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Abstract. The probability of a photon (x-ray, gamma-ray, bremsstrahlung, etc) of a given
energyE undergoing absorption or scattering when traversing a layer of matec&t be expressed
quantitatively in terms of a linear attenuation coefficigntcm™1). Sincey is dependent on the
material's densityp (g cm3), which can be variable, the quantity usually tabulated is the mass
attenuation coefficient/p (cm? g—1) in which the dependence on the density has been removed.
wu/p, inturn, can be obtained as the sum of the different types of possible interactions of photons
with atoms of the material. For photon energies below 1 MeV the major interaction processes
to be considered are incoherent (Compton) scattering, coherent (Rayleigh) scattering and atomic
photoeffect absorption. Above 1 MeV one must also include nuclear-field pair production and
atomic-field (triplet) production, and above 5 MeV one in principle should include photonuclear
absorption, although the latter is neglected in data tabulations up to the present time. This review
includes a selective history of measurements and theory relating gofrom the turn of the
century up to the present time, and is intended to provide a basis for further calculations and critical
tabulations of photon cross section data, particularly as required by users in radiation medicine and
biology. The mass energy-absorption coefficieat/ o is also briefly discussed.

1. Introduction

In medical physics and in radiation biology, as well as in many other areas of human enterprise,
few sets of physical data are as ubiquitous and widely needed and used as data on the
transmission and absorption of x-rays in biological, shielding and dosimetric materials.

Within a very few years after the discovery of x-rays byrfgen (1895), the transmission
of a narrow (parallel) beam of x-rays through layers of different materials was measured and
guantified with respect to photont incident energy and atomic number of the material by Barkla
and Sadler (1907, 1909). This quantification is in terms of the mass attenuation coefficient§
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¥ In this work the generic term ‘photon’ will be frequently used, which includes gamma rays, bremsstrahlung and
other electromagnetic radiation as well as x-rays.

§ The quantityw/p has often been referred to in the literature (e.g., Allen 1935, 1971/1972, Leroux 1960, Victoreen
1943, 1948, 1949, Liebhafski al 1960, Heinrich 1966, 1986) as the ‘mass absorption coefficient’. However, the
term ‘mass absorption coefficient’ has also been used to refer to the mass energy-transfer coefficient (e.g., Evans 1955,
1968) and mass energy-absorption coefficient (e.g., Allison 1961), both having to do with photon energy deposition
in the target material. Hence, to avoid confusion, this paper continues to follow the International Commission on
Radiation Units and Measurements (ICRU 1980) nomenclature ‘mass attenuation coefficient’ as used at NBS/NIST
by White (1952), White Grodstein (1957) and in subsequent NBS/NIST publications as well as by Leroux and Thinh
(1977) to refer to the total probability of the photon interaction processes.
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Figure 1. Arrangement for experimental determination of narrow-beam attenuation coefficients.
The absorber is a slab of thickneswith plane parallel faces normal to the beam defined by the
source, collimators and detector, andid a differential layer at distanceinto the absorber.

w/p (cm? g~1) which can be defined as

wu/p=1In(lo/1(1)) @)
in which is the mass thickness of the absorber layer in units of g?cry is the intensity of
the incident beam of photons measured with the absorber layer removed from the beam, and
1 (1) is the intensity of the transmitted beam measured with the absorber interposed as shown
schematically in figure 1, in whichxdis the thickness of a differential layer at distancieito
the absorberp is the density of the absorber layer in g Thand . is the linear attenuation
coefficientin cnr?®. Sinceu is dependent on the sample dengityhich can vary considerably
for a given element or compound, for compilation purposes this dependency is removed by
tabulating the mass attenuation coefficigrip.

As described in more detail in Hubbell (1969), the fractional reduction of the beam

intensity, —dI /1, is proportional to the above mass attenuation coeffigieit, and to the
layer thickness, d, i.e.

—dI/I = (u/p) dx. @)
Integrating this equation, one obtains the intensity transmitted through the slab
t
I(t) = IoeXp(—/ (,u/,o)(x)dx). (3)
0

For a homogeneous medium, equation (3) reduces to the well-established Bouguer
(1729)-Lambert (1760)—Beer (1852) exponential attenuation law

1(t) = Ioexp[—(u/p)] (4)
from which equation (1) follows.
Calculations of photon interaction data are generally in terms of atomic cross sections, in
units of cn? /atom, customarily in units of barns/atom (or b/atom) where 1 bafi®0—2* cm?.
The total atomic cross sectian; is thus related to the total mass attenuation coefficient
according to

w/pem? gty = oier(cm?/atom)/(u (9)A) = orer(b/atom) x 10724/ (u (g)A) (5)

whereu(g) (= 1.6605402x 10-2* g) (Cohen and Taylor 1986, 1997) is the atomic mass unit,
which is defined as 1/12 of the mass of an atom of the nuéfidgandA is the relative atomic
mass of the target element (Martin 1988). It can be notediutligt = 1/N4, whereN, is
Avogadro’s number=£ 6.022 1367x 10? atomgmol).
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Figure 2. Contributions of atomic photoeffeat, coherent scatteringcon, incoherent (Compton)
scatteringoincon, nuclear-field pair productior,,, electron-field pair production (triple®,, and
nuclear photoabsorptiobpy N, to the total measured cross sectiergr (circles) in carbon over
the photon energy range 10 eV to 100 GeV. The measugflpoints, taken from 90 independent
literature references, are not all shown in regions of high measurement density.

