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Abstract

Conventional medical imaging technologies, including ultrasound, have continued to improve over 

the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the 

ability to detect anomalous tissue features, but the ability to classify these tissue features from 

images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious 

image findings are performed each year with a vast majority of these biopsies resulting in a 

negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can 

play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. 

However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue 

features that can increase the specificity of image findings leading to improvements in diagnostic 

ultrasound. QUS imaging techniques can encompass a wide variety of techniques including 

spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope 

statistics. Currently, spectral-based parameterization and envelope statistics are not available on 

most conventional clinical ultrasound machines. However, in recent years QUS techniques 

involving spectral-based parameterization and envelope statistics have demonstrated success in 

many applications, providing additional diagnostic capabilities. Spectral-based techniques include 

the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer 

properties such as the correlation length associated with an effective scatterer diameter and the 

effective acoustic concentration of scatterers. Envelope statistics include the estimation of the 

number density of scatterers and quantification of coherent to incoherent signals produced from 

the tissue. Challenges for clinical application include correctly accounting for attenuation effects 

and transmission losses and implementation of QUS on clinical devices. Successful clinical and 

pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include 

characterization of the myocardium during the cardiac cycle, cancer detection, classification of 

solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring 

and assessment of therapy.
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I. Introduction

Imaging has fundamentally transformed the practice of medicine since the first X-rays were 

produced more than a 100 years ago [1]. Since that time medical imaging techniques have 

continued to evolve in their capabilities, expanded in their applications and have grown in 

their importance to medical practice. X-ray, X-ray CT, magnetic resonance imaging (MRI), 

ultrasound, nuclear imaging, and optical imaging techniques have all been adapted for 

specific applications in medicine. Each of these imaging modalities has associated tradeoffs 

in terms of spatial resolution, frame rate, contrast, imaging depth, cost, safety and 

portability.

The improvements in biomedical imaging have, for the most part, been beneficial to the 

practice of medicine. For example, in recent years, the high quality of imaging has resulted 

in higher sensitivity to suspicious tissue features for cancer imaging and detection, although 

gains in sensitivity remain an important medical problem. Unfortunately, in the case of 

cancer, these improvements in sensitivity have not always been paralleled by improvements 

in specificity, i.e., the ability to determine if a suspicious image finding is benign or 

malignant. As a result, a cancer “overdiagnosis” problem has occurred [2,3] in which many 

biopsies are being conducted because of suspicious image findings with the vast majority of 

these biopsies having negative findings [4]. Therefore, currently there is a need to improve 

cancer imaging by improving the specificity as well as sensitivity of imaging techniques. 

This in turn would reduce the number of biopsies, which would thereby reduce the cost of 

medical care, reduce the anxiety of, and additional risks posed to, patients undergoing these 

procedures, and reduce the time burden of physicians and pathologists.

In order to improve the specificity of biomedical imaging, quantitative imaging techniques 

have been developed [5,6]. A mapping of physical quantities in the image space generated 

from the signals can provide new sources of image contrast. In ultrasound, quantitative 

ultrasound (QUS) techniques include spectral-based parameterization of ultrasound signals, 

flow estimation through Doppler, tissue elastography techniques, shear wave imaging and 

envelope statistics. Some of these techniques have already been adopted on clinical devices 

while some of these techniques are still under development. In this paper, the history and 

successes in spectral-based parameterization and envelope statistics will be reviewed for 

their ability to produce new sources of contrast and provide improved diagnostics for soft 

tissue imaging. These techniques are still under development and not available on most 

current clinical ultrasound imaging systems. Pre-clinical and clinical reports of soft-tissue 

QUS include: characterization of cyclical variation in the ultrasound backscatter from the 

myocardium, breast and prostate cancer detection, thyroid cancer diagnosis, diffuse liver 

disease quantification, detection of micrometastases in lymph nodes, detection of cervical 

ripening, detection of cell death and response of tumors to therapy and monitoring of 

thermal therapies. Roadblocks that have been identified in past years include practical 

implementation of calibration procedures and accounting for attenuation and transmission 

losses in vivo.
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II. Historical Development of QUS

Ultrasound signals from tissues are based on the scattering of ultrasound from changes in the 

mechanical properties of tissue structures. Scattering from interfaces between two different 

kinds of tissues or large structures (on the order of a wavelength or larger) can result in large 

specular echoes. However, within certain tissue structures and organs, regions of uniform 

scattering may occur giving rise to scattering from many sub-resolution structures. In B-

mode, this scattering appears as speckle. Many image processing techniques aim to reduce 

the presence of speckle. However, the signals giving rise to speckle are associated with the 

underlying tissue microstructure. Currently, the gold standard for disease classification is 

based on optical histology, which is able to characterize the microstructure of tissue. 

Therefore, if the ultrasound signals depend on tissue microstructure, then it is hypothesized 

that characterization of these signals could noninvasively provide information about tissue 

microstructure to assist in classifying disease without the need for optical histology in all 

cases. To properly characterize these signals, it is mandatory to model the signals associated 

with ultrasonic backscatter from tissues. Two methods of analyzing these signals have 

gained prominence: spectral-based parameterization of the signals, and characterization of 

the envelope statistics.

A. Spectral-Based Parameters

Spectral-imaging techniques in ultrasound are based on parameterizing the backscatter 

coefficient (BSC) of a tissue. The BSC is related to the underlying tissue structure and is a 

fundamental property of tissue similar to the attenuation and sound speed of a tissue. 

Because the BSC is a fundamental property of the tissue, the BSC can be both operator and 

system independent. Nevertheless, accurately estimating the BSC from experimental data is 

not a straightforward task and several methods exist as described below.

One of the earliest attempts at using spectral-based ultrasonic imaging was from Holasek et 

al. [7]. In that work they developed an analog filter technique to break the bandwidth of 

backscattered ultrasound into three bands. They color coded each band and displayed the 

different colors as an image in an attempt to tissue type based on ocular images. At the same 

time, the BSC was being evaluated as a means of characterizing the scattering from blood 

[8].

A few years later, Lizzi et al. [9] developed a theoretical framework for spectrum analysis of 

ultrasound signals for the purposes of characterizing ocular tissues. Their work allowed for a 

calibration spectrum to account for system-dependent effects. Since the early days of 

spectral-based ultrasound analysis, many researchers have applied these techniques to 

ultrasonic imaging and improved technology has brought about a renewed interest in further 

developing these techniques.

Modern spectral-based ultrasonic imaging focuses on estimation of the BSC as a starting 

point to further modeling and parameterization. The BSC, assuming far field, can be used as 

the basis for spectral-based QUS estimates and is defined by [10],
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(1)

where R is the distance to the scattering volume of interest, V is the scattering volume 

defined by the beamwidth and range gate length, Isc (f) and Iinc (f) are the scattered and 

incident fields, respectively, and W(f) is the normalized power spectrum. The normalized 

power spectrum is found by estimating the periodogram of signals windowed from some 

tissue region and dividing by some reference spectrum. In regions where the scattering is 

uniform, the BSC can be parameterized to yield estimates of the scatterer properties, which 

can then provide a geometrical interpretation of the underlying tissue microstructure.

