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Abstract. This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer 

interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through 

their brain activity, granting autonomy to move through an experimental environment. A classification is 

established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal 

used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to 

evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order 

to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as 

the challenges that should be solved in the future. 
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1. Introduction 

 
One of the main objectives of research groups working 

on assistive technologies is to improve the life quality and 

autonomy of people affected by motor neuron diseases 

(MND), such as amyotrophic lateral sclerosis (ALS). A 

brain–computer interface (BCI) is a tool to establish an 

additional communication channel between the user and a 

particular device, through their brain activity (1). Therefore, 

numerous applications are proposed for these users: e.g., 

managing a speller matrix (2), a robotic arm (3), a 

telepresence robot (4), or a domotic system (5), as well as 

applications focused on neurorehabilitation (6). Through 

these interfaces, people affected by a MND could gain some 

autonomy by means of the addition of this new 

communication channel that does not require the use of the 

motor system. Several types of BCI exist, depending on 

various features that will be briefly explained below. One of 

the most important features is the recording technique of the 

physiological signal, such as electroencephalography (EEG), 

functional magnetic resonance imaging (fMRI) or near-

infrared spectroscopy (fNIRS). However, the most used 

physiological signal is the EEG, mainly because of its 

adequate temporal resolution, portability, and relative low 

cost (7). There are also numerous types of EEG signal that 

can be recorded. Initially, we can distinguish between an 

endogenous signal, which is evoked at will by the participant, 

or an exogenous signal, which is evoked by an external 

stimulus presentation (8). Among the endogenous signals, the 

slow cortical potentials (SCP) are produced by a change in 

the level of cortical activity (9), Event-Related 

Desynchronization/Synchronization (ERD/ERS) changes 

elicited by motor imagery (MI) tasks, and other signals 

corresponding to different mental tasks, such as objects’ 

mental rotation or word association (10). On the other hand, 

regarding exogenous signals, the P300 signal is a positive 

peak that appears in the EEG approximately 300 ms after the 

presentation of a rare stimulus (2); the steady-state visual 

evoked potentials (SSVEP) are changes in the neural activity 

located at the visual cortex that occur at the same frequency 

as a blinking stimulus (11). 

Regarding the kind of electrode, there are two types: dry 

and wet. The second needs an electrolytic gel to record the 

signal. Most electrodes used in laboratories are wet due to a 

higher quality reception of the EEG signal because of lower 

impedance (12). These electrodes are placed at the scalp 

following the International 10/20 system which specific 

configuration and number of electrodes depends of technique 

factors, as the EEG signal to register, or practical factors, as 

the time required for the set up. Nevertheless, in recent years, 

many brands have marketed dry electrodes (e.g. Neurosky, 

Emotiv Systems or OCZ Technology) that have come to be 

used in some studies to prove their accuracy, and to see 

whether they might be suitable for safe operation for people 

with MND (e.g. (13,14)). 

The use of BCI systems for navigation of multiple 

devices – in both real and virtual environments – has been the 

subject of numerous investigations. Navigation in virtual 

environments can be for simple tasks such as moving a car to 

the right or left of the road (15), or more complex ones, such 

as the management of a character in a videogame (16). The 

use of these interfaces in real environments, which are less 

controlled and dependent on the use of devices that interact 

with them, may be more challenging, because mistakes can 

have real consequences for users. However, the development 

of these applications can be more useful, because they allow 

direct user intervention in their environment through their 

brain signal. Furthermore, as specified by Millán et al. (17): 

“BCIs must be combined with existing assistive technologies 

(AT), especially those they already utilize”, so a brain-

controlled wheelchair (BCW) would be a perfect example of 

this combination. 

The first BCW was published by Tanaka et al. in 2005 

(18). One could cite as a precursor the paper that of Millán et 

al. (19), in which the ability to manage a small mobile robot 

using an EEG signal was shown, setting a precedent for the 

control of a larger real system, such as a robotic wheelchair. 

Nevertheless, the leap from a remotely managed device to a 

wheelchair needs to be done carefully, as an accurate system 

is needed in which the safety of the user is not in danger. 

Therefore, the proposals to control a robotic wheelchair must 
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overcome some challenges to improve the quality of life of 

patients with severely impaired motor abilities. First, one of 

the issues to be faced is the use of reliable navigation systems 

to ensure the user safety and offer a flexible displacement in 

the environment so that the user can move comfortably and 

freely. In this way, it could be interesting to show the most 

useful and innovative proposals that could be used in future 

prototypes. Similarly, it should not be forgotten that the target 

population of these interfaces are patients with severely 

impaired motor abilities, so that the proposals should be 

adapted to these users and offer them an experience as 

pleasant as possible. Finally, due to the numerous proposals 

made in this area, it would be desirable to detail how the 

performance was evaluated and what were the participants’ 

characteristics (e.g. the number of users who tried to control 

the wheelchair and complete the tasks, if they were trained or 

had some kind of disease). 

In 2013, Bi et al. (20) published a survey of BCI-

controlled mobile robots; however, the present paper will 

focus on the particular field of BCWs, including the 

development and characteristics of the different proposals 

tested in real environments to date (figure 1), describing the 

type of signal that was used to control the navigation system 

device, users who handled it, the tasks performed by them, 

the navigation of the interface, and the metrics used to 

evaluate the performance. Therefore, this review includes 

papers that use a BCI system to control a wheelchair in a real 

environment, and that detail the BCW with enough data to be 

classified, based on the mentioned characteristics. The 

different interfaces are compared according to the signal 

used, in order to highlight the advantages and disadvantages 

between them. Finally, it is important to advise that in the 

case to find similar BCWs and authorship, we only include 

the most detailed paper. 

 

Figure 1. BCW papers compiled in this review. 

 
1.1 Glossary 

 
In this brief section, we will define some terms used in 

the rest of the paper. Even when most of them are commonly 

used terms, it is worth defining them clearly in order to avoid 

any ambiguity. 
● User’s tasks: In order to control a BCI, users perform 

different tasks whose consequences are predictable, so 

that they can be used as inputs. These control tasks 

include mental strategies (such as the MI of limbs or 

selective attention tasks) (21), but actual muscular tasks 

as well, being that some BCI systems are assisted by real 

movements. 
● P300 BCW and SSVEP BCW: wheelchairs that only 

rely on P300 and SSVEP, respectively. 
● ERD/ERS BCW: wheelchairs that depend on the users’ 

control of their electrophysiological activity through the 

execution of mental tasks that affect the EEG causing 

ERD/ERS changes. The used mental tasks include tasks 

such as MI, mental calculations, or word association 

(10). It should be noted that a BCW that analyzes the 

EEG caused by actual movements (not MI) will be 

classified in this paper as “muscle-assisted” (see next 

categories) for comparison purposes. 
● Hybrid BCIs are commonly accepted as systems relying 

on one EEG input combined with one or more channels 

(that can be EEG, electromyography (EMG), 

electrooculography (EOG) or movement detection, 

among others). However, as one of the focuses of the 

paper is to compare parameters of similar systems, we 

have defined in this paper a subgroup of hybrids systems 

so that motor actions were excluded (see next definition). 
● Hybrid-mental BCW: wheelchairs that are based on 

more than one kind of EEG signal (e.g. ERD/ERS and 

P300), as a consequence of different mental strategies, 

excluding any kind of real motor action. 
● Muscle-assisted BCW. As mentioned above, we think 

that systems using motor actions (even when analyzing 

their consequent EEG) should not be compared with 

those that use purely mental tasks. For this reason, we 

have included in this group called Muscle-assisted BCW 

two kinds of wheelchairs: i) those that use EEG signals 

elicited by actual motor execution; and ii) hybrid 

wheelchairs that, in addition to purely cognitive tasks, 

use muscular activity as information input (detected by 

means of EEG artifact, EMG, or EOG). 
● Low-level navigation: the control of the wheelchair is 

achieved through simple navigation commands, such as 

“move forward” or “turn right”, and basic supports as 

stopping the wheelchair when obstacles are encountered. 

