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Abstract:   

The promise of epigenome-wide association studies (EWAS) and cancer specific somatic 

changes in improving our understanding of cancer coupled with the decreasing cost and increasing 

coverage of DNA methylation microarrays, has brought about a surge in the use of these technologies.  

Here, we aim to provide both a review of issues encountered in the processing and analysis of array-

based DNA methylation data, as well as to summarize advantages of recent approaches proposed for 

handling those issues; focusing on approaches publicly available in open-source environments such as 

R and Bioconductor.   The processing tools and analysis flowchart described we hope will facilitate 

researchers to effectively use these powerful DNA methylation array-based platforms, thereby 

advancing our understanding of human health and disease.   
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Epigenetic mechanisms associated with DNA methylation of cytosine residues at CpG 

dinucleotides play a central role in normal human development and disease (Baylin and Jones, 2011).  

Advancements in high-throughput assessment of DNA methylation using microarrays or second-

generation sequencing-based approaches have enabled the quantitative profiling of DNA methylation 

of CpG loci throughout the genome.  As well as profiling the methylome of tumour compared to 

normal tissue, this has ushered in the era of epigenome-wide association studies (EWAS), analogous 

to the genome-wide association studies (GWAS), aimed at understanding the epigenetic basis of 

complex diseases such as cancer.  The promise of methylation profiling in improving our 

understanding of cancer coupled with the current trend of decreasing cost and increasing coverage of 

DNA methylation microarrays has brought about a surge in the use of these technologies.  

 Here, we aim to provide both a review of issues encountered in the processing and analysis 

of array-based DNA methylation data, as well as to summarize recent approaches proposed for 

handling those issues.  Excellent reviews of the field of epigenetics and technical aspects of array-

based assessment of DNA methylation are available, although this is a constantly developing research 

area (Petronis, 2010, Rakyan et al., 2011, Laird, 2010, Baylin and Jones, 2011, Bock, 2012) .  We 

seek to update perspectives on statistical issues that arise in the processing and analysis of array-based 

DNA methylation data (Siegmund, 2011), highlighting more recent methods proposed for this 

purpose. The sub-headings shown in Figure 1 form the basis for the topics highlighted in this review.  

Our goal is to help researchers understand the growing body of statistical methods for array-based 

DNA methylation data, focusing on those freely available in open-source environments such as, R or 

Bioconductor (Table 1). For this review, we chose to focus on Illumina’s BeadArray assays; however, 

many of the general considerations described here are applicable to other array technologies. We also 

aim to counter some of the perceived limitations of these arrays, i.e., that there are too many “false 

positives” in analyzing micro-array data (Ioannidis, 2007).  We present the viewpoint that appropriate 

experimental design and downstream data processing and analysis pipelines will enable DNA 
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methylation to be appropriately analysed and help understanding of the pathogenesis of human 

disease.         

Illumina bead-array technology for methylation: 

Illumina adapted its BeadArray technology for genotyping to recognize bisulfite-converted 

DNA for the interrogation of DNA methylation (Bibikova et al., 2011).  The Illumina BeadArray 

assays use oligonucleotides conjugated to bead types to measure specific target sequences, measuring 

multiple beads per bead type.  The bead types are summarized by the average signal for methylated 

(M) and unmethylated (U) alleles, and are used to compute the Beta value, where: 

Beta =
Max(M, 0)

Max(M, 0)+Max(U, 0)+100
 

A Beta value of 0 equates to an unmethylated CpG site and 1 to a fully methylated CpG site. 

Illumina has developed three platforms for array-based assessment of DNA methylation: GoldenGate, 

Infinium HumanMethylation27, and the Infinium HD 450K Methylation array, which all use two 

fluorescent dye colors, but differ in the chemistries used to recognize the bisulfite-converted 

sequence; however we will focus on the Infinium arrays for the rest of this work as the GoldenGate 

array has been phased out from production.  Furthermore, Illumina has developed their GenomeStudio 

software (Bibikova et al., 2011) which enables for basic data analysis; however for more in depth 

analysis, many tools have been developed, as we will discuss below. 