To normalize the power spectra used in calculating the BSC, two different methods have 

been developed: 1) a planar reference method when using single-element transducers [9,11] 

and 2) a reference phantom technique allowing the use of clinical array systems [12,13]. 

Figure 1 illustrates the techniques for obtaining a calibration spectrum. Normalization 

methods effectively correct the effects of focusing, time-gain compensation, and diffraction 

because these factors affect the experimental data and the normalization data in the same 

fashion.

In the planar reference technique, a smooth plate (i.e., roughness much smaller than a 

wavelength) of material with known reflectivity is used to provide a reference signal from 

the surface. The power spectrum of the reference signal is calculated through the magnitude 

squared of the Fourier transform of the reflected signal, |Splanar (ω)|2. Similarly, the power 

spectrum from the sample is estimated for a particular scan line (designated by subscript n) 

in a data block through the magnitude squared of the Fourier transform of the windowed 

signal, |Sn (ω)|2 A data block consists of a number of sequential scan lines of windowed 

radio frequency (RF) data. The size of the data block in the axial direction is determined by 

the length of the windowing function and normalized to the number of pulse lengths. The 

lateral width is determined by the number of scan lines in the data block and can be 

normalized to width as a number of beamwidths. The normalized power spectrum for a data 

block is given by [14]

(2)

where A(f, L) is an attenuation compensation function, ℜ is the reflection coefficient of the 

reference material and N is the number of scan lines in the data block. The normalized 

power spectrum represents an average of the normalized spectra within the data block. The 

planar reference technique is suited for weakly-focused single-element transducers.

In the reference phantom technique, Yao et al. [12] derived the BSC from a sample by 

comparing the echo data acquired from the sample to data from a reference phantom with a 
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known BSC and attenuation coefficient. The BSC from a sample using the reference 

phantom technique is given by

(3)

where z is the depth,  and αs (f) are the BSC and attenuation coefficients of the 

sample, respectively. Similarly,  and αRPM (f) are the known BSC and attenuation 

coefficients of the reference sample, respectively. The frequency domain signal from the 

sample and the reference sample are denoted by Ss (f) and SRPM (f), respectively. The data 

acquired from the sample and reference phantom are presumed to come from the same range 

depth using the same system settings. Furthermore, the scatterers in the reference phantom 

should not be too large with respect to a wavelength in order to avoid specular reflections. 

This technique is applicable for any transducer geometry such as single-element focused/

unfocused transducers and array systems including different beamforming techniques 

[15,16].

Spatial resolution of spectral-based imaging depends on the size of the data blocks. 

Assuming uniform scattering properties throughout a data block, then larger data blocks 

sizes result in lower variance and bias of estimates at the tradeoff of spatial resolution in 

QUS imaging [14–18]. In one study where these tradeoffs were analyzed, it was suggested 

that data block sizes of 10 pulse lengths by five beamwidths (50 resolution cells) would 

provide adequate spatial resolution with low estimate bias and variance (< 10%) [17].

Separate studies have developed and explored different techniques to further expand the 

tradeoffs between data block size and estimate bias and variance. In one study a filter 

function was created to mitigate bias introduced by small gating functions [20]. This 

technique was later combined with Welch’s technique [21] to further improve both bias and 

variance of scatterer property estimates [22]. Smoothing techniques involving multi-taper 

methods and Welch’s technique have also been explored in the context of BSC estimation 

further expanding the tradeoffs between QUS spatial resolution and the quality of scatterer 

property estimates [23–27]. Another method for improving spectral-based estimates is 

angular compounding [28–29].

If implemented correctly, spectral-based QUS can provide operator- and system-independent 

imaging biomarkers. Several studies have been conducted to demonstrate the ability to 

accurately estimate the BSC from tissue-mimicking phantoms and rat tumors using multiple 

ultrasonic imaging platforms [30–33]. These studies established that the BSC and 

attenuation can be accurately determined in a system-independent manner and consistently 

when using different clinical machines. Therefore, the ability to conduct spectral-based QUS 

imaging has been demonstrated on multiple clinical ultrasound scanners.

In order to better quantify the BSC for imaging, the BSC is often parameterized. An 

approach used by Lizzi et al. was to parameterize the normalized backscatter power 

Oelze and Mamou Page 5

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2017 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spectrum converted to a decibel scale by fitting a line to the normalized power spectrum 

versus frequency [34,35]. The spectral slope, mid-band fit and spectral intercept were then 

used to parameterize the normalized power spectrum.

The linear approach may not capture all of the structure in the normalized power spectrum 

or BSC representing scattering from tissues. Therefore, approaches using models of tissue 

microstructure have also been implemented. Specifically, based on the Born approximation 

for weak scattering, the BSC has been modeled using an intensity form factor approach 

[10,36,37]. Based on the form factor models, estimates of scatterer properties (i.e., effective 

scatterer diameter (ESD) and effective acoustic concentration (EAC)) related to the 

underlying tissue microstructure can be obtained [38, 39]. This is accomplished through an 

estimator that compares the BSC calculated from measurements to a theoretical BSC and 

minimizes some cost function versus trial values of ESD and EAC. The most common 

estimator used is the minimum average squared deviation (MASD) [10]. In most instances, 

an estimator will provide a single value for the ESD. However, this value in tissue will most 

likely represent a distribution of scatterer sizes and the width and shape of this scatterer size 

distribution will influence the final ESD estimate [40]. Different estimators can be used to 

reduce the effects of scatterer size distribution on the final ESD estimate [41]. Furthermore, 

different frequencies are sensitive to different scales of structure [42, 43]. This suggests that 

for a particular application, the choice of appropriate frequency range may be warranted.

The appropriate choice of a form factor model describing the underlying tissue structure is a 

subject of continued research. The most commonly used form factor model for QUS remains 

the Gaussian form factor [10,14]. However, new form factor models may arise based directly 

off of modelling of ultrasonic scattering from tissues using the impedance map approach 

[44,45]. In the impedance map approach, stained tissue histology slides are converted to 

acoustics impedance values and combined to form a three dimensional map of impedance, 

from which ultrasonic scattering can be modelled. The impedance map approach also helps 

in identifying structures that are responsible for scattering. Assigning the impedance value to 

optical histology slides is not without uncertainty and the exact impedance values that 

should be assigned to different structures remains an open question. Other modeling of 

ultrasound backscatter will be discussed later in the paper.

