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Abstract— Prognostic is nowadays recognized as a key 

feature in maintenance strategies as it should allow avoiding 

inopportune maintenance spending. Real prognostic systems are 

however scarce in industry. That can be explained from 

different aspects, on of them being the difficulty of choosing an 

efficient technology: many approaches to support the prognostic 

process exist, whose applicability is highly dependent on 

industrial constraints. Thus, the general purpose of the paper is 

to explore the way of performing failure prognostics so that 

manager can act consequently. Different aspects of prognostic 

are discussed. The prognostic process is (re)defined and an 

overview of prognostic metrics is given. Following that, the 

"prognostic approaches" are described. The whole aims at 

giving an overview of the prognostic area, both from the 

academic and industrial points of views. 

I. INTRODUCTION

aintenance activity combines different methods, tools 

and techniques to reduce maintenance costs while 

increasing reliability, availability and security of equipments. 

Thus, one usually speaks about fault detection, failures 

diagnostic, response development (choice of management 

actions - preventive and/or corrective) and scheduling of 

these actions. Briefly these steps correspond to the need, 

firstly, of "perceiving" phenomena, next, of "understanding" 

them, and finally, of "acting" consequently. However, rather 

than understanding a phenomenon which has just appeared 

like a failure (a posteriori comprehension), it seems 

convenient to "anticipate" it's manifestation in order to 

consequently and, as soon as possible, resort to protective 

actions. This is what could be defined as the "prognostic 

process" and which the object of this paper is. 

Prognostic reveals to be a very promising maintenance 

activity as it should permit to improve safety, plan successful 

missions, schedule maintenance, reduce maintenance cost 

and down time [1]. Also, industrials show a growing interest 

in this thematic which becomes a major research framework; 

see recent papers dedicated to "CBM", condition-based 

maintenance [2], [3] and [4]. However, considering the 

benefits that such technology may bring to the security, 

economics and resource management fields, the research 
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community still doesn't propose a formal framework to 

instrument the prognostic process and real prognostic 

systems are scarce in industry. That can be explained from 

different aspects. Firstly, "prognostic" still is not a stabilized 

concept: there is no consensual way of understanding it 

which makes harder the definition of tools to support it in 

real applications. Secondly, many approaches for prediction 

exist whose applicability is highly dependent of the available 

knowledge on the monitored system. Thirdly, the vagueness 

of prognostic process definition impedes to point out the 

inherent challenges for scientists. Thus, the purpose of this 

paper is to analyze and discuss the prognostic process from 

different points of view: the concept, the measures and the 

tools. The whole aims at giving a frame to perform (and 

develop) real prognostic systems. 

The paper is organized as follows. First of all, the concept 

of "prognostic" is briefly defined and positioned within the 

maintenance strategies. Some developments have been led to 

improve the proactive capacities of maintainers. So, the next 

part is dedicated to the analysis of the tools used in 

prognostic and prediction. At this stage, the advantages and 

the drawbacks of the identified research approaches for 

prognostic's purpose are pointed out. 

II. PROGNOSTIC CONCEPT (RE) DEFINITION

A. Concept of prognostic 

The European Standard on maintenance terminology does 

not define "prognostic" [5]. It doesn't appear either on the 

IFAC keywords list. This reveals that prognostic is a quite 

new area of interest. 

Prognostic is traditionally related to fracture mechanics 

and fatigue. It started to be brought up by the modal analysis 

community as a field of interest [6]. In this "meaning", 

prognostic is called the prediction of a system’s lifetime and 

corresponds to the last level of the classification of damage 

detection methods introduced by [7]. Prognostic can also be 

defined as a probability measure: a way to quantify the 

chance that a machine operates without a fault or failure up 

to some future time. This "probabilistic prognostic value" is 

all the more an interesting indication as the fault or failure 

can have catastrophic consequences (e.g. nuclear power 

plant) and maintenance manager need to know if inspection 

intervals are appropriate. However, a small number of papers 

address this acceptation for prognostic [6], [8]. 

Finally, although there are some divergences in literature, 

prognostic can be defined as recently proposed by the 
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International Organization for Standardization: "prognostic 

is the estimation of time to failure and risk for one or more 

existing and future failure modes" [9]. In this acceptation, 

prognostic is also called the "prediction of a system's 

lifetime" as it is a process whose objective is to predict the 

remaining useful life (RUL) before a failure occurs given the 

current machine condition and past operation profile [2]. 