Quality control of samples: 

The Infinium arrays include several control probes for determining data quality, including 

sample independent and dependent controls (Illumina, 2011).  To detect poorly performing samples in 

Illumina arrays, diagnostic plots of control probes in GenomeStudio are often used (Bibikova et al., 

2011), the R-package HumMethQCReport (Mancuso et al., 2011) also provides these plots .  Figure 2 

shows hybridization and bisulfite conversion plots for 450K data in the green channel.  While the 

sample independent and dependent controls can be visually inspected to identify poor performing 
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samples, an alternative approach involves using the raw signal intensities of the control probes and 

determining if they are beyond the expected range (e.g., median ± 3 standard deviations) of the signal 

intensities across all samples.  

Other options for quality control of samples, which make use of detection p-values, are 

available in R and Bioconductor packages, such as the preprocessing and analysis pipeline (Touleimat 

and Tost, 2012), IMA  (Wang et al., 2012), Minfi (Hansen, 2013) and MethyLumi (Davis, 2011).   

Quality control of probes:  

Similar to sample quality control, it is customary to filter probes if a certain proportion of 

samples (i.e., >25%) have a detection p- value below a certain pre-specified threshold (i.e., p < 0.05) 

(Bibikova et al., 2011).  In the IMA package (Wang et al., 2012) probes with missing values, those 

residing on the X chromosome, and those with a median detection p-value > 0.05 across samples can 

be filtered out; other packages allowing such filtering include (Touleimat and Tost, 2012, Davis, 

2011).   

LumiWCluster (Kuan et al., 2010) includes a function for model-based clustering of 

methylation data using a weighted likelihood approach wherein higher quality samples (i.e., those 

with a low median detection p-value) have larger weights and thus, more influence in the estimation 

of the mixture parameters for cluster inference.  This approach avoids discarding probes, 

characteristic of hard-thresholding approaches, allowing the incorporation of all the data while 

accounting for the quality of individual observations.  

A potential issue for quality control at the probe level stems from certain probes targeting 

CpG loci which include single-nucleotide polymorphisms (SNPs) near or within the probe sequence 

or even in the target CpG dinucleotide; in fact there may be up to 25% probes on the 450K array that 

are affected by a SNP (Bock, 2012).  As methylation levels of a specific locus may be influenced by 

genotype (Dedeurwaerder et al., 2011a), investigators may want to remove those SNP-associated loci 

from their data and several R packages have options for carrying this out (Wang et al., 2012, 

Touleimat and Tost, 2012).  Genetic effects however should not be underestimated in methylation 
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arrays.  As was recently demonstrated in (Fraser et al., 2012), a large portion of population-specific 

DNA methylation levels may in fact be due to population-specific genetic variants which are 

themselves affected by genetic or environmental interactions.  While rare SNPs are unlikely to affect 

methylation levels to a large extent, somatic mutations can impact methylation levels greatly, such as 

driver mutations in a tumour; hence the importance of subsequent sequencing validation. 

Additional probes that a researcher may want to remove from their data include the “Chen 

probes”.  This is evidenced in a recently published paper showing that there may be spurious cross-

hybridisation of Infinium probes on the 450K array and further suggesting that cross-hybridisation to 

the sex chromosomes may account for the large gender effects that researchers have found on the 

autosomal chromosomes (Chen et al., 2013).  Finally, a number of SNP probes are also included on 

the Infinium array which can help identify mislabelled samples, as implemented in wateRmelon 

(Pidsley et al., 2013).   

Background correction: 

Background correction is platform specific, helps to remove non-specific signal from total 

signal and corrects for between-array artifacts.  While this can be performed using Illumina’s 

GenomeStudio, several R packages contain background correction functions.  This includes the 

preprocessing and analysis pipeline for 450K data (Touleimat and Tost, 2012), providing background 

level correction using lumi (Du P, 2008), and furthermore Limma (Wettenhall and Smyth, 2004) and 

MethyLumi (Davis, 2011).   Background can also be estimated by direct estimation from the density 

modes of the intensities measured by each probe.  However, the latter has been shown to produce 

aberrant DNA methylation profiles, so using negative control probes may be preferred (Touleimat and 

Tost, 2012).  One can also use Minfi (Hansen, 2013) as a background estimation method; however, 

the authors acknowledge that this method may result in differing values compared to those estimated 

via GenomeStudio. 

Normalization: 
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Normalization concerns the removal of sources of experimental artifacts, random noise, 

technical and systematic variation caused by microarray technology, which if left unaddressed, has the 

potential to mask true biological differences (Sun et al., 2011a).  Two different types of normalization 

exist: (1) between array normalization, removing technical artifacts between samples on different 

arrays, and (2) within array normalization, correcting for intensity-related dye biases (Siegmund, 

2011).    