The total atomic cross sectiarn,: can be written as the sum over the cross sections for
the most probable individual processes by which photons interact with atoms

Otot = Ope t Oincoh + Oconh * Opair + Otrip + Ophin. (6)

in which ope (Or 7) is the atomic photoeffect cross sectioticon andocon are the incoherent
(Compton) and coherent (Rayleigh) cross sections respectiwgly.(or x,) andoyip (Or «.)

are the cross sections for electron—positron pair production (creation) in the field of the nucleus
and in the field of the atomic electrons (‘triplet’ production) respectively. Finally,. is the
nuclear photoeffect cross section discussed in the following paragraphs. All of these individual

processes are shown in figures 2 and 3 forZC=£ 6) and Pb ¥ = 82) respectively, from
Hubbellet al (1980).
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Figure 3. Contributions of atomic photoeffeat, coherent scatteringcon, incoherent (Compton)
scatteringgncon, nuclear-field pair productior,,, electron-field pair production (triple,, and
nuclear photoabsorptioapy v, to the total measured cross sectiefor (circles), in lead over the
photon energy range 10 eV to 100 GeV. The measufef points, taken from 121 independent
literature references, are not all shown in regions of high measurement density.

1.1. Nuclear photoeffecs;, ».

In equation (6), the photonuclear cross sectigiy. is a measurable effect (see, for example,
Gimm and Hubbell 1978). However, this process in which the photon is absorbed by the
atomic nucleus and one or more nucleons (neutrons and/or protons) are ejected, is not readily
amenable to systematic calculation and tabulation. This is due to a number of factors including
its irregular dependence, both shape and magnitude, ondatid Z, and its sensitivity to
isotopic abundances in a given sample of an element (see, for example, Hayward 1970, Fuller
and Hayward 1976, Dietrich and Berman 1988). Hemgg, has been omitted from/p
compilations up to the present, even though at its giant resonance peak between 5 and 40 MeV
it can contribute between 2% (high-elements) and 6% (loviZ- elements) to the total cross
sectionoiy (see the illustrative tables in Hubbell 1969, 1982).

Hence, current compilations of the mass attenuation coeffigigptare derived from
theoretical or semiempirical values of the cross sections for the individual processes according
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to
w/p = (O'pe + Oincoh + Ocoh t Opair + O’trip)/’/‘A (7)

referring back to equation (5) for the meaning and units of the conversion fattdr. IThe

cross sections for the individual processes are discussed in section 3, particularly the cross
sections obtained or derived, and used, in the recent compilations by Berger and Hubbell

(1987), Creagh and Hubbell (1992), Seltzer (1993), Seltzer and Hubbell (1995), Hubbell and

Seltzer (1995), Berger and Hubbell (1998/1999) and by Cdteai (1997).

2. History

For a listing of the available measurementsugjp beginning with the above work of Barkla

and Sadler (1907, 1909) up to 1995, for photon energies from 10 eV up to 13.5 GeV in
elementsZ = 1 to 94, one can consult the annotated bibliographies of Hubbell (1994,
1996). From time to time these measurements have been graphically compared with
available theory, in order to evaluate the theory for purposes of systematic compilations
aimed at medical, biological and other practical applications. Among these evaluations are
the graphical comparisons by Hubbell (1971) (10 eV to 100 GeV) and by Saletah
(1988).

The first major compilation oft/p data appears to be that by Allen (1935), covering
the photon energy range 30 eV to 2.5 MeV, 32 eleméents= 1 to 92 based on his
own measurements (for example Allen 1924, 1926), combined with others he found in the
literature. First published in the Compton and Allison book (Allen 1935), these tables
were soon published thereafter in the Chemical Rubber Handbook, appearing virtually
unchanged in all editions up to 1971/1972 (Allen 1971/1972). Since no theory was used
in constructing the Allen (1935, 1971/1972) compilation, but only the widely scattered
measurements found in the literature, there were wide gaps, requiring extensive interpolation
and extrapolation acrosé and photon energy in order to use this data base in many practical
applications.

In graphing the Allen (1935)./p data versusZ at constant photon energy to compare
with some new measurements (Hubbell 1953), significant departurefremmothness were
noted, particularly in the vicinity of NiZ = 28), in agreement with the very early observation
of this anomaly by Barkla and Sadler (1907). These departures fesmoothness are
attributable to the fact that the relative atomic mass not a smooth monotonically increasing
function of Z, but depends on the isotopic mix for each element. These mixes, of cosmogenic
origin (or since the atomic age altered by isotopic separation, such as for Li), are irregular.
The functionA versusZ even reverses for the Co(27)—Ni(28)-Cu(29) sequence, as well as for
the Ar(18)-K(19)—Ca(20) sequence.

These departures from-smoothness (even where atomic photoeffect absorption edge
discontinuities (section 3.1) are not involved) have been a limitation on the accuracy of some
wu/p fitted compilations wher&-smoothness was assumed for interpolation purposes. Such
compilations include, for example, those of Leroux (1960), Leroux and Thinh (1977) and
Heinrich (1966, 1986). In his later compilation Heinrich (1986) acknowledged this problem,
but considered thd-irregularity (versusZ) to be within the spread of the uncertainties of the
available measured data to which the compilation was fitted.

Following the work of Allen (1935), the next majar p compilation was the semiempirical
set by Victoreen (1949), based on his evaluations in Victoreen (1943, 1948) making use of
the Klein—Nishina formula for total Compton scattering and some interpretation of the atomic
photoeffect and its absorption edges using Sommerfeld (1934) theory, as well as aygijable
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measured data. Davisson and Evans (1952) published tables for 24 elemerit$o 83 and
photon energies 102.2 keV to 6.13 MeV (up to 25.54 MeV Zoe= 13 and 82), obtaining

pair production cross sections by graphical integration over the Bethe—Heitler (1934) Born
approximation expression.