In addition to estimating scatterer properties such as ESD and EAC, the attenuation 

coefficient of the tissue can be estimated using spectral analysis. Several techniques have 

been developed to estimate the attenuation from the spectra of backscattered ultrasound [46–

48]. Estimation of the frequency-dependent attenuation is important as a parameter for 

characterizing tissue and for compensating for other spectral based estimates [49].

B. Envelope Statistics

The shape and attributes of the envelope of the backscattered ultrasound also contain 

information about the underlying tissue microstructural properties. A number of models for 

the statistics of the envelope have been proposed over the past few decades with applications 

to sea echo, medical ultrasound, and laser [50]. Some of these distributions include the 

Rayleigh distribution, the Rician distribution, the K distribution, the homodyned K 

distribution, and the Nakagami distribution. Derivations of these distributions have been 
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covered extensively in the literature, e.g., [51]. Therefore, these distributions are only briefly 

covered here.

The most basic distribution describing the envelope of backscattered ultrasound and 

subsequently the distribution providing the least amount of information is the Rayleigh 

distribution. The Rayleigh distribution arises when a large number of nearly identical and 

randomly located scatterers contribute to the echo signal. If the signal follows a Rayleigh 

distribution, the only information about a sample that can be extracted from the envelope of 

the backscattered ultrasound is the mean backscattered power. Pre-Rayleigh scattering 

conditions occur when the number of nearly identical scatterers per resolution is low, i.e., 

less than 10.

The Rician distribution extends the Rayleigh distribution to include a coherent signal, which 

could be the result of periodically located scatterers or specular scatterers in the signal [52, 

53]. The Rician distribution provides an estimate of strength of the coherent signal.

Jakeman and Pusey [54] introduced the use of the K distribution, a generalization of the 

Rayleigh distribution, in the context of microwave sea echo to model situations where the 

number of scatterers per resolution cell is assumed to be small. A parameter introduced by 

the K distribution is the number of scatterers per resolution cell, μ. The K distribution 

approaches the Rayleigh distribution in the limit μ → ∞. If the resolution cell of the 

ultrasound source can be calculated, the actual number density of scatterers can be estimated 

from μ.

The homodyned K distribution was first introduced by Jakeman [55]. Besides incorporating 

the capability of the K distribution to model situations with low effective scatterer number 

densities, the homodyned K distribution can also model situations where a coherent signal 

component exists due to periodically located scatterers. The homodyned K distribution is the 

more versatile of the models discussed, but also the most complicated. The probability 

distribution function of the homodyned K distribution does not have a closed-form 

expression; however, it can be expressed in terms of an improper integral as

(6)

Where J0(●) is the modified zeroth order Bessel function of the first kind, s2 is the coherent 

signal energy, σ2 is the diffuse signal energy, and μ is the same as in the K distribution. The 

derived parameter k = s/σ is the ratio of the coherent to diffuse signal energy and can be 

used to describe the level of structure or periodicity in scatterer locations. To estimate the 

parameters of the homodyned K distribution, two efficient algorithms were recently 

developed [50,56].

The Nakagami distribution, or m-distribution, was developed by Nakagami after extensive 

experiments on long distance multipath propagation of radio waves via the ionosphere 

and/or troposphere [57,58]. The use of the Nakagami for characterization of ultrasound 
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signals was introduced by Shankar et al. [59,60]. The Nakagami probability distribution 

function is given by

(7)

where m is called the Nakagami parameter and Ω is called the scaling factor. The two 

parameters of the Nakagami pdf are calculated from

(8)

and

(9)

The value of the estimated Nakagami parameter, m, allows the classification of the signal, 

and therefore the sample or tissue, into one of four categories: 1) m < 0.5 – the distribution is 

considered to be a Nakagami-Gamma (i.e., few scatterers per resolution cell with Gamma-

distributed scattering cross sections), 2) 0.5 ≤ m ≤ 1 – pre-Rayleigh scattering conditions, 2) 

m ≈ 1 – Rayleigh distributed and 3) m > 1 – the distribution is considered Rician or post-

Rayleigh. Therefore, the Nakagami distribution is useful for classifying tissues or samples 

by designating the type of scattering condition associated with the envelope distribution. 

Nakagami imaging has been explored for tissue characterization, where maps of the 

Nakagami parameter are constructed [61–64].

The quality of estimates based on the envelope statistics depend on several factors. Similar 

to spectral-based estimates, the bias and variance of estimates from the envelope statistics 

also depend on the number of samples available for estimation, i.e., the larger the data block 

size the better the bias and variance of the estimates [50]. In addition, when estimating the 

number of scatterers per resolution cell, μ, the accuracy of the estimate depends on the actual 

number of scatterers per resolution cell. When using the homodyned K distribution method 

and fractional order moments, the μ is only accurate when the number of scatterers per 

resolution cell is less than 10 [52]. Finally, parameters based on the envelope statistics are 

also dependent on the frequency of ultrasound and on attenuation, which causes a spreading 

of the beam with depth [65, 66]
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III. Successful Applications of Quantitative Ultrasound

Spectral-based QUS and envelope statistics have been utilized successfully to improve 

diagnostics for several important clinical applications. In this section we review several 

recent notable successful applications of QUS in soft tissues.

A. Characterization of the Myocardium

One of the earliest applications of QUS techniques to clinical medicine was the ability to 

characterize cyclical variations in the myocardium over a cardiac cycle. Numerous studies 

have been conducted to quantify QUS parameters in the heart [67–79]. These studies have 

demonstrated that quantification of the cyclical variation of myocardial ultrasonic 

backscatter over the heart cycle can be used to identify the early onset of cardiac 

abnormalities.

More recent application of these studies has been to characterize diabetes [80–81]. In one 

study, comparisons between normal subjects and patients with type 2 diabetes demonstrated 

that parameterization of the ultrasonic backscatter from the myocardium could differentiate 

between the hearts of diabetic patients based on their diabetic control. Specifically, the rise 

time and slew rate of cyclical rise in backscatter parameters over the cardiac cycle could 

differentiate diabetic control. The clinical impact is to potentially provide a noninvasive 

technique to monitor patients at higher risk of type 2 diabetic cardiomyopathy.

B. Pre-Clinical and Clinical Breast Lesion Characterization

Pre-clinical studies were conducted to determine if QUS could differentiate between benign 

and malignant tumors, and between different kinds of malignant tumors in rodent models of 

breast cancer [12,82,83]. QUS analysis was conducted over a broad ultrasonic frequency 

range of 5 to 25 MHz using single-element weakly-focused transducers. The first tumors 

examined were spontaneous mammary fibroadenomas in rats, the second kind of tumor 

examined was the 4T1 MMT carcinoma for mice and the third kind of tumor examined was 

a mammary sarcoma (EHS sarcoma) for mice. Tumors were grown to a little over a 

centimeter in size and then examined using QUS techniques.