Due to the features of DNA methylation, there is a lack of consensus regarding the optimal 

approach for normalization of methylation data.  Specifically, there is an imbalance in methylation 

levels throughout the genome creating a skewness to the methylation log-ratio distribution; the degree 

of this skewness is dependent on the levels of methylation in particular samples (Siegmund, 2011).  

This imbalance is due to the non-random distribution of CpG sites throughout the genome and the link 

between CpG density and DNA methylation; for instance CpG islands (CGI) are often unmethylated 

whereas the opposite relationship is typically seen in non-CGIs in normal human cells (Baylin and 

Jones, 2011).   Furthermore, total fluorescence signal is inversely related to DNA methylation levels 

(Siegmund, 2011).  Many available normalization methods were designed for gene expression array 

data and are based on assumptions that may not be appropriate for DNA methylation microarray data.  

Genomestudio provides an internal control normalization method for the 450K assay 

(Illumina, 2008) which is also used in MethyLumi (Davis, 2011) and Minfi (Hansen, 2013); by default 

Genomestudio uses the first sample in the array as the reference and allows the user to reselect the 

reference sample as needed if the original sample is non-genomic or of poor quality.   

Quantile normalization is one of the most commonly used normalization techniques.  LOESS 

normalization is an intensity-dependent normalization method that assumes independence between the 

difference in log fluorescence signals between two samples and the average of the log signals from 

the two dyes (Siegmund, 2011).  Quantile and LOESS normalization (Laird, 2010) assume similar 

total signal across samples and can therefore remove true biological signal, due to the nature of DNA 

methylation described above, and have assumptions unlikely to hold for methylation data.  As the 
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Infinium I and II probe types examine different subsets of the genome, described in detail below, 

quantile normalization cannot be applied indiscriminantly across probe types.   

Lumi (Du P, 2008), also used in HumMethQCReport (Mancuso et al., 2011), offers an 

alternative to quantile normalization through a robust spline normalization, which is designed to 

normalize variance-stabilized data by combining features of both quantile and LOESS normalization 

(Du P, 2008).  Another approach, subset quantile normalization (Wu and Aryee, 2010), normalizes the 

data based on a subset of negative control or CpG-free probes that are independent of DNA 

methylation, but suffers the same issues as other quantile approaches.  The TurboNorm R package 

(van Iterson et al., 2012) provides an alternative to LOESS normalization using a weighted P-spline 

intensity-dependent normalization technique and can be applied to two color arrays.  A more recent 

method (Sun et al., 2011b), which we describe in more detail below, performs both normalization and 

batch effect correction.  A comparison of different normalization pipelines for Illumina 450K data can 

be found in two recent publications (Pidsley et al., 2013, Marabita et al., 2013).  

Type I and II probe scaling:   

Another potential methodological concern stems from the fact that the 450K array uses two 

different types of probes, prompting the recommendation of rescaling to make the probe distributions 

comparable (Bibikova et al., 2011).  Specifically, the 450K array has 485,577 probes, of which 72% 

use the Infinium type II primer extension assay where the unmethylated (red channel) and methylated 

(green channel) signals are measured by a single bead (Bibikova et al., 2011).  The remainder use the 

Infinium type I primer extension assay (also used in the 27K Infinium array) where the unmethylated 

and methylated signals are measured by different beads in the same colour channel (Bibikova et al., 

2011).  Importantly, the two probes differ in terms of CpG density; with more CpGs mapping to CpG 

islands for type I probes (57%) as compared to type II probes (21%) (Bibikova et al., 2011).  

Moreover, compared to Infinium I probes, the range of beta values obtained from the Infinium II 

probes is smaller; additionally, the Infinium II probes also appear to be less sensitive for the detection 
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of extreme methylation values and display a greater variance between replicates (Dedeurwaerder et 

al., 2011a).   

The divergence in the methylation distribution range has implications for statistical analysis 

of the array data.  For example, in a supervised analysis of all probes, an enrichment bias towards type 

I probes may be created when ranking probes due to the higher range of type I probes (Maksimovic et 

al., 2012).  Additionally, region-based analyses assume that probes within those regions are 

comparable; potentially untenable due to the diverging chemistries on the 450K array (Maksimovic et 

al., 2012).   Moreover, when performing profile analyses or clustering, the differing chemistries 

between the two probes types may drive the clustering solution.  