In this way, users can perform any path they want to, 

having fine control of the specific movement. The 

system does not assist the execution of the selected 

command. 
● High-level navigation: these systems let users have a 

rough control of the BCW, selecting high-level 

commands such as “take me to the kitchen” or “leave this 

room.” The BCW must be equipped with some 

intelligence so that the specific path to the selected 

objective is transparent to users (in other words, the user 

does not select specific low-level commands). 
● Shared-control navigation: both the user and the system 

share the control of the BCW (22,23). This can be done 

in two ways: i) users generate low-level commands, 

while the system assists the navigation with features such 

as obstacle avoidance, or maximum likelihood command 

execution; and ii) users can switch between a low- and a 

high-level navigation mode. 
● Discrete control: the selection of a navigation command 

implies a prefixed movement, e.g. a turn of 45 or 90 

degrees or a fixed advance distance of 1 m. 
● Continuous control: the user can control the extension of 

the movement after the selection of a navigation 

command, e.g. the turn amplitude or the advance length. 
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Usually, the movement continues as long as the user 

keeps the command active. 

 
2. State of the art in BCW 

 
The use of invasive methods for capturing signals in BCI 

systems is less extended than non-invasive methods, i.e. the 

EEG (7). In the case of BCW, all the references cited in this 

review used EEG (figure 2). The different BCW papers have 

been divided regarding the signal used as input, so that five 

categories can be established: ERD/ERS, P300, SSVEP, 

hybrid-mental and muscle-assisted BCW. The number of 

BCWs found for each category is: 9, 6, 6, 5 and 9, 

respectively. It is worth mentioning the absence of SCP-based 

systems, possibly due to the low information transfer rate 

(ITR), and the need for a longer training time to acquire 

control, even compared with ERD/ERS (24). 

 

Figure 2. General model of a BCW. 1) The EEG is captured 

through electrodes at the Acquisition stage. 2) The raw signal 

is analyzed to obtain some significant characteristics called 

Features. 3) The main part of the Signal Processing uses the 

previous features to establish a Classification of the signals 

into a minimum of two groups; at this point the BCI system 

decides what state corresponds to the current EEG. 4) After 

classifying the signals, the system actuates in the Control 

stage moving the wheelchair. This movement is a Feedback 

for the subjects that helps them on the control of their EEG 

signals and, consequently, on the control of the BCW. 

Within each type of EEG signal, the navigation system 

used by the BCW (which may be low-level management, 

high-level or shared control) is detailed. Then we will 

describe the most important features related to the 

participants (e.g. users affected by MND) (table 1). Next, the 

characteristics of the interface will be explained, referring to 

the commands available to the user (e.g. turn left/right, go 

forward or stop) and the tasks that must be performed for the 

selection of a command; i.e., voluntary mental tasks, selective 

attention to the stimulus, or muscle action (table 2). 

Regarding the number of user tasks, these should be as 

few as possible, because the handling by the user will be 

simpler and, in the case of tasks that modulate ERD/ERS 

signals, fewer mistakes will be made in the classification 

(25,26). On the other hand, it is of interest to maximize the 

number of commands, as they are the options available to the 

user to handle the BCW and move around the environment 

autonomously. Therefore, using a ratio between the number 

of available commands (AC) and the number of user tasks 

(UT) it is proposed, the command to task ratio (CTR): 

𝐶𝑇𝑅 =
𝐴𝐶

𝑈𝑇
 (1) 

It is worth mentioning that this ratio is not suitable for 

comparing BCI systems based on different EEG signals, as 

the tasks to be performed are be different cognitive processes. 

However, in the case of systems with similar EEG input, this 

ratio points out how easily new commands can be added. 

To continue, the extraction features and classification 

methods used to categorize the different user’s task in each 

signal category will be mentioned (table 3). Finally, the 

metrics used for the evaluation of user performance in 

handling the BCW, such as the accuracy or the usability, are 

mentioned (table 4). 

2.1 ERD/ERS BCWs 

ERD/ERS signals are those elicited at the user’s will by 

certain tasks that cause a variation in the amplitude of the 

neuronal rhythmic activity (8). However, learning to 

modulate these signals on a voluntary basis is usually 

complex, requiring more learning time for users than other 

systems (7). Despite this difficulty, as Nicolas-Alonso and 

Gomez-Gil (7) showed, the use of these signals has several 

advantages that should not be overlooked, such as: i) they are 

independent of any stimulation; ii) they can be operated by 

free will; iii) they are useful for users with affected sensory 

organs; and iv) they are suitable for cursor control. 

2.1.1 Navigation. Five BCWs based on ERD/ERS 

signal had a low-level navigation system  

(18,34,43,44,57), three used a shared 

management (28,35,46) and one with a high-

level navigation system (59). Therefore, it can 

be seen that the handling of low-level is used to 

a greater degree than shared control or high-

level. The ERD/ERS signals may be of 

particular interest in low and shared navigation 

because they can offer continuous control of the 

BCW with a few low-level commands (e.g. 

forward, back or stop, turn left and turn right), 

to allow the free movement of the chair through 

the environment (60). However, thanks to the 

shared-control systems presented here, the 

management of the chair is assisted by various 

tools, such as obstacle detection and dodge, or 

assistance in selecting the most appropriate 

command, depending on the specific situation 

in the environment. 

2.1.2 Participants. Referring to publications with 

ERD/ERS signal BCWs, these studies had an 

average of 3.22 participants (σ = 1.39). It is 

noteworthy that no study presented participants 

affected by MND. This low number of 

participants may be related to the difficulty in 

acquiring a proper and safe operation of a BCW 

which could imply an extensive training based 

on the ERD/ERS modulation of the EEG signal, 

as well as difficulties aggravated in the case of 

users with MND (e.g. security, communication, 

mobility and placement of instrumentation). 

Furthermore, the control of ERD/ERS signals 

may require a long training for some users. 
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Table 1. Compiled papers and main characteristics in chronological order. 
 