QUS parameters (i.e., ESD, EAC, k and μ) were used to distinguish and classify the three 

kinds of rodent models of mammary cancer. Statistically significant differences were 

observed between the three kinds of tumors examined based on the QUS parameters [84]. 

The parameters were related to underlying tissue structures by comparing to optical 

photomicrographs of the tumors. For example, the glandular acini in the fibroadenoma were 

identified as the dominant sources of scattering in the fibroadenomas [85]. Figure 2 shows 

examples of QUS images of the tumors using the ESD parameter.

Figure 3 shows a feature analysis plot of QUS estimates for the three different kinds of 

tumors (ESD from Gaussian form factor and parameters of the homodyned-K distribution). 

Based on the QUS parameters, no overlap existed between the fibroadenomas, carcinomas 

and sarcomas allowing a clear distinction between the tumors based on the QUS parameters. 

As more parameters are added yielding a higher dimensional set, the ability to separate 

tissues can increase.
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A few studies involving QUS for clinical breast cancer detection have been published. 

Studies have utilized spectral-based QUS to characterize breast cancer and detect the 

response of breast cancer to therapy [86,87]. Another study utilized parameters from the 

homodyned-K to characterize breast lesions [88].

C. Pre-Clinical Thyroid Cancer Lesion Characterization

A high-frequency single-element ultrasonic scanning system was used to scan thyroids 

extracted from mice that had spontaneously developed thyroid lesions (cancerous or benign) 

[89]. Four sets of mice were acquired having different predispositions to developing thyroid 

anomalies. The first set of balb/c mice were not expected to develop thyroid lesions and 

were used as controls. Another set of mice were from the Rb 1+/− mouse strain [90] with 

approximately 50% of these mice developing benign C-cell adenomas or C-cell hyperplasia 

in the thyroid. The third set of mice was from the TG-BRAF mouse line [91] that develop 

papillary thyroid carcinomas (PTCs), i.e., the most common type of thyroid cancer. The final 

set of mice [92] consisted of mutant mice that had introduced a dominant negative mutant 

thyroid nuclear receptor gene, TRβPV, into the TRβ gene locus. As a result of this mutation, 

as the mice aged they developed metastatic thyroid tumors consistent with follicular 

(variant) pattern papillary thyroid carcinomas (FTC).

Figure 4 shows QUS images of mice thyroids (normal and cancerous) enhanced by either the 

ESD or EAC. From B-mode images it would be difficult to differentiate between different 

thyroids based on their visible appearance. Statistically significant differences were observed 

between the cancerous thyroids (PTC and FTC) and the normal thyroids using the ESD, 

EAC, and μ parameters. The k parameter did not yield statistically significant differences 

between groups. No parameter was able to differentiate the C-cell adenomas from the 

normal thyroids. Only the ESD and EAC could differentiate the cancerous thyroids from the 

C-cell adenomas. Finally, the ESD and EAC provided the ability to distinguish the PTC 

from the FTC. The μ parameter did not provide statistically significant differences between 

the PTC and FTC thyroids.

D. Detection of Prostate Cancer

QUS methods have been investigated in a wide range of studies to image and characterize 

prostate cancer. If successful, QUS methods could enable more-effective biopsy and 

treatment guidance and could also provide non-invasive treatment monitoring. 

Unfortunately, current imaging methods cannot reliably detect cancerous regions and as a 

consequence, biopsies sample prostatic tissue based on the gland anatomy, but blindly with 

respect to cancerous regions. For example, transrectal ultrasound (TRUS) which is the most 

common means of prostate imaging is unable to detect cancerous regions reliably. Therefore, 

current standard of care usually involves treating the entire gland and therapy monitoring is 

based on serum prostate-specific antigen (PSA) levels.

To date the most successful QUS studies involving the prostate were performed by Feleppa 

et al [93–96]. In these studies, spectral-based QUS estimates (i.e., midband and intercept) 

were computed from a wide range of clinical instruments providing RF data. One of the 

interesting results of these studies was the comparison between the performance of the 
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urologist and QUS at detecting cancer. The urologist used his experience, the patient record, 

the PSA, and the conventional TRUS B-mode image to assign a level of suspicion for cancer 

at the biopsy site. The QUS results were obtained by training classifiers (support vector 

machines and artificial neural networks) that use two QUS estimates in addition to PSA for 

identifying cancerous tissue [97, 98]. The AUC value obtained using the B-mode was 0.638 

+/− 0.031 compared to the QUS-based AUC of 0.844 +/− 0.018. Figure 5 illustrates how the 

QUS methods could be adapted to a clinical setting by a urologist with no background in 

QUS. The color-coded information simply displays the likelihood of cancer from green to 

red and is applied over the biopsied region of the gland.

E. Detection of Micrometastases in Excised Lymph Nodes

Cancer involvement in lymph nodes near a primary tumor is important for proper staging, 

treatment, and patient management. Specifically, if metastases exist in lymph nodes, it is a 

strong indication that the cancer has spread and should be aggressively treated as systemic.

In current standard of care, several lymph nodes are typically excised during the same 

surgical procedure performed to treat the primary tumors. The exact protocol is different for 

different primary cancer organs, but the lymph nodes are always sent to a pathology 

laboratory where they are typically evaluated by looking at one or two sections within each 

node. Therefore, the current pathology protocol is labor-intensive, time-consuming, and 

results in false-negative determinations due to inadequate sampling of the lymph nodes. In 

particular, small but clinically-significant micrometastases (i.e., 0.2 to 2 mm in size) can be 

missed.

High-frequency QUS techniques were investigated to see whether they could be used to 

asses lymph nodes in their entirety and possibly guide pathologists toward suspicious 

regions[99–101]. In these studies, RF data were acquired in 3D from individual, freshly-

excised lymph nodes from breast-, colorectal-, or gastric-cancer patients using a single-

element transducer operating at 26-MHz center frequency. In total, 13 QUS estimates (4 

spectral-based and 9-envelope based) were combined using classifiers (i.e., support vector 

machines or linear discriminant) to detect cancers. The classifiers were trained using gold-

standard histology. Discriminant scores from the classifiers were also used to compute 

cancer probability maps throughout the lymph node.

Results showed excellent classification performance for nodes harvested from colorectal- 

and gastric-cancer patients with area under the receiver operator curve (AUC) greater than 

0.95 [99]. Results were also satisfactory for the more complex nodes obtained from breast-

cancer patients with AUC values around 0.84.

To visually illustrate the results, Fig. 6 shows representative ESD images obtained from 

lymph nodes harvested from colorectal patients. The ESD estimates are found to be much 

smaller in the non-cancerous node (Fig. 6a) than in the completely-metastatic node (Fig. 6c).

