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ABSTRACT Road pavement cracks detection has been a hot research topic for quite a long time due to

the practical importance of crack detection for road maintenance and traffic safety. Many methods have

been proposed to solve this problem. This paper reviews the three major types of methods used in road

cracks detection: image processing, machine learning and 3D imaging based methods. Image processing

algorithms mainly include threshold segmentation, edge detection and region growing methods, which are

used to process images and identify crack features. Crack detection based traditional machine learning

methods such as neural network and support vector machine still relies on hand-crafted features using image

processing techniques. Deep learning methods have fundamentally changed the way of crack detection

and greatly improved the detection performance. In this work, we review and compare the deep learning

neural networks proposed in crack detection in three ways, classification based, object detection based and

segmentation based.We also cover the performance evaluationmetrics and the performance of thesemethods

on commonly-used benchmark datasets. With the maturity of 3D technology, crack detection using 3D data

is a new line of research and application. We compare the three types of 3D data representations and study

the corresponding performance of the deep neural networks for 3D object detection. Traditional and deep

learning based crack detection methods using 3D data are also reviewed in detail.

INDEX TERMS Crack detection, image processing, deep learning, 3D imaging.

I. INTRODUCTION

With the rapid development of road traffic, people have

paid more and more attention to the importance of pave-

ment maintenance as road surface cracks not only affect the

transportation efficiency but also pose a potential threat to

vehicle safety. Many studies have been conducted to detect

the cracks of pavement surfaces. In early pavement crack

detection system, people analyzed the road images collected

by line scan or area scan cameras to examine the road

conditions. Such systems include the GERPHO [1] system

used in France, the DHDV [2] detection system of American

expressway, and the PAVUE [3] system of IMS in Sweden

and so on. The development of hardware technologies such

as the appearance of CCD [4] digital photography has greatly

advanced the effect of pavement crack detection.

Defect detection is to distinguish the part with defect fea-

tures from other defect free parts in the image, which has

both links and differences with image segmentation. From the

Wikipedia definition [5], image segmentation is the process

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Zhou .

FIGURE 1. Sample surface defect types: CRACK-Crack, POTHO-Pothole,
INPAT-Inlaid patch, APPAT-Applied patch, OPJOI-Open joint.

of assigning a label to every pixel in an image such that pixels

with the same label share certain characteristics. The idea

of image segmentation can be used to segment the defect

and the rest part of the image. The defects appearing on the

surface may have various shapes and types. Fig.1 shows a few

examples. Therefore, defect detection usually contains two

subtasks, i.e. locate the defect pixels and classify the type of

the defects.

Researchers have conducted in-depth researches on road

crack detection and proposed many methods to crack the

problem, from image processing to machine learning meth-

ods, including deep learning methods which have been

widely used nowadays. Image processing methods mainly
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include three categories [6], threshold segmentation, edge

detection and region growing methods. The threshold seg-

mentation method divides the image pixels into several cat-

egories by setting a proper pixel intensity threshold, so as

to separate the target crack from the background. The edge

detection method detects the edges of the road crack through

edge detection operators such as Sobel operator [7], Prewitt

operator [8], and Canny operator [9]. The region growing

method depicts the specific information inside the crack by

assembling the pixels with similar characteristics to form a

region.

The emergence of machine learning makes road crack

detection rise to a new level. Image processing techniques

can only be able to analyze some superficial defect fea-

tures, while machine learning can learn some deep features.

Machine learning takes advantage of the similarity between

data through the design of algorithms, so that the computer

can master the learning rules and predict from the unknown

data by itself. Especially, deep learning methods have greatly

advanced the accuracy of pavement crack detection.

Unlike other types of surface defects, pavement cracks are

usually deep and have large size, such as block cracks and

alligator cracks [10]. It is practically meaningful to measure

and detect the depth of the cracks. The detection of crack

depth can predict the future trend of the crack, which is

helpful to repair the pavement in time and reduce potential

safety risks [11]. In recent years, 3D imaging technology

has achieved great progress, making cracks detection in 3D

images has become a new research direction for scholars.

Owing to the extra depth dimension, the 3D structure of

road cracks can be constructed from the 3D images. Besides

this, 3D images can reduce the effect of shadow and other

noise [12].

In recent years, there have been several reviews available

from the literature. Sylvie et al. summarized the application

of image processing technologies in road detection, and pro-

posed a new automatic road cracks detection and evaluation

comparison protocol [13]. In the work of [14], Gopalakrish-

nan compared some deep learning frameworks, networks and

hyper-parameters used in pavement crack detection, and clas-

sified the previous papers, which provided a good reference

for developing pavement crack detection models. Tom et al.

listed different kinds of pavement defects, discussed different

defect detection methods and assessed different defect data

acquisition devices [15]. In [16]Mathavan et al. discussed the

detection of road surface lesions from the perspective of 3D

image defect detection, summarized the application of 3D

imaging technologies in road surface monitoring, analyzed

the imaging principle of different devices and compared the

advantages and disadvantages of different pavement detec-

tion technologies. These reviews address different emphasis

or aspect on road surface detection. In this review, we provide

a comprehensive review of pavement crack detection meth-

ods, especially the in-depth analysis of deep learning and 3D

image based methods.

