cellulose Waybrant et al. (1998)

Decayed wood shavings, straw, manure and spent brewery grains were very effective in treating  

low pH, high Fe AMD

Thomas and Romanek (2002a, 2002b)

Lignin—hay, straw, woody materials

Alfalfa hay was better than straw or timothy hay Bechard et al. (1994)

Wood shavings, pine bark, and compost plus limestone or mussel shell mixtures worked  

satisfactorily in lab tests

McCauley et al. (2008)

Corn stover and walnut shells were satisfactory for pH 5–6 AMD Figueroa et al. (2007)

Green garden waste generated good treatment in lab tests McCullough et al. (2006)

Maple wood sawdust with poultry manure gave good results Neculita and Zagury (2008)

90 % pine sawdust and 10 % hay performed poorly in two systems Johnson and Hallberg (2005)

Corn stover was better than alfalfa, which was better than oak, which was better than pine on  

sulfate reduction rates

Place et al. (2006)

Total C and cellulose/lignin ratio were useful criteria to determine sulfate reduction rates Place et al. (2006)

Corn stover was more effective than hay (with limestone); both had a more diverse microbial  

community than with ethanol

Prieto et al. (2008)

Pine sawdust and pine chips were poor, perhaps because of toxic compounds in the pine sap Zagury et al. (2006), Neculita et al. (2007)

Table 2 Reported effectiveness of various organic materials for sulfate reduction (Rose 2010)
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treatment technologies to strip O2, convert Fe3+ to Fe2+, and 

precipitate Al3+ in a submerged organic substrate have been 

studied (Kepler and McCleary 1994; Skousen 1995).

ALDs were first described by Turner and McCoy (1990) 

in Tennessee. Brodie (1993) reported that ALDs improved 

the capability of wetlands to meet effluent limitations with-

out chemical treatment. Treatment of AMD with low DO, 

Al, and Fe3+ using ALDs has been found to be successful 

if the systems are designed, constructed, and operated cor-

rectly. Based on experiments in cubitainers and full-scale 

limestone drains, Cravotta and Watzlaf (2002) and Cravotta 

(2003) derived rates of acid neutralization for ALDs and 

recommended a sizing method. Mukhopadhyay et al. (2007) 

extended this work. Models for calcite dissolution and gyp-

sum precipitation in ALDs have been described (Huminicki 

and Rimstidt 2007), including waters with SO4
2− concen-

trations above 1500 mg L−1. Hedin et al. (2010, 2013) 

described an ALD that has treated influent mine drainage 
of pH 6, 36 to 58 mg L−1 of acidity, 42 mg L−1 of Fe, and 

<1 mg L−1 of Al at a flow of 430 L min−1 without mainte-

nance for 18 years. The water produced was net alkaline 

after Fe precipitation in settling ponds.

Skousen and Ziemkiewicz (2005) evaluated 36 ALDs and 

observed a wide range of acid load treatment (0–130 t year−1) 

but found no apparent relationships between ALD effective-

ness and the pH of influent water or residence time. The 
average acidity removal rate was 86 g t−1 day−1 of lime-

stone. Zipper and Skousen (2010) demonstrated that these 

systems’ alkalinity-generating performance increased in 

response to increasing influent acidity and residence times. 
However, Hedin et al. (1994) found that treatment effective-

ness decreased as calcite saturation was approached. When 

properly designed, ALDs perform well over the expected 

lifetimes and are the most consistently efficient and cost-
effective passive treatment systems in terms of the cost per 

metric ton of acid removed (PA BAMR 2009; Ziemkiewicz 

et al. 2003).

