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Abstract 

This paper is a summary of the research development in the rational (total) nonlinear 

dynamic modelling over the last two decades. Total nonlinear dynamic systems are 

defined as those where the model parameters and input (controller outputs) are subject 

to nonlinear to the output. Previously this class of models has been known as rational 

models, which is a model that can be considered to belong to the Non-linear 

AutoRegressive Moving Average with eXogenous input (NARMAX) model subset 

and is an extension of the well-known polynomial NARMAX model. The justification 

for using the rational model is that it provides a very concise and parsimonious 

representation for highly complex non-linear dynamic systems and has excellent 

interpolatory and extrapolatory properties. However model identification and 

controller design are much more challenging compared to the polynomial models. 

This has been a new and fascinating research trend in the area of mathematical 

modelling, control and applications, but still within a limited research community. 

This paper brings several representative algorithms together, developed by the authors 

and their colleagues, to form an easily referenced archive for promotion of the 

awareness, tutorial, applications, and even further research expansion. 
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The Non-linear AutoRegressive Moving Average with eXogenous input (NARMAX) 

model set has been extensively studied in theory (Sontag 1978, Chen and Billings 

1989, Haber and Unbehauen 1990) and gradually adopted in applications (Proll and 

Karim 1994, Wang 1994). There are two main streams of sub-model sets, polynomial 

and rational models. A polynomial NARMAX model is defined as linear in the 

parameters and non-linear in the regression terms, and can be used to represent a wide 

range of linear and non-linear systems. The advantage for identification of polynomial 

models comes from the fact that the model is linear in the parameters. The rational 

model (Sontag 1979, Billings and Chen 1989, Billings and Zhu 1991) represents an 

extension of the polynomial model set, and is defined as a ratio of two polynomial 

expressions. Therefore rational model is non-linear in both the parameters and the 

regression terms. This is induced by the denominator polynomial. Accordingly the 

identification and control of rational models are more challenging based on the total 

nonlinear structures. 

 

Rational models have been gradually adopted in various applications of non-linear 

system modelling and control (Ford, Titterington, and Kitsos 1989, Ponton 1993, 

Kambhampati, Mason, and Warwick 2000), particularly the importance of modelling 

of chemical kinetics has increased sharply as a consequence of the applicability of 

modelling of catalytic reactions (Dimitrov and Kamenski 1991, Kamenski and 

Dimitrov1993). Rational models are not only alternative expressions in approximating 

a wide range of data sets in chemical engineering, but also are a class of mechanistic 

models, which most previous experience or theoretical considerations had not put 

forward (Dimitrov and Kamenski 1991). 

 

A number of methodologies and algorithms have been developed for rational model 

structure detection, parameter estimation, and correlation based validity tests. These 

include a prediction error estimator (Billings and Chen 1989), generalised least 

squares estimators (Billings and Zhu 1991, Zhu and Billings 1991, 1993), recursive 

least squares parameter estimator (Zhu and Billings 1993), orthogonal model structure 

detection and parameter estimation algorithm (Billings and Zhu 1994a), genetic 

model structure detection algorithm (Billings and Mao 1998), back propagation 

parameter estimator (2003), implicit least squares parameter estimator (Zhu 2005), 

correlation based model validity tests (Billings and Zhu 1994b, 1995, Zhang, Ashley, 

and Zhu 2007, Zhu, Zhang, and Ashley 2007). 

 

It should be noted that so far it is still an open research question on how to design 

rational model based control systems analytically. It is hoped that the U-model 

framework explained in this paper will provide a concise analytical solution in future 

studies. 

 

The rest of the paper is organised into the following sections. In section 2, rational 

model is defined to provide a framework for the following algorithm development. 

Subsequently an extended least squares parameter estimator is presented and a full 

step by step implementation in computation is listed as a guiding procedure for user’s 

applications. In section 3, a back propagation algorithm is tailored for rational model 

parameter estimation together with a step by step implementation of the algorithm. In 

section 4, orthogonal computation is introduced to provide a solution for rational 

model structure detection (term selection) and parameter estimation. In section 5, the 

latest development of correlation based model validation procedure is presented for 
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validating identified linear and nonlinear models including neural networks and fuzzy 

logic models. In section 6, both U-model and U-control are explained conceptually, in 

terms of the U-transform, for control system design. In section 7, a brief conclusion is 

drawn to summarise the results. 