Attempts have been made to use rescaling to “repair” the divergence between these two types 

of probes.  The first correction method proposed was peak based correction (Dedeurwaerder et al., 

2011a), implemented in  IMA (Wang et al., 2012), wherein the Infinium II data is rescaled on the basis 

of the Infinium I data assuming a bimodal shape of the methylation density profiles.  However, 

several researchers have noted that this method is sensitive to variation in the shape of DNA 

methylation density curves and does not work well when the density distribution does not exhibit 

well-defined peaks or modes (Touleimat and Tost, 2012, Teschendorff et al., 2012, Pan et al., 2012).   

Three alternative approaches have been proposed recently to address the limitations of the 

peak base correction approach.  The first, SWAN (Maksimovic et al., 2012), is available in Minfi.  

SWAN determines an average quantile distribution using a subset of probes defined to be biologically 

similar based on CpG content and allows the Infinium I and II probes to be normalized together 

(Maksimovic et al., 2012).    

The second, Subset-quantile normalization (Touleimat and Tost, 2012), uses the genomic 

location of CpGs to create probe subgroups through which they apply subset quantile-normalization.  

The reference quantiles used in this approach are based on type I probes with significant detection p-

values (Touleimat and Tost, 2012).   
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Finally, the Beta mixture quantile dilation normalization method, implemented in the 

wateRmelon package (Pidsley et al., 2013), uses quantiles to normalize the type II probe values into a 

distribution comparable to the type I probes using a beta-mixture model fit to the type I and type II 

probes separately, then transforms the probabilities of class membership of the type II probes into 

quantiles (Beta values) using the parameters of the beta distributions of the type I 

distribution(Teschendorff et al., 2012).  This method uses a three-state beta mixture model, but does 

not use fit to the middle "hemimethylated" component in the normalisation; therefore it does not 

require a trimodal distribution (Teschendorff et al., 2012).  An advantage of BMIQ is that it avoids 

selecting subsets of probes matched for biological characteristics as done in the previous method and 

was found to be the best algorithm for reducing probe design bias in a recent paper (Marabita et al., 

2013).   

Rescaling using the methods mentioned above may be unnecessary when analyzing 450K 

data on a CpG-by-CpG basis because the comparisons will be made at the individual probe level.   

 

Adjustment batch/plate/chip/other confounders: 

DNA methylation arrays are susceptible to batch effects: technical remnants that are not 

associated with the biological question, but with unrelated factors such as laboratory conditions or 

experiment time (Sun et al., 2011b, Leek et al., 2010).  Normalization has been shown to reduce some 

component of batch effects, though not all (Sun et al., 2011b, Leek et al., 2010, Teschendorff et al., 

2009).  Sound study design is critical for proper evaluation of and correction for batch effects: for 

instance, samples from different study groups should be split randomly or equally to different batches 

(Johnson et al., 2007).  By properly correcting for batch effects one can combine data from multiple 

batches, enabling greater statistical power to measure a specific association of interest (Johnson et al., 

2007). 

Several methods have been proposed to adjust for batch effects.  ComBat uses an empirical 

bayes procedure for this (Johnson et al., 2007), is robust to outliers in small sample sizes, and can 
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adjust for other potential confounders along with batch (Sun et al., 2011b).  However, this method can 

be computationally burdensome and was initially developed for gene expression data; therefore 

requires a transformation of methylation data, which follows the Beta distribution, to satisfy the 

assumption of normality. 

Other R packages exist to adjust for batch effects.  MethLAB (Kilaru et al., 2012) and CpG 

assoc (Barfield et al., 2012) allow the adjustment for batch using a mixed effects model framework.  

However, because these methods do not directly adjust the data, unlike ComBat which does, they 

should only be used for a locus by locus analysis. 

The array literature indicates that array position effects may also exist (van Eijk et al., 2012), 

so new batch correction techniques may be needed to take those into account.  When phenotype 

distribution is heterogeneous across chips, which can occur in small samples even after 

randomization, methods such as ComBAT can fail; in this case, linear mixed effects models treating 

chip effects as random is an alternative. 