A graphical user interface (GUI) was developed to allow pathologists to investigate the 3D 

data and visualize the QUS-based cancer probabilities [103]. An illustrative screen capture 

(Fig. 7) demonstrates how the GUI (called Lymph Explorer) could be used to guide 
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pathologist towards suspicious regions in lymph nodes. (The co-registered image 

demonstrates the accuracy of the methods, but would not be available in the clinical use of 

the Lymph Explorer.)

In the case of a lymph node containing a micrometastases, Lymph Explorer could prove to 

be an invaluable tool, because a random section through the lymph node could likely miss 

the cancer foci. Even If some small lesions go undetected, Lymph Explorer would provide 

guidance on how to cut through a suspicious region, then the stained section would be 

evaluated by a pathologist. This approach could greatly reduce false-negative determinations 

in lymph nodes containing small cancer foci. In addition, although these QUS methods are 

under investigation for their ability at detecting micrometastases, they are already capable of 

increasing the current rate of true-negative determinations.

F. Quantifying Liver Steatosis

The idea of BSC-based and attenuation QUS techniques to quantify diffuse liver disease has 

been around for several decades [104–106]. Early work successfully examined attenuation 

as a key indicator of liver steatosis [104]. While BSC and attenuation change with steatosis, 

concomitant factors in the liver besides steatosis may lead to changes in these parameters, 

e.g., fibrosis.

In a more recent study, fresh liver samples were extracted from male New Zealand white 

rabbits [107]. The rabbits had been on a special fatty diet or normal diet (control). The BSC 

was calculated to obtain spectral estimates using an analysis bandwidth of 8 to 15 MHz from 

excised rabbit livers. The ESD and EAC were calculated from the BSC. The k and μ 

parameters were estimated from the envelope statistics of the backscattered ultrasound. To 

correlate the QUS parameters with the grade of fatty liver, QUS parameters were compared 

to the total liver lipids. The total liver lipids were estimated by the Folch method [108].

The BSCs from the liver samples extracted from animals on normal diet, three weeks of 

fatty diet and six weeks of fatty diet are shown in Fig. 8. Statistically significant differences 

from QUS parameters were quantified through a p-value < 0.05. The ESD decreased 

significantly and EAC increased with increasing lipid content. Specifically, the mean ESD 

was observed to be 30 μm, 25 μm and 19 μm in liver samples from animals on normal diet, 

three weeks of fatty diet and six weeks of fatty diet, respectively. The k parameter estimated 

from the liver samples of animals on normal diet and fatty diet did not provide statistically 

significant differences. However, the μ parameter, which is related to the density of scatterers 

per resolution cell, increased significantly with increasing lipid content. Therefore, QUS has 

demonstrated the ability to detect and grade the fatty liver. Furthermore, these QUS methods 

may complement shear wave imaging that is sensitive to liver fibrosis but not to fatty liver.

In a more recent study in humans, QUS techniques were used to grade steatosis [109]. In 

that study, 204 patients were scanned with an ultrasound scanner (Siemens S3000) using the 

Ultrasound Research Interface (URI) and 4C1 curved array probe. Participants fasted four 

hours before analysis. The BSC was calculated from the acquired data using a reference 

phantom approach. QUS results were compared to MRI proton density fat fraction and body 
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mass index. ROC analysis indicated that the BSC provided 91% specificity, 76% negative 

predictive values and 95% positive predictive value.

G. Detection of Cervical Ripening

Several groups have explored QUS techniques for the detection of cervical ripening both in 

animal models of pregnancy and in humans. The goal of developing these techniques is to 

find an early indication of the likelihood of preterm birth. In the U.S. more than 12% of 

births are preterm [110]. The consequences of preterm birth are many and prematurity is 

responsible for 20% of retardation, 30% vision impairment and 50% of cerebral palsy 

[111,112]. Therefore, the development of imaging markers that can predict preterm birth 

before the onset of labor and before irreversible changes occur would dramatically improve 

the ability to intervene.

Initial studies of QUS parameters of the rat cervix using high-frequency ultrasound (30 to 70 

MHz) were used to predict the gestational age of pregnant rats [113]. ESD and EAC were 

found to relate to the gestational age of the rats, i.e., ESD increased and EAC decreased for 

days 15 to 21 of pregnancy. These results suggested that QUS parameters of the cervix at 

high ultrasonic frequency could predict the stage of pregnancy in rats.

In a subsequent study, McFarlin et al. [114] utilized the ultrasonic attenuation estimated 

from the power spectrum to predict the onset of labor in pregnant humans. Specifically, RF 

data were acquired from pregnant human cervices. Estimates of attenuation were acquired 

using a Zonare ultrasound system with an array having a bandwidth of 4 to 9 MHz. 

Regression analysis of the attenuation estimates demonstrated that attenuation could predict 

the interval between ultrasound examination and delivery. However, attenuation could not 

predict the gestational age at the time of examination.

Other groups have explored different QUS biomarkers for quantifying the ripening of the 

cervix including shear modulus, backscatter power loss, anisotropy and backscatter 

heterogeneity [115–117]. These studies further corroborated the role of attenuation in 

predicting cervical ripening and also showed that anisotropy of the cervix could be an 

important indicator. Further studies examined second harmonic generation imaging with 

optical microscopy to examine collagen structure and successfully compared these results to 

corresponding QUS estimates of tissue microstructure [118].

H. Detection of Cell Death and Tumor Response to Therapy

Increased tumor cell death is a good prognostic indicator of a treatment outcome especially 

in the early stages of therapy [119,120]. Spectral-based QUS techniques have demonstrated 

the ability to detect cell death in both in vitro and in vivo experiments. Specifically, early 

experiments were carried out to detect cell death in cell samples and tissues exposed to 

various cancer therapies (e.g., radiation, chemotherapy and photodynamic therapy) using 

high-frequency ultrasound (20–50 MHz) [121–123]. In the experiments performed on cell 

samples in vitro exposed to a chemotherapeutic drug, apoptotic cells exhibited up to a 

sixteen fold increase in ultrasound integrated backscatter (UIB) in comparison with viable 

cells. Other measurable changes in ultrasonic spectral-based parameters were also observed 

[111,124,125].
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In more recent experiments, two spectral-based QUS parameters, UIB and spectral slope 

were used to monitor the responses of tumors exposed to cancer treatment [126–128]. 

Tumor cell death can be characterized by significant changes in the microstructure 

associated with tumor cells (nuclear condensation and fragmentation) and also cellular 

organization. The studies showed that ultrasonic backscatter was sensitive to the structural 

organization of the tumors. In research conducted by Vlad et al. [126], radiotherapy effects 

were characterized by QUS methods in preclinical mouse cancer models as early as 24 hours 

post treatment. Ultrasonic images enhanced by spatial maps of ultrasound spectral 

parameters enabled non-invasive assessment of cell death in tumor regions responding to 

radiotherapy. The contrast provided by the QUS parameters was hypothesized to come from 

the changes in the tissue microstructure due to therapy response and did not require the 

injection of exogenous contrast agents.