The National Bureau of Standards (now the National Institute of Standards and
Technology) entered this area of collection, evaluation, analysis and compilatiancof
data with the work of Fano (1953), White (1952), White-Grodstein (1957) and McGinnies
(now R T Berger) (1959). The White (1952) and White-Grodstein (1959 tables were
incorporated into Davisson’s (1955, 1965) Chapter Il appendix in two editions of the Siegbahn
book.

Building on this, White (1952), White-Grodstein (1957) and McGinnies (Berger) (1959)
foundation work, new theory and measurements were incorporated by Hubbell and Berger
(1968) for tables ofi/p anduen/p (en/p is the mass energy-absorption coefficient, briefly
described in section 4) and accompanying text for an invited contribution to the IAEA
Engineering Compendium on Radiation ShieldingVith some additional new material,
these tables were published by Hubbell (1969) in the NSRDS-NBS 29 report following their
appearance also in the chapter by Evans (1968) in the Attix—RoesclRaaliktion Dosimetry
(2nd edition, vol 1).

At the same time, a collaboration of NBS with the Lawrence Livermore National
Laboratory (LLNL) produced extensive tables (McMast¢ral 1969, 1970, Hubbelét al
1974) based on a combination of theoretical and measured data, weighted together, and which
provided log—log cubic fitting parameters for the individual component cross sections. This
effort was in conjunction and collaboration with the LLNL seriesugfp and related tables
beginning with Plechaty and Terrall (1966) and extending up through the recent tables by
Cullenet al (1989, 1997). A somewhat independent tabulation by Storm and Israel (1970),
using pair production and some of the scattering data interpolated from NBS, covered all
Zs from 1 to 100. Other notablge/p compilations of this period include, for example,
the Boeing compilation by Brown (1966) 1 keV to 10 MeX, = 1 to 100, the extensive
parametric fits by Biggs and Lighthill (1971), the 100 eV to 1 M&V= 1 to 94 compilation
by Veigele (1973) and the radiology-oriented compilation by Johns and Cunningham (1969,
1983).

The discrepancies and envelope of uncertainty of availajptedata have been examined
from time to time, including the effects of molecular and ionic chemical binding, particularly
in the vicinity of absorption edges (for example Deslattes 1969). More recent efforts at such
assessments include the International Union for Crystallography (IUCr) project by Creagh and
Hubbell (1987, 1990, 1992) and as reviewed by Gerward (1993).

Interest in low-energy photon attenuation led to tables by Hexlke (1967, 1982) for
energies 30 eV to 6 and 10 keV, and more recently the tables by Henkl(1993) for
photon energies 50 eV to 30 ke¥,= 1-92. Responding to low-energy dosimetry standards
requirements, Hubbell (1977) developeglo andu.n/ o data for a few elements and mixtures
of particular dosimetric interest, for the range 100 eV to 20 MeV, and later Hubbell (1982)
published tables of. /0 anduen/p for 40 elements and 45 mixtures and compounds over the
energy range 1 keV to 20 MeV. The latter tables are still widely used as reference values, but
should now be replaced by the Berger—Hubbell (1987 (and updates)) X&ZQMalues and
theuen/ p values of Seltzer (1993) and Hubbell and Seltzer (1995). Extensive new calculations
and theoretical tabulations by Chantler (1995) of scattering cross sections and quantities related
to u/p have recently become available for photon energies from a few eV up to 1 MeV or less,
for Z = 1-92. However, it is not yet clear how to incorporate this new source of data jipto
tables for medical, biological and other practical applications.
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3. The individual photon interaction processes

3.1. The atomic photoeffect cross sectgp (or 7)

As discussed and historically reviewed in some detail in Hubbell (1969), in the atomic
photoeffect, a photon disappears and an electron is ejected from an atom. The electron carries
away all the energy of the absorbed photon, minus the energy binding the electron to the
atom. The K-shell electrons, which are the most tightly bound, are the most important in the
energy range of medical and biological interest. However, if the photon energy drops below
the binding energy of a given shell, an electron from that shell cannot be ejected. Hence,
particularly for medium- and higlt- elements, a plot aof,e versus photon energy exhibits the
characteristic absorption edges as the binding energy of each electron subshell is attained and
a new channel for photoexcitation becomes energetically allowed. Although these absorption
edges have superimposed on them some degree of fine structure, discussed in the last paragraph
in this section, in medical and other general-purpose attenuation coefficient compilations, these
edges are idealized as simple sawtooth shapes.

In the early semitheoretical compilations af/p, the scattering cross sections were
available theoretically to a reasonable approximation from the Klein—Nishina (1929) formula.
Thus the photoeffect cross section was obtained by subtracting the theoretical scattering cross
sections from measured values;ofp and interpolating acrosg and photon energy, taking
care to account for the photoeffect absorption edges shifting in energywith

For a more extensive listing of the early calculations of the atomic photoeffect, the readeris
referred to Hubbell (1969). Most of these calculations were for the K-shell only, typified by the
high-energy work of Pratt (1960) providing the asymptotic behaviour going to arbitrarily high
energies and by Pratt al (1964) in the range 200 keV to 2 MeV. Hultbezgal (1961, 1968)
used the Swedish BESK computer to compute K-shell cross sections, including photoelectron
angular distributions, for 21 elemenfs= 1 to 100 for photon energies extending as low as
1keV (Z = 1) to as high as 10 MeVA = 92).