The rest of the paper is organized as follows. Section II

briefly reviews the crack detection methods mainly based

on image processing techniques. Crack detection based on

machine learning methods, including unsupervised learn-

ing, traditional supervised learning and deep learning, are

reviewed in Section III. Section IV talks about the 3D imag-

ing technologies and corresponding methods for pavement

defect detection. Discussions about the existing problems and

the prospect of crack detection is presented in Section V.

Section VI concludes this work.

II. CRACK DETECTION BASED ON IMAGE PROCESSING

Pavement is exposed to the natural environment for long

time, often affected by rain, shadow, stains and other factors.

Therefore, the images captured by imaging sensors usually

contain a lot of noises, textures and interferences. Cracks

on images appear as thin, irregular, dark curves, surrounded

by strong textured noise. Researchers have proposed various

image processingmethods to reduce the influence of the noise

on detection. These methods mainly include three categories:

threshold segmentation, edge detection and region growing.

A. THRESHOLD SEGMENTATION METHODS

Threshold segmentation [17] is a classical method in image

segmentation. For each pixel in the image, we can judge

whether its characteristic attributes meet a threshold require-

ment to determine the pixel belongs to the target area or the

background. This way, we can convert a gray image into a

binary image. Let f (x, y) be the original image and T be the

threshold value, image segmentation can be written as

g(x, y) =

{

1, f (x, y) ≥ T

0, f (x, y) < T

Obtaining reasonable threshold value is the key of this

method. Dynamic threshold method and local threshold

method have achieved good results in pavement defect detec-

tion. Oliveira and Correia [18] recognized the potential cracks

by identifying dark pixels in images with dynamic thresh-

old. In their work, thresholded images are divided into non-

overlapping blocks by entropy computation, and secondary

dynamic threshold of the generated Entropy Block Matrix

is used as the basis for identifying image blocks containing

crack pixels. Peng et al. proposed a twice-threshold segmen-

tation [19]. Firstly, the improved Otsu threshold segmentation

algorithm was used to remove the road markers in the run-

way image. Then, the improved adaptive iterative threshold

segmentation algorithm was used to segment images which

removed the markers. Finally, the outline of the crack can

be obtained through morphological denoising. In [20], a new

multi-scale local optimal threshold segmentation algorithm

was proposed to segment pavement cracks through crack den-

sity distribution. Compared with the global threshold method

and the optimal threshold method, this method achieved a

better segmentation effect.
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FIGURE 2. Detection effect of different edge operators.

B. EDGE DETECTION METHODS

Edge detection methods can also be used in crack detec-

tion. Common edge detection operators include Sobel oper-

ator, Roberts operator, Prewitt operator and Canny operator.

Different operators have different detection effects on edge

of the same type. Fig. 2 shows an example. Simply using

a single operator can hardly reach the expected effect.

Many scholars have improved the edge detection operators.

Zhao et al. proposed an improved Canny edge detection

method for road edge detection [21]. Mallat wavelet trans-

form was used to enhance the blurred edge, and a better

adaptive threshold Canny algorithm is obtained by using

genetic algorithm [22]. Ayenu-Prah and Attoh-Okine [23]

studied the road crack detection method which combines

bi-dimensional empirical mode decomposition (BEMD) and

Sobel edge detection. BEMD is an extension of EMD [24],

which removes noise from the signal without the need for

complex convolution processes.

C. REGION GROWING METHODS

The edge detection algorithm can get the edge distribution

of crack defects and outline the crack contour, but it can

not describe the information of internal pixels of cracks

concretely. The recognition method based on region growing

provides another idea for pavement crack detection. The basic

idea of region growing is to gather similar pixels to form

a region. The selection of seeds is very important, which

greatly affects the accuracy of image segmentation. In the

work of [25], after the road surface image was preprocessed,

the lane was marked and the uneven background part was

also processed. Then, the crack seeds were selected by grid

cell analysis and connected by Euclidean minimum spanning

tree structure. In this way, cracks can be detected quickly and

effectively. Li et al. proposed an automatic cracks detection

method based on FoSA-F* seed growth for better detection

of blurred and discontinuous cracks [26]. It exploited seed-

growing strategy to eliminate the requirement that start and

end points should be surrounded in advance. The global

search space is reduced to the interested local space to

improve the search efficiency.

III. CRACK DETECTION BASED ON MACHINE LEARNING

Machine learning has become a hot research topic and widely

used in various areas. It can give predictions by learning the

rules embedded in the data. Supervised learning and unsuper-

vised learning are commonly used for cracks detection and

analysis.

A. UNSUPERVISED LEARNING METHODS

The biggest difference between unsupervised learning and

supervised learning is absence of data labels in training.

Training samples for unsupervised learning have no labels

and no definite results for output, the computer needs to

learn the similarity between samples by itself and classify the

samples. The advantage of unsupervised learning is that there

is no need to label, reducing the influence of human subjective

factors on the results.