All definitions proposed here before assimilate prognostic 

to a "prediction process": a future situation must be caught. 

In addition, this obviously supposes that the current situation 

can be grasped (practically, it's the synthesis of a detection 

process and of measured data of the system). More over, 

these approaches are grounded on the failure notion 

("termination of the ability to perform a required function 

[5]"), which implies that the "prognostic activity" is 

associated with a degree of acceptability. Following that and 

according to previous works, prognostic should be based on 

assessment criteria, whose limits depend on the system itself 

and on performance objectives [10], [11], and prognostic 

could be split into 2 sub-activities: a first one to predict the 

evolution of a situation at a given time, and a second one to 

assess this predicted situation with regards to an evaluation 

referential (Fig. 1.). A central problem can be pointed out: 

the accuracy of a prognostic system is related to its ability to 

approximate and predict the degradation of equipment; the 

prediction phase is a critical one. A look at prognostic 

metrics enables to point it out. 

B. Prognostic metrics 

There is no general agreement as to an appropriate and 

acceptable set of metrics that can be employed in prognostic 

applications, and researchers and maintenance practitioners 

are still working on this [12]. Various measures emerge 

however from literature: as for any industrial task, prognostic 

can be evaluated at least in two ways: 1) the main objective 

of prognostic is to provide the efficient information that 

enables the underlying decision process, i.e., the choice of 

maintenance actions. Also, a first set of metrics are those that 

quantify the risks incurred by the monitored system. This 

kind of metrics can be called the prognostic measures, 2) 

assuming that prognostic is in essence an uncertain process, 

it is useful to be able to judge from its "quality" in order to 

imagine more suitable actions. In this way, prognostic 

system performance measures can be constructed. 

Prognostic measures 

The main prognostic measure pursued is the predicted time 

to failure (TTF), also called the remaining useful life (RUL). 

In addition, a confidence measure can be built to indicate the 

degree of certitude of the future predicted failure time. By 

extension, and considering that practitioners can be 

interested on assessing the system with regard to any 

performance limit, RUL and confidence can be generalized: 

in Fig. 2a, TTxx refers to the remaining time to overpass the 

performance limit Perf/xx, and Conf/xxT is the confidence 

with which can be taken the asset TTxx > T. 

Prognostic system performance measures 

The timeliness of the predicted time to failure (TTF) is 

the relative position of the probability density function (pdf) 

of the prediction model along the time axis with respect to 

the occurrence of the failure event. This measure evolves as 

more data are available and reveals the expected time to 

perform preventive actions [12] (Fig. 2b). According to [13], 

one has to define two different boundaries for the maximum 

acceptable late and early predictions. Accuracy measures 

the closeness of the predicted value to the actual one. It has 

an exponential form and is as higher as the error between the 

predicted value of TTF and the real one is smaller. Precision

reveals how close predictions are clustered together and is a 

measure of the narrowness of the interval in which the 

remaining life falls. Precision follows from the variance of 

the predicted results for many experiments. Complementary 

of accuracy and precision is illustrated in Fig. 2c. 

III. PROGNOSTIC APPROACHES 

A. Overview 

Various approaches to prognostics have been developed 

that range in fidelity from simple historical failure rate 
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Fig. 2.  Some prognostic metrics. 
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models to high-fidelity physics-based models [14]. The 

required information (depending on the type of prognostics 

approach) include: engineering model and data, failure 

history, past operating conditions, current conditions, 

identified fault patterns, transitional failure trajectories, 

maintenance history, system degradation and failure modes. 

Let's have a first view of prognostics approaches that have 

successfully been applied on different types of problems. 

- Experience-Based Prognostics. Use statistical reliability 

to predict probability of failure at any time. 

- Evolutionary/Statistical Trending Prognostics. Multi-

variable analysis of system response and error patterns 

compared to known fault patterns. 

- Artificial Intelligence Based Prognostics. Mechanical 

failure prediction using reasoners trained with failure data. 

- State Estimator Prognostics. System degradation or 

diagnostic feature tracking using Kalman filters and other 

predictor-corrector schemes. 