BCW Year Signal Navigation system Control Subjects 
(18) 2005 ERD/ERS Low-level Discrete 6 
(27)  2007 P300 High-level Discrete 5 
(28)  2009 ERD/ERS Shared Continuous 3 
(29) 2009 P300 Shared Discrete 5 
(30) 2009 SSVEP Shared Discrete 9 
(31) 2010 ERD/ERS and P300 High-level Discrete 5 
(32) 2010 P300 High-level Discrete 1a 
(33) 2010 P300 Low-level Discrete 1 
(34)  2011 ERD/ERS Shared Mixedb 4 
(35) 2011 ERD/ERS Shared Discrete 2 
(36)  2012 ERD/ERS and EMG High-level Continuous 3 
(37) 2012 ERD/ERS Low-level Not specified 1 
(38) 2012 Alpha band and EEG artifact Low-level Mixedb 7 
(39) 2012 ERD/ERS and P300 Low-level Continuous 2 
(40) 2012 P300 and EEG artifact The user can choose low or high-level Discrete 4 
(41) 2012 SSVEP Low-level Continuous 2 
(42)  2013 EEG artifact High-level Discrete 1 
(43)  2013 ERD/ERS Low-level Discrete 1 
(44) 2013 ERD/ERS Low-level Continuous 3 
(45)  2013 ERD/ERS and EMG Low-level Continuous 1 
(46) 2013 ERD/ERS Shared Continuous 4 
(47) 2013 P300 Shared Discrete 11c 
(48) 2013 SSVEP Low-level Discrete 1 
(49) 2013 P300 and SSVEP Low-level Continuous 5 
(50) 2013 SSVEP Low-level Continuous 13d 
(51)  2014 Alpha band Low-level Discrete 8 
(52) 2014 ERD/ERS, EOG and P300 Low-level Continuous 4 
(53) 2014 ERD/ERS and SSVEP Low-level Mixedb 3 
(54) 2014 ERD/ERS and SSVEP Low-level Continuous 3 
(55) 2014 SSVEP Shared Continuous 4 
(56) 2014 EOG (embedded in EEG) Low-level Continuous 5 
(57) 2015 ERD/ERS Low-level Discrete 3 
(58) 2015 SSVEP High-level Discrete 37 
(59)a 2016 ERD/ERS High-level Discrete 3 
(59)b 2016 P300 High-level Discrete 6 

a affected by Guillain-Barre Syndrome 

b discrete turns and continuous advance and recoil 
c 1 participant with cerebral palsy and motor impairment 
d 1 paraplegic participant 
 

2.1.3 Task and interface. The average of tasks and 

commands used was 2.67 (σ = 0.71) and 5.77 (σ 

= 8.06), respectively. So the CTR was 2.11 (σ = 

2.67). It must be taken into account that the 

BCW of the study of Varona-Moya et al. (57) 

Zhang et al. (59) was the only ones with a CTR 

greater than the unit. The rest of the studies have 

a CTR equal to the unit, where every task served 

to execute a single command. The specific tasks 

to be performed by the user were fairly 

homogeneous across studies. Most of the papers 

(80%) used hand MI – left, right, or both – as 

one of its tasks. It was also common to use feet 

MI or to maintain a state of rest. On the other 

hand, the most common commands were to 

move forward, and to rotate the chair to the left 

and right. Just one of the BCWs used a 

graphical user interface (GUI), the proposal of 

Zhang et al. (59) that was the one with the 

largest number of commands through the use of 

a successive dichotomy method. By other side, 

other article includes the presence of an audio 

interface, indicating different commands 

serially that users could select through right-

hand MI (57). Hence, the only two proposal 

based purely on ERD/ERS signal whose CTR 

outperformed the unit were those that needed a 

specific graphical or auditory serial interface. 

2.1.4 Feature extraction and classification methods. 

The feature extraction methods used were quite 

heterogeneous; however, the power spectral 

density (PSD) can be highlighted as being the 

most used by the proposals with ERD/ERS  
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Table 2. User’s tasks, used commands, and command tot task ratio for the brain-controlled wheelchairs compiled in this review. 

 Paper User's task Commands CTR 

ERD/ERS 

(18) 2; left/right thinking 2; forward in diagonal line left/right 1 

(28) 3; MI left hand, word association, relax or arithmetic operation 3; forward and turn left/right 1 

(34) 4; MI left/right hand and foot, and idle state 4; forward, turn left/right and stop 1 

(35) 3; MI left/right hand and idle state 3; turn left/right and then forward, and stop 1 

(43) 2; MI right hand and feet 2; forward and turn right 1 

(44) 3; MI right/left hand and feet 3; forward and turn left/right 1 

(46) 2; MI right/left hand or feet 2; turn left/right 1 

(57) 2; MI right hand and idle state 7; forward, backward, turn left/right, maintain position and turn on/off the system 3.5 

(59)a 3; MI right/left hand and idle state 27; 25 locations, validate and stop 9 

P300 

(27) 1; selective attention 9; 7 locations, an "application button" and lock 9 

(29) 1; selective attention 18; 15 locations, turn left/right and validate selection 18 

(32) 1; selective attention 15; 6 for the BCW (not specified) and 9 for the robotic arm 15 

(33) 1; selective attention 4; forward, backward and turn left/right 4 

(47) 1; selective attention 7; forward, backward, turn left/right 45º or 90º and stop 7 

(59)b 1; selective attention 41; 37 locations, validate or delete selection, stop and show extra locations 41 

SSVEP 

(30) 1; selective attention 4; forward, backward and turn left/right 4 

(41) 1; selective attention 5; forward, turn left/right and turn on/off the system 5 

(48) 1; selective attention 4; forward, turn left/right and stop 4 

(50) 1; selective attention 4; forward, backward and turn left/right 4 

(55) 1; selective attention 5; forward, backward, turn left/right and stop 5 

(58) 1; selective attention 5; 4 locations and a "return to the previous window" command 5 

HYBRID-

MENTAL 

(31) 
2; MI hand fingers tapping or MI walking and making left/right turns, 

and selective attention 
10; 9 locations and stop 5 

(39) 4; MI right/left hand and feet, and selective attention 4; accelerate, decelerate and turn left/right  1 

(49) 1; selective attention 4; forward, stop and turn on/off the system 4 

(53) 3; MI right/left hand movement and selective attention 
8; forward, turn left/right, accelerate, decelerate, maintain an uniform velocity and turn on/off the 

system 
2.67 

(54) 3; MI right/left hand movement and selective attention 4; accelerate, decelerate and turn left/right  1.33 

MUSCLE-

ASSISTED 

(36) 4; MI right/left hand and feet, and cheek movement 4; forward, turn left/right and stop 1 

(37) 2; left/righ hand movements 2; turn left/right 1 

(38) 3; attention, idle state and eye-blinking 15; 13 directions, forward and stop 5 

(40) 4; selective attention and 2-4 eye-blinkings 8; 4 locations, forward, backward and turn left/right 2 

(42) 4; raise eyebrows, teeth clench on the left/right side and both 4; forward, backward and turn left/right 1 

(45) 4; MI right/left hand and teeth clench on the left/right side 4; forward, turn left/right and stop 1 

(51) 2; close the eyes and keep them open 4; forward, backward and turn left/right 2 

(52) 4; MI right/left hand, selective attention and eye-blinking 8; forward, backward, turn left/right, stop, accelerate, decelerate and maintain position 2 

(56) 
3; blink twice, close the eyes and keep them open in six different 

directions 
8; forward and backward in three directions, validate and stop 2.67 
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Table 3. Feature extraction and classification methods used for the brain-controlled wheelchairs compiled in this review. 