 

2 Extended least squares (ELS) algorithm for parameter estimation (Billings and 

Zhu 1991) 

 

2.1 Rational (total) model 

Rational or total nonlinear dynamic systems can be mathematically described with a 

ratio of two polynomials, and are sometimes commonly known as rational models 
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(2.1) 

where y(t) and )(ˆ ty are the measured and one step ahead predicted model outputs 

respectively, u(t) is the input, e(t) is the model error, and t (= 1, 2, …) is the time 

index. Generally the numerator a(t) and denominator b(t) are functions of past inputs, 

outputs, and errors, and can be expressed in terms of polynomials. 
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The regression terms )(tpnj  and )(tpdj  are the products of past inputs, outputs, and 

errors, such as )3()1(  tytu , )2()1(  tetu , )1(2 ty , and nj , dj  are the 

associated parameters. The task of model structure detection is to select candidate 

regression terms from a pre-assigned large candidate base. The task of parameter 

estimation, for a given or detected model structure, is to estimate the associated 

parameters from the measured inputs and outputs. Model validation is the final step to 

diagnose the feasibility of an identified model if it is a real representative of the 

underlying system. The correlation based model validation uses data sequences of 

input, output, and residual (difference between measured system output and model 

predicted output) to form a series of correlation functions to determine if the residual 

has been reduced to an uncorrelated sequence with zero mean and finite variance. 

 

Several remarks relating to the characteristics of the rational model of (2.1) are noted 

below: 

 

1) The rational model includes almost all the other smooth linear and nonlinear 

models as its subsets. For example the polynomial NARMAX model is a special case 

of rational model (2.1) by setting denominator polynomial b(t) = 1. Many neuro-fuzzy 

systems have been expressed as non-linear rational models (Wang 1994). For example 

fuzzy systems with a centre defuzzifier, product inference rule, singleton fuzzifier, 

and Gaussian membership function. The normalised radial basis function network is 



 4 

also a type of rational model. When the centres and widths are estimated this can 

become a rational model parameter estimation problem. 

 

2) The rational model can be much more concise than a polynomial expansion, for 

example 
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3) The rational model can be frequently used to represent complicated system 

structures with a fairly low degree in both the numerator and denominator 

polynomials. For example, large and quick deviations in a system output, can be 

expressed as 
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When u(t-1) approaches –1, the model output response will be quickly increased. The 

power to capture quick and large changes is gained by introducing the denominator 

polynomial. 

 

2.1 Bias analysis using the ordinary LS algorithm 

Directly estimating parameters of model (2.1) is difficult in formulation and time 

consuming in computation even though a prediction error algorithm has been 

developed (Billing and Chen 1989). This is because the model is nonlinear in the 

parameters. An alternative approach is to multiply the denominator polynomial out 

(2.1) to yield a model expressed as linear in the parameters, then least squares 

algorithms can be applied with proper reformulation. To this end, multiplying the 

denominator b(t) on both sides of (2.1) and then moving all the terms except the first 

term 11 )()( dd tpty   on left hand side to the right-hand side gives 
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where 
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To understand the noise effects to the parameter estimation in applying least squares 

algorithms, from (2.5), in the case of noise free (e(t) = 0), the parameter estimates are 
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unbiased. If noise (even white noise) exists, a very practical situation, directly using 

least square algorithms will give biased estimates; simply the noise contaminated 

output appears in both the dependent variable and regression terms associated with the 

denominator polynomial b(t). This problem will be discussed and resolved in the next 

section. 

 

2.2 ELS parameter estimation 

This has been derived into following least squares formulation (Billings and Zhu 1991) 
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Where 

̂  is the estimate of parameter vector  , 2
e  is the model error variance,  

 

  is the regressor matrix and formulated with data length N 
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  is the dependent variable vector and composed of 
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  is the error matrix associated with T  and formulated as 
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  is the error vector associated with ΥT  and formulated as 
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An iterative procedure has been developed to obtain the unbiased parameter estimates, 

which is listed below: 

 

Step 1, use an ordinary least squares algorithm (set to a null matrix   and vector   

in (2.7)) to compute parameter vector ̂ . This estimate provides initial values for 

subsequent iterative computations. 
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Step 2, Compute the model error sequence by 
)ˆ,(

)ˆ,(
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Step 3, update matrices   and  , vectors YT  and   through formulations (2.8) to 

(2.11). 