- Model-Based or Physics of Failure Based Prognostics. 

Fully developed functional and physics-of-failure models to 

predict degradation rates given loads and conditions. 

Similar to diagnosis, prognostic methods can be classified 

as being associated with one of the following two 

approaches: model-based and data-driven. Each one of these 

approaches has its own advantages and disadvantages, and, 

consequently, they are often used in combination in many 

applications. Next paragraphs present a synthesis of it. 

B. Model based approaches 

The model-based methods assume that an accurate 

mathematical model can be constructed from first principles. 

As an example, physics-based fatigue models have been 

extensively employed to represent the initiation and 

propagation of structural anomalies. These methods often 

use residuals as features, where the residuals are the 

outcomes of consistency checks between the sensed 

measurements of a real system and the outputs of a 

mathematical model. The premise is that the residuals are 

large in the presence of malfunctions, and small in the 

presence of normal disturbances, noise and modeling errors. 

Statistical techniques are used to define thresholds to detect 

the presence of faults. Several techniques are proposed in the 

literature to generate residuals: parity space, parameters 

estimation, observers, bond graph, etc. 

Model-based literature. Model-based approaches to 

prognostic require specific failure mechanism knowledge 

and theory relevant to the monitored machine. The existing 

papers propose different model based solution for the 

industrial problems. 

Bartelmus and Zimroz [15] estimated through a 

demodulation process, the vibration signal for a planetary 

gearbox in good and bad conditions. 

Kacprzynski et al. [16] proposed fusing the physics of 

failure modeling with relevant diagnostic information for 

helicopter gear prognostic. 

Chelidze and Cusumano [17] proposed a general method 

for tracking the evolution of a hidden damage process given 

a situation where a slowly evolving damage process is 

related to a fast, directly observable dynamic system.  

Luo et al. [18] introduced an integrated prognostic process 

based on data from model-based simulations under nominal 

and degraded conditions. 

Oppenheimer and Loparo [19] applied a physical model 

for predicting the machine condition in combination with a 

fault strengths-to-life model, based on a crack growth law, to 

estimate the RUL. 

Adams [20] proposed to model damage accumulation in a 

structural dynamic system as first/second order nonlinear 

differential equations. 

Chelidze [21] modeled degradation as a "slow-time" 

process, which is coupled with a "fast-lime", observable 

subsystem. The model was used to track battery degradation 

(voltage) of a vibrating beam system. 

Li et al. [22] and [23] introduced two defect propagation 

models via failure mechanism modeling for RUL estimation 

of bearings. 

Ray and Tangirala [24] used a nonlinear stochastic model 

of fatigue crack dynamics for real-time computation of the 

time-dependent damage rate and accumulation in mechanical 

structures. 

A different way of applying model-based approaches to 

prognostic is to derive the explicit relationship between the 

condition variables and the lifetimes (current lifetime and 

failure lifetime) via failure mechanism modeling. Two 

examples of research along this line are [25] for machines 

considered as energy processors subject to vibration 

monitoring and [26] for bearings with vibration monitoring. 

In [27] and [28] the problem of forecasting machine failure 

is illustrated for a high power fan bearing and a railroad 

diesel engine. 

Engel et al. [29] discussed some practical issues regarding 

accuracy, precision and confidence of the RUL estimates. 

Lesieutre et al. [30] developed a hierarchical modeling 

approach for system simulation to assess the RUL.

Advantage and drawback.  The main advantage of model-

based approaches is their ability to incorporate physical 

understanding of the monitored system. In addition, in many 

situations, the changes in feature vector are closely related to 

model parameters [21]. and a functional mapping between 

the drifting parameters and the selected prognostic features 

can be established [31]. Moreover, if the understanding of 

the system degradation improves, the model can be adapted 

to increase its accuracy and to address subtle performance 

problems. Consequently, they can significantly outperform 

data-driven approaches (next section). But, this closed 

relation with a mathematical model may also be a strong 



weakness: it can be difficult, even impossible to catch the 

system's behavior. Further, some authors think that the 

monitoring and prognostic tools must evolve as the system 

does…

C. Data driven approaches 

Data-driven approaches use real data (like on-line 

gathered with sensors or operator measures) to approximate 

and track features revealing the degradation of components 

and to forecast the global behavior of a system. Indeed, in 

many applications, measured input/output data is the major 

source for a deeper understanding of the system degradation. 

