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Abstract: The application of remote sensing technology in grassland monitoring and management
has been ongoing for decades. Compared with traditional ground measurements, remote sensing
technology has the overall advantage of convenience, efficiency, and cost effectiveness, especially over
large areas. This paper provides a comprehensive review of the latest remote sensing estimation meth-
ods for some critical grassland parameters, including above-ground biomass, primary productivity,
fractional vegetation cover, and leaf area index. Then, the applications of remote sensing monitoring
are also reviewed from the perspective of their use of these parameters and other remote sensing data.
In detail, grassland degradation and grassland use monitoring are evaluated. In addition, disaster
monitoring and carbon cycle monitoring are also included. Overall, most studies have used empirical
models and statistical regression models, while the number of machine learning approaches has an
increasing trend. In addition, some specialized methods, such as the light use efficiency approaches
for primary productivity and the mixed pixel decomposition methods for vegetation coverage, have
been widely used and improved. However, all the above methods have certain limitations. For future
work, it is recommended that most applications should adopt the advanced estimation methods
rather than simple statistical regression models. In particular, the potential of deep learning in
processing high-dimensional data and fitting non-linear relationships should be further explored.
Meanwhile, it is also important to explore the potential of some new vegetation indices based on
the spectral characteristics of the specific grassland under study. Finally, the fusion of multi-source
images should also be considered to address the deficiencies in information and resolution of remote
sensing images acquired by a single sensor or satellite.

Keywords: grassland remote sensing; parameter estimation; land degradation monitoring; grassland
use; disaster monitoring; carbon cycle

1. Introduction

Grassland, an important vegetation type in terrestrial ecosystems, is the most widely
distributed form of land cover with abundant renewable natural resources [1]. It has many
important ecological functions, such as sand fixation, water conservation, and diversity
maintenance. It plays an essential role in livestock production, economy, and tourism [2],
providing incomes for many people. On the one hand, grasslands are the main food
sources of livestock products such as beef, lamb, and dairy. On the other hand, the natural
scenery of grasslands and the historical relics of pastoralist peoples constitute the landscape
resources that have important cultural and tourism values.

However, many grasslands have become significantly degraded in recent years due to
human activities (pollution, over-grazing, and farmland reclamation) and extreme climate
events (frost, rainstorm, and sandstorm), which have led to a decrease in soil moisture
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and fertility, eventually leading to land desertification [3]. Thus, the conservation of
ecosystems and the rational use of natural resources have become more and more critical in
environmental decision making over the years. Grasslands are sensitive ecosystems where
even slight changes in the surface can have a significant impact on the dynamic processes,
not to mention the fact that they are often threatened by many natural hazards such as fire,
drought, and insect damage. Therefore, the monitoring of both human activities and major
disasters in grasslands is of great significance for grassland use management [4], disaster
warning [5], post-disaster reconstruction [6], and sustainable development of grassland
resources [7].

In general, accurate measurements of grassland biophysical and biochemical parame-
ters are the basis of grassland monitoring. Traditional measurement methods rely mainly
on ground measurements, also known as field surveys, which usually sample the measured
area and select numerous plots to present the entire area. These plots can be directly used
to generate accurately measured parameters or provide all kinds of precise data related
to them. However, these methods are time-consuming and laborious, and they are only
precise in small regions so that they are not suitable on regional and global scales.

Remote sensing technology has greatly advanced the operational monitoring of grass-
lands, which has rapidly replaced the traditional methods with significant advantages
of convenience, efficiency, and reduced costs. In general, there are two types of optical
remote sensing images mainly applied in this field: multispectral and hyperspectral im-
ages. Multispectral images are the most commonly used. In particular, multispectral
images utilized in most studies are provided by the moderate-resolution imaging spectro-
radiometer (MODIS), which is a sensor on Terra and Aqua satellites. Both satellites are
in sun-synchronous orbits so that they can provide daily images with a wide observation
range, which allows researchers to easily estimate grassland parameters on regional and
global scales. Although MODIS data have a fine temporal resolution, their low spatial
resolution limits the accuracy and robustness of research results. Fortunately, with many
advanced satellites being launched, more and more high-quality images are available.
Apart from MODIS images, some other multispectral images, which are usually obtained
from SPOT, Landsat, and Sentinel satellites [8,9] with hundreds of spectral bands, have
also been widely adopted [10–12]. Meanwhile, hyperspectral images have also become
popular recently [8,13,14]. In addition to optical satellites, some radar satellites such as the
advanced land observing satellite (ALOS) and ENVISAT-1 satellites have been adopted
in many studies. These satellites can provide synthetic aperture radar (SAR) images that
are directly utilized for parameter estimation [15] and monitoring [16,17] or are added to
models along with optical data to improve robustness [18]. In addition, radar satellites can
also provide auxiliary information such as topographic data and soil indices to improve
the accuracy of estimated results [19,20].