Open Limestone Channels

OLCs are constructed with large dimension limestone in 

areas with steep slopes into which AMD flows (Ziemkie-

wicz et al. 1994). The AMD is neutralized and oxidized 

by the OLC (Fig. 7), which causes precipitation of metal 

hydroxides. The metal hydroxides coat the limestone sur-

faces or plug the limestone channel, thereby retarding 

neutralization. Research has shown that coated (armored) 

limestone continues to dissolve but at a much slower rate 

(20 % reaction rate) than unarmored limestone (Pearson 

and McDonnell 1975). Ziemkiewicz et al. (1997) confirmed 
the slower reaction rate and found armored limestone to be 

10–50 % as reactive as unarmored limestone. Santomartino 

and Webb (2007) found limestone armoring to be comprised 

degraders, and the cellulose-degradation rate likely deter-

mines sulfate reduction rates in most materials. Most lignins, 

however, are degraded slowly, if at all. Place et al. (2006) 

and Zagury et al. (2006) have determined the cellulose and 

lignin composition in a variety of organic materials. Some 

researchers have found that composted materials perform 

less well than “fresh” organic material (e.g. manure), but 

composted materials work well in most cases, are less odif-

erous, and release less nitrates downstream.

A relatively recent innovation is the use of chitin-bear-

ing crab shell waste as a component of the organic layer 

(Newcombe and Brennan 2010; Robinson-Lora and Bren-

nan 2010). Crab shells consist of very thinly intermixed chi-

tin, an easily biodegradable organic material, and CaCO3 

accompanied by simpler organic compounds. The very fine 
intergrowth of these materials makes it very effective in pro-

moting sulfate reduction and neutralization and adsorption 

of contaminants. The rate of acidity removal by chitin-based 

media was more than ten times greater than by limestone-

amended compost (Robinson-Lora and Brennan 2010), but 

the material is relatively costly at present.

Geochemical Systems

Anoxic Limestone Drains

ALDs are buried trenches or beds filled with limestone into 
which anoxic AMD is introduced (Fig. 6). Based on early 

practical work (Brodie et al. 1991; Nairn et al. 1991; Skou-

sen 1991; Turner and McCoy 1990), Hedin et al. (1994) 

provided geochemical justification for the long-term per-
formance of ALDs. For effective operation, ALDs must be 

sealed to minimize O2 entry and CO2 escape. AMD ema-

nating from underground will generally have low DO con-

centrations (<1 mg L−1) and elevated CO2 partial pressures 

(pCO2) values (>10−1 atm). On contact with acid water 

under low DO and high pCO2 conditions, limestone dis-

solves, raising pH and adding bicarbonate alkalinity. Under 

these conditions, limestone dissolution is controlled by 

the saturation index of calcite. Limestone does not coat or 

armor if Fe is present in the ferrous (Fe2+) state, as ferrous 

hydroxide (Fe(OH)2) does not form until pH > 8.0, which 

is higher than what is achieved in properly functioning 

ALDs. Appreciable concentrations of dissolved Fe3+ or Al 

will result in precipitation and coating of limestone surfaces 

(Watzlaf et al. 1992; Ziemkiewicz et al. 1997) or in clog-

ging of the interstitial spaces (Faulkner and Skousen 1994; 

Watzlaf et al. 1994), which degrades system performance 

and shortens the effective lifespan (Nairn et al. 1992; Wat-

zlaf 2000a). To minimize the risk of failure, influent AMD 
should contain less than 1 mg L−1 dissolved Fe+3, Al, and 

O2 (Hedin et al. 1994). Since AMD often contains elevated 

concentrations of dissolved Fe3+, Al, and O2, other passive 
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events and physical agitation with heavy equipment will 

rejuvenate limestone treatment effectiveness by exposing 

fresh surfaces. In appropriate situations, OLCs are being 

implemented for long-term treatment. OLCs are most effec-

tive at the upstream side of a passive treatment sequence 

where the AMD is most acidic. OLC efficiency decreases as 
pH increases above 3.0.

Limestone Leach Beds

LLBs are small basins filled with coarse (2–10 cm diam-

eter) limestone scaled to provide at least 30 min of residence 

time (Fig. 8). They can be constructed at the upwelling of an 

AMD seep or in an underground mine discharge. They can 

be also used to pre-treat AMD with low pH (<3.0) and DO 

(<1 mg L−1) in either an upward or downward flow strategy. 
The latter, however, are more prone to clogging. Black et 

al. (1999) reported that a 30 min residence time in LLBs 

was sufficient to remove about 50 % of the acid load from 
slightly acidic water (pH 6.0, ≈20 mg L−1 of influent acid-