Data-driven approaches can be divided into two categories: 

articial intelligence (AI) techniques (neural networks, fuzzy 

systems, decision trees, etc.), and statistical techniques 

(multivariate statistical methods, linear and quadratic 

discriminators, partial least squares, etc.). Case-based 

Reasoning (CBR), intelligent decision-based models and 

min-max graphs have been considered as potential 

candidates for prognostic algorithms too. 

- artificial intelligent techniques 

- neural networks (multi-layers perceptron, probabilistic 

neural networks, learning vector quantization, self-

organizing maps, etc.), 

- fuzzy rule-based systems and neuro-fuzzy systems,

- decision trees, 

- graphical models (Bayesian networks, hidden Markov 

models). 

- statistical techniques: 

- multivariate statistical methods (static and dynamic 

principle components (PCA), 

- linear and quadratic discriminant, 

- partial least squares (PLS), 

- canonical variates analysis (CVA), 

- signal analysis (niters, auto-regressive models, FFT, 

etc.). 

Artificial intelligence techniques.  

Within the field of maintenance problems, Artificial 

Neural Networks (ANNs) and neuro-fuzzy systems (NFs) 

have successfully been used to support the detection, 

diagnostic and prediction processes, and research works 

emphasize on the interest of using it [32], [33], [34], [35], 

[36]: ANNs and NFs are a general and flexible modeling 

tool, especially for prediction problems. Let's point out the 

principle arguments of this assumption (non exhaustive list). 

1- Adaptable tools.  ANNs are data-driven self-adaptive 

methods in that they learn from examples and capture subtle 

functional relationships among the data, even if the 

underlying relationships are unknown. Thus, they are well 

suited for problems whose solutions require knowledge that 

is difficult to specify but for which there are enough data or 

observations. As examples, Recurrent Radial Basis Neural 

Networks (RRBF) have been used for time series prediction, 

detection and prognostic of nonlinear systems states (gas 

ovens) and for dynamic detection of breakdowns [37]. The 

dynamic wavelet neural networks were applied by Wang and 

Vachtsevanos [34] to predict the fault propagation process 

and estimate the RUL as the time left before the fault reaches 

a given value. 

2- Robust tools.  After the learning phase, ANNs can often 

correctly infer the unseen part of a population even if the 

sample data contain noisy information. Wang et al. [38] 

proved the robustness of the ANN in his researches. He 

compared the results of applying recurrent neural networks 

and neural-fuzzy inference systems to predict the fault 

damage propagation trend. Neuro-fuzzy networks have been 

use in robust prognostic systems for real time industrial 

applications like mechanical gears cracking by [39]. 

3- General tools.  ANNs are capable of performing 

nonlinear modeling which is a really interesting 

characteristic as many real world systems are nonlinear too. 

Recurrent neural network were applied by Yam et al. [35] 

for predicting the machine condition trend. The dynamic 

wavelet neural network (DWNN) was implemented to 

transform sensor data to the time evolution of a fault pattern 

and predict the remaining useful time of a bearing [40]: the 

DWNN model was first trained by using vibration signals of 

defective bearings with varying depth and width of cracks, 

and then was used to predict the crack evolution until the 

final failure. Self-organizing neural networks were used by 

Zhang and Ganesan [36] for multivariable trending of the 

fault development, to estimate the residual life of a bearing 

system. 

4- Open tools.  In recent works, extensions of ANNs like 

neuro-fuzzy systems (NFs) have been developed in order to 

overpass the performance of classical neural networks, in 

particular for prediction problems. See [39] and [3] for an 

example. Chinnam and Baruah [41] presented a neuro-fuzzy 

approach to estimate the RUL for the situation where neither 

failure data nor a specific failure definition model is 

available, but domain experts with strong experiential 

knowledge are on hand. 

Statistical techniques. 

Statistical techniques require, due to the algorithms 

involved, quantitative data measurements. This information 

related to the sources is combined and the result is a 

stochastic estimation of the future state. Following 

paragraphs give a non exhaustive list of these techniques. 