 

Step 4, use the extended least squares algorithm (2.7) to estimate parameter vector ̂ . 

 

Step 5, Go back to step 2 and repeat until the parameter estimate vector ̂  and model 

error variance 2
e  converge to constant values. 

 

2.3 Statistics of the estimator 

The bias and variance of the estimates have been analysed (Zhu and Billings 1991) in 

case of model error e(k) is reduced to an uncorrelated noise sequence, which are given 

as follows. 

 

 
  function nexpectatio  theis ] * [     ,)(

,1    ,)ˆ(

0)ˆ(

22

21222

EtbE

forCov

Bias

b

ee

T

be











   (2.12) 

 

2.4 Summary 

Expressing the rational model in terms of a linear in the parameters model makes it 

possible to use least squares algorithms for parameter estimation, on the other hand 

the expansion induces inherent correlated errors to give biased estimates while 

existing linear squares algorithms are applied directly. Therefore the extended least 

squares algorithm has been developed to set up a basis for concise and unbiased 

rational model parameter estimation from data sequences. 

 

3 Back propagation (BP) algorithm for parameter estimation (Zhu 2003) 

 

3.1 BP parameter estimation 

The rational model can be treated as a neural network, as shown in Figure 1, which is 

structured with an input layer of regression terms )(tpnj  and )(tpdj , a hidden layer of 

a(t) and b(t) with linear activation functions, an output layer of y(t) with a ratio 

activation function. The activation function at the output layer is the division 

operation of the numerator polynomial divided by the denominator polynomial. 

 

Leung and Haykin (1993) presented a rational function neural network. The 

shortcomings compared with the current study are that Leung and Haykin's network 

does not have a generalised rational model structure and correlated errors are not 

accommodated. Hence Leung and Haykin's parameter estimation algorithm cannot 

provide unbiased estimates with noise corrupted data, and is essentially a special 

implementation of the procedure of Billings and Zhu (1991) and Zhu and Billings 

(1991) in the case of noise free data. 
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To derive the parameter estimation algorithm, with reference to model expressions of 

(2.5) and (2.6), define the error between the measured output and the model output as 
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The task is to determine a set of parameters in model (2.5) so that the squared error in 

(3.1) is minimised. The parameter determination can be described as parameter 

training when the model is interpreted as a neural network structure. To train the 

parameters nj associated with the numerator polynomial a(t), the local gradients are 

given by 
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To train the parameters dj associated with the denominator polynomial b(t), the local 

gradients are given by 
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To carry out recursive computation, a time index k is introduced to the parameter sets 

)(knj  and )(kdj  as they are updated following the time sequence. Convergence has 

been proved with djdj
k

njnj
k

kk  


)(lim)(lim  (Zhu 2003). Therefore the 

parameter variation at time k+1 can be defined as follows 
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where nj  and dj are the learning rates. 

 

The integrated parameter estimation procedure can be summarised in terms of the BP 

computation as follows: 

 

I Initialisation 

Set all model parameters to uniformly distributed random numbers with zero mean 

and small variance, or set up the initial parameters using the prior information 

extraction techniques, such as a least squares estimator. 

 

II Parameter estimation 

For l = 0 to L-1 (epoch number)  

For k = 1 to N (training data length) 

Forward computation 
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Backward computation 
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end 

end 

 

Initialisation 

The first step in the above computation is to initialise the parameters. A sensible 

choice will provide tremendous help for the resultant parameter estimation. A wrong 

choice of the initial parameters can lead to two critical phenomena, premature 

saturation and divergence. In the case of premature saturation, the instantaneous sum 

of squared errors remains almost constant for some period of time during the learning 

process. In the case of divergence, the sum of squared errors tends to become very 

large. A general initialisation technique (Haykin 1994) is to uniformly randomise the 

initial parameters with zero mean and small variance. In this study, the initial 

parameters will be determined using a prior information extraction technique. Since 

the model structure is assumed to be known in advance, an ordinary or extended least 

squares algorithm can be applied to obtain initial estimates. Although biased they 

should not be far away from the true parameters in Euclidean distance. 