A significant breakthrough came with the atomic photoeffect cross section calculations
by Rakavy and Ron (1965, 1967) for not only the K shell, but also for all the significantly
contributing higher subshells (L, M,_v, N;_y; and Q_y;;) over the energy range 1 keV to
2 MeV for Z = 13, 26, 50, 74 and 92. Other important multishell photoeffect calculations
in this time period, which also provide historical reviews of earlier work, are those by
Alling and Johnson (1965), Matese and Johnson (1965) and by Schmickley and Pratt (1967).
Interpolations from these works, along with the K-shell high-energy asymptotic behaviour
provided by Pratt (1960), were helpful in constructing the tables of Hubbell (1969), along with
a large body of experimentally determined total photoeffect cross section data obtained by
subtracting ‘known’ theoretical scattering cross sections from measured total cross sections
(attenuation coefficients).

A greater breakthrough came with the systematic calculations by Scofield (1973) of the
atomic photoeffect cross sections for all subshells, for all elements 1 to 101, over the
photon energy range 1 keV to 1.5 MeV. These non-relativistic calculations were based on his
solution of the Dirac equation for the orbital electrons moving in a static Hartree—Slater central
potential. ForZ = 2 to 54, Scofield (1973) provided renormalization factors to convert to
values expected from a relativistic Hartree—Fock model.

This renormalization was performed for two subsequent compilatiqng@&ndien/ o by
Hubbell (1977, 1982) and by Hubbeit al (1980). However, detailed comparisons (Saloman
and Hubbell 1986, Salomaat al 1988) with the extensive NBS/NIST/p measurement data
base (Hubbell 1971, 1994, 1996, Hubletkl 1986) tend to favour the unrenormalized Scofield



R8 J H Hubbell

(1973) ope over the renormalized values. Hence, in subsequent compilations by Berger and
Hubbell (1987) and Hubbell and Seltzer (1995), the unrenormalized Scofield (R¥8)ues
have been used.

In a private communication to Saloman and Hubbell, Scofield (1985) extended these
calculations down to 0.1 keV, and these (unrenormalized values) are also included in the
comparison by Saloman and Hubbell (1986) and Saloetah(1988), both nhumerically and
graphically, with the NBS/NIST./ 0 measurement data base as well as with an experimentally
based compilation by Henket al (1982). Values ofope are also given in the extensive
theoretical results of Chantler (1995) computed within a self-consistent Dirac—Hartree—Fock
framework, mentioned earlier. For the elemefts- 1 to 92, the lower-bound energy varies
between 1 and 10 eV, and the upper-bound energy varies between 0.4 and 1.0 MeV. Further
detailed comparisons with the NBS/NIST measurement data base are under way to consider
whether these values could or should supplant the Scofield (1973, d283)ues in the NIST
(for example Hubbell and Seltzer 1995) and LLNL (for example Cu#ieal 1997) currently
disseminategt /o compilations for medical and biological applications.

3.1.1. Absorption-edge fine structureOscillatory structures just above absorption edges

are well known (for example Sommerfeld 1920,akaff 1963, Stern 1974) and can be easily
observed with high-resolution spectrometers (for example Faessler 1955 et yld 975,

Del Grande 1986, 1990). Above some thresholds rather dramatic peaks can occur, due to atomic
photoionization resonances. For example, infhgs measurements just above the K edge for

the series of metals T = 22, Ex-edge = 4.97 keV) to Zn ¢ = 30, Ex-edge = 9.66 keV),

Del Grande (1986) observed oscillations, confined to within5 keV above the edge, of the

order of~0.05 keV width with peaks extending5% to~10% above the smoothed theoretical
values. FeZ = 26) and Cu Z = 29) each showed one of the series of narrow peaks to be
extending~20% above the smoothed values.

Superimposed on these can be smaller modulations, of the ordeR%f or less, of
extended x-ray absorption fine structure (EXAFS) associated with chemical binding effects.
However, due to their dependence on temperature and other variable atomic environments,
these and the above oscillatory structures are currently ignogeddabulations for medical
and biological applications.

3.2. Incoherent (Compton) and coherent (Rayleigh) scatteding,, ando..

3.2.1. Incoherent/Compton/inelastic scatterimg.,,. For up-to-date information on the
incoherent (Compton) scattering cross sectigg,n, attention is here called to a special issue

of Radiation Physics and Chemistedited by Bradley (1997) giving collectively a rather
comprehensive survey of this topic. The all-invited papers in this issue include an overview of
theory by Bergstrom and Pratt (1997), a summary of experiments by Kane (1997), a study of
momentum distributions by Cooper (1997), resonant Raman scattering by Manninen (1997),
applications in biomedical science and industry by Harding (1997) and an historical and status
review by Hubbell (1997).

As mentioned by Bergstrom and Pratt (1997) and earlier in the extensive review by Kane
(1992) and in treatments by Bergstranal (1992, 1993) and Praét al (1994), relativistic
S-matrix calculations are becoming available and will probably supplant the currently used
incoherent scattering functic$tx, Z) approach, in which is a momentum transfer variable
related to the incident photon energy and the deflection angle of the scattered photon.
However, theS-matrix results are not yet particularly ‘user-friendly’ for medical—biological
applications.
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Currentu/p compilations such as the Berger—Hubbell (1987) XCOM PC program, the
Hubbell-Seltzer (1995) tabulation, and the Culégral (1997) LLNL data base, still rely on
the incoherent scattering functidiix, Z) approach. For these compilations, the incoherent
scattering cross sectiof,con Was obtained by numerical integration of the Klein—Nishina
(1929) formula weighted by the incoherent scattering functigm, Z). The required
values ofS(x, Z) were taken from the compilation by Hubbell al (1975) for allZs 1 to
100, with a span ok values sufficient for computingincon Over the photon energy range
100 eV to 100 GeV, which were computed and tabulated in this compilation. Radiative
and double-Compton corrections from Mork (1971) were applied to the integrated values
for Gincon.