  Paper Feature extraction Classifier 

ERD/ERS 

(18) FFT Recursive training algorithm for pattern recognition 

(28) PSD Gaussian 

(34) Logarithmic values of six band power components Recurrent neural network 

(35) Logarithmic band power LDA 

(43) Learning vector quantization in µ and β bands LDA 

(44) CSP SVM 

(46) PSD Gaussian 

(57) PSD LDA 

(59)a CSP SVM 

P300 

(27) Raw signal SVM 

(29) Moving average technique LDA 

(32) Signal averaging Linear classifier 

(33) Signal averaging SVM 

(47) Optimal statistical spatial filter Binary Bayesian 

(59)b Signal averaging SVM 

SSVEP 

(30) Frequency band power Threshold method not specified 

(41) CCA Bayesian 

(48) Frequency peaks Decision tree method 

(50) PSD Statistical maximum 

(55) FFT and CCA CCA coefficient 

(58) Amplitude of the fundamental frequency Threshold method not specified 

HYBRID-MENTAL 

(31) Raw signal SVM 

(39) One versus the  rest CSP (ERD/ERS) and band-pass filter 0.1-20 Hz (P300) LDA 

(49) Statistical average (P300) and the minimum energy combination (SSVEP) SVM 

(53) CSP (ERD/ERS) and canonical correlation analysis (SSVEP) 
Radial basis function kernel SVM (ERD/ERS) and the canonical correlation 

coefficient (SSVEP) 

(54) CSP (ERD/ERS signal) and canonical correlation analysis (SSVEP) SVM 

MUSCLE-

ASSISTED 

(36) PCA and a modified type of CSP (ERD/ERS) and signal averaging (EMG) SVM (ERD/ERS) and a threshold method (EMG) 

(37) Not specified LDA 

(38) Raw signal Not specified 

(40) Magnitude summing Maximum detection 

(42) Integral of energy in different bands Linear classifier not specified 

(45) CSP LDA 

(51) Signal averaging Threshold method detailed in the paper 

(52) 
One versus the rest CSP (ERD/ERS), CSP (P300) and a band-pass filter for the eye signal 

(0.1-15 Hz). 
SVM and CCA with a thresholding for the eye-blinking 

(56) Hidden Markov model SVM 

Note: when an extraction feature or classification method only affects to a specific signal, it will be indicated between parentheses.  
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Table 4. Used metrics for the evaluation of the BCW. 

  Paper Evaluation 

ERD/ERS 

(18) Success rate 

(28) Success rate 

(34) Time required, path length, percentage of hits 

(35) Time required, used commands and collisions 

(43) Percentage of hits 

(44) Percentage of hits (in a standard way and in 4 seconds time windows) 

(46) Path length and time required 

(57) Time required, time optimality rate, used commands, incorrect selections, corrective actions, extra actions and false negatives 

(59)a Concentration time, incorrect selections, response time to stop, success rate, error distance of the stop area and false activation rate 

P300 

(27) Error rate, selection time and false acceptance rate 

(29) 
Task success, path length, time required, path optimality rate, time optimality rate, errors, collisions, used commands, errors caused by a misunderstanding of the interface, 

obstacle clearance, number of missions, workload, learnability and confidence 

(32) Selection time 

(33) Time required 

(47) Task success, path length, time, path length optimality ratio, time optimality ratio, collisions and success rate 

(59)b Concentration time, incorrect selections, response time to stop, success rate, error distance of the stop area and false activation rate 

SSVEP 

(30) Success rate, best time required and used commands 

(41) Time required 

(48) Qualitative evaluation 

(50) ITR, positive predictive value (PPV) and usability measures 

(55) Unrecognized rate, path length, time required 

(58) Mission: get to reach 4 destinations 

HYBRID-

MENTAL 

(31) Selection time and false positives 

(39) Path length, path optimality rate, time required, classification accuracy, wrong speed control time and collisions 

(49) Missions: to send a "go" command and keep the chair in place, both tasks for 30 seconds 

(53) Time required, useful and useless commands of switch control, selection time and collisions 

(54) Time required and frequency of use of the auxiliary button (to manually avoid collisions) 

MUSCLE-

ASSISTED 

(36) Percentage of hits 

(37) Qualitative evaluation 

(38) Time required 

(40) Success rate, time required and transfer rate (commands per minute) 

(42) Task success, path length, time, used commands, collisions and obstacle clearance (minimum and average distance to the obstacles) 

(45) Time optimality rate 

(51) Success rate and error rate (specified in false positives and false negatives) 

(52) Task success, path length, time required, path length optimality ratio and time optimality ratio 

(56) Task success, path length, time required, path length optimality ratio and time optimality ratio, collisions, mean velocity, workload, learnability, confidence and difficulty 
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signal (28,46,57). Other papers used methods 

such as learning vector quantization in mu and 

beta bands (43), the logarithmic value in the 

bands of interest (34,35), the common spatial 

patterns (CSP) (44,59) or the fast Fourier 

transform (FFT) (18). Referring to the 

classification method, the most used was the 

followed by support vector machines (SVM) 

(44,59), Gaussian classifier (28,46), artificial 

neural networks (34) and a recursive training 

algorithm for pattern recognition (18). 

1.1.1 Evaluation. ERD/ERS systems usually have 

low-level navigation or shared control, so that 

the evaluation of a BCW in real environments 

is a complex issue, since in most tests the users 

are asked to go from point A to point B, but they 

are not given the specific commands to reach 

the destination (figure 3). Therefore, it is 

difficult to know for sure which commands 

have been selected or rejected at will (true 

positives and true negatives, respectively). The 

metrics most commonly used were success rate, 

path length, time required, path length 

optimality ratio, time optimality ratio, number 

of used commands, and number of collisions, as 

well as other less common metrics, such as 

obstacle clearance and command selection 

time. It is worth mentioning two metrics used by 

Li and Liang (44), and Varona-Moya (57), 

which do not take into account the number of 

hits (or errors) regardless of the runtime, but 

depend on the user’s ability to select each of the 

commands in a given time, thereby inferring the 

presence of false negatives if no command is 

selected. In the proposal of Li and Liang (44), 

they used a success rate in 4 seconds time 

window, in which they assumed the intention of 

generating a command, counting as a mistake 

not selecting any command. Whereas in the 

paper of Varona-Moya (57) it was used a metric 

called missed opportunities, in which false 

negatives were collected; i.e. cases where the 

user did not select the optimal command to help 

them to efficiently complete the course. By 

other side, in contrast to other BCWs, the 

proposal of Zhang et al. (59) had a high-level 

control, so their metrics were a bit different 

from the rest, may be measured more clearly 

variables as the success rate or useful in this 

control as the time to make a selection. 

 

 

Figure 3. Participant of Varona-Moya et al. (57) during the 

execution of the path. 