Akagic et al. proposed a new unsupervised road crack

detection method based on gray histogram and Otsu method,

and a better results were obtained under the condition of

low signal-to-noise ratio [27]. In [28], Amhaz et al. intro-

duced an improved unsupervised learning algorithm based on

minimum path selection, which reduced the loop and peak

artifacts in crack detection by estimating the crack width.

In [29], Li et al. used a method based on the minimum

intensity path of the window to extract candidate cracks at

each scale in the image, compared the corresponding relations

of different scale cracks, established a crack evaluation model

based on multivariate statistical hypothesis.

B. SUPERVISED LEARNING METHODS

Supervised learning needs the labels of the training data.

Common supervised learning algorithms include logis-

tic regression [30], Naive Bayesian [31], Support Vector

Machine [32], artificial neural network [33] and random

forest [34]. Xu et al. used the self-learning characteristic of

neural network to transform cracks recognition into crack

probability judgment of each sub-block image in the work

of [35]. They first divide the binary image of cracks into sub-

images and extract the parameters representing the features of

crack from each sub-image, then select representative images

to train back propagation neural network. In [36], Crack For-

est, a road crack detection framework based on random struc-

ture forest, was proposed to effectively solve the problems

of uneven edge cracks and cracks with complex topological

structures. The authors extracted crack features frommultiple

levels and directions to train the random forest model. In [37],

an automatic pavement crack detection scheme is proposed.

Firstly, the crack image is preprocessed to smooth its texture

and enhance any existing cracks. Then the image is divided

into several non-overlapping blocks, each block produces a

feature vector, and the supervised learning algorithm support

vector machine is used to detect the cracks. These methods

heavily rely on the high-quality features extracted from the

images, which needs careful design of the algorithms.

1) DEEP LEARNING METHODS

In recent years, deep learning technologies have achieved

tremendous success in various computer vision tasks such as

image classification, object detection and image segmenta-

tion [38]–[42].Many deep learning basedmethods, especially

deep convolution neural networks, have been proposed for
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road crack detection. According to the way of handling the

crack detection problem, these methods can roughly divided

into three categories, pure image classification methods,

object detection based methods and pixel-level segmentation

methods.

a: CRACK DETECTION BASED ON CLASSIFICATION

Basically, this category of methods divide the input image

into overlapping blocks, and then classify the block image

into classes. If the block contains a certain number of defect

pixels or more, the block is labeled as defective block.

Crack Detection Based on Binary Classification: This kind

of methods divide the input images into overlapping blocks

and then use a deep convolution network to decide if the

block contains crack or not. For example, Lei et al. divided

the road image of 3264 × 2248 into small patches of size

99 × 99 × 3, and used their convolution neural network to

classify these small patches [43]. The output is the probability

that the small patch is crack or not. In the work of [44],

Li et al. modified GoogLeNet [45] to classify image blocks

and realized crack detection on real pavement using smart-

phone. In [46], Cha et al. used MatConvNet [47] to classify

the input pavement 256 × 256 images. Similarly, in [43],

the authors generated image patches of 99×99 from original

pavement images, where the patch is defective if its center

pixel is within 5 pixels of the crack center. The CNN model

was compared to the performance of SVM and boosting

methods. Leo et al. studied the relationship between net-

work depth and network accuracy using a self-designed CNN

model [48]. Unlike the work mentioned above, Chen et al.

processed pavement videos in [49]. In this work, a CNN

model was designed to classify the image patches of size

120 × 120 sampled from video frame and then adopted a

naive Bayes data fusion scheme to aggregate the information

obtained from each video frame to enhance the overall per-

formance and robustness of the system.

Crack Detection Based on Multi-Class Classification:

Crack detection based binary classification is not suitable for

the case when it is required to decide the defect types. In [50],

Fan et al. used one CNN model to learn the structure of

the pavement cracks as a multi-label classification problem.

Small crack image patches of 27 × 27 were used as the

input and the output layer had s × s nodes, representing the

intensity states of square block centered at the crack pixel.

For example, if s = 5, the model predicts 25 pixel state of the

block image of 5× 5. During training, the input 27× 27 was

resized to 5×5 as the ground truth. In [51], Li et al. proposed

a deep CNNs for pavement crack classification based on 3D

pavement images, and classify pavement patches cut from 3D

images into five categories including the normal category.

They trained four supervised CNNs classification models

with different sizes of receptive field, and find that different

size of receptive field have a slight effect on the classification

accuracy. The method proposed by Wang and Hu [52] is

quite different from above methods. In this work, the input

pavement images are segmented into non-overlapping grids

of size 32 × 32 or 64 × 64, then a simple CNN is used to

classify the grid image to decide if it contains crack. After

this, crack skeleton can be represented by the grid cells con-

taining cracks. PCA (principal component analysis) is used to

process the coordinate vector of the crack grid cells to decide

the crack type to be longitudinal, transverse or alligator crack.