 

Learning rate 

The BPE algorithm provides an approximation to the trajectory in parameter space 

computed in terms of steepest descent. The smaller the learning rate, the smaller the 

change to the model parameters will be from one iteration to the next and the 

smoother the trajectory will be in parameter space. However a small learning rate will 

possibly cause slower convergence of the parameter estimation. If the learning rate is 

set too large, the estimator may become unstable. The choice of learning rates is 

discussed below: 

i) Constant 

 

21 constantconstant  djnj   (3.8) 

 

The disadvantage is that the learning rate cannot properly adjust in the early stage 

(large learning rate) and in the later stage (small learning rate) of the learning process. 

 



 9 

ii) Inversely decayed sequence 

 

k
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1
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The disadvantage is that the learning rate decays too fast and this may not be suitable 

when long training data sequences are available. 

 

iii) Generalised delta rule (Rumelhart, Hinton, and Williams 1986, Jacobs 1988) 
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where nj and dj  are positive numbers called momentum constants. This has been 

extensively studied and can increase the learning rate and avoid instability. However, 

this choice involves more computation and requires the know-how to set up the 

parameters nj and dj . 

 

iv) Linearly decayed sequence 

To overcome the above disadvantages, a new learning rate sequence has been 

proposed as follows (Zhu 2003) 

 

  0
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where L is the number of iteration epoch, N is the training data length, l (= 0, …, L-1) 

for the lth epoch, and end 0  are positive constants for the initial and end learning 

rates respectively. Figure 2 shows the learning rate variation. 

 

Stopping criterion 

Two criteria (Kramer and Sangiovanni-Vincentelli 1989) have been used to stop 

neural network training. These are formulated by means of local or global minimum 

of the error surface. 

 

i) Gradient stopping criterion 

This states that the BP converges when the Euclidean norm of the gradient vector 

reaches a sufficiently small gradient threshold. The drawback of this criterion is 

longer training and complexity in the computation of the gradient vector. 

 

ii) Error measure stopping criterion 

This states that the BP converges when the absolute rate of change in the mean 

squared error per epoch is sufficiently small. Typically 0.01 percent per epoch is used. 

The drawback is that the error may still be correlated for non-linear models, even 

though the mean squared error or its variation rate is very small (Billings and Woon 

1983, Billings and Zhu 1994b). 
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To overcome the above drawbacks, a higher order correlation test (Billings and Zhu 

1994b, 1995), introduced for non-linear model validation, can be used as a stopping 

criterion. The tests are described below: 
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1

___ ___
2 2 2 2

1 1

1
( ) ( ) ( ) ( )

1 1
( ) ( )

N

t

N N

t t

t y t e t t
N

u u t e e t
N N

  


 

 

 



 
 (3.13) 

 

When the higher order correlation functions 2 ( )
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the estimated parameters are considered to be unbiased. Otherwise the training 

procedure will continue until the above conditions are satisfied. In practice the 95% 

confidence limits,   N/96.1 , are used as the stopping thresholds. 

 

3.2 Statistics of the estimator 

For the bias 
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Therefore the estimator will produce unbiased estimates of the non-linear rational 

model parameters. For the variance 
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Therefore the variance of each parameter estimate is associated with the noise 

variance and the second order moment of the regression term. 

 

3.3 Summary 

The BP based algorithm provides an alternative approach to estimate rational model 

parameters. Obviously there is no need to expand rational models into linear in the 

parameters expressions. Some techniques such as learning rate and stopping threshold 

play important roles in the iterative training and learning process, which need to be 

carefully considered in the computations. 