ity). They also found that 30 min of contact with limestone 

removed much of the proton acidity in pH 3.0, metal-free 

water. Ziemkiewicz et al. (2002) reported that LLBs were 

useful at the upstream end of OLCs since they shortened 

their required length, improved their service life, and were 

easily serviced. LLBs can also be used as stand-alone sys-

tems. Self-flushing systems can be incorporated into LLBs 
to better control residence time while providing more effec-

tive floc removal.
An up-flow, manually-flushed LLB was constructed 

at Strattanville, PA, in 2004 to treat water with 400–

650 mg L−1 acidity and pH 4.5 at a flow rate of 380–
570 L min−1 (Schueck et al. 2004). The pond had an area 

of 61 × 14 m and contained 1.3 m of limestone aggregate 

(2.5 cm maximum dimension). The water entered through 

perforated pipes in the bottom of the limestone layer and 

flowed upward to the surface. The pond was flushed down-

ward periodically. It generated 175–250 mg L−1 alkalin-

ity in the first year, but was only flushed twice during the 
succeeding 2 years and subsequently clogged. In 2007, the 

pond was expanded to about 140 × 18 m area, 1.3 m of new 

limestone aggregate was placed, and a daily timed-flushing 
system was installed. The effluent now averages pH 5.9 and 
260 mg L−1 acidity. The effluent flows to a settling pond and 
then to a large SRB for further treatment.

LLBs have also been used to raise the alkalinity in metal-

free water, which can then be mixed with AMD. Thorne and 

Pitzer (2003) describe two sites where LLBs were success-

fully used to treat acidic water containing low concentrations 

of dissolved metals, which then flowed to a lake resulting in 
restored fish populations in the lake as well as its receiv-

ing stream. Others have used LLBs to renovate outflows 
from other passive systems containing low concentrations 

of Fe-bearing minerals including goethite and lepidocrocite, 

but that the limestone continued to react despite this armor-

ing, and that armoring can be removed by agitation. There-

fore, OLCs are most effective in treating AMD on steep 

slopes that receive periodic scouring from storm flows.
Field studies have found OLCs to be functional at 

many sites, and they are extremely inexpensive to con-

struct and maintain. Seven OLCs reduced AMD acidity by 

4–205 mg L−1, at removal rates of 0.03–19 mg L−1 per 

meter of channel length (Ziemkiewicz et al. 1997). The 

highest removal rates were for channels on relatively steep 

slopes (45–60 % slope) and highly acidic waters (500–

2600 mg L−1). In another study, three OLCs were found to 

neutralize 30–60 % of the incoming AMD acidity (Ziem-

kiewicz and Brant 1997). Cravotta and co-workers have 

experimented with OLCs for several large AMD flows 
with relatively low Fe (<10 mg L−1) and Al concentrations 

(Cravotta 2007, 2008a, b; Cravotta and Trahan 1999; Cra-

votta and Ward 2008; Cravotta et al. 2004, 2008). In these 

systems, aerated AMD with low acidity passed through a 

bed of relatively coarse limestone, where Fe and Al pre-

cipitated as loose flocs and coatings. They found that much 
of the Fe and Al floc either washed out of the drains during 
storm events or had limited effect on inhibiting limestone 

dissolution, so effective neutralization and metal removal 

continued for many years. However, if the flow chan-

nelized or the water had higher Fe levels, the limestone 

became coated and pore spaces in the limestone channel 

became clogged.

OLCs are effective for a wide range of acidities and 

metal loadings, and they work best on slopes > 20 %. In 

practice, the slow reaction rate for armored limestone can 

be compensated for by extending the channel length/resi-

dence time (Ziemkiewicz et al. 1997). Flushing of coated 

limestone with sediment-laden water during high rainfall 

Fig. 6 Anoxic limestone drains are buried trenches of limestone. Care 

must be taken to introduce anoxic water with low Al concentrations 

(Photo: J. Skousen)
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specialty (stainless) steel slags that contain higher concen-

trations of toxic metals such as nickel, chromium, and lead. 

These specialty slags should be avoided unless thoroughly 

characterized.