However, in certain cases, the true sources of batch effects or confounding are unknown or 

cannot be adequately modelled statistically (Leek et al., 2010).  In such cases two methods, surrogate 

variable analysis (SVA) (Leek and Storey, 2007) and independent surrogate variable analysis (ISVA) 

(Teschendorff et al., 2011), also available as the ISVA R package are very useful.  SVA estimates the 

source of batch effects directly from array data and variables estimated with SVA (SVs) can then be 

included into the statistical model as covariates (Leek and Storey, 2007).  A modified version of SVA, 

ISVA, identifies features correlating with the phenotype of interest in the presence of potential or 

unknown confounding factors, that are modelled as statistically independent surrogate variables or 

ISVs  (Teschendorff et al., 2011).  This method could also be used for batch effects by constructing 

ISVs that are associated with these as potential confounders and including them in the analytical 

model.  A problem with this technique occurs when the ISVs correlate both with the phenotype of 

interest and with the potential confounders, making model covariate selection difficult.  Furthermore, 

ISVA and SVA do not directly adjust the methylation data, like ComBAT does, which may be 
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problematic if the analytical goal is clustering.  One could however fit a model with the estimated SVs 

or ISVs and compute the residuals for subsequent analyses. 

Downstream analysis: 

1. Methylation status:  

Average Beta or the β-value is a commonly used metric to denote the level or percentage of 

methylation for an interrogated locus.  Investigators also use the M value, or log-ratio, to measure 

methylation:(Du et al., 2010) 

      

        

        
 

A normalized M value near 0 signifies a semi-methylated locus, a positive M value indicate that more 

molecules are methylated than unmethylated, while negative M values have the opposite 

interpretation (Du et al., 2010).  An M value is attractive in that it can been used in many statistical 

models derived for expression arrays that assume normality (Du et al., 2010).   However, β-values are 

much more biologically interpretable than their counterpart; furthermore, a recent paper found 

supervised principal components analysis (SPCA), as described below, to work better in the context 

of β-values as opposed to M-values (Zhuang et al., 2012).  The relationship between the Beta and M 

value is captured by (Du et al., 2010): 

      

    

      
 

 

2. Differential methylation/Region-based analysis: 

Locus by locus analyses examine the relationship between a phenotype of interest and 

methylation of individual CpG sites across the genome, seeking to find differentially methylated sites.  

Differential methylation analysis aims to determine methylation differences between specific groups 

(such as cases and controls), such as probe-wise or locus-specific methylation differences; the two 

terminologies are therefore equivalent when at the individual locus level.  A very simple example is 

Delta B (Touleimat and Tost, 2012, Bibikova et al., 2011) where a difference is applied to two 

groups’ methylation medians for each CpG locus; if the absolute value of the difference in medians 
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across samples of each group is higher than 0.2, then that locus is considered to be differentially 

methylated.  This 0.2 threshold corresponds to the recommended difference in methylation between 

samples that can be detected with 99% confidence (Bibikova et al., 2011).   MethVisual (Zackay and 

Steinhoff, 2010) tests whether each CpG site has independent membership between two groups using 

a Fisher's exact test; other packages include (Kilaru et al., 2012, Wang et al., 2012, Barfield et al., 

2012, Wettenhall and Smyth, 2004) , some allowing for the adjustment of potential confounders 

(Kilaru et al., 2012, Wang et al., 2012, Barfield et al., 2012).  Minfi (Hansen, 2013) uses linear 

regression and an F-test to test for a univariate association between the methylation of individual loci 

and continuous or categorical phenotypes, respectively.  When sample sizes are less than 10 , Minfi 

(Hansen, 2013) has options for using limma (Wettenhall and Smyth, 2004) .  Specifically, limma uses 

an empirical Bayes moderated t-test, computed for each probe, which is similar to a t-test except that 

the standard errors have been shrunk towards a common value.  M values should be used in these 

cases since, being based on a Bayesian Gaussian model, they will rely much more heavily on the 

Gaussianity assumption (Zhuang et al., 2012).  The IMA package (Wang et al., 2012) allows site 

(methylation locus) specific and region (all loci in a gene) specific differential methylation analysis 

using Student’s t test and empirical Bayes statistics.  For region analysis, IMA will compute the mean, 

median or Tukey’s Biweight Robust average for  the loci within that region and create an index 

(Wang et al., 2012).  Methylkit (Akalin et al., 2012) allows for analysis at the site or regional level 

using logistic regression or Fisher's exact test.  With multiple samples per group, methylkit will 

preferentially employ logistic regression, enabling also the inclusion of potential confounders (Akalin 

et al., 2012); to get stable estimates of the regression coefficients in logistic regression about 10 

events per variable are necessary (Peduzzi et al., 1996).    