 

4 Orthogonal Least Squares (OLS) algorithm for term selection and parameter 

estimation (Zhu and Billings 1993, Billings and Zhu 1994) 

 

4.1 Orthogonal parameter estimation 

Consider an orthogonal transformed expression of (2.5) 

 

1 2

1 2

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

num den

nj nj dj dj

j j

num den

nj nj dj dj

j j

Y t p t y t p t t

t G t

w t g y t w t g t

  

 



 

 

  

 

  

 

 

 (4.1) 

 

where 

 

   

   

1 2

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n d n nnum d dden

T

n d n nnum d dden

t t t t t t y t t y t

G G G g g g g

       

 
 (4.2) 

 

Define the orthogonal regression matrix W as 
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where   is the regressor matrix defined in (2.8). There are several typical algorithms 

to compute the elements of T, such as Gram-Schmidt, Householder, or Givens 

transforms (Billings and Zhu 1994a). The orthogonality of the matrix W gives 
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The unbiased parameter vector G is estimated with 
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where over bar denotes time average value. The computation of the elements in (4.6) 

can be found in (Zhu and Billings 1993). Accordingly the original parameter vector in 

(2.5) can be recovered by 

 

GT 1  (4.7) 

 

4.2 Structure detection (term selection) 

The orthogonal property can be applied to select regression terms and estimate the 

associated parameters simultaneously. A criterion of Error Reduction Ratio (ERR) has 

been introduced to select the most important regression terms to contribute to reduce 

estimation errors from a large candidate term base (Billings and Zhu 1994a). In 

definition, individual ERR from numerator and denominator polynomials is calculated 

respectively by 
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It should be noticed that the larger the ERR, the more contribution of its regression 

term to reduce the estimation errors. Therefore the candidate term with the largest 

ERR in each selection sequence should be taken in as the model regression terms. 

 

An iterative learning procedure for rational structure detection has been developed as 

follows: 

 

Step 1, Fit a deterministic rational model (that is no noise model) initially with 3 to 4 

regression terms (choice of the terms comes from experience, actually it is not critical) 

in numerator and denominator polynomials respectively. Therefore the model error 

sequence e(t) and its variance 2
e can be approximately obtained. 

 

Step 2, Set up a series of ascending weights of the model variance 2
e  (such as 0.1, 

0.25, 0.5 0.75, 0.95, 1, 1, …, 1). Set up a cut-off point (COP), which can be 

determined by trail and error approach, as 
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Step 3, Do a search through a pre-set-up full rational model candidate term base to 

select significant terms according to the ERR values and estimate their associated 

parameters. 

 

Step 4, Repeat steps 2 and 3 until the computations converge, the preset maximum 

number of the iterations exceeded, or a specified number of terms are selected in the 

model. 

 

4.3 Summary 

This algorithm delivers a more realistic procedure to fit models to data in case of 

which terms should be included in the models before estimating their associated 

parameters. 

 

5 Model validation (Zhang, Zhu, and Longden 2007, 2009, Zhu, Zhang, and 

Longden 2007) 
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5.1 Introduction to correlation based model validation 

Consider a generalised single input and single output (SISO) nonlinear parametric 

model. 

 
1 1 1ˆˆ( ) ( ) ( ) ( , , ) ( )t t ty t y t t f t      y u ε  (5.1) 

 

where )(ˆ f  is the identified nonlinear model. 
1t

y , 1tu , and 
1t

ε  are measured output, 

input and residual (the difference between the measured output and the one step ahead 

model predicted output) vectors with delayed elements from 1 to r respectively. It 

should be noticed that when above model is properly identified, the residual ( )t  

should be reduced to a random noise sequence denoted by e(t) in this section (without 

being confused with those used in other sections) with zero mean and finite variance 

(Billings and Zhu 1994). In other words, the residual sequence from a properly 

identified model should be uncorrelated to the delayed residuals, inputs and outputs 

(Ljung, 1999). 

 

It should be noticed that all validation methods developed based on nonlinear models 

have included all linear model validation as their simplified cases. However the linear 

model based validation test methods can and often do fail when applied to nonlinear 

model validation. 

 

5.2 Combined ODACF and ODCCF for model validation 

Combined omni-directional auto-correlation functions (ODACF) is defined as follows, 
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Combined omni-directional cross-correlation functions (ODACF) is defined as 

follows, 
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where )(** r  denotes correlation function and the prime ’ in (5.4) to (5.5) denotes that 

the mean level has been removed from the corresponding data sequence. 

 

Then the validity tests for a properly identified model are derived as 

 









otherwise,0)(

0,1)(







  (5.6) 

 

   ,0)(u  (5.7) 

 

Compared with the other correlation tests based methodologies, this approach 

enhances the power of nonlinear model validity tests and significantly reduces the 

number of correlation plots. For large N the correlation function estimates given in 

(5.2) and (5.3) are still asymptotically normal with zero mean and finite variance in 

accordance with the central limit theorem (Bowker and Lieberman 1972). The 

standard deviations are N1  and the 95% confidence limits are therefore 

approximately at N95.1 . 