Many AMD-impaired watersheds have some uncon-

taminated water upstream of the AMD sources. Often this 

uncontaminated water is slightly acidic with little or no 

alkalinity, so it has little buffering effect on downstream 

AMD. Steel slag is used to enhance the alkalinity of these 

uncontaminated water sources. The slag’s capacity to gen-

erate alkalinity can be estimated by jar tests since the rate 

of alkalinity generation when placed in water is generally 

very fast. With the alkalinity concentration known, the flow 
rate of water can be regulated to achieve a specific load of 
alkalinity that can be targeted to neutralize the AMD load 

(Ziemkiewicz 1998).

Steel slag leached with distilled water can produce an ini-

tial alkalinity of over 2000 mg L−1. Leachate pH from slag 

can be >11; the alkalinity comes from CaO and tri-calcium 

silicate minerals. The former is highly soluble and is quickly 

released, while the latter provides long-term, but much less-

concentrated alkalinity. Ultimately, the amount of alkalinity 

generated depends on particle size and contact time. SLBs 

should be charged with metal-free water because exposure 

to AMD results in rapid clogging with Fe and Al hydrox-

ides (Ziemkiewicz 1998). Even with metal-free water, the 

high pH of these beds will result in carbonization and calcite 

formation which will cause clogging over time; this can be 

minimized by maintaining a water cap over the slag.

Simmons et al. (2002a, b) used check dams made of 

fine steel slag and limestone, in combination with an 
OLC, to treat several small flows of water with acidities of 
12–30 mg L−1, and a pH of 4.1–5.0. The LLB-SLB system 

generated effluents with an alkalinity of 170–225 mg L−1 

and a pH of 8–9.5 for over a year. In Ohio, extensive 

of remnant undesirable levels of Fe, Al, and Mn (Hilton et 

al. 2003).

A recent development has been the use of flushed LLBs 
to treat high-Al discharges (Hedin et al. 2013; Wolfe et al. 

2010). In these systems, a bed of limestone gravel a meter 

or more thick is filled with AMD and then periodically 
flushed by opening a valve to allow rapid flow of the treated 
AMD out of the LLB and into a settling pond. The rapid 

flow flushes much of the Al and Fe hydroxide flocs from the 
LLB. The flushing can be performed manually or with an 
automated device. Experiments by Wolfe et al. (2010) show 

that about 50 % of the floc is flushed if the LLB is drained 
weekly. In one experiment, a LLB received AMD with pH 

3, 10 mg L−1 of Fe, 15 mg L−1 of Mn, and 27 mg L−1 of 

Al for 2 years with weekly flushing. A net-alkaline effluent 
was maintained during this period. After about 2 years, the 

limestone was cleaned by agitating it with an excavator and 

removing the dislodged precipitates by flushing, after which 
the system regained its original neutralization capability. 

Like OLCs, these systems require periodic maintenance to 

remove accumulated solids.

Steel Slag Leach Beds

Steel slag is a byproduct of steel production and is often 

available from metal recovery operations that mine old slag 

piles and grind the slag into sand to fine gravel sizes. The 
residual material is thus uniformly sized for use in AMD 

treatment. SLBs, first described by Ziemkiewicz (1998) 

and Ziemkiewicz and Skousen (1998), use steel slag as a 

cost-effective means of generating alkalinity for introduc-

tion into AMD sources. The alkalinity content (or liming 

potential) of steel slags ranges from 45 to 78 % CaCO3 

equivalent. Ziemkiewicz and Skousen (1998) recommend 

the use of basic steel slags, which are distinguished from 
Fig. 8 Limestone leach beds add alkalinity to fresh water, which can 

then be mixed with AMD for treatment (Photo: J. Skousen)

 

Fig. 7 Open limestone channels are streams or ditches lined with 

limestone rock. Although the limestone becomes coated with precipi-

tates, dissolution and acid neutralization continues but at lower rates 

than for uncoated limestone rock (Photo: J. Skousen)
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Limestone Sand Treatment

LS sand treatment is the addition of sand-sized limestone 

to streams in a watershed (Zurbuch 1996). The sand is sus-

pended by the streamflow and redistributed downstream, 
neutralizing acid as the energy of the stream transports the 

limestone (Fig. 10). Coating of limestone particles with Fe 

hydroxides can occur, but the energy of the water in the 

stream causes agitation and scouring of limestone to keep 

fresh limestone surfaces available for reaction. This tech-

nology can be more cost effective on a watershed scale than 

more conventional passive treatment of AMD discharges 

if resources for continued additions of limestone sand are 

available.

reclamation efforts at the Broken Aro Mine have used 

SLBs receiving both AMD and metal-free water (Laverty 

et al. 2007). The SLBs have been used in combination 

with surface water diversion, VFWs, settling ponds, and 

other technologies to remediate this highly polluted area. 