Differential methylation analysis can also be performed by measuring variability between 

methylation loci as opposed to using statistical tests based on differences in mean methylation (Xu et 

al., 2013).  This is available in the EVORA package, allowing an investigator to use differential 

variability in methylation of CpGs and to then associate them to a phenotype of interest, such as 

cancer status (Teschendorff and Widschwendter, 2012, Xu et al., 2013).  
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As noted in several recent works, nearby CpG loci tend to have methylation levels that are 

highly correlated (Leek et al., 2010).  As a result, statistical analyses that assume independence may 

be problematic.  Methods are being developed to deal with this potential problem and include bump-

hunting techniques (Leek and Storey, 2007), which take into account CpG proximity and borrow 

strength across neighbouring probes.  While these approaches were originally developed for CHARM 

assays, they may be adapted to the less dense 450K array, pending careful attention to the tuning 

parameters for defining a “region”.  

While the above methods have proved successful in identifying individual CpG sites that 

associate with some phenotype/exposure of interest, the extent to which the methylation of these sites 

reflect true changes to the methylome or represent heterogeneity in underlying cell type distributions, 

depend largely on the tissue being sampled (Houseman et al., 2012, Teschendorff et al., 2009).  We 

recently developed a set of statistical methods that exploit the use of leukocyte specific DMRs for 

inferring changes in cell mixture proportions based solely on peripheral blood profiles of DNA 

methylation (Houseman et al., 2012).  Under certain constraints, this approach can be used to 

approximate the underlying distribution of cell proportions among samples consisting of a 

heterogeneous mixture of cell populations with distinct DNA methylation profiles (Houseman et al., 

2012).  This method has recently been used for predicting cell type proportions, which were then 

subsequently added as additional covariate terms in a differential methylation analysis of rheumatoid 

arthritis cases/controls (Liu et al., 2013).   Furthermore, the methods of Houseman et al, (Houseman et 

al., 2012) were recently validated using a publicly available data set (Lam et al., 2012) that consisted 

of both PBMC-derived DNA methylation profiles and complete blood cell (CBC) counts for 94 

healthy, non-diseased adult subjects (Koestler et al. Epigenetics In press).  

 

3. Clustering/ Profile analysis: 

Clustering refers to the grouping of objects into clusters, such that the objects within the same 

cluster are more similar compared to objects in different clusters.  Due to the interest in identifying 
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molecular subtypes in the context of cancer, clustering has become a staple technique in the analysis 

of array-based DNA methylation data.    

Two very well-known non-hierarchical methods used to cluster DNA methylation include K 

means and K medoids; also known as partitioning around medoids or PAM (Pollard, Cluster Analysis 

of Genomic Data).  Two disadvantages of K means are that it requires the pre-specification of the 

number of classes, which is not often known; furthermore, K-means creates clusters based only on the 

first moment, problematic in cases where the variance of a specific probe contains biologically 

important information.  Another commonly used method to detect patterns in methylation data is 

principal component analysis (PCA) which is a latent variable method often applied as a dimension 

reduction procedure and used for detection of batch effects (Jolliffe, 2002).  PCA was first applied to 

genome-wide Infinium HumanMethylation27 DNA methylation data in (Teschendorff et al., 2009).  

PCA is used to develop a smaller number of artificial variables, called principal components, which 

account for most of the variance in the observed variables of a dataset (Jolliffe, 2002); usually only 

the first few components are kept as potential predictors for statistical modelling (Jolliffe, 2002).  

However, additional principal components may be of biological significance as shown in 

(Teschendorff et al., 2009).   A method to estimate the number of significant PCA components is 

available in the ISVA package (Teschendorff et al., 2011).  This algorithm is based on Random Matrix 

Theory (Plerou et al., 2002) which can be used to estimate the number of number of significant PCA 

components that are subsequently examined for their association with study-specific characteristics.  

RMT estimates the number of significant components of a data covariance matrix by comparing the 

statistics of the observed eigenvalues obtained from PCA, to those obtained from a random matrix.  

The main disadvantage with PCA lies in the poor interpretability of the resulting principal 

components and the requirement of a large sample size in order to obtain reliable results.    

Another well-known clustering method is hierarchical clustering which builds a binary tree by 

successively merging similar samples or probes based on a measure of similarity (Eisen, 1998).  