Recently, QUS at clinical frequency ranges was used to study treatment response monitoring 

in breast cancer xenograft tumors [129] and human breast tumors treated with chemotherapy 

[86]. Tumors demonstrated approximately an 8 to 9- fold increase in mid-band fit and 

spectral intercept after cancer therapy initiation. These techniques were then applied to 

detecting response and predicting survival in breast cancer patients receiving chemotherapy 

[87]. In the study, the EAC parameter was observed to increase in patients responding to 

treatment as early as one week post treatment initiation, which further increased at week 4 

and reached a maximum value at week 8 of therapy initiation. In contrast, non-responding 

patients did not exhibit changes in the QUS parameters. The best predictor of treatment 

response was through the combination of EAC and ESD parameters at week 4 achieving a 

sensitivity of 82% and specificity of 100%. The results demonstrate that backscatter 

parameters extracted from ultrasound data are predictive of ultimate clinical chemotherapy 

response, as early as 1 week after treatment initiation. The improved predictive capabilities 

provided by QUS could allow clinicians to further customize cancer therapies and to change 

ineffective treatments within days to weeks of starting therapy.

I. Monitoring of Thermal Therapies

In vivo and ex vivo studies were conducted to monitor high-intensity focused ultrasound 

(HIFU) application and microwave ablation using QUS techniques [130,131]. For HIFU, rat 

mammary adenocarcinoma tumors (MAT) were exposed to HIFU to create thermal lesions.

During the treatments, an ultrasonic linear array (14L5/38) connected to an Ultrasonix RP 

was used to scan the tissues and record RF data. The BSC was estimated from the data 

corresponding to the treatment region and two parameters were estimated from the 

backscatter coefficient (ESD and EAC) and two parameters were estimated from the 

envelope statistics (k and μ) of the backscattered echoes.

Tumors were exposed to a spatial peak temporal average intensity (ISPTA) of 335 W/cm2 

with 75% duty cycle, as measured in degassed water using a needle hydrophone (Precision 

Acoustics, Dorchester, UK). Data was collected with the RP system during exposure by 

synchronizing capture of RF data with periods between HIFU exposure tone-bursts. HIFU 

exposure time of 60 sec was used in all experiments.
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B-mode images of the scanned areas were constructed. Regions of interest in the B-mode 

images and data blocks were defined in the first image. Spectral-based parameters and 

envelope statistics were estimated for each data block for each frame acquired during the 

therapy. For example, the percentage changes in EAC versus time were estimated using

(10)

These parameters were then compared to temperature readings from a thermocouple placed 

behind the tumor. The placement of the thermocouple behind the tumor placed it outside of 

the HIFU beam focus and therefore represents a lower bound for the actual temperature in 

the treatment area.

An example of the B-mode images of the tumors at different time points of HIFU 

application are shown in Fig. 9(a), (d) and (g) and the corresponding parametric images 

enhanced by ΔEAC are shown in Fig. 9(b), (e) and (h). The temperature profiles recorded by 

the thermocouple are shown as the blue curves in Fig. 9(c), (f) and (i). The red circles 

indicate the time points corresponding to the displayed B-mode and parametric images. The 

three rows in the figure represent the results at three different time points of 0 sec, 60 sec 

and 80 sec, respectively during the treatment. The percentage changes in ΔEAC(%) are 

shown in Fig. 9(c), (f) and (i) denoted in green color. An attenuation correction of 0.4 

dB/cm/MHz was used to obtain the BSCs at different time points of HIFU application. It is 

expected that the lesion created by the HIFU application will have spatially varying 

attenuation, but the current results shown do not account for attenuation changes in the 

lesion because the depth of the tumors was small and attenuation changes would not affect 

the BSC estimate greatly.

The B-mode images in Fig. 9 do not show visible B-mode brightening as the HIFU therapy 

is applied. The EAC was observed to increase with increasing temperature and then decrease 

with decreasing temperature when the HIFU was turned off. Therefore, these curves indicate 

that BSC-based parameters can be correlated to temperature changes induced in tissues 

during thermal treatment. Small fluctuations due to tumor motion in an out of the imaging 

plane did not disrupt the ability to track temperature with the QUS parameters.

J. Blood characterization

Using QUS methods for the precise characterization of blood or more specifically red-blood 

cells (RBCs) and RBC aggregation has been an active area of research since the early 1970s 

[8, 132,133]. A typical human RBC can be assumed to be biconcave with a diameter of 8 μm 

and a thickness of 2.8 μm. However, the shape of RBCs can vary under normal and 

pathological conditions (e.g., sickle cell anemia, malaria, etc) and they can interact with each 

other to form rouleaux, i.e., isotropic aggregates, or complex 3D structures. In most cases, 

aggregates will significantly alter the BSC because of the increased scattering cross section. 

Even under healthy conditions, rouleaux will form and deform depending on shear rate.
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From the clinical point of view, the ability to precisely characterize blood (e.g., hematocrit, 

aggregate shape and concentration, etc.) can yield a powerful tool for diagnosing a wide 

range of blood diseases and conditions. For example, high levels of RBC aggregation (e.g., 

compact spherical clumps) can be indicative of inflammation [134]. Although rouleaux 

formation is a common physiological phenomenon in healthy human blood, abnormal 

aggregation or hyperaggregation is associated with several circulatory conditions. Therefore, 

modeling RBC scattering is both medically significant and challenging, which is why it has 

been so heavily researched and why many different modeling approaches have been 

investigated [134–137].

One of the key challenges to properly modeling blood scattering is that most current QUS 

scattering models assume sparse media, or that individual scatterers are sufficiently far from 

each other that their spatial positions are completely random. Such an assumption becomes 

less valid as the volume fraction of scatterer increases or if scatterers become close to each 

other (e.g., rouleaux or RBC aggregates). Therefore, several theoretical studies have 

investigated how to model dense media or media where scatterer locations are not 

completely random [136, 138,139].

Some of the more recent successes have been accomplished with the use of the structure 

factor model (SFM) [140]. Conceptually, the SFM is an additional frequency-dependent 

multiplicative term modelling RBCs interactions, which is added to the conventional 

“sparse” BSC. In the case of RBC scattering, the SFM depends heavily on the hematocrit 

and on the RBCs spatial organization. In the case of high concentration and randomly-

located RBCs, the SFM converges to unity as the hematocrit decreases, i.e., the BSC 

converges to that of a sparse model as expected when the number density of RBC decreases.