 

5.3 Summary 

It should be mentioned that the method is not only applicable to rational models, but 

also for validation of identified neural networks and fuzzy logic models (Zhang, Zhu, 

and Ashley 2009). 

 

6 U-model and U-control (Zhu 1989, Zhu and Guo 2002) 

 

6.1 Introduction 

So far almost all control system design approaches, no matter if they are linear or 

nonlinear plant based, have taken a unique procedure, set up a specified control 

system performance/index and then by inverting the integrated function of the plant 

and design performance in some way, obtain the controller output (that is the input to 

the plant). There is no problem at all with such procedures for all linear plant based 

control system design subject to stability considerations, because the linear 

superposition principle makes the inverse function easily resolved. However when the 

plants are subject to nonlinear dynamic equations (particularly non-affine models), the 

inverse functions are more complicated, intractable, or even impossible with 

analytical solutions, except step by step numerical computations. 

 

Research question one: Can a class of nonlinear dynamic plants, described by 

smooth nonlinear models in terms of polynomials, be designed directly using the 

approaches developed from linear control systems? 

 

Research question two: Is there a general approach to resolve the inverse function of 

nonlinear plants? 

 

With such insight, the U-model methodology has been proposed, where the origin, but 

not in general U-model expression appeared in one of the authors PhD thesis (Zhu 

1989). In progression along this route, Zhu, Warwick and Douce (1991) further 

proposed to use a Newton-Raphson algorithm (Gerald 1987) root solver to obtain the 

controller output, which makes the U-model type of control system feasible. The first 
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time the U-model was named in a study of pole placement controller design for 

nonlinear plants was by Zhu and Guo (2002), which is a simple mapping from 

ordinary linear and nonlinear difference equations to time-varying polynomials in 

terms of the plant input u(t-1) (that is the controller output). The U-model covers 

almost all existing smooth nonlinear discrete time models as subsets. 

 

Since then, within the first decade, the U-model has been used in designing 

feedforward control of MIMO nonlinear systems (Ali, Fouad, Muhammad, and Jamil, 

2010), Nonlinear leaking minimum square algorithm for inverse adaptive control 

(Butt, Muhammad, and Tahir, 2005), minimum square error IMC (internal model 

control) (Muhammad and Haseebiddon, 2005) and General Predictive Control of 

nonlinear plants (Du, Wu and Zhu, 2012) have also been investigated. It should be 

noted that the U-model associated publications are still in a very beginning stage. 

These have had no rigorous analytical description and top journal publication till 

today.  

 

The other research question: How is the U-model design procedure different from 

classical procedures in terms of efficiency and effectiveness? 

 

The questions have been the justification for initiating the study. Xu, Zhu, Zhao and 

Li (2013) have presented a comprehensive survey for the first decade of development 

on U-model based control system design. 

 

6.2 U-model 

Consider a general single input and single output (SISO) discrete time dynamic plant 

described by the following Polynomial model (P-model). 

 

( ) ( (*),  )

(*) ( ( 1) ,...,  ( ),  ( 1) ,...,  ( ))

y t f P

P P y t y t n u t u t n

 

    
                                  (6.1) 

 

where ( )y t R  and ( 1)u t R   are the output and input signals of the plant 

respectively at discrete time instant t(1, 2, …), n is the plant order. . 
1(*) ( ( 1) ,...,  ( ),  ( 1) ,...,  ( )) LP P y t y t n u t u t n R       is the regression variable 

vector spanned from the delayed outputs and inputs and 
1

0[ ] L

L R     is the 

associated parameter vector. Function f() is a smooth linear or non-linear function. 

The P-model can be further expressed in terms of regression equation as below 

 

0

( ) ( )
L

l l

l

y t p t 


  

 

Where the regression terms ( )lp t  are the products of past inputs and outputs such as 

( 1) ( 3)u t y t  , ( 1) ( 2)u t u t  , 
2 ( 1)y t  , and l  are the associated parameters. 