1.2 P300 BCWs 

P300 is a positive deflection in the voltage of the EEG 

signal, generally registered from the parietal lobe of the 

cortex, with a delay of about 300 milliseconds after the 

presentation of an uncommon target stimulus using an 

oddball paradigm (2). This paradigm allows the use of a 

matrix of numerous stimuli, which are selected by visual 

fixation to execute the command with which they are 

associated. The main advantages of these systems are: i) they 

do not require extensive training for management, only a 

small calibration to adjust the system settings for each user 

system (7); ii) they tend to have high success rates and iii) 

high number of available commands, due to the large number 

of stimuli that these systems allow (61,62). However, a P300 

system usually has a low ITR (7) and some studies have 

highlighted that performance may be reduced in the long 

term, as the P300 wave amplitude produced by the rare 

stimulus decreases due to habituation effects (63). 

1.2.1 Navigation. Only one P300 BCW used a low-

level navigation system (33), while three of 

them used high-level (31,32,59) and two used 

shared control (29,47). On the one hand, a high-

level system allows the selection of the 

destination to which the BCW will go 

autonomously, so the P300 is a great candidate 

to serve as a communication signal, due to its 

high success rate, and the possibility of offering 

many destinations in a GUI simultaneously. On 

the other hand, the only BCW with a low-level 

navigation system, which was fairly similar to 

the low-level navigation systems with 

ERD/ERS signal, based its management on four 

navigation commands (forward, backward, turn 

left and turn right), selected through four stimuli 

in a GUI. The disadvantage of these systems is 

that they did not allow continuous control of the 

mobility. By other side, while the shared control 

proposal of Lopes et al. (47) was quite similar 

to a low-level navigation system (figure 4), the 

wheelchair showed by Iturrate et al. (29) had 

one of the most innovative interfaces, which 

conducted a mapping of the environment, in 

which each point was represented in the GUI by 

a stimulus that could be selected by the user as 

destination, thus guiding the BCW to it 

autonomously. With this system the user gains 

the flexibility of a low-level navigation in close 

displacement, with the comfort of a high-level 

system. 
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Figure 4. Participant of Lopes et al. (47) in test scenario. 

 

1.2.2 Participants. The average number of 

participants was 4.83 (σ = 3.71). Two papers 

had at least one disabled user: a patient affected 

by Guillain-Barre Syndrome (32), and one with 

cerebral palsy who was severely motor-

impaired (47). This latest contribution had the 

highest number of total users for testing (N = 

11) in P300 BCWs. 

1.2.3 Task and interface. P300 interfaces proved very 

homogeneous, as all BCWs had a GUI to offer 

their stimuli. The average was 15.5 stimuli (σ = 

13.07). The only task for the user consists of 

selective attention to certain stimulus that 

represents the desired command to be selected 

and executed by the system. That is, although 

the number of stimuli may be high, the required 

task is the same. The average number of 

commands presented was 15.67 (σ = 13.44) so, 

because the only task used in all studies for 

selection was the selective attention to the 

stimulus, the obtained CTR is equal to the 

number of stimuli (i.e. CTR = 15.67; σ = 13.44). 

1.2.4 Feature extraction and classification methods. 

For P300 signal, the extraction methods were 

more heterogeneous than the previous 

ERD/ERS signal. Three proposals used the 

signal averaging technique (32,33,59), and the 

others used the moving average (29) and a 

statistical spatial filter (47). On the other hand, 

only one BCW used raw signal (27). Referring 

to the classification methods, the SVM was 

used by half of the P300’s proposals (27,33,59) 

while the other systems used LDA (29), a 

binary Bayesian classifier (47) and a not 

specified linear classifier (32). 

1.2.5 Evaluation. Unlike what happened in the BCWs 

with ERD/ERS signal, in P300 systems the 

most prevalent navigation was high-level. 

However, the metrics used in the various 

articles were very similar, regardless of the 

navigation system. The most used metrics were: 

command selection time, hit rate and time 

required. The paper of Iturrate et al. (29) has the 

largest number of metrics, which has been 

referenced many times. This paper used the 

metrics proposed in Montesano et al. (64) to 

evaluate the performance of an autonomous 

system, and had a total of 22 metrics evaluating 

various factors such as overall performance, 

command selection, GUI, navigation system, 

and cognitive variables of the user. Also, in this 

article, they used two routes: one in which they 

tested the performance of the BCW on curved 

paths, and another for straight and long paths. 

1.3 SSVEP BCWs 

SSVEP signal are cerebral activity modulations 

produced in the visual cortex by blinking stimulus 

visualization, at a frequency higher than 4 Hz (11), eliciting a 

larger intensity in 5-20 Hz interval, where most SSVEP BCIs 

work (62). The main advantages of these systems are: i) high 

ITR (11); ii) they require short training (65); and iii) they 

allow an adequate number of commands with good accuracy 

rates (66). In contrast, some disadvantages are: i) it can 

provoke fatigue after long-term use; ii) it requires some 

control of the eye muscles (1); and iii) it can cause epileptic 

seizures (1,67). The SSVEP signal has been the last kind of 

signal to be used in a BCW, since it started to be tested with 

users in 2009 (30). 

1.3.1 Navigation. There are three papers about BCWs 

with low-level navigation (41,48,50), one with 

high-level navigation (58), and two with shared 

control (30,55). Although the SSVEP BCWs 

are based on the selection of a visual stimulus, 

such as the P300-BCW, we found a clear 

predominance of prototypical low-level 

navigation and shared-control systems with 

four or five commands. This fact could be 

related to a smaller number of allowed targets 

in the case of a SSVEP interface, compared to a 

P300 system. An SSVEP-based BCI can detect 

how much time users keep their attention on 

certain stimuli, allowing to maintain the 

movement as long as users desire; i.e., 

continuous control (e.g. (41,50,55)). Otherwise, 

the high-level navigation BCW was similar to 

the high-level navigation of P300-BCW, but 

with a considerable smaller amount of 

commands. 

1.3.2 Participants. The participant average in SSVEP 

BCW papers was 5.33 (σ = 4.68). The study of 

Ng (58) was excluded to calculate the mean, 

because its number of participants was not 

representative of the rest (N = 37). By other 

side, the paper of Diez et al. (50) should be 

highlighted because it was the only one to 

include at least one user with MND (a 

paraplegic patient, with severe paralysis of 

upper limbs, due to a lesion at the fifth cervical 

vertebra), and a considerable number of healthy 

users, with a total of 13 participants.  

1.3.3 Task and interface. The number of stimuli is 

limited with this type of signal, being the 

average 4.14 (σ = 0.38). Most SSVEP-BCWs 

possessed a low-level navigation system, so the 

number of commands was relatively low, with 

an average of 4.67 (σ = 0.52), and was generally 

reduced to five: forward, backward, stop, turn 

right, and turn left. As was the case in P300 
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BCWs, there was only one task to be performed 

by the users, therefore the average value of CTR 

was equal to the number of commands (CTR = 

4.67, σ = 0.52).  