b: CRACK DETECTION BASED ON PIXEL SEGMENTATION

Pixel segmentation is to assign a label or a score to each pixel

in the image. In [50] Fan et al. proposed a network structure

with 4 convolutional layers with 2 max-pooling layers and

3 Fully Connected layers to directly segment the original

images. The output can have different resolution, from 1× 1

to 5 × 5. In [53] Jenkins et al. proposed a semantic segmen-

tation algorithm for road cracks based on U-Net, where the

U-Net is basically encoder-decoder structure [54]. This net-

work can be divided into encoder layer and decoder layer. The

encoder layer mainly realizes feature mapping of images, and

the decoder layer is mainly used to promote feature vectors

during segmentation and generate probability distribution of

each pixel. Similarly, Zou et al. [55] proposed DeepCrack

which uses encoder-decoder architecture to segment pave-

ment image pixels into crack and background. And in [56],

the propose network structure used 4 convolution layers and

max poolings as the encoder to extract features and 4 subse-

quent modules as the decoder. The work of [57] employed

residue connections inside each encoder and decoder block

and attention gating block before the decoder to retain only

spatially relevant features of the feature map in the shortcut

connection. Fully convolutional network is also often used for

segmentation purpose, such as [58], [59].

c: CRACK DETECTION BASED ON OBJECT DETECTION

Object detection is an important task in computer vision.

Its goal is to locate the object with a bounding box in the

image and decide the object type. Many deep CNN models

have been proposed to improve the accuracy and efficiency,

such as faster R-CNN [60], SSD [61], YOLO [62] etc. Object

detection methods are also popular in road crack detection.

Faster R-CNN is widely used in object detection, which

has three major steps, 1) extract image features using CNN

structure like VGG, 2) propose candidate regions for objects

(RPN), 3) classification of object types and bounding box

coordinates regression. The CNN structure in step 1 is shared

by step 2 and 3. In [63], Suh and Cha used faster R-CNN to

detect the damages in civil infrastructure. Cha et al. modified

the faster R-CNN by using a ZF-net to speedup the feature

extraction in step 1 [64]. ZF-net [65] is slightly modified

from AlexNet [66] which is relatively simple and fast. In [67]

Li et al. used the faster R-CNN to detect six kinds of road

defects. The model can automatically identify and locate

defects under different lighting conditions with high accuracy

and stability.

SSD [61] combines predictions frommultiple feature maps

with different resolutions to naturally handle objects of var-

ious sizes and completely eliminates proposal generation
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and encapsulates the region classification and coordinates

regression in a single network. This makes SSD much faster

than faster R-CNN. And MobileNet [68] is a well known

light weight deep neural networks for mobile applications.

To test the crack detection on devices with limited resources,

Hiroya et al. compared SSD using MobileNet, SSD using

Inception v2 [69] for object detection on smart phones and

found that SSD using Inception v2 is two times slower than

SSD-MobileNet [70]. This conclusion is not surprising as

MobileNet is designed for acceleration purpose.

Unlike above methods, Crack-pot method in [71] com-

bined traditional image processing techniques and deep learn-

ing methods to detect the potholes and cracks in the road.

In these method, edge detection, dilation, contour detec-

tion were applied to generate candidate bounding boxes

for suspected potholes and cracks. Then these regions were

feed into a classification model which is modified from

SqueezeNet [72] by replacing the last pooling layer with a

learned dictionary [73].

Methods based on object detection like SSD and faster

R-CNN propose multiple candidate regions and perform the

location regression using the image features extracted from

CNN structure is a systematic way for object detection.

For defects with compact shapes, these methods may work

well. However, for defects like long curves or scratches

on the surface, the methods may fail to detect due to the

overly large bounding box proposed by the Region Proposal

Network (RPN).

2) METRICS TO EVALUATE MODEL PERFORMANCE

a: PRECISION, RECALL AND F1

The three most commonly used parameters for evaluating

crack detection performance are precision, recall, and F1.

Precision is the ratio of the correct detected results to all

the actual detected results, recall is the ratio of the correct

detected results to all the results that should be detected.

The F1 is the harmonic mean of the precision and the

recall. Precision =
TP

TP+FP
, Recall =

TP
TP+FN

and F1 =

2∗TP
2∗TP+FP+FN

. The detection accuracy is defined as Acc =

TP+TN
TP+TN+FP+FN

. Table 1 shows the definition of FN (False

Negative), FP (False Positive), TN (True Negative) and TP

(True Positive).

TABLE 1. Definition of FN, FP, TN and TP.

b: ROC, AUC, and IOU

ROC (Receiver Operating Characteristic) [74] curve and

AUC (AreaUnder Curve) [75] can also be used tomeasure the

FIGURE 3. Two ROC curves and AUC.

detection performance. ROC curve describes the relationship

between TP rate and FP rate. Fig. 3 shows two ROC curves.

If the ROC curve is closer to the upper left corner, that’s

mean, FP is low, TP is high, and the better the model works.

Therefore, the Area under the ROC curve, namely AUC is

used to compare two ROC curves.

In object detection using models such as SSD, IOU (Inter-

section over Union) is often used to decide if the object is

correctly detected. The IOU means the overlap rate between

the bounding box given by the model and the ground truth

bounding box. If the IOU is larger than a predefined thresh-

old, which is usually 0.5, the object detection is considered

successful.