The Hubbellet al (1975)S(x, Z) values were pieced together from data available in the
literature, including the work of Pirenne (1946% (= 1), Brown (1970a, b, 1972, 1974)
(Zz = 2 to 6, with configuration interaction) and by Cromer and Mann (1967) and Cromer
(1969) z = 7 to 100, from a non-relativistic Hartree—Fock model). Although giving cross
sections differing by up to 2—3% from calculations of cross sections for isolated cases using
relativistic S-matrix and other more sophisticated models, their compactness and ease of use
makes thes§ (x, Z) andaincon Values still (by default) the reference set used in most medical,
biological and other practical applications. Some insightinto the limitations and Sge,df)
tables, and possible refinements, can be found in the treatments by Ribberfors and Berggren
(1982) and by Namitet al (1994, 1995).

3.2.2. Coherent/Rayleigh/elastic scattering,. Rayleigh scattering is a process by which
photons are scattered by bound electrons and in which the atom is neither ionized nor excited.
The photon loses only a negligible fraction of its energy, since the recoil is by the entire atom
including the nucleus, rather than by an individual atomic electron as in the Compton effect,
and the scattering is ‘coherent’ resulting in interference effects. Since this scattering is peaked
in the forward direction, particularly at high energies, this cross section has sometimes been
neglected in photon transport computations. However, when this coherence is spread over an
array of atoms, the interference becomes the Bragg diffraction which is of central importance
in x-ray crystallography, crystal diffraction spectrometry and other areas including studies of
molecular structures of biological interest.

The association of the name ‘Rayleigh’ with this process stems from researches on the
scattering and polarization of visible light by gas molecules (‘blue skies, red sunsets’) by Strutt
(Lord Rayleigh) (1871, 1881). A summary of this and other photon scattering work by Strutt
(Lord Rayleigh) has been given in the more recent literature by Young (1982). This process is
also sometimes called ‘elastic’ scattering, and this terminology is used in the extensive review
by Kaneet al (1986).

For compilations ofw/p in the medical and biological region of interest, the coherent
scattering cross sectian, has been computed by numerical integration of the Thomson
(1906) formula weighted by*?(x, Z), whereF (x, Z) is the atomic form factor. As in the
somewhat complementary incoherent scattering functian ), x is the momentum transfer
variable dependent on the incident photon energy and the deflection angle of the scattered
photon, andZ is the atomic (charge) number of the nucleus of the target atom.

Measured values of (x, Z) were compared graphically with theory in the review and
compilation by Hubbelét al (1975). Although relativistic Hartree—Fock values were available
at that time, theF(x, Z) values tabulated for K Z < 100 were taken from the non-
relativistic Hartree—Fock Cromer and Mann (1968) and Cromer (1971) results, in view of
the approximate complementarity wii{x, Z) then systematically available only from non-
relativistic computations. FoZ = 1 the F(x, Z) values in Hubbellet al (1975) were
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computed from the ‘exact’ formula of Pirenne (1946), andZo« 2 to 6 were taken from the
configuration interaction calculations by Brown (1970a, b, 1971, 1974). Thus, in the Hubbell
et al (1975) compilation, botl§ (x, Z) andF (x, Z) are tabulated for alt = 1 to 100 over the
range 0005 A~ < x < 10° A1, and bothoi,con andocon are tabulated for alz = 1 to 100

over the photon energy range 100 eV to 100 MeV.

In the Berger—Hubbell (1987) XCOM /p data set, and in the Hubbell-Seltzer (1995)
tabulation, the values af.q, are taken the relativistic compilation of Hubbell and @verbg
(1979). For these computations, relativistic theoretical valué¥of Z) were pieced together
from Pirenne (1946) foZ = 1, and for the other elements, over the different rangesaofd
Z, from Doyle and Turner (1968), Cromer and Waber (1974) and from @verbg (1977a, 1978a).
Somewhat higher accuracy is anticipated from the relativistic Hartree—Fock—Slater modified
atomic form factor (MFF) calculations by Schauepal (1983) for F(x, Z) for Z = 1 to
100, 0< x < 100 A1, This compilation was not accompanied by corresponding integrated
values ofoon, and these MFF values have not yet found their way intqifye compilations
for medical and biological applications.

Current theoretical efforts toward improved values of the coherent scattering cross section
oconare focused on use of the second-order relativisticatrix formalism (for example Kissel
et al 1980, Pratet al 1994, Kissel 1995). This formalism is capable of revealing anomalous
scattering, particularly in the vicinity of absorption edge energies. For example, &tadu
(1992) estimate that anomalous scattering effects can be as much as 15% at the absorption
edge (subshell ionization threshold) energy, decreasing to less than 7% at 0.007 keV above
the threshold, to less 5% at 0.045 keV above threshold, and to less than 3% for an incident
photon energy 0.35 keV above the threshold. However, one loses the convenience and ease of
application of the atomic form factor approach, although these details may be of more interest
in the future.