Most systems used stimuli in the 

mentioned range of 5 to 20 Hz, with the 

exception of the study of Diez et al. (50), in 

which they proved that it is possible to achieve 

an adequate control of a BCW using high 

frequencies (37–40 Hz). The proposal of this 

study comes from the knowledge that high-

frequency flickering stimuli produce less eye 

strain than low and medium frequencies (68), 

which is one of the main drawbacks of an 

SSVEP BCI. 

1.3.4 Feature extraction and classification method. 

The most used feature extraction method was 

the study of the amplitude in the target 

frequency (30,48,58), followed by the canonical 

correlation analysis (CCA) (41,55), the FFT 

(55) and the PSD (50). As can be seen, the BCW 

of Duan et al. (55) was the only one using two 

extraction methods: the CCA and the FFT. On 

the other hand, the classification methods used 

were highly heterogeneous, such as the 

threshold method [31, 58], a statistical classifier 

(50), a Bayesian classifier (41), the largest CCA 

coefficient in the case of using this extraction 

method (55) or a tree decision method used in 

Müller et al. (48). 

1.3.5 Evaluation. In the publications for SSVEP 

BCWs, the performance evaluation section was 

the least developed in most of papers, as it was 

the more heterogeneous area, because they did 

not observe any metric that was used 

consistently. However, it is worth 

distinguishing the use of their own usability 

questionnaire in Diez et al. (50). 

1.4 Hybrid-mental BCWs 

In this category we will include those BCWs which had 

a hybrid management; i.e., those which used more than one 

type of EEG signal (ERD/ERS, P300 and SSVEP) for their 

control, excluding those that used real movements to control 

the system. Five papers are included in this category: two 

ERD/ERS-P300 systems (31,39), two ERD/ERS-SSVEP 

systems (53,54) and one P300-SSVEP system (49). So it 

seems to be a trend of using hybrid systems that mix 

exogenous and endogenous signals, while the use of two 

exogenous signals is uncommon. The lack of this 

combination of exogenous systems could be explained 

because they do not allow the execution of tasks in parallel, 

since both tasks are selective attention, and the user can only 

attend to only one stimulus simultaneously. The only BCW 

that used two exogenous tasks was proposed by Li et al. (49), 

with the idea of combining both signals to obtain a more 

reliable system, considering that the selection of a particular 

command was verified by two different signals.  

1.4.1 Navigation. We compiled four BCWs with a 

low-level navigation system (39,49,53,54), and 

one with high-level system (31). The proposed 

high-level BCW by Rebsamen et al. (31) 

presented a hybrid system in which an MI task 

was used to stop the BCW, while some 

destinations were selected through a P300 

signal. On the other hand, the low-level 

navigation BCWs controlled the direction 

through ERD/ERS signal, while the exogenous 

signal was used to control the speed. Finally, the 

only BCW that was controlled by an exogenous 

signal could not turn; it just remained in a rest 

state, or moved forward through the combined 

use of both exogenous signals, i.e. P300 and 

SSVEP, to confirm the command. 

1.4.2 Participants. The average number of 

participants was 3.6 (σ = 1.34), and there were 

no patients with MND. The studies were 

performed with experienced and naïve BCI 

users. We found the number of participants 

particularly low again; a fact that is possibly 

related to the use of ERD/ERS signal for most 

of these systems. 

1.4.3 Task and interface. In these hybrid systems one 

of the signals must necessarily be exogenous. 

Therefore the task of visual fixation was present 

in all these proposals, to allow the selection of 

a command in a given GUI. The average 

number of commands presented in this 

interfaces was 6 (σ = 2.83), while the average 

number of tasks to be performed was 2.6 (σ = 

1.14). So, the average CTR obtained was 2.8 (σ 

= 1.71). Li et al. (54) proposed a BCW based on 

SSVEP to adjust the speed allowed by selective 

attention to stimulus, and on MI tasks to control 

the direction simultaneously, leading to the 

completion of the path in less time compared 

with non-hybrid systems. The results were 

similar in virtual environments in the proposal 

of Cao et al. (53), using a similar BCW but with 

a higher number of commands. 

1.4.4 Feature extraction and classification methods. 

In the case of hybrid proposals, they often used 

a different extraction method for each type of 

signal. The most used for ERD/ERS signal was 

the CSP method (39,53,54) while in the case of 

the SSVEP was the CCA (53,54), with the 

exception of the proposal of Li et al. (49), which 

used a minimum energy combination for this 

signal. Referring the P300 signal, it was filtered 

at 0.1-20 Hz in Long et al. (39) and statistically 

averaged in Li et al. (49). On the other hand, the 

proposal of Rebsamen et al. (31) chose not to 

use any feature extraction method, using the 

raw signal. For the classification methods, the 

SVM was used for all hybrid proposals, except 

for the BCW of Long et al (39), which used the 

LDA for the analysis of ERD/ERS and P300 

signal. Furthermore, while the proposal of Li, 

Jie et al (53) used SVM for ERD/ERS signal, 

the largest CCA coefficient was employed for 

SSVEP signal. 

1.4.5 Evaluation. The most common metrics in 

hybrid systems were time required and those 

that referred to erroneously or correctly selected 

commands. However, Li et al. (49) showed an 

evaluation system that does not require the 
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evaluation of a specific path from point A to 

point B, but consisted of simpler objectives to 

perform. Such tasks may be more appropriate 

for evaluating less precise BCWs, which are in 

an intermediate or initial state of development. 

However, for more advanced stages of 

development, where it is necessary to evaluate 

a more complex performance, it would be 

necessary to use more demanding tasks for 

evaluation, taking into account factors such as 

the classification accuracy of the signal (which 

is indeed considered in (39) as part of the 

‘wrong speed control time’), the correct 

functioning of the navigation system, the GUI, 

or the user. Like Iturrate et al. (29), Cao et al. 

(53) used two evaluation environments: one 

more suitable for the evaluation of straight runs 

and long distance; and one for curved paths.  

1.5 Muscle-assisted BCWs 

In this category we will include those BCWs whose 

management is assisted by a muscle signal source. We 

considered it relevant to include these BCWs in a different 

classification, as the classic definition of a BCI describe it as 

“a new non-muscular channel for sending messages and 

commands to the external world” (1), which does not exactly 

match the systems presented here, as muscle activity has been 

used in some way. To improve safety and accuracy of the 

system, some groups chose to use a muscle signal for 

handling the interface, either recorded by EMG, EOG, or 

even the EEG. These interfaces could not be handled by 

patients with a severe degree of MND, who may also suffer 

from eye paralysis (ophthalmoplegia) (69). However, these 

systems can be useful for users that still have residual 

muscular mobility, as the amplitude of the EMG and EOG 

signals is much higher than in the case of the EEG signal (70), 

allowing more precise control of the BCW. 

Nine BCWs assisted with muscle signal publications 

were found: seven were based on an ERD/ERS signal (36–

38,42,45,51,56), one on P300 signal (40) and one was hybrid 

of ERD/ERS and P300 signals (52). There was no muscled-

assisted BCW based on an SSVEP signal. Most of these 

BCWs used an EEG signal to detect the muscle task. 

However, two studies used a specific channel to measure 

muscle signal, as in the case of Li et al. (45), and Wang et al. 

(52), using EMG and EOG, respectively. 