Typically, for example, linear time invariant difference equation based plant models 

and NARMA (nonlinear auto-regressive moving average) models. 

 

The U-model is defined as, under a U mapping from P-model, a control oriented 

model expression below 
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( ) ( (*),  U( 1))

(*) ( ( 1) ,...,  ( ),  ( 2) ,...,  ( ), )

U( 1) ( 1) ( 1) ( 1)M

y t f t

y t y t n u t u t n

t const u t u t u t

  

       

    

 

 

Correspondingly its regression equation is given as below 

 

0

( ) ( ) ( 1)
M

j

j

j

y t t u t


                                                                   (6.2) 

 

This is expanded from the above nonlinear function f(.) as a polynomial with respect 

to u(t-1). where M is the degree of model input )1( tu , parameter ( )j t  is a function 

of past inputs, outputs (u(t-2), …, u(t-n), y(t-1), …, y(t-n)), and the parameters 

0( )L  . 

 

6.3 U-control --- U-model based control system design procedure 

Define the desired plant output as ( )U t , it is clear that setting 

 

( ) ( )y t U t                                                                              (6.3) 

 

then 

 

0

( ) ( ) ( 1)
M

j

j

j

U t t u t


                                                          (6.4) 

 

Accordingly the task of the design is to determine the desired plant output ( )U t  

according to a specified performance index, for example, 

 

Pole Placement Control (PPC) (Zhu and Guo 2002) 

 

 

 

General Predictive Control (GPC) (Du, Wu, and Zhu 2012) 

 

 

 

then by resolving one of the roots of (6.4) to obtain the controller output. The block 

diagram, Figure 3 shows a general U-model based closed loop control system 

structure. It should be noted that so far it is still an open research question of how to 

use the U-model approach to design rational model based control systems. Therefore 

fundamental research should be performed in the future research development. 

 

6.4 Summary 

Design of nonlinear dynamic control systems has been a widely recognised as a 

challenging issue. The key point in the design is a general model prototype with 

( ) ( ) ( )RU t Tw t Sy t 

T T

p d dJ E Y QY U U    
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conciseness, flexibility and manipulability while keeping little loss of precision. This 

is the origin of the U-model with insight and procedure. In terms of time-varying 

parameter polynomials, the U-model almost covers all existing smooth nonlinear 

discrete time models as its subsets. Based on the U prototype, without complex 

transformation to its original model and no need for linearization at all, a nonlinear 

control system can be directly designed by linear control system design approaches, , 

such as Pole Placement Control (PPC), general predictive control (GPC), Sliding 

Mode Control (SMC), and so on. Even for linear control system design, the U-model 

provides another procedure for solutions. 

 

The major contribution of the U-model based design procedure can be listed in order 

1) In methodology, those well-known approaches developed from linear systems 

can be directly applied to nonlinear control system design, which significantly 

reduces the design complexity and effectively provides straight forward 

computational algorithms. 

2) In design, it obtains desired plant output first (compared to designing desired 

controller output in classical framework) and then works out the controller 

output from U-model in a relaxed root-resolving routine (compared to 

resolving complex solutions from the inverse of the whole designed systems). 

3) For linear control system design it provides new insight and solutions within a 

more general and effective frame work. 

 

7 Conclusions 

With regard to the presented algorithms, the ELS algorithm sets up a solid and 

concise basis for expanding this classical approach into nonlinear rational model term 

selection and parameter estimation. The insight presented in the study could be a 

useful indication to stimulate other complex model identification with proper 

extension of classical least squares algorithms. The BP algorithm provides a different 

angle to study the model parameter estimation issues. However the model structure 

detection via PB computation (i.e. regression term selection) still remains unresolved. 

The OLS algorithm provides a step by step procedure to select model regression terms 

and estimate their associated parameters simultaneously. The new model validation 

method provides a generic routine to effectively examine the model validity with 

significantly reduced correlation plots. In control system design, the U-model and 

hence U-control provide a new procedure from a classical framework, which could 

provide a concise solution for rational model based control systems design in the 

future studies. It should be noted again that the structure of the rational model brings 

various advantages, which cannot be easily contributed through polynomial model 

sets. On the other hand the rational model presents a number of new challenges for 

research, demonstration and applications. 
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Figure 1 Rational neural network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Linearly decayed learning rate 
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