IOU =
Detection Result ∩ Ground Truth

Detection Result ∪ Ground Truth

c: AIU, ODS and OIS

In [76], the authors proposed three new evaluation metrics,

AIU, ODS and OIS. AIU is the average intersection over

union between the predicted area and ground truth area. ODS

represents the best F1 score on the dataset with fixed scale,

and OIS represents the aggregated F1 score on the dataset

with the best proportion of each image. ODS and OIS are

defined as follows:

ODS = max

{

2
Pt × Rt

Pt + Rt
: t = 0.01, 0.02, . . . , 0.99

}

OIS =
1

Nimg

Nimg
∑

i

max

{

2
Pit×Rt

Pt + Rt
: t=0.01, 0.02, . . . , 0.99

}

where t represents the threshold value, i is the index of image,

Nimg is the total number of images, Pt and Rt are precision

and recall at threshold t on the dataset. Pit and R
i
t represent

the accuracy rate and recall rate on image I respectively.

3) PUBLIC DATASETS FOR ROAD CRACK DETECTION

Road crack detection has been research topic for years. There

are many public datasets to help us do better research.
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a: CRACKFOREST DATASET (CFD)

The CrackForest dataset consists of 118 images of cracks on

urban road surface in Beijing taken by iphone5. Each image is

resized to 480×320 pixels and has been labeled. It is available

at https://github.com/cuilimeng/CrackForest-dataset.

b: AIGLERN DATASET

AigleRN dataset contains 38 pre-processed gray-scale

images on French pavement. Half of them are 991 × 462

and half of them are 311 × 462. The dataset is available at

http://telerobot.cs.tamu.edu/bridge/Datasets.html.

c: CRACK500

500 pictures of pavement cracks with the size of 2000×1500

were taken by smartphone. Each crack image has a binary

mask image for annotation. The dataset is divided into three

parts, 250 images for training, 50 for validation, and 200 for

test. It is available at https://github.com/fyangneil/pavement-

crack-detection.

d: GAPs DATASET

German asphalt pavement disease (Gaps) dataset, includ-

ing 1969 gray-scale pavement images, is partitioned into

1418 training images, 51 validation images, and 500 test

images. The image resolution is 1920 × 1080 pixels.

It is available at http://www.tu-ilmenau.de/neurob/data-sets-

code/gaps/.

e: RESULTS ON BENCHMARK DATASETS

The following tables list the results comparison on different

benchmark datasets. In Table 2 and Table 3, the tolerance

margin is the number of pixels of the predicted pixel away

from the ground truth pixel when we count the true negatives.

For example, if the tolerance margin is 2, a ground truth pixel

is hit if there is a predicted pixel within its 2-pixel neighbor-

hood. AIU, ODS, OIS are used to compare the performance

of different methods on CRACK500 dataset in Table 4.

TABLE 2. Test results on CFD dataset.

TABLE 3. Test results on AigleRN dataset.

Reference [80] presented GAPs dataset to test pavement

defect type classification. On this dataset, the authors com-

pared four methods, shown in Table 5, where the RCD

TABLE 4. Results comparison on CRACK500 dataset.

TABLE 5. Test results on Gaps dataset.

net [43] is just a simple and small CNN with four blocks

of alternating convolutional and max-pooling layers, and the

ASINVOS net [80] is modified from RCD net by adding

more blocks, the ASINVOS-mod [80] is a further version

of ASINVOS net by replacing large convolutional filters by

multiple smaller filters.

4) DATA AUGMENTATION

The training of deep neural network model requires a large

amount of data. However, it is costly to acquire and label

this amount of data. Data augmentation is an effective tech-

nique to relieve the problem. Common data augmentation

methods include image rotation, flipping, mirroring, adding

noise, changing the illumination etc. These techniques are

usually combined to get more data. Table 6 shows the data

augmentation techniques used in road crack detection.

IV. CRACK DETECTION BASED ON 3D DATA

Most of existing crack detection methods are based on

2D images. With the development of stereo camera and

range-based sensors, stereovision is becoming a promising

approach in crack detection as it can provide accurate and

robust data for the depth information.

A. REPRESENTATION OF 3D DATA

Basically, there are three kinds of 3D data representations,

namely, multi-view, point cloud and voxel data.

Earlier representations of 3D images were made through

multi-view. Multi-view represents a collection of 2D images

of a rendered polygon grid captured from different view-

points to convey 3D geometry in a simple manner, as shown

in Fig.4(a). This method is easy to understand, but difficult

to express the spatial structure of 3D data. On the other

hand, since multi-view projections can only represent 2D

contours of 3D objects, some detailed geometrical informa-

tion is inevitably lost during the projection process [81].

Point cloud is a set of points in the 3D space, where

each point is specified by the 3D coordinates (x, y, z) and

other information such as RGB value of color. These huge

amount of points are used to interpolate the geometric shape
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TABLE 6. Data augmentation.

FIGURE 4. Three expressions of 3D data, (a) Multi-view, (b) point cloud
and (c) voxels.

of object surface, the more dense point clouds are, the more

accurate models can be created, this process is called 3D

reconstruction, as shown in Fig.4(b). 3D scanners and LiDAR

devices can be used to generate point cloud data [82].