1.5.1 Navigation. Six BCWs used a low-level 

operation (37,38,45,51,52,56), two high-level 

(36,42) and one shared control, in which the 

user could select the type of management by 

blinking, depending on their needs (40). There 

was a clear trend to use low-level navigation in 

muscle-assisted systems, a fact that may be 

related to the use of an ERD/ERS signal in most 

of these systems. 

1.5.2 Participants. The average number of users per 

study was 3.78 (σ = 2.59), with no MND 

sufferers. No conclusions can be drawn on the 

characteristics of participants because many of 

the studies did not describe any of their features.  

1.5.3 Task and interface. The average of total task 

available to the user was 3.33 (σ = 0.87), while 

the average number of mental and muscle tasks 

was 1.22 (σ = 1.3) and 2.11 (σ = 1.05), 

respectively. Furthermore the number of 

commands was 6.33 (σ = 3.94), resulting in a 

CTR = 1.96 (σ = 1.3). The more-used muscle 

task was related to blinking or closing the eyes, 

as well as tasks lateralized as hand movements, 

or clenching of the right or left side. Most 

ERD/ERS -based BCIs, including those not 

using muscular tasks, did not use a GUI for their 

management, since modulation of these signals 

does not depend on external stimuli. However, 

in this category of muscle-assisted BCIs, three 

articles presented a GUI: the proposal of Lin 

and Yang (38), in which the user switched 

between the 13 navigation commands by 

blinking and selected them by performing a 

state of attention; the BCW of Wei et al. (42), in 

which an environment mapping was shown and 

the user selected the desired position through 

different muscle tasks (figure 5); and the 

interface proposed by Ming et al. (51), which 

showed four stimuli corresponding to the four 

navigation commands that were illuminated 

serially, and the participants closed their eyes to 

select the desired command when it was lit up 

(figure 6). 

 

 

Figure 5. Participant using the BCW of Wei et al. (42). 

 

 

Figure 6. EEG acquisition cap and BCW used by Ming et al. 

(51). 

 

1.5.4 Feature extraction and classification methods. 

Although in most proposals of this section the 

ERD/ERS signal was used besides the muscular 

movement, the feature extraction methods were 

diverse: PCA together with CSP to detect MI 

tasks and actual face movements (36), only CSP 

to detect the same states (45), the signal 

averaging to detect blinks or an open/close eyes 

state (51,56), the integral of energy in different 

bands to detect different facial movements (42) 
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or a hidden Markov model to detect the gaze 

direction (56). Furthermore, the characteristics 

of the signal P300 was extracted through CSP 

in the proposal of Wang et al. (52) while in the 

BCW of Puanhvuan and Wongsawat (40) a 

magnitude summing method was presented. 

However, there was one proposal which used 

the raw signal, the BCW of (38). On the other 

hand, about the classification methods, the most 

used are, again, SVM (36,52,56) and LDA 

(37,45). Other common method was used, the 

CCA, however not for the analysis of SSVEP 

signal but for the eye-blinking detection with a 

threshold method. There are other proposals 

with a threshold method (51) or maximum 

detection found in the proposal of Puanhvuan 

and Wongsawat (40). The BCW of Choi (36) 

used EMG in order to generate a stop command 

through a threshold method where a value was 

first decided, and if the EMG value exceeds this 

threshold value, the command execution was 

stopped. 

1.5.5 Evaluation. The most used metric was the 

success rate, followed by the time required to 

complete the path. Only two studies included 

optimized metrics, in terms of time or distance 

employed to complete the path (45,52). The 

article with a more complete assessment of 

muscled-assisted BCWs was published by 

Wang et al. (52), and was based on some of the 

metrics used by Iturrate et al. (29). 

2. BCW comparison between categories 

 

The most common BCWs are those based on ERD/ERS 

signal, especially if we consider that was the type of signal 

that included most of the hybrids and muscle-assisted BCWs. 

Furthermore, we have found a similar amount of BCW papers 

based purely on P300 and SSVEP signals, both with 18%. 

The issue of choosing one signal type or another depends on 

the need for a signal which allows free control at the expense 

of a smaller accuracy rate, as in the case of ERD/ERS signals 

(7). On the other hand, an interface that uses P300 or SSVEP 

signals requires less training, and achieves higher levels of 

accuracy (7). The choice of the signal also depends on factors 

such as: i) the navigation system to be used; ii) the presence 

or absence of a GUI; iii) the number of commands involved; 

and iv) the possibility of executing a continuous control of the 

wheelchair (as in the case of ERD/ERS signals and SSVEP) 

as opposed to a discrete control (60). Other considerations 

include the possibility of fatigue produced by SSVEP 

interfaces, in which an eye strain occurs as the session is 

extended, or the necessary ability of the user to control their 

eye muscles (1). 

As proposed by Millán et al. (17), as well as in the studies 

of Li et al. (54) and Cao et al. (53), the use of hybrid systems 

is recommended, since they offer better results, both in virtual 

and real environments. The use of commercial EEG devices 

has only been tested with muscle-assisted systems, where the 

EEG is used to detect muscle activity. In two of these 

interfaces, which used the Emotiv EPOC, only muscle 

movements were used (37,42), while in the case of the 

NeuroSky ASIC, the authors used eye-blinking and attention 

state (38). The use of muscle tasks in commercial systems is 

given by its lower quality signal acquisition, requiring a 

stronger signal to be detected more easily. 

2.1 Navigation 

Navigation systems based on both ERD/ERS or SSVEP 

signals were mostly based on low-level control, using the five 

basic navigation commands: forward, backward, turn left, 

turn right and stop. P300 BCWs, especially non-hybrids, used 

mostly high-level control navigation. This may be related to 

the fact that high-level systems do not allow a step-by-step 

command selection (so that the user can move freely in the 

environment), but all possible destinations are predetermined. 

Therefore, it is necessary that the interface is capable of 

containing many options that could be chosen to go to a 

specific place in the environment. Given the existence of 

numerous commands, the P300 signal is quickly able to select 

a command from among others through a similar matrix to 

the proposed by Farwell and Donchin (2). However, it is 

noteworthy that the P300 signal, in an oddball paradigm, does 

not allow the continuous control of the BCW, so in P300 

systems, the handling must be necessarily discrete, which 

may slow the execution of a path; something that does not 

happen in a system based on an ERD/ERS or SSVEP signal 

(60). 

2.2 Participants 

The studies with ERD/ERS signals had the lowest 

number of participants, while for those studies with P300 or 

SSVEP signals the number of subjects was quite similar. 

These results can be explained by the difficulty in finding 

participants with an adequate initial control of these 

ERD/ERS signals, and the time needed for their training. In 

addition, even though the end users of this application are 

people with severe motor disabilities, most studies only tested 

their systems with healthy participants. Only three studies had 

disabled participants – two with P300 signal (32,47) and one 

with SSVEP signal (50) – which are studies based on 

exogenous signals that do not require training. The use of a 

large number of participants with previous experience in BCI 

systems, and subjects that satisfied certain criteria before 

proceeding to handle the BCW, should be noted. 