The first practical use of SFM for the ultrasound characterization of RBCs was performed 

using a Taylor series expansion of the SFM to develop the so-called structure factor size 

estimator (SFSE) [141]. In this fundamental study, the authors used the known values of the 

acoustic impedance of RBC and plasma, hematocrit, and RBC size to estimate two 

quantitative parameters using the SFSE (i.e., the packing factor and aggregate diameter). The 

results of the study demonstrated the efficacy of the approach at discriminating different 

levels of aggregation. A follow-up study from the same group refined the model by 

including compensating for the total attenuation between the probe and the blood in the 

model [142]. Figure 10 illustrates the strength of the approach to assess blood physiological 

state. The SFSE was demonstrated successfully to assess real-time variations of RBC 

aggregation as a surrogate marker of inflammation in a cardiopulmonary bypass swine 

model [143], and to assess the pro-thrombotic impact of RBC aggregation [144] in 

preclinical studies. The same model compensated for attenuation and instrument properties 

allowed assessing the higher level of flowing RBC aggregation in superficial veins of 

diabetic patients compared with normal individuals [145].

While the Taylor series approaches led to efficient QUS estimation methods and provided 

meaningful preclinical and clinical results, the physical interpretation of the QUS estimates 

is more challenging. Therefore, recently researchers proposed combining an effective 

medium theory with SFM (EMTSFM) [146,147] to model very specific cases of aggregation 
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as illustrated in Fig. 11. This approach allowed the efficient modelling of blood by 

characterizing the aggregate size, and for the first time in the QUS field, the compactness of 

RBC aggregates. In clinical hemorheology, assessing the compactness of RBC aggregates is 

of high clinical importance because it is related to the binding energy between cells. The 

physical interpretation of EMTSFM is therefore straightforward and could prove useful for 

clinical studies where hematocrit and RBC aggregation are possible markers of a wide range 

of conditions. Another aspect of these methods is their ability at tracking aggregation 

dynamics because rouleaux are typically associated with healthy state, they can aggregate 

and disaggregate more easily than spherical clumps which are typically associated with 

diseased state.

IV. Current Roadblocks to Widespread Use and Clinical Acceptance

A. Radio-frequency data

For the most part, QUS methods rely on elegantly processing RF data. Therefore, 

manufacturers must be willing to provide the RF data or more generally the so called IQ data 

which can readily be used to regenerate RF data (though some investigators claim that the 

fidelity of RF data reconstructed from IQ data is compromised). Although access to RF data 

was initially a challenge for QUS, it is clearly not the case anymore. As ultrasound 

technology has progressed tremendously in the last 10 years, most systems are now 

completely digital and all manufacturers can now easily provide IQ data without 

significantly increasing hardware costs. Therefore, in modern ultrasonic devices accessibility 

to RF data is no longer a roadblock.

B. BSC Estimation and Calibration

Although QUS techniques based on the BSC clearly provide valuable information about 

tissues independent of the instrument and user, the need for proper estimation and 

calibration can be cumbersome in the fast-paced clinical environment. The BSC is an 

efficient tissue parameter to describe how a tissue will interact with ultrasound. 

Nevertheless, several estimation methods resulting in slightly different values for BSC exist 

[11]. Some early controlled studies performed on well-calibrated phantoms by several 

laboratories also illustrate the challenges remaining in the estimation of the BSC [148,149].

Most clinical systems use linear or phased arrays and therefore, the only available way to 

properly calibrate for QUS is with the use of the reference phantom method [12]. In this 

regard, a reliable and well-characterized phantom must be available that has a long shelf life 

during which acoustical features are stable. Reference data must be collected with all the 

probes and all possible settings which could be used during a clinical examination. In 

addition, these reference data must be collected regularly to insure robustness of the QUS 

estimates and also must be collected every time maintenance is performed on the system. 

Another approach could be to acquire the clinical data first, optimizing all the settings on the 

system to get the best possible image, and then take data from the phantom without 

changing any of the settings. This would marginally increase the examination time, but 

could prove to be a viable option.
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Nevertheless, the need for accurate calibration remains a challenge to widespread clinical 

implementation of QUS methods. Over the past 20 years, several research groups have 

developed new reliable phantoms which could be mass produced and used as reliable 

reference phantoms for QUS studies [33, 150, 151]. In addition, just like manufacturers test 

systems and ultrasound probes before shipping them out to a customer, an extra step could 

be implemented to collect data from reference phantoms and save it into the system so that it 

could readily be used for QUS calibration with the same system. Finally, although 

theoretically it is better to collect calibration data with all probes and all possible settings, it 

is likely that the burden of data collection could be reduced by collecting data at key settings 

and potentially simulating and interpolating reference data from the skipped settings. 

Therefore, the added clinical value of QUS methods far outweighs the burden associated 

with acquiring calibration data.

C. Attenuation

Acoustic attenuation can strongly affect the shape of the backscattered signal and will 

therefore bias QUS estimates if it is not properly compensated [49]. Attenuation 

compensation techniques are well established and several methods exist to obtain reliable 

estimates of the BSC when the attenuation values are known. The challenge is that often 

attenuation values remain unknown, attenuation is spatially heterogeneous and an error in 

the acoustic attenuation coefficient used for correcting the BSC will result in a bias in QUS 

estimates as a function of depth even when the tissue properties are uniform.

In recent years a large number of researchers have developed several techniques to estimate 

both local and total attenuation. Local attenuation refers to estimates of attenuation in some 

defined region of interest and maps of local attenuation can be used for diagnostics. Local 

attenuation algorithms have demonstrated success in several applications. The approaches 

include the spectral shift method, spectral difference method, and the hybrid method (used to 

remove weaknesses of the spectral fit and difference methods) [47,48,152–155]. Local 

attenuation has been demonstrated to have good accuracy and precision in phantom studies 

and consistency among clinical systems have been demonstrated in phantoms and animal 

studies [155]

Total attenuation refers to the attenuation of signal up to some specified depth. Total 

attenuation is important for correcting for frequency-dependent losses when calculating the 

BSC. Several approaches have been explored for estimating the total attenuation including 

integrating local attenuation estimates from the surface of the transducer up to some targeted 

region [156]. Other approaches include time domain techniques [157], techniques using 

multiple sources [158,159] and techniques that estimate a scattering form factor or a 

structure factor simultaneously with the total attenuation [46,48, 142] These techniques have 

demonstrated the ability to correct for frequency-dependent losses and improve spectral-

based QUS estimates. The success of the total attenuation techniques provides further 

confidence that attenuation compensation issues for QUS have been largely overcome and 

may no longer be a roadblock to clinical translation.
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D. Computational complexity

Satisfactory clinical use of QUS methods would require real-time display of the QUS-based 

information. Therefore, the computational complexity of the algorithm used to generate 

images such as Fig. 8 must be taken into account. For the most part, the estimation of 

spectral-based QUS estimates is extremely fast because it requires only computing FFTs and 

fitting models to the data (some methods do not even use model-based approaches). 

Therefore, these QUS methods are less complex than the Doppler-based approaches used in 

most clinical scanners.