Point cloud data can convert to structured 3D regular

grids [83], namely, voxel. Voxel is the smallest unit of digital

data in 3D space segmentation, each unit can be viewed as a

grid with fixed coordinates. Similar to 2D image, it also has a

resolution, the finer the 3D space is divided, the smaller each

grid is, and the greater the resolution is. Fig.4(c) shows 3D

occupancy grids in different resolution. For easy reference,

we compared these three kinds of representation in Table 7.

B. COMPARISON OF DIFFERENT 3D REPRESENTATIONS

Different 3D data representation will affect the effectiveness

of the methods. We compared different methods in terms

FIGURE 5. Distribution of 3D object classification methods on data
representations.

of object classification performance on benchmark Model-

net40 [86]. Modelnet40 contains 40 categories of CAD 3D

models and is a standard dataset for evaluating semantic

segmentation and classification of 3D deep learning mod-

els [87]. For 3D object classification, we studied the 60 meth-

ods submitted to the web site, Fig. 5 shows the distribution

of these methods on different data types. We can see that

21.33% of these methods were based on multi-view, 17.27%

were based on point cloud data, 18.29% were based on

voxel, and 7.11% were based on other methods. The high-

est classification accuracy (97.37%) was achieved by Rota-

tionNet [88], which jointly estimates the object categories

and viewpoints for each single-view image and aggregates

object class predictions from partial multi-view image sets.

As just mentioned, different data representation may affect

the classification performance. We analyzed three different

3D data representation methods in terms of classification

performance. The average accuracy based on multi-view is

92.31%, based on point cloud data is 90.43%, and based on

VOLUME 8, 2020 14537



W. Cao et al.: Review of Pavement Defect Detection Methods

TABLE 7. 3D data representation.

FIGURE 6. Average accuracy of different classification methods.

voxel is 86.73%, as shown in Fig. 6. It can be found that in the

classification task, the method based on multiple views and

point cloud are more accurate than that based on voxel.

C. DEEP NETWORKS FOR 3D OBJECT CLASSIFICATION

In the work of [84], the authors presented a CNN architecture

that combines information frommultiple views of a 3D shape

into a single and compact shape descriptor offering even

better recognition performance. In this method, images from

each view were passed through a separate CNN to extract

view-based features. Then, an additional CNN is used to

combine these features for final classification.

Following the first volumetric CNN is 3D ShapeNets [86],

Maturana et al. proposed VoxNet in [85] to process volumet-

ric data with grid resolution of 32 × 32, where the model

consists of 4D convolution filters to hold 3D spatial features.

Rahul Dev also proposed CNN models to classify 3D object

based on volumetric data [89]. LightNet [81] is a faster ver-

sion ofVoxNet to address heavy computation problem for real

time 3D object recognition.

Point cloud is an unordered set of points scanned from

the 3D object. The critical problem to solve is to make the

model invariant to the permutation of the data points. Point-

Net [90] is the first CNN model to directly work on the raw

point cloud. The method operates on each point separately

and accumulate features from all the points by a symmetric

function, which is a max pooling layer. Pointnet++ intro-

duces a hierarchical neural network that applies PointNet

recursively on a nested partitioning of the input point set.

By exploiting metric space distances, the method is able to

learn local features with increasing contextual scales [91]. To

further address the problem, DGCNN was proposed in [92].

Instead of working on individual points like PointNet, this

method constructs a neighborhood graph to capture the local

geometric information and proposes EdgeConv operation to

apply convolution-like operations on the edges.

These methods were all tested on modelnet40 dataset.

We compared them in terms of the number of model param-

eters, input type, forward time, accuracy and the deep learn-

ing framework in Table 8. We can see that, the multi-view

model is much larger than the other two methods in terms

of model parameters. In terms of classification accuracy, data

representation based onmulti-view and point cloud is slightly

higher than based on voxel. This is caused by the resolution of

voxel, the higher the resolution of voxel, the larger calculation

amount and the more complex the model is. Generally, only

32 × 32 × 32 or 64 × 64 × 64 resolutions are selected for

training.

For multi-view, the performance of the model will get

better as the number of images from different perspectives

increases. The same is true to point cloud data. The more

points used to describe an object, the more comprehensive

the 3D information of the object will be, and the classification

accuracy will be improved. Similarly, the higher the resolu-

tion of voxel data, the better the performance of the model.

D. FEATURE EXTRACTION USING 3D DATA

Feature extraction is a very important step in crack detec-

tion. 3D data can provide richer features than 2D images.
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TABLE 8. Comparison of different methods on modelnet40 dataset.

Several methods explicitly extract features from 3D data to

feed to traditional machine learning models. For example,

in the work of [93], the authors combined the extracted

features from 2D and 3D to train classifiers, and in [94],

spatiotemporal features were extracted from videos using

3D ConvNets. These features followed by a linear classifier

achieved state-of-the-art results at the publication time.