2.3 Task and interface 

The number of user tasks for ERD/ERS BCWs is higher 

compared to systems with an exogenous signal. In contrast, 

the number of commands, especially for systems based on 

P300, is higher in exogenous systems. Therefore, as expected, 

the BCWs with a higher CTR are those based on P300 (𝑥̅ = 

15.67; σ = 13.44), followed by those based on SSVEP (𝑥̅ = 

4.67; σ = 0.52), hybrids-mental (𝑥̅ = 2.8; σ = 1.71), muscle-

assisted (𝑥̅ = 2; σ = 1.32) and ERD/ERS (𝑥̅ = 2; σ = 2.54). 

The lower number of commands allowed in ERD/ERS 

systems could be explained because each user’s task typically 

execute a particular command – how it is reflected in the CTR 

– and, how it was mentioned, fewer tasks to classify involve 

a better performance classification (25,26). 

Referring to the user tasks to be performed by 

participants, in systems that include an exogenous signal, 

there is only one task – selective attention to the stimulus – 

whereas in those with an ERD/ERS signal the most used task 

was MI, especially left – or right – hand MI. The use of a 
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GUI was required in SSVEP or P300-based systems, but it 

was not necessary in most of the interfaces using ERD/ERS 

signal. Thanks to the absence of GUI in most ERD/ERS 

systems, users do not need to focus on a screen while they 

drive the BCW, allowing them to keep their attention on the 

environment, and to be alert to possible unexpected events. 

Most hybrid systems combined exogenous and endogenous 

signals, as it was not common to use more than one type of 

exogenous signal, as was indeed the case for Li et al. (49). 

The combination of endogenous and exogenous signals 

allowed the execution of more than one command 

simultaneously; e.g. a selective attention visual task and MI 

(53,54). Regarding the number of visual stimuli presented in 

a GUI, the P300 interfaces (𝑥̅ = 15.5, σ = 13.07) obtained a 

larger number than those based on an SSVEP signal (𝑥̅ = 4.14, 

σ = 0.38). 

2.4 Feature extraction and classification methods 

Firstly, respect to the feature extraction methods, a great 

variety can be seen, from papers using CSP, PSD or signal 

averaging, to those which use raw signal. It is difficult to 

show a clear pattern about what is the most used method, but 

it is observed a tendency to use the PSD with the ERD/ERS 

signal, the signal averaging techniques in P300 and the CCA 

in SSVEP. On the other hand, referring to the classification 

methods, less variety has been found, being mainly used LDA 

and SVM thanks to its own properties. First, LDA requires a 

low computational load which allows a suitable online 

control of the BCI system though its low performance on the 

analysis of non-linearly separable data. By other side, SVM 

offers better generalization properties, and it is insensitive to 

overtraining and to the curse-of-dimensionality; however, it 

provides a lower speed execution (71). This methods were 

followed by Gaussian and Bayesian classifiers, artificial 

neural network, the coefficient obtained in the CCA or a 

specific thresholding method. Furthermore, it should be noted 

that some of these papers use a thresholding method or a 

linear classifier without specifying how they are calculated. 

2.5 Evaluation 

The evaluation criteria used in the different studies were 

very heterogeneous, from the simplest with just a couple of 

metrics, to the most elaborate exceeding ten. In reference to 

the signal, those BCWs based on ERD/ERS or SSVEP signal 

systems gave greater importance to the evaluation of 

accuracy in the selection of commands, and the time required 

to complete the path. However, in the P300 BCWs, half of the 

studies used the selection time as their metric, defined as the 

time it took the user to select the desired command. This 

metric could hardly be controlled on ERD/ERS-based BCWs 

because it is difficult to know when the user starts the 

command selection during the free handling of the 

wheelchair. 

3. Conclusions 

Thirty-four papers were found which show the progress 

made to control a wheelchair through the registration of a 

user’s brain activity. The trend to use an EEG signal in BCI 

applications is shown to be more pronounced in a BCW, 

being the only one used, possibly due to the difficulty of 

adapting the necessary instrumentation of other techniques in 

a vehicle that allows user displacement. However, it is 

necessary to improve some features to be able to ameliorate 

the daily life of patients with MND.  

As mentioned, the use of each type of EEG signal carries 

many advantages and disadvantages that must be considered. 

In addition, new proposals for BCWs should offer more 

flexible systems that are easier to learn and use, which enable 

their fluid, natural, and safe control. Indeed, current trends 

include the use of hybrid BCIs, which have been shown to 

allow: i) a faster management of the BCW through 

performing tasks in parallel, allowing the execution of two 

commands simultaneously (53,54); or ii) improved accuracy 

by combining two signals (49). However, some objections 

identified in most papers should be noted. Despite the 

advantages of using navigation systems that assist the control 

of the wheelchair with shared control, only 25.71% of all 

papers collected had this aid. On the other hand, there was 

almost no study with users affected by some type of MND, 

despite these being the end users for this kind of application. 

Therefore, for future proposals, it is desirable to test the 

management of the BCWs by users affected by a MND, to 

face the new challenges that this might involve. It may be 

recommended to increase the total number of participants in 

the studies, because the interest should not be simply to show 

that a proposal is capable of running a BCW with an adequate 

performance, but to find systems that any user can manage, 

not just those users with excellent skills.  

Referring to the evaluation systems, as proposed by Bi et 

al. (20), it could be of interest to use similar metrics among 

different papers, so that the proposals can be compared more 

accurately. Moreover, only a few articles presented the use of 

metrics related to the user’s experience during handling. 

These metrics should be collected through questionnaires, 

regarding the usability of workload or fatigue, using a 

standardized test whenever possible. Concerning the usability 

issue, one of the major objections that users often report after 

a BCI experience is the discomfort caused by the use of the 

EEG cap, and the electrode conductive gel (72). These 

objections may be aggravated in the case of patients suffering 

from MND, which increases the complication in the EEG 

device montage. Therefore, we recommend studying the 

possibility of acquiring a suitable control for a BCW using 

commercial EEG systems which exist currently. In addition, 

the economic gap between the commercial devices and those 

normally used in the laboratory can be the difference between 

the elitist use of such devices, or one that everybody could 

afford. 

Despite these points for improvement, studies have 

evolved positively in various aspects. Some examples are the 

following: flexibles navigation systems which assists the user 

during their displacement; studies with more than 10 

participants, as well as the presence of patients with some 

MND; innovative proposals appear with the possibility of 

simultaneous speed and direction management of the BCW 

serial interfaces that allow a high CTR with ERD/ERS, or 

even by a purely auditory or visual signal interface; and there 

is the development of metrics to an extensive evaluation of 

BCW and adapted to its specific characteristics. Indeed, all 

these contributions lead us to firmly believe that BCWs may 

be used safely and effectively in the near future for a patient 

with MND, at least in controlled environments. However, 

before BCWs could be used in real outdoor environments, it 
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will be necessary to better guarantee the adequate users’ 

control and the system safety. 

To conclude, the goal of a useful BCW is definitely an 

ambitious project that is being developed through the work of 

several research groups, which are closer to benefit and 

improve the quality of life of people with MND despite the 

many challenges to overcome. 
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