Envelope-statistics-based QUS methods have varied complexity depending on the model 

used. For example, fitting a Nakagami distribution to an experimentally-derived probability-

density function is very fast because it only requires computing the first two moments of the 

empirical PDF (Eqs. (8) and (9)). However, using more advanced models, such the 

homodyned-K may require more-complex estimators. Nevertheless, overall QUS methods 

remain computationally-efficient and with the development of ultrasound systems with 

powerful processors and memory, the computational complexity of nearly all QUS methods 

still allows for real-time implementation on clinical scanners.

E. Model-based approaches

Most of the presented QUS methods are model-based. A quantity (e.g., BSC, empirical PDF, 

etc.) is estimated and is fit to a model to yield the QUS estimates. The attractiveness of these 

model-based approaches is that associated parameters can provide a geometrical and 

physical interpretation of microstructure.

While model-based approaches are very attractive for QUS, inaccurate models could 

ultimately yield unreliable QUS estimates. For example, the use of a Gaussian form factor 

for the estimation of ESD and EAC is very common, and yet, it is quite unlikely that a 

biological tissue would behave as an ensemble of low number density of randomly located 

spherical structures with a Gaussian decay in acoustical impedance. The key reason why the 

Gaussian form factor is so heavily used is the computational efficiency with which EAC and 

ESD can be estimated [13]. Ultimately, the Gaussian form factor can be considered to have 

been empirically validated considering the amount of successful studies performed with this 

unrealistic scattering model. More-accurate models exist and for example, exact form factors 

can be computed for solid or fluid spheres using first principles as outlined by Faran [160]. 

However, these form factors are cumbersome, rely on infinite series of Bessel functions 

which must be truncated and have no efficient fitting algorithm in existence.

Tissue-specific form factors (which model the scattering from a scatterer) and structure 

factors (which model the organization and interaction effects of scatterers) can also be 

derived from impedance maps and theoretical and experimental studies have been performed 

based on these ideas [44, 161–164]. Of course, using accurate models would provide QUS 

estimates that better quantify tissue microstructure which in turn would enhance the clinical 

value of such estimates. For example, in the case of cancer imaging, using better models 

could enhance sensitivity and specificity.
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In the case of envelope statistics, models of increased complexity (e.g., homodyned-K 

distribution) can provide rich physical interpretation and may be preferred to other simpler 

models (e.g., Nakagami distribution), but estimators can be difficult to implement, thereby 

compromising the QUS estimates. Recent studies in lymph nodes also showed that 

envelope-statistics models having limited physical meaning may actually fit the 

experimental data better [165].

Finally, it should also be mentioned that QUS can be used in a model-free approach. One 

example of this is in the liver studies outlined above, where fat content was found to be 

highly correlated to the BSC at 8 to 15 MHz. In the lymph-node studies, the authors used an 

envelope-statistics methods which essentially obtained QUS estimates by quantifying the 

experimental PDF divergence from a Rayleigh PDF. We therefore conclude that the use (or 

not) of a model is not a limiting factor for clinical transition of QUS methods.

V. Conclusion

The future of biomedical imaging lies in the continued improvement of imaging devices, 

developing multi-modality imaging techniques, finding new sources of contrast and 

developing quantitative imaging technologies.

To this end, QUS techniques have demonstrated potential for improving diagnostic 

ultrasound for a number of different applications. Similar QUS techniques could also be 

used for photoacoustic imaging and have recently been demonstrated [166, 167]. The new 

sources of contrast and the ability to correlate specific quantitative values to tissue state will 

help improve medical diagnostics and improve specificity. Roadblocks to implementation on 

clinical devices have been largely overcome in recent years due to the work of several 

different groups demonstrating the techniques can be both operator and system independent. 

Issues with attenuation compensation have been largely overcome by improved techniques 

to estimate attenuation. Therefore, because of the demonstrated successes of QUS 

techniques for a plethora of applications, QUS is poised to appreciably enhance diagnostic 

ultrasound.
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Fig. 1. 
(Left) Illustration of the planar reflector technique and (right) illustration of the reference 

phantom technique.
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Fig. 2. 
Ultrasound grey-scale B-mode images superimposed with estimates of ESD for (left) rat 

fibroadenomas, (center) mouse carcinomas, and (right) mouse sarcomas. Figure reproduced 

from [5].
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Fig. 3. 
Feature analysis plot of the ESD versus μ versus k parameter. Figure from [5].
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Fig. 4. 
QUS images of thyroids enhanced by ESD (left column) and EAC (right column). The top 

row is normal thyroid (no tumor observed), the second row is a C-cell adenoma, the third 

row is PTC, and the last row is a FTC.
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Fig. 5. 
QUS images utilizing a level of cancer suspicion metric overlaid on B-mode images of the 

prostate. (Reproduced from [79])
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Fig. 6. 
Illustrative results obtained with a non-metastatic lymph node (a and b) and a nearly entirely 

metastatic lymph node (c and d). a) and c): parametric cross-sectional images displaying 

effective scatterer-size estimates. b) and d) histologic thin section approximately 

corresponding to a) and c), respectively. Metastatic region is highlighted in green in d) and 

segmentation results are shown by the green and red highlights in a) and c). (Adapted from 

[102]).
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Fig. 7. 
Illustrative Lymph Explorer screen capture showing cancer probabilities. Results were 

obtained from a partially-metastatic lymph node of a colorectal-cancer patient. In the three 

QUS images, regions highlighted in red indicate cancer probability greater than 75%; those 

in green indicate a cancer probability smaller than 25% and those in orange indicate a cancer 

probability between 25% and 75%. In the co-registered histology image, the green outline 

indicates the metastatic region. (Adapted from [102,103])
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Fig. 8. 
Backscatter coefficients from liver samples extracted from animals on different diets with 

(solid line) zero days on fatty diet, (dashed line) three weeks on fatty diet, and (dot-dashed 

line) six weeks on fatty diet.
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Fig. 9. 
B-mode and parametric images at different times during the HIFU treatment on rat R1.

Oelze and Mamou Page 38

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2017 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Examples of Structure Factor Size and Attenuation Estimator parametric images of red 

blood cell aggregation (W, longitudinal views) in case of low (left) and high inflammation 

(right). Data were acquired within the pump circuit deviation (top) and the femoral vein 

(bottom). The color maps vary from 0 (blue) to 40 (red). Variable W has no unit. LPS = 

lipopolysaccharide; CPB = cardiopulmonary bypass. (Adapted from [143]).
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Fig 11. 
Schematic representation of aggregates treated as individual scatterers. The aggregates of 

red blood cells in blood (left side) are assumed to be homogeneous particles (right side) with 

effective properties that depend on the internal hematocrit and on the density and 

compressibility of the red blood cells within them. (Adapted from [146]).
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