Apart from satellite images, a number of multispectral and hyperspectral sensors such
as HyMap and compact airborne spectrographic imager can also be mounted on unmanned
aerial vehicles (UAV) and airplanes to acquire near-surface imagery with high spatial
resolution. These have been applied in some research recently [21–25]. Furthermore, some
portable spectrometers such as Analytical Spectral Device (ASD) can work directly on the
ground, producing ground images with super-high-spatial resolution that can be applied
to study vegetation characteristics at fine scales (leaf and canopy levels) [26–29]. In some
cases [6,30], these ground images serve as the reference to verify the robustness of satellite
images. In addition, the light detection and ranging (LiDAR), a type of radar sensing,
can be installed on the UAV or on the ground to provide supplementary information for
parameter estimation [31,32].

Based on specific spectral bands of the above optical images, some vegetation indices
have been developed. The normalized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI) have been widely used in most studies [33–36] due to their strong
correlation with the growth status and spatial distribution density of plants. Huete et al. [37]
demonstrated the high sensitivity of the NDVI and the EVI to spatio-temporal variation in
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vegetation, land cover, and biophysical parameters. However, in some cases, the applicability
of the NDVI may be challenged. As a result, some improved vegetation indices have been
applied [26,38], such as the modified soil adjusted vegetation index (MSAVI) and the soil
adjusted vegetation index (SAVI), which diminish the interference of noise and soil back-
ground faced by the original NDVI. In addition, for different research purposes, other indices
such as the land surface water index (LSWI) and some red-edge indices have been fully
utilized [39,40]. In some studies [41–43], researchers can even customize some new indices
depending on the characteristics of grasslands under study. In [44], Xue and Su detailed the
spectral characteristics of vegetation and summarized the development of over 100 vegetation
indices and their specific applicability and representation under different conditions.

Furthermore, satellites can directly supply a number of products for atmospheric,
terrestrial, and oceanic research. For grasslands, they can provide estimation products for
temperature, surface albedo, leaf area index (LAI), etc. However, the accuracy of many
estimation products is not robust in some cases. Taking some of the products from MODIS
sensors as examples, Zhu et al. [45] reported a general underestimation in the MOD17A2
product that can provide an estimated parameter called gross primary productivity (GPP).
Another product, MCD64A1, also has a significant underestimation of burned area that
was demonstrated by [46]. Therefore, most current researchers prefer to estimate grassland
parameters by establishing relationships between the highly relevant remote sensing indices
and the actual values of these parameters obtained from ground measurements. To this
end, all kinds of specific models and integrated frameworks have been proposed and
developed based on the respective characteristics of different parameters. Various forms of
statistical regression models and machine learning models have been widely used [47,48].
Meanwhile, some specialized methods have been developed such as the Carnegie–Ames–
Stanford approach (CASA) model for primary productivity and the linear pixel dichotomy
method for fractional vegetation cover (FVC). In addition, these estimated parameters have
been adopted as the metrics of vegetation status in many practical applications such as
grazing monitoring [49], burned area monitoring [6], and desertification monitoring [50].