1) SPATIOTEMPORAL FEATURES

In [94] Tran et al. proposed a simple and efficient method

to learn spatial feature of 3D data by using 3D convolutional

neural network to learning spatiotemporal features for videos.

They found that 3×3×3 convolutional kernels in all layers are

among the best performing architectures for 3D ConvNets.

In [95] Owoyemi and Hashimoto proposed an end-to-end

spatiotemporal gesture learning method for 3D point cloud

data, mapping the point cloud data into a dense occupancy

grid and learning the spatiotemporal characteristics of the

data. In this work, 3D ROI jittering method is used in training

to expand 3D data.

2) GEOMETRIC FEATURES

In [96] Furuya and Ohbuchi proposed a deep local fea-

ture aggregation network (DLAN) for 3D model retrieval.

It combines the extraction of rotation invariant 3D local

features with their aggregation in a single depth architecture.

DLAN describes the local 3D region of a 3D model by

using a set of 3D geometric features that are not affected

by local rotation. Zheng et al. proposed a data-driven model,

3DMatch [97], which learns a local volumetric patch descrip-

tor to establish corresponding relationships between local 3D

data and can match local geometric features well in real depth

images. Deng et al. proposed PPFNet [98], a 3D local feature

descriptor for in-depth learning of global information, which

can be matched to corresponding parts in disordered point

cloud data. PPFNet uses a new n-tuple loss and architecture

to naturally inject global information into local descriptors

and enhance the representation of local features.

E. 3D PAVEMENT DEFECT DETECTION

With 3D data acquisition is becoming easier, the applica-

tion of 3D technology to pavement defect detection is more

and more common. 3D data can well represent the spatial

information (length, width and depth) of road defects, and

conduct multi-directional analysis on the area, volume and

other aspects of defects.

Xu et al. [99] used 3D mobile LiDAR to collect road point

cloud data and studied the automatic extraction of road curbs,

in order to improve the robustness and accuracy of the model,

they designed a new energy function to extract the constrained

candidate points and refined the candidate points with the

least cost path model. They sampled the point cloud data at

a rate of 100%, 50%, 10% and 1% respectively. Even if the

point cloud drops to 1%, the method proposed in this paper

can still extract the road curbs.

1) TRADITIONAL METHODS FOR 3D CRACK DETECTION

Zhang et al. utilized the Microsoft Kinect to reconstruct

pavement surfaces and capture geometric features of pave-

ment cracking, including crack width, length, and depth

to identify the distress severities of three major types of

pavement cracks, namely, alligator cracking, traverse crack-

ing, longitudinal cracking [100]. In the work of [101],

Li et al. employed laser-imaging techniques to model the

pavement surface with dense 3D points and used an algo-

rithm based on frequency analysis (Fourier transformation)

separate potential cracks from the control profile andmaterial

texture of the pavement assuming that the road pavement

in the absence of pavement distresses commonly holds a

relatively uniform control profile. Tsai and Li proposed a

dynamic-optimization-based crack segmentation method to
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TABLE 9. Network performance comparison.

test 1 to 5 mm wide cracks collected by 3D laser at differ-

ent depths and lighting conditions [102]. To detect similar

cracks in masonry, the work [103] presented mathematics to

determine the minimum crack width detectable with a terres-

trial laser scanner, in which the main features used include

orthogonal offset, interval scan angle, crack orientation, and

crack depth. In [93], the whole image is divided into sub

images of 128 × 128 pixels and filtered by a set of Gabor

filters. The maximum value of the magnitude of every filtered

image is the feature used to train weak classifiers. To detect

crack in pavement images, binary segmentation is a straight-

forward way. Unlike most 2D thresholding techniques based

on the assumptions that the distress pixels are darker than

their surroundings, [104] proposed a probabilistic relaxation

labeling technique to enhance the accuracy of the distress

detection, which take account of the non-uniform illumina-

tion and complicated contents on the pavement surface areas.

The work of [105] proposed a unique method which uses

Dempster-Shafer (D-S) theory to combine the 2D gray-scale

image and 3D laser scanning data as a mass function, and

the corresponding detection results are fused at the decision-

making level.

2) DEEP NETWORK FOR 3D CRACK DETECTION

Applying deep learning neural network in 3D crack

detection is currently a new and hot research direction.

In 2017, Zhang et al. proposed CrackNet network to

implement pixel-level detection of pavement cracks and

defects [106]. The model consists of five layers with two

fully connected layers, two convolution layers and one output

layer. The feature extractor utilizes line filters oriented at

various directions and with varied lengths as well as widths to

enhance the contrast between cracks and the background. The

model was trained with 1,800 3D pavement images collected

from DHDV [2].

Later on, in the work of [107], the authors proposed

an improved architecture of CrackNet called CrackNet II

for enhanced learning capability and faster performance.

CrackNet II has a deeper architecture with more hidden

layers but fewer parameters. Such an architecture yields

five times faster performance compared with the original

CrackNet. Similar to the original CrackNet, CrackNet II

still uses invariant image width and height through all lay-

ers to place explicit requirements on pixel-perfect accuracy.

In addition, they deepened the network and the combination

of repeated convolution and 1 × 1 convolution is used to

learn the local features with different local receptive fields.