The SLBs, which contained about 10,000 t of steel slag, 

contributed large amounts of alkalinity, causing the acid 

load from the area to decrease by 700 kg day−1. Success-

ful water treatment was similarly attained using SLBs and 

other techniques at the Huff Run watershed in Ohio (Ham-

ilton et al. 2007).

Diversion Wells

A diversion well is a simple device, initially developed for 

treatment of rainfall-induced stream acidity in Norway and 

Sweden (Arnold 1991), and has been adopted for AMD 

treatment in the eastern USA. A typical diversion well 

consists of a cylinder or vertical tank of metal or concrete, 

1.5–1.8 m in diameter and 2–2.5 m in depth, and filled 
with sand-sized limestone erected in or beside a stream or 

sunk into the ground beside a stream (Fig. 9). A large pipe, 

20–30 cm in diameter, enters vertically down the center of 

the well and ends shortly above the bottom. Acidic water 

is fed to the pipe from an upstream dam or deep mine por-

tal with a hydraulic head of at least 2.5 m (above the well 

height). The incoming water exits the pipe near the bot-

tom of the diversion well under pressure and then flows 
back up through the limestone in the well, thereby fluid-

izing the bed of limestone in the well. The flow rate and 
water energy must be large enough to agitate and fluidize 
the bed of limestone particles. The acidic water dissolves 

the limestone, generating alkalinity; metal flocs produced 
by hydrolysis and neutralization reactions are kept sus-

pended and are flushed through the system by the water cur-
rent out through the top of the well. The churning action of 

the fluidized limestone also aids limestone dissolution and 
helps remove Fe hydroxide coatings so that fresh limestone 

surfaces are continually exposed. Metal flocs suspended 
in the water can be settled in a downstream settling pond. 

The limestone in the well must be replenished frequently, 

commonly weekly to monthly, depending on water flow and 
acidity concentrations.

Arnold (1991) used diversion wells for AMD treat-

ment in PA and reported that three wells increased pH in 

the stream from 4.5 to 6.5, with corresponding decreases 

in acidity. Diversion wells reduced water acidity by 60 % 

at the Casselman River (Ziemkiewicz and Brant 1997). At 

the Galt site in WV, a diversion well increased pH from 3.1 

to 5.5 and reduced acidity from 278 to 86 mg L−1, a 70 % 

reduction (Faulkner and Skousen 1995). Pulsing systems 

have also been devised to increase the alkalinity from diver-

sion wells (Sibrell et al. 2005, 2013).

Fig. 10 Limestone sand can be placed in polluted streams to treat 

AMD. The turbulence in the stream aids limestone dissolution and 

minimizes metal-precipitate armoring, improving its effectiveness 

(Photo: J. Skousen)

 

Fig. 9 Diversion wells are cylindrical concrete or metal tanks filled 
with limestone. A metal pipe extends down the length of the tank and 

carries AMD to the bottom of the tank under pressure to agitate and 

fluidize the limestone in the tank to minimize coating and enhance dis-

solution (Photo: J. Skousen)
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oxidation channels removed some Fe, but removal efficien-

cies have not yet been determined.

Summary

The eastern USA has a long history of dealing with AMD 

from mining operations. Over the past several decades, a 

number of researchers and reclamation practitioners have 

contributed to the development of AMD passive treatment 

designs and science. With careful design and construction, 

systems can be effective over a wide range of metal and 

acidity concentrations. Relative to chemical treatment, pas-

sive systems require longer retention times and larger land 

areas. They are subject to failure if poorly designed and 

constructed, particularly if not correctly scaled to the target 

discharge flow and acid and specific metal concentrations. 
At their present stage of development, passive systems work 

well on low volume AMD discharges (<400 L min−1) con-

taining moderate to high acidity and metals. Passive sys-

tems have been shown to effectively treat larger flows (up to 
10,000 L min−1) for net alkaline water containing Fe.