However, due to its unsupervised nature, this form of clustering may or may not predict a phenotype 

of interest, as it does not use data beyond methylation to form clusters.  Lumi (Du P, 2008), 
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HumMeth27QCReport (Mancuso et al., 2011) and methylkit (Akalin et al., 2012) all provide 

hierarchical clustering and PCA options using normalized M values.    

In addition to non-parametric techniques for clustering or profile analysis, Houseman et al 

developed a Recursive-Partitioning-Mixture Model (RPMM), an unsupervised, model-based, 

hierarchical clustering methodology for array-based DNA methylation data.  RPMM assumes a beta 

mixture model to split samples between subgroups and provides an estimate for the number of 

clusters; furthermore is computationally efficient relative to the standard finite mixture model 

approach (Houseman et al., 2008).  Due to the inherent correlation in the methylation status of nearby 

CpG sites, there have also been efforts to incorporate correlation structures based on the proximity of 

CpGs in the context RPMM (Leek et al., 2010).  

Semi-supervised methods use both array-based genomic data and clinical data for identifying 

profiles that are associated with a clinical variable of interest, such as survival.  Semi-supervised 

clustering (SS-Clust) begins by identifying a set of genes that correlate with a phenotype of interest, 

followed by unsupervised clustering of samples based on the set of genes (Bair, 2004).  SPCA uses a 

similar methodology to SS-Clust, but replaces unsupervised clustering with PCA, providing  a “risk 

score” for each patient, which is then used as a continuous predictor of survival (Jolliffe, 2002).  SS-

Clust’s main disadvantage is that it requires pre-specification of the number of clusters; moreover, 

SPCA inherits the interpretability issues characteristic of PCA.  Semi-supervised RPMM (Koestler et 

al., 2010) has been shown to outperform SS-Clust and SPCA under certain circumstances and does 

not require the pre-specification of the number of clusters.   

One of the first attempts to discover novel tumour classes through profiling of methylation 

data involved a supervised method called support vector machine (SVM) including a cross-validation 

method to evaluate its prediction performance (Adorjan et al., 2002).  This approach was initially very 

computationally intensive but was a precursor to other profile analysis methods.  Another method, 

Elastic net, is a shrinkage and selection method which produces a sparse model with good prediction 

accuracy, while encouraging a grouping effect (Zou and Hastie, 2005); this algorithm is now being 

widely used on all types of omics data (Barretina et al., 2012, Hannum et al., 2013) and was compared 

to SVM and SPCA in (Zhuang et al., 2012) and shown to be far superior.   
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4. Pathway Analysis 

Many researchers use pathway analysis to characterize the function of the gene in which the 

individual or group of loci are found.  Several software packages do this; however we focus on two 

freely available resources that can also be used in R.  The Gene Ontology (GO) provides a very 

detailed representation of functional relationships between biological processes, molecular function 

and cellular components across eukaryotic biology (Ashburner et al., 2000).  Another resource that 

borrows heavily from GO is PANTHER (Thomas et al., 2003), which relates protein sequence 

relationships to functional relationships.  However, many commonly used pathway analysis methods 

are based on gene expression correlation or protein-protein interaction; while pathway perturbations 

are likely to be evident in expression changes across all genes of a pathway, a single well-placed 

alteration of DNA methylation, acting as an epigenetic switch, may alter all downstream mRNA 

expression.  In light of this, sensitivity for detecting significant pathways is lower for DNA 

methylation than it might be for mRNA expression.   In addition, unlike mRNA expression, CpGs 

have different implications for expression depending upon where they exist in relation to a gene or if 

they are mapped to any gene at all.  Since the 450K array has great heterogeneity with respect to the 

CpG-representation by gene region, there is the potential for pathway analysis on 450K data to be 

biased by CpG selection.  In addition, as genes are not equally covered throughout the array through 

the number of probes in their specific regions, this may further bias this analysis.  Therefore, in using 

such approaches, we recommend stratification by gene region (e.g., promoter) to decrease the 

potential for bias. Once a specific region has been chosen, then pathway analysis, GSEA, or 

integration with interaction networks could be a fruitful procedure, as recently demonstrated in 

(Dedeurwaerder et al., 2011b, West et al., 2013). 

Multiple testing correction: 

Once the analysis has identified top hits, multiple testing correction is necessary to reduce the 

likelihood of identifying false positive loci by adjusting statistical confidence measures by the number 
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of tests performed.  Bonferroni correction consists of multiplying each probability by the total number 

of tests performed; this controls the family-wise error rate (Holm, 1979).   