Recently, Zhang’s team put forward the CrackNet V [108],

which includes a pre-processing layer, eight convolutional

layers and an output layer. They used a 3 × 3 filter for the

first six convolutions, and stack multiple 3 × 3 convolutions

together for depth extraction, which reduced the number of

parameters and improves the efficiency of feature extrac-

tion. In addition, they designed a new activation function to

improve the detection accuracy of shallow cracks.

In order to improve the recall rate, they put forward

CrackNet-R [109] based on recurrent neural network.

As a recursive unit, gated recurrent multi-layer perceptron

(GRMLP) is designed to update the internal memory of

CrackNet-R recursively. GRMLP aims to abstract the features

of input and hidden state more deeply by multi-layer nonlin-

ear transformation at gate unit. The resultant model achieved

about four times faster and introduces tangible improvements

in detection accuracy, when compared to CrackNet. The per-

formance comparison of the networks shown in Table 9.

3) FACTORS AFFECTING 3D PAVEMENT DEFECT DETECTION

There are many factors that can influence the detec-

tion of pavement defects. Yi et al. [102] proposed a

dynamic-optimization-based crack segmentation method to

test 1 to 5 mm wide cracks collected by 3D laser at different

depths and lighting conditions. Experiments show that cracks

with width equal to or greater than 2 mm can be effectively

separated from the pavement background, while cracks with

width of 1 mm can only be partially separated. In addition,

it was found that the light intensity had little effect on the test

results.

Li et al. [101] used laser imaging technology to model 3D

dense point road surface and proposed a 3D point cloud crack

detection method based on sparse point grouping, which can

reduce the influence of light variation and shadow on crack

detection. They tested the effect of the data acquisition vehi-

cle on the performance of the proposed method at different

speeds(10km/h to 80km/h). The experimental results show
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that at different speeds, the crack test effect is roughly the

same, but the slower the speed, the more detailed the crack

contour description.

Debra et al. [103] found through the experiment that crack

depth depends on three factors: scanning distance, scanning

angle and crack width.The scanning distance is the distance

between the crack and the laser scanner, and the scanning

angle is the offset angle between the crack and the laser

scanner. Cracks with a width of 1 to 7 mm were scanned at

distances of 5m and 7.5m and angles of 0◦, 15◦ and 30◦. The

results show that the crack depth cannot be detected when the

crack width is less than 1 mm, because the smaller the crack

width is, the more difficult to obtain the depth information of

crack. As the crack width increases, the detection of the crack

depth becomes more accurate. With the increase of scanning

angle, the error of crack depth detection will also increase.

The closer the scanning distance is, the higher the detection

accuracy will be.

Khurram et al. [110] usedKinect to predict and analyze the

depth and volume of pothole, the mean percentage error are

2.58% and 5.47%, respectively. In addition, the test perfor-

mance of pothole with water, dust and oil is also discussed.

Experimental results show that the error of test results will

increase with the increase of water, dust and oil content, and

the error is also related to the types of these media.

V. EXISTING PROBLEMS AND RESEARCH PROSPECTS

After years of development, many achievements have been

made in pavement defects detection, which has made great

contributions to the maintenance of pavement and the safety

of vehicles. However, there are still some problems in the

practical application:

1) Due to the complex and dynamic environmental fac-

tors, there may be some errors in the detection of

road cracks under the condition of poor light in rainy

days or when there is water on the road.

2) Different algorithms are needed to test on different road

surface conditions, and the algorithm transplantation

performance is poor.

3) The process of defects detection is always offline,

so the performance of real-time is not good in reality.

Therefore, we need to further enhance the detection accuracy

and real-time performance of the algorithm to ensure the opti-

mal detection results in real applications. The generalization

and robustness of the methods is also very important as the

factors such as road and weather conditions greatly affect the

detection. As for 3D cracks detection, the depth information

of cracks is added to make the cracks have spatial structure.

Although the overall information of cracks is more complete,

it undoubtedly increases the complexity of the algorithm

and greatly increases the computational cost. The algorithm

can be improved and the computing cost can be reduced

by referring to some progress in deep convolutional neural

networks for 2D images such as network architecture and

model compression techniques. On the other hand, there are

few public 3D cracks datasets, researchers collect pavement

crack data for training and testing by themselves, and it

is impossible to conduct performance analysis on the same

dataset. Collecting 3D crack benchmark datasets will greatly

benefit future study of the 3D crack detection.

VI. CONCLUSION

The automatic detection of pavement crack has been studied

extensively due to its practical significance. From traditional

image processing methods to machine learning methods to

deep learning algorithms that have become popular in recent

years. In this work, we review these methods, and we focus

on the detailed comparison and analysis on deep learning

methods and 3D image based methods. Particularly, deep

learning methods are grouped and reviewed in three cate-

gories, image classification, object detection and pixel-level

segmentation. For 3D crack detection methods, we compare

the different data representations and study the corresponding

performance of the deep neural networks for 3D object classi-

fication. Traditional and deep learning based crack detection

methods using 3D data are also reviewed.
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