Many recent studies have reviewed the use of optical imagery [51] and radar im-
agery [52] to vegetation monitoring and have demonstrated the great potential of remote
sensing technology in some specific applications such as precision agriculture [53], forestry
management [54], and carbon cycle monitoring [55]. Although there have also been a
number of published reviews covering the applications of remote sensing images in grass-
lands [1,2,56–58], to our best knowledge, few of them focused on the relationship between
key grassland parameters and remote sensing data. To this end, this paper presents a com-
prehensive review of the latest remote sensing estimation methods for some key grassland
parameters and then reviews some specific monitoring applications from the perspective of
the utilization of both these key parameters and remote sensing data (shown in Table 1). We
first searched on the Web of Science with the keywords of “grassland”, “remote sensing”,
and “estimat*”, which yielded the results of thousands of papers. Based on the results, we
found that more than half of these studies focused on the estimation of biomass and produc-
tivity. Meanwhile, there were also a number of studies involving vegetation coverage and
biochemical parameters such as FVC, LAI, chlorophyll content, and water content. On this
basis, we selected four representative parameters including above-ground biomass (AGB),
primary productivity, FVC, and LAI in this paper to provide an overview of their latest
estimation methods. Specifically, we further searched for their relevant publications from
2018 to now and chose highly representative work, which ultimately yielded 29 papers
for AGB, 25 papers for primary productivity, 18 papers for FVC, and 10 papers for LAI.
In addition, we also searched for four popular applications of remote sensing monitoring
over the past decade, resulting in 21 papers related to grassland degradation, 27 papers
revelant to grassland use monitoring, 53 papers associated with natural disasters, and 17
papers about carbon cycling.
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Table 1. Topics reviewed in this article.

Estimation Methods Operational Applications

Review focuses

Key parameters:
AGB

Primary productivity
FVC Specific applications:
LAI Degradation monitoring

Methods: Grassland use monitoring
Statistical regression Disaster monitoring

Machine learning Carbon cycle monitoring
Light use efficiency

Mixed pixel decomposition
Radiative transfer models

Overall, we obtained a total of 200 papers for our review. The structure of this
paper is organized as follows. We first review the estimation methods in Section 2. Then,
the applications of remote sensing monitoring are reviewed from the perspective of their
use of remote sensing data in Section 3. We statistically analyze the different remote sensing
sources utilized in these studies and analyze the characteristics of estimation methods
and applications in Section 4. Based on the analysis, some main limitations faced by these
studies and several suggestions for future work are presented in Section 4. Finally, Section 5
summarizes this article.

2. Parameter Estimation
2.1. AGB

AGB is the main parameter of grassland biomass, and its estimation is the focus of
the grassland study with the largest number of publications. It is usually defined as the
organic matter produced by the photosynthesis of grassland plants, which can be expressed
as the dry weight of grassland plants in the above-ground part of a unit area. It is one
of the significant indices of global carbon cycling, reflecting the carbon sink potential of
grassland vegetation [47], and its changes directly reveal the degree of grassland growth
and degradation, easily employed to monitor overgrazing [59].

The estimation models of AGB can be divided into parametric and non-parametric
models. Specifically, parametric models mainly include linear [25], logarithmic [21], expo-
nential [33], and other forms of functional models [60] that belong to statistical regression
methods, while non-parametric models mainly involve support vector machine (SVM) [47],
random forest (RF) [61], and artificial neural network (ANN) [62], which are primarily
machine learning methods. In general, parametric regression models first select variables
significantly related to AGB, after which a pre-assumed functional relationship between
the variables and AGB is fitted by statistical data. Meanwhile, according to the number of
variables, parametric regression models can be further classified as univariate and multi-
variate models. Except for the abovementioned parametric models that belong to univariate
models, the multivariate linear regression (MLR) model is one of the most commonly used
multivariate models in this field [9,18,32].

For the selection of variables, due to the significant correlation between vegetation
height and biomass, many studies have focused on the inversion of vegetation height, which
in turn can be linked to the AGB. These studies share significant methodological similarities
in which 3D point cloud data used for inversion were generated from UAV images, while
parametric regression models were developed for estimation. Zhang et al. [21] generated
dense 3D point cloud data from UAV RGB images, and vegetation height was generated by
calculating the distance between the point cloud data and corresponding ground meshes.
The AGB was eventually estimated by a logarithmic regression model using the mean
vegetation height, which achieved the coefficient of determination (R2) of 0.89 between
the estimated and measured AGB. Then, Grüner et al. [60] also produced 3D point clouds
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and calculated mean vegetation height based on the difference between digital surface
model data and digital elevation model (DEM) data. Then, the AGB was estimated by
a reduced major axis regression model whose robustness was demonstrated even under
extreme weather conditions (R2 = 0.72). In addition, in [25,27], the mean vegetation height
was also derived from 3D point cloud data, and both of them were utilized to developed
linear models for AGB estimation.