A critical activity in passive treatment is the selection 

of the proper system type for a given situation. Factors to 

be considered in selection include the quality and quantity 

of waters to be treated, water treatment goals, access, and 

the land resources available for use in system construction 

(Fig. 1). Generally, larger land areas (relative to anticipated 

The State of West Virginia used limestone sand additions 

to restore several river systems. About 450 km of streams 

affected by acid deposition and AMD were treated. For exam-

ple, in the Middle Fork River, 41 sites in tributary headwa-

ters were loaded with limestone sand (Zurbuch 1996). Based 

on the annual acid load of the river (2000 t year−1), 500 t of 

limestone sand were added at 3 month intervals (quarterly). 

The pH has been maintained above 6.0 for several km down-

stream of the treatment sites and the anticipated coating on 

the limestone sand was not observed. Quarterly additions of 

limestone sand will be required to maintain water quality for 

fish populations over an extended period. A follow-up study 
(Brown 2005) reported continued success of the West Virginia 

limestone sand treatment project. River pH of the Middle Fork 

increased from 4.9 to 6.8, with conversion from net-acidic 

to net-alkaline water. A section of 200 km was restored to a 

trout fishery by this method. McClurg et al. (2007) studied the 

effects of limestone sand immediately downstream of applica-

tion points. Small increases in Fe and Ca were observed in 

sediments within 100 m of the treatment site.

Constant addition of limestone sand or hydrated lime 

from a silo through an automatic feeder (doser) has shown 

good results in Maryland (Mills J., Personal communica-

tions on stream dosing and slag beds, MD Bureau of Mines, 

2009). Dosers on severely contaminated streams have led 

to fish recovery in the Potomac River and several tributar-
ies. The stream immediately below the limestone sand doser 

is impacted by Fe and Ca flocs, but most of the stream is 
greatly improved. Dosers have been installed on several 

streams and discharges in Pennsylvania. Thus, limestone 

sand application has been demonstrated to be an effective 

technique to restore fisheries in large watersheds.

Low-pH Fe Oxidation Channels

Low-pH Fe oxidation channels are a relatively recent inno-

vation that can be used to partially treat high Fe discharges 

(Burgos et al. 2008; Hilton 2005). A shallow channel is con-

structed and lined with limestone or sandstone aggregate 

to enhance Fe oxidation and to promote adsorption and co-

precipitation on rocks in conjunction with Fe-oxidizing bac-

teria. At a pH above 4.5, the rate of Fe2+ oxidation increases 

markedly by combinations of abiotic and biotic catalysis, 

but at a pH below about 3.5, the process can be catalyzed 

by specialized bacteria. A number of sites where this occurs 

naturally have been identified (Hilton 2005). At these sites, 

channel slopes and wide flow paths enable adequate air 
contact (Fig. 11). Fe2+ is oxidized to Fe3+, some of which 

precipitates, thereby decreasing dissolved metal concentra-

tions. In the absence of limestone, the pH decreases from 

the released H+ and the acidity remains very low, but subse-

quent treatment of the acid is easier. At some sites, nearly all 

of the dissolved Fe was removed (Hilton 2005). The low-pH 

Fig. 11 Low pH Fe oxidation channels can remove Fe concentrations 

in water even when water pH is low (Photo: T. Danehy)
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effectiveness. Improved strategies for maintaining these 

systems’ acid-removal efficiencies over longer terms are 
needed, as are design features that can ease essential main-

tenance tasks and increase functional lifetimes.

AMD remains a problem in mining districts throughout 

the world, so the passive treatment technologies described 

in this paper have the potential for broad application. Con-

tinued development of new technologies and improvement 

of known systems through observation and research will 

undoubtedly further increase efficiencies and extend effec-

tiveness for a broader range of water types and flows and 
different climatic environments.
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