3.3. Pair and triplet productiongpair (Or «,,) andoyip (Or &)

3.3.1. Electron—positron pair production.In this effect, which is the most likely photon
interaction at high energies (abovdl0 MeV), a photon disappears in the field of a charged
particle, and an electron—positron pair appears. The cross segfjpfor pair production in
the field of the atomic nucleus varies approximately as the square of the nuclear Zhaege

Opair X NZZ. (8)

The cross sectiosyp (triplet) in the field of one of the atomic electrons variesZasmes the
square of the unit charge, or

Otrip x~Z. (9)

This cross section is usually called the ‘triplet’ cross section, since the atomic electron involved
in this process is also ejected from the atom, giving rise to a trident signature including the
created electron and positron, when observed in a cloud chamber.

For Z = 1 (hydrogen)y, is approximately equal tep,ir, and it becomes progressively
less important for higheZ materials, according to

Otrip/Opair ~ 1/ Z. (10)

Since biological materials, except for bone, are primarily [Bwoyi, can be a minor but
significant contribution for high-energy photon applications (i.e. abet@ MeV).

Both opair andoyip are extensively reviewed, calculations are performed, and tabulations
of these cross sections are provided for all eleménts 1 to 100 over the photon energy
range 1 MeV to 100 GeV in Hubbedt al (1980). Values from this 1980 publication are still
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used in current/p compilations, for example Berger and Hubbell (1987) (XCOM), Hubbell
and Seltzer (1995) and Cullenal (1997). Some highlights of how these pair and triplet cross
sections were calculated are given below.

3.3.2. Pair production cross section (coherent, in screened nuclear figjd), (or «,).

In coherent production, an electron—positron pair is produced in the screened nuclear field
(i.e. atomic field), and the atom as a whole recoils without internal excitation. This is
in contrast to incoherent (triplet) productieni, in which the atom is either excited or
ionized and the target electron recoil significantly affects the dynamics and threshold of the
process. In the case 6fai, the threshold for this transmutation of electromagnetic energy (a
photon) into tangible matter (electron and positron) is just the sum of the rest-mass energies
(me— = me+ = 9.1093897x 1028 g = 0.510 999 06 MeV (Cohen and Taylor 1986)) of the

two particles, or 1.022 MeV.

The opair calculation (Hubbellet al 1980) begins with the Bethe—Heitler (1934) Born
approximation unscreened pair-production cross section as an initial approximation, to which
Coulomb corrections, screening corrections and radiative corrections are applied. The
differential Bethe—Heitler unscreenegl,; cross section has been cast in forms suitable
for computation by Bethe and Maximon (1954), Davies al (1954) and Maximon
(1968).

The Coulomb correction for the Hubbelt al (1980) computations was pieced together
from the low-energy results of @vertat al (1968, 1973), the intermediate-energy results of
@verbg (1977b) and the high-energy results of Sgrenssen (1965, 1966) which in the high-
energy limit go to the Daviest al (1954) extreme relativistic Coulomb correction. Screening
corrections were pieced together from the near-threshold results of Tseng and Pratt (1972,
1980) and the intermediate- and high-energy work of @verbg (1978b). The Qverbg (1978b)
work used the Joset al (1950) expression for nuclear-field pair production in the Born
approximation for small nuclear recoil but without the extreme high-energy approximation.
This expression required values of the atomic form faétor, Z), for which @verbg (1978b)
used the relativistid® (x, Z) values pieced together from Doyle and Turner (1968), Cromer
and Waber (1974) and @verbg (1977a, 1978a), later published as systematic tabulations by
Hubbell and @verbg (1979). The radiative corrections (Feynman 1949, Mork and Olsen 1960),
of the order of 1/137 and associated with the emission and reabsorption of virtual photons and
with the emission of both soft and hard real photons, were obtained from Mork and Olsen
(1965).

3.3.3. Triplet production cross section (incoherent pair production, in electron field,
with excitation or ionization),oyi, (or «.). Due to the sharing of photon energy and
momentum between the target electron and the created pair, the threshold for this process is
4m,c?(= 2.044 MeV). Actually, the process can take place downid, since momentum

can also be transferred to the atom both in excitation and ionization, but in this region the
cross section is negligibly small. Some of the highlights of the calculations and systematic
tabulations obyip by Hubbellet al (1980), as a companion to thg,; tabulations therein, are

given in the following.

The starting point for these computationsogi, is again the Bethe—Heitler (1934) Born
approximation, now requiring the retardation effect due to the recoil of the target atomic
electron. This effect is included in the unscreened formula of Borsellino (1947), improved
by including higher terms by Ghizzetti (1947). Corrections for exchange could be obtained
as a ratio of results by Haug (1975) to the Borsellino—Ghizzetti results which neglected this
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effect. A scheme forincluding screening is given by Wheeler and Lamb (1939) who presented
some results computed using Thomas—Fermi (Thomas 1927, Fermi 1928) statistical-atomic-
model values of (x, Z). Inthe Hubbelkt al (1980) computations, screening corrections were
obtained by replacing the Thomas—Festt, Z) values in the Wheeler—Lamb formula by the

S(x, Z) values in Hubbelet al (1975) based on the configuration-interactibe- 2 to 6 values

of Brown (1970a, b, 1972, 1974) and non-relativistic Hartree—F6ck 7 to 100 values of
Cromer and Mann (1967) and Cromer (1969).

4. The mass energy-absorption coefficienten/ p

A companion coefficient tau/p of particular interest in medical and biological applications

is the mass energy-absorption coefficignt/p, used for computing the energy deposition
(ionization, excitation, heat, etc) at a site (a ‘volume of interest’) within a mass of irradiated
target material. For detailed discussions and the mathematical expressions for computing this
coefficient, the reader is referred particularly to the definitive work of Berger (1961), also to
the work of Hubbell (1982) widely used as a reference standard, and to the more recent works
of Seltzer (1993) and Hubbell and Seltzer (1995).

Here, pen/p Will be defined pictorially in figure 4 (from Hubbell 1977, which is also
the source of the following text)), in terms of the progressively more-detailed quantjties
Wa/p, w/p @nduen/ o, reading from left to right across the bottom of the diagram. Each of the
photon interaction cross sections appearing in the sum on the right-hand side of equation (6) is
represented schematically on the vertical left-hand side of figure 4 as the base dimension of a
broad arrow. Moving from left to right along each of these arrows representing an interaction
process, upward-branching arrows have been drawn to represent the fraction of the initial
photon energy lost to the volume of interest in the form of secondary photons.

These secondary photons can include not only scattered and fluorescence photons from
the primary event, but also bremsstrahlung and annihilation radiation from the charged-particle
products of the primary event. The remaining fractional photon energy is assumed to be avail-
able for deposit in the volume of interest via the various charged-particle energy-dissipation
mechanisms (see, for example, Seltzer 1993). For application to absorbed-dose calculations,
information on this available energy can be represented by the various approximate coefficients
wa/ 0, i/ p @anduen/ o listed across the bottom of figure 4. Each of these coefficients has the
same dimensions (for example £gr!) as the mass attenuation coefficigno but is reduced
by a fraction which takes into account a specified combination of secondary photon energy
losses as schematically indicated by the connecting broken lines in figure 4.

4.1. The mass absorption coefficient/ o

The simplest of these approximate coefficients,/p, referred to by Evans (1955, 1968)

as the ‘mass absorption coefficient’, assumes, as indicated in figure 4, that only scattered
photons, both coherent and incoherent, leave the volume of interest. Usually included in this
approximation is the assumption that incoherent (Compton) scattering is adequately described
by the Klein—Nishina (1929) equations which assume the target electrons to be initially free
and at rest.

4.2. The mass energy-transfer coefficient p

The next approximation, discussed in ICRU Report 33 (ICRU 1980), is the ‘mass energy-
transfer coefficientiy / o symbolized by the broken line in figure 4 connecting to this quantity.
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K/P Ho/P  Hi/P  fHen/P

Figure 4. Schematic representation of the mass attenuation coeffigjgntthe mass absorption
coefficientu,/p, the mass energy-transfer coefficignt/p, and the mass energy-absorption
coefficientuen/p in terms of the cross sections for coherestdn) and incoherentoincon)
scattering, atomic photoeffect); pair production £), and photonuclear reactionspiyn.). The
upward-branching arrows represent the fraction, of the incident photon energy, lost to the volume
of interest in the form of secondary photons such as positron annihilation radiation (ANN. RAD.),
bremsstrahlung (g €" BREMSS.), fluorescence x-rays (FLUOR) and scattered photons
(SCATT. y). The enhancement of annihilation photon energies due to positron annihilation in
flight (¢* ANN. IN FLT.) at the expense of positron bremsstrahlung and energy deposition is also
indicated.

This coefficient assumes thatl secondary photons from the primary event, fluorescence
as well as scattered photons, are lost to the volume of interest. In addition, although born
subsequent to the primary interaction at a distance determined by the positron travel prior
to annihilation, annihilation radiation (two 0.511 MeV photons, here assuming annihilation
to take place only after the positron has come to rest) is included in the fractional energy
subtractions in computingy/ p.

4.3. The mass energy-absorption coefficiegi/ o

The further-reduced ‘mass energy-absorption coefficieg/ o indicated symbolically as the
broken line at the extreme right edge of figure 4, is still a somewhat inexact quantity due to the
arbitrariness of the ‘volume of interest’ and other factors, but is an improvement over the above
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Figure 5. The mass attenuation coefficigntp and mass energy absorption coefficigat/p for
hydrogen for photon energies 1 keV to 100 MeV.

coefficients if one is to use this general approach in computing energy deposition. Seltzer's
(1993) calculations address all the criticisms by Carlsson (1971) of eaglies computations,
by taking into account (i) electron binding effects on the Compton-scattered photon distribution,
(ii) the complete cascade of fluorescence emission after ionization events in any atomic
subshell, including those associated with incoherent scattering and triplet production, and
(i) the radiative energy losses of the secondary electrons and positrons slowing down in
the medium, including the emission of bremsstrahlung, characteristic x-rays from impact
ionization, and positron in-flight as well as at-rest annihilation quanta. His consideration of
the processes in (iii) goes beyond the continuous-slowing-down approximation and includes
the effects of energy-loss straggling.

Figures 5, 6 and 7 from Hubbell and Seltzer (1995) show some sample results,for
for H (Z = 1), water and CuZ = 29), compared with/p taken from the Berger—Hubbell
(1987) XCOM PC data base. ltis clear that for Iamaterials, in which incoherent scattering
is the dominant process in the energy range of interest in medicine and biology, the fraction of
photon energy deposited in the medium is small, but increases for higheaterials where
photoelectric absorption is more significant. For compounds and mixtures, it should be pointed
out thatuen/p values cannot be simply added together according to fractions by weight, as in
the case ofi/p, due to the matrix effect (secondary radiations produced by atoms differing
from the original target atom) on the calculation.
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Figure 6. The mass attenuation coefficigntp and mass energy absorption coefficigat/p for
water for photon energies 1 keV to 100 MeV.