Apart from the mean vegetation height, other forms of vegetation height derived from
UAV or gound images were also utilized. In [63], the 90th percentile of vegetation height
was derived from UAV images and was adopted for estimation in temperate grasslands
by a linear model, but the results indicated that the model worked successfully only at
the beginning of the growing season, while at other times, an MLR model combined with
the NDVI was necessary. In [27], the grass volume was derived from UAV images, but its
performance was worse than that of mean vegetation height derived from ground images.
Then, Xu et al. [32] adopted ground-based LiDAR data to generate a 3D point cloud, which
derived minimum vegetation height and FVC that were utilized to construct an MLR model
with the best performance (R2 = 0.87). Furthermore, Wijesingha et al. [31] chose the 75th
percentile of vegetation height derived from UAV images or ground-based LiDAR data
as the variable in a linear model. Their results showed that the performance based on
UAV data was slightly worse than that of LiDAR data. However, these studies are overly
dependent on vegetation height, which led to an inability to cope with grasslands made up
of complex structures and vegetation. Shi et al. [22] derived the red-green-blue vegetation
index (RGBVI) and the surface bare ratio from UAV RGB images and combined them with
ground-measured grazing intensity to create a polynomial regression model achieving R2

of 0.88. Nevertheless, the above studies should be combined with satellite data to further
improve their performance.

Among various satellite data, most researchers preferred to directly select some vege-
tation indices highly correlated with vegetation growth and status. Therefore, the NDVI
has always been popular in studies [9,38,64–66]. In addition, EVI, SAVI, and LSWI were
utilized in some studies [18,26,39]. For example, Li et al. [39] estimated peak AGB of alpine
grasslands by an EVI-based linear model, and they further focused on the temporal variabil-
ity of precipitation on the AGB so that a new index was developed through the principal
component analysis (PCA) and an MLR model to quantify this variability. Kong et al. [9]
selected VI2 (normalization value of green peak reflectance and red valley reflectance) and
the NDVI as driving variables through correlation analysis and developed an MLR model
for alpine grasslands, gaining R2 of 0.87. Wang et al. [18] developed an MLR model, which
combined optical and radar data as variables. However, these above-vegetation indices are
easily disturbed by soil background. On this basis, Ren et al. [26] introduced a negative
soil adjustment factor into SAVI to remove the effect of soil background and estimated
the AGB in desert grasslands through a linear model, which demonstrated that the perfor-
mance of the improved SAVI far exceeded that of the NDVI. However, their experiments
were conducted on the ground using ASD hyperspectral images alone, requiring further
validation on satellite images. Wang et al. [38] modified several typical vegetation indices
according to the changes of FVC in different phenological periods to eliminate the effect of
soil background in semiarid grasslands and then compared them on different regression
models, demonstrating the logarithmic model based on the modified NDVI achieved the
best performance (R2 = 0.71).

Apart from soil background, the low spatial and temporal resolution of some satellite
images also limits the accuracy of estimation. To improve the temporal continuity of
the estimation results, Clementini et al. [64] integrated NDVI data from SPOT, MODIS,
and Landsat satellites to generate a long time series of the AGB for grazing grasslands
using a power function regression model. Then, for the improvement of spatial resolution,
Pang et al. [67] proposed a satellite-scale simulated spectra method, which scaled up
ASD hyperspectral images to the satellite level with high spatial resolution by a mixed
pixel decomposition model. Then, a multi-granularity spectral segmentation algorithm
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was adopted to extract spectral segmentation features that were used in an MLR model,
achieving R2 of 0.95. Furthermore, to obtain NDVI data with both high temporal and spatial
resolution, Zeng et al. [68] built a rule-based piecewise regression tree model to fuse MODIS
and Landsat images and generated averaged the NDVI time series with 30m resolution
that were finally employed in an exponential model to estimate the AGB. In addition,
some other factors have also been studied. KarakoÇ et al. [66] investigated the spectral
properties of grasslands at different altitudes and with different biomass densities in the
Mediterranean region. The performance of linear and exponential models based on various
forms of the NDVI and simple ratio (SR) were compared, which indicated that the spectral
saturation effect due to high biomass densities severely degraded the estimation accuracy,
while the selection of indices depending on the spectral characteristics of grasslands was
more crucial than the choice of regression models. In addition, Braun et al. [15] explored
the possibility of using satellite radar data alone. PCA was applied to integrate SAR
data and passive brightness temperature data from radar satellites, which showed that
the radar-based exponential regression model performed better in a savanna with low
biomass but could not cope with high biomass, only achieving the R2 of 0.52. Bao et al. [69]
adopted the wavelet-PCA to fuse SAR images and multispectral images and estimated the
AGB by a linear model using fused bands, which significantly outperformed the models
based on vegetation indices or SAR images alone. Similarly, in [18], the results showed
that the combination of SAR data could dramatically boost the model performance. Thus,
the combination of optical and radar data is a feasible option for improvement.