Yan et al. employed the logistic regression model to 

calculate the probability of failure for given condition 

variables [42]. A predetermined level of failure probability 



was used in combination with an ARMA (autoregressive 

moving average) time series model to trend the condition and 

to estimate the RUL. 

Lin and Makis [43] introduced a partially observable 

continuous-discrete stochastic process model to describe the 

hidden evolution process of the machine state associated 

with the observation process and to estimate the RUL. 

HHM (Hidden Markov Model) and PIM (Proportional 

Intensity Model) are two statistical models in survival 

analysis that enable having trending models for the fault 

propagation process to estimate the future states. HMM 

describes the failure mechanism which depends both on age 

and condition variables. In [44] and [45], HMM and PIM are 

considered as powerful tools for RUL estimation. Vlok et al.

[46] applied PIM with covariate extrapolation to estimate 

bearing residual life.  

Wang [47] used the residual delay time concept and 

stochastic filtering theory to derive the residual life 

distribution and used an AR process to model a vibration 

signal for prognostic [48]. 

Phelps et al. [49] proposed to track sensor-level test-

failure probability vectors instead of the physical system or 

sensor parameters for prognostics. A Kalman filter with an 

associated IMM (interacting multiple model) was used to 

perform the tracking. 

In [50], a prognostic process for transmission gears is 

proposed by modeling the vibration signal as a Gaussian 

mixture. By adaptively identifying and tracking the changes 

in the parameters of Gaussian mixture, it is possible to 

predict gear faults. 

Swanson [51] proposed to use a Kalman filter to track the 

dynamics of the mode frequency of vibration signals in 

tensioned steel band (with seeded crack growth). 

Wang et al. [52] proposed a stochastic process, called a 

"gamma process", with hazard rate as the residual life 

prediction criterion. The condition information considered 

was expert judgment based on vibration analysis. 

Goode et al. [53] used the statistical process control (SPC) 

to separate the whole machine life into two intervals, the I-P 

(Installation-Potential failure) interval in which the machine 

is running correctly and the P-F (Potential failure-Functional 

failure) in which the machine is running with a problem. 

Based on two Weibull distributions assumed for the I-P and 

P-F time intervals respectively, failure prediction was 

derived in the two intervals and the RUL was estimated. 

In [54], Garga et al. proposed a signal analysis approach 

for prognostics of an industrial gearbox. The main features 

used included the root mean square (RMS) value, Kurtosis 

and Wavelet magnitude of vibration data. 

Zhang and Ganesan proposed a parameter estimation 

approach for a nonlinear model with temperature 

measurements of gas turbines [36]. The on-line detection 

procedure presented can track small variations in parameters 

for early warning. 

Advantage and drawback.  The strength of data-driven 

techniques is their ability to transform high-dimensional 

noisy data into lower dimensional information for 

diagnostic/prognostic decisions. AI techniques have been 

increasingly applied to machine prognostic and have shown 

improved performances over conventional approaches.

In practice however, it isn't easy to apply AI techniques 

due to the lack of efficient procedures to obtain training data 

and specific knowledge. So far, most of the applications in 

the literature just use experimental data for model training. 

Thus, data-driven approaches are highly-dependent on the 

quantity and quality of system operational data. 

IV. CONCLUSION

Durable development involves the integration of 

economical strategies beside social and environmental ones 

for the optimization of processes. This major provocation of 

triple performance outlined an interesting development area 

in industrial world: concepts like statically corrective or 

preventive maintenance were completed by predictive and 

proactive maintenance. In a word "prognostic" is nowadays 

recognized as a key feature in maintenance strategies. 

Obviously, considering the benefits that a "prognostic 

system" may bring to the security, economics and resource 

management fields, the industrial interest in prognostic is 

also perceptible in the scientific community for which it 

represents an exciting research area, with applicative 

perspectives. Thereby, although prognostic is still a novel 

axes of development (a few decades); many works have been 

led to define and develop accurate tools for that purpose. 

The variety of potential prognostic tools as well as the 

diversity of published works is of good omen for industrials 

that may be interested in using such technologies. However, 

knowing that techniques are suited to the prediction problem 

is not sufficient to make a choice: one must have a closer 

look on implementation requirements and constraints. 
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