5. Current status and future tasks, particularly for medical and biological applications

It is clear from the above account that th¢p tables used in medical, biological and other
applications are indebted to a great army of theoretical physicists, working on the many pieces
of the puzzle, from the time of&htgen (1895) to the present. These tables are further indebted
to the even greater army of experimental physicists listed in the Hubbell (1994) bibliography
whose results the theory must reproduce at the points where comparison is possible. If
such reproduction is achieved, within the uncertainties of the theoretical models and the
experimental measurements, then we feel we have some understanding of the underlying
reality of the physical entities and processes involved in the interactions of the photons with
tangible matter.

Many of the above calculations and computations, still used in cusrgmtompilations,
were performed on rather rudimentary computers, compared with what are available today.
Hence, new computations are anticipated, to replace the old, using newer approaches such
as the relativisticS-matrix formalism. One would hope that the value.gfp obtained from
improved measurements and better theoretical models, for any given combinafioanaf
incident photon energy, is converging in time asymptotically, as the years pass, to an ‘underlying
reality’ u/p, although there have been some notable divergences in the past. Hence it has been
difficult to establish an ‘envelope of uncertainty’ as desired by workers in radiation dosimetry
reference standards.
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Figure 7. The mass attenuation coefficigntp and mass energy absorption coefficigat/p for
copper for photon energies 1 keV to 100 MeV.

Table 1. EPDL97 photoionization cross section estimated uncertaintieagsumed).

Photon energy range  Solid Gas
leV-10eV ? ?

10 eV-100 eV 1000% 20%

100 eV-0.5 keV 1009%-200%  10%—20%
0.5 keV-1.0 keV 10%—-20% 5%

1.0 keV=5.0 keV 5% 5%

5 keV-100 keV 2% 2%

100 keV-10 MeV 1%—-2% 1%—-2%
10 MeV-100 GeV 2%-5% 2%-5%

For the photoionization cross section, an attempt has been made in EPDL97 @wallen
1997) to provide some rough estimates of the envelope of uncertainty, over the ranges of photon
energies encompassed in that data base (table 1). Since photoionization or atomic photoeffect
is the dominant interaction at low photon energies, where the uncertainties are the largest,
these very approximate and subjective percent uncertainties can be taken as a rough guide
to the uncertainties of the total photon cross sectignor the mass attenuation coefficient
u/p. Inthe region 5 MeV to 30 MeV where the photonuclear giant dipole resonance occurs
in the photonuclear cross sectiop, ., neglect of this cross section can make errorg jp
in excess of 5%, at the peak of this resonance. &g peak energy varies with both and
the particular isotope of that element.
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From this we can see that in the photon energy range of most interest in medical and
biology applications, 5 keV to a few MeV, the envelope of uncertainty 4, judging from
the above estimates, is of the order of 1% to 2%. For the photon energy range 1 keV to 50 MeV,
of most interest to medical physicists, attention is here called to a recently assembled electronic
data base, including values pf,/ 0, developed by Boone and Chavez (1996).

Some notion of the convergence @f o as a function of time may be had by selecting
a photon energy, here 40 keV, and two elements, here carbon and lead, and following the
variations in thesg /p values from the first compilation to use a standard energy grid (White
1952), through to the values given by Hubbell and Seltzer (1995) and by Boone and Chavez
(1996) (table 2).

Table 2. Variance of compiled values @f/p as a function of time.

w/p (cm? g1y (‘with coherent’)

Compilation (at 40 keV) C{=6) Pbg=382
White (1952) 0.202 10.5
White Grodstein (1957) 0.205 10.5
McGinnies (1959) 0.205 151
Allison (1961) — 14.3
Brown (1966) 0.193 14.3
Plechaty and Terrall (1966) 0.208 13.2
Hubbell (1969) 0.206 14.0
McMasteret al (1969) 0.205 141
Johns and Cunningham (1969) 0.205 13.8
Storm and Israel (1970) 0.207 14.2
Veigele (1973) 0.209 14.2
Hubbell (1982) 0.207 14.4
Hubbell and Seltzer (1995) 0.208 14.4
Boone and Chavez (1996) 0.207 14.3

The stability of thew/p values beginning in the 1960s, particularly for Pb for which
40 keV is below the K-shell photoabsorption edge (only L and higher shells contributing) can
be attributed to a combination of the higher-shell photoeffect cross section calculations by
Rakavy and Ron (1965, 1967) and by Scofield (1973), with a flurry of new measurements in
this time period.

For future tasks, more attention should be paid to the atomic photoeffect absorption edge
structure, which will require a much larger and higher-dimensional data base, to accommodate
the molecular and other matrix environments of the target atoms. Similarly, for the more
accurate scattering results from the relativistimatrix theoretical model, to replace the current
simplistic and approximat€ (x, Z) andS(x, Z) atomic form factor and incoherent scattering
functiontables, much more extensive and higher-dimensional arrays will be required. However,
modern computers continue to take giant steps toward greater computing power, speed and
data storage and retrieval, so these objectives should be met within the coming decade, perhaps
even including photonuclear dadghn. .

At the same time, the experimental capabilities, including more intense and higher-energy
synchrotron light sources, and new detectors with better resolution and higher efficiencies,
should provide more accurate (toward ‘underlying reality’?) measured valyegeofo test
and undergird the above theoretical advances. Although itis sometimes said that ‘now theory is
better than experiment’, the belief of this author is that ‘theory is an interpolation of experiment’
for purposes of compiling./ p tables for medical, biological and other practical applications.
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