However, the improvement of the above optimization strategies is limited. Parametric
estimation models generally do not perform well, especially in the case of high spatial
heterogeneity and complex grass species. Compared to parametric models, non-parametric
models also require the selection of variables, but they can freely learn from statistical
data without any pre-assumed functional relationships. John et al. [70] developed a rule-
based Cubist model, which belongs to the regression tree approach in which driving
variables mainly include vegetation indices, satellite products, topographic and climatic
variables. Then, Yin et al. [71] adopted the consistent adjustment of the climatology to
actual observations method to fill the temporal gaps in Landsat images, generating a series
of high temporal resolution images that were subsequently utilized to train a Gaussian
process regression model, which achieved a relatively high accuracy (R2 = 0.64) compared
to univariate regression models. Naidoo et al. [61] developed an RF model using various
forms of the NDVI and SR and some spectral bands as variables. Although their best
results were obtained by using only the WorldView data due to its higher spatial resolution,
the Sentinel optical data could also achieve comparable performance when combined with
their SAR data. Finally, Zheng et al. [72] combined vegetation indices, meteorological data,
and topographical data to drive an RF model gaining the R2 of 0.76.

Apart from the combination of satellite data, some recent studies have combined
ground survey data and remote sensing data [47,73,74]. In detail, Lyu et al. [74] combined
the NDVI and the EVI with meteorological and soil variables to construct an ANN model
achieving superior performance (R2 = 0.91). Meng et al. [47] compared various statistical
regression models with machine learning models driven by six indices from both ground
and satellite data. They verified that the RF model achieved the best results with R2 of
0.78. Finally, Zhou et al. [73] combined ground data with the NDVI and selected seven
indices to drive an RF model whose results were subsequently taken as the driving field
for the simulations of high accuracy surface modeling, which not only achieved better
results (R2 = 0.85) than machine learning models but also accurately reproduced the spatial
distribution characteristics of the AGB. In their further analysis, they concluded that warm
and humid climates, overgrazing, and population growth are the main factors to drive the
AGB changes.

In summary, Table 2 shows more details about the above methods. The R2 values
between the estimated and actual AGB have been extracted according to their best exper-
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imental results, which can be used to evaluate the conformance between estimated and
actual values.

Table 2. Detailed information on the involved estimation studies for the AGB.

Authors Methods Grassland Type Remote Sensing Data Data Source R2

Bao et al. [69] linear regression semiarid fused spectral band satellite 0.79
Li et al. [39] linear regression alpine EVI satellite 0.85

van der Merwe et al. [25] linear regression tallgrass prairie vegetation height UAV 0.91
Ren et al. [26] linear regression desert SAVI ground 0.64

Wijesingha et al. [31] linear regression typical vegetation height ground 0.61
Rueda-Ayala et al. [27] linear regression grazing vegetation height ground 0.88

Braun et al. [15] exponential regression low-biomass savanna SAR satellite 0.52
Zeng et al. [68] exponential regression alpine NDVI satellite 0.48

Zhang et al. [65] exponential regression typical NDVI satellite 0.64
Chu [33] exponential regression alpine, temperate NDVI satellite 0.84

Wang et al. [38] logarithmic regression semiarid NDVI satellite 0.71
Zhang et al. [21] logarithmic regression alpine, desert, salt marsh vegetation height UAV 0.89

Shi et al. [22] polynomial regression alpine RGBVI, surface bare ratio UAV 0.88
Grüner et al. [60] reduced major axis regression temperate vegetation height UAV 0.72

Kong et al. [9] MLR alpine VI2, NDVI satellite 0.87
Lussem et al. [63] MLR temperate NDVI, vegetation height UAV 0.87