A less conservative, widely used approach, involves controlling the FDR (q value) or the  

expected proportion of false discoveries among the discoveries; this also uses a sequential p-value 

method (Benjamini et al., 2001); several R packages allow for the adjustment of the FDR (Kilaru et 

al., 2012, Wang et al., 2012, Barfield et al., 2012).  All of the aforementioned methods assume 

statistical independence of the multiple tests, which can be violated when tests exhibit strong 

correlations (as mentioned above); furthermore, q-values imply subsequent validation in an 

independent sample, which may not occur.  A potential solution to this independence assumption is 

with the use of permutation testing in which the phenotype of interest is randomly re-assigned, and the 

data reanalysed.  CpG assoc provides a permutation testing option to obtain empirical P-values 

(Barfield et al., 2012).       

Validation of significant hits: 

The final step in the proper processing and analysis of DNA methylation arrays is validation 

of significant hits by an independent experimental approach or data resource.  The gold standard is 

bisulfite sequencing based methods such as pyrosequencing (Ammerpohl et al., 2009) and Epityper 

(Laird, 2010) in order to provide high-throughput quantitation (Siegmund, 2011).  Another valuable 

resource for validation (and exploration) of DNA Methylation Array data is publicly available 

repositories such as the Gene Expression Omnibus or GEO (Edgar et al., 2002).   Finally, with the 

availability of data resources such as the above and HAPMAP (Altshuler et al., 2010), researchers can 

now integrate their methylation array data with these resources, to help further understand molecular 

and genomic profiles that contribute to outcomes of interest such as cancer risk. 

 

Conclusions: 
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Due to the plethora and complexity of methods for array processing and analysis, described 

above, and to the multitude of researchers using DNA methylation arrays, there is a need to create a 

protocol of good practice to ensure that study results are of the highest quality possible.   Just as gold 

standard laboratory methods are crucial to the generation of quality biological data, gold standard 

processing and analytical methods are equally as important.  Through the proper use of the processing 

and analysis flowchart described above, we hope that potential users will best harness these powerful 

array-based tools which will in turn lead to rapid discoveries in human health and disease.   
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Table 1: R/Bioconductor packages for the processing and analysis of array-based DNA 

methylation data. 

DNA methylation processing/analysis step  R/Bioconductor packages 

Quality control samples  

IMA, HumMethQCReport, methylkit, 

MethyLumi, preprocessing and analysis 

pipeline, minfi 

Quality control probes 

IMA, HumMethQCReport, lumi, 

LumiWCluster, preprocessing and 

analysis pipeline, wateRmelon 

Background correction  
Limma, lumi, MethyLumi, minfi, 

preprocessing and analysis pipeline 

Normalization  

 Combat
a
, HumMethQCReport,  lumi, 

minfi, TurboNorm, MethyLumi, 

wateRmelon 

Type 1 and 2 probe scaling  IMA, minfi, wateRmelon 

Batch/plate/chip/confounder adjustment Combat
a
, CpGassoc, ISVA, MethLAB 

Data dimension reduction  MethyLumi 

Differential methylation analysis /Region-based analysis 
CpGAssoc, IMA, limma, methylkit, 

MethLAB, MethVisual, minfi, EVORA 

Clustering/Profile Analysis  
lumi, ISVA, HumMeth27QCReport, 

methylkit, RPMM, SS-RPMM
b
 

Multiple testing correction  
CpGAssoc, methylkit, MethLAB, 

NHMMfdr 

a: freely available for download: http://www.bu.edu/jlab/wp-assets/ComBat/Abstract.html 

b: freely available for download: http://bio-epi.hitchcock.org/faculty/koestler.html 

 

Figure Legends: 

Figure 1: Methylation array data processing and analysis pipeline. Abbreviations: QC= Quality 

Control 

Figure 2: Quality Control Example from GenomeStudio 450K data A.  Hybridization quality 

control plot in the green channel.  B.  Bisulfite conversion quality control plot in the green channel. In 

http://www.bu.edu/jlab/wp-assets/ComBat/Abstract.html
http://bio-epi.hitchcock.org/faculty/koestler.html
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this example, the separation between high and low values indicates that hybridization worked well.  

Furthermore, bisulfite conversion also performed well as converted controls have a higher signal than 

unconverted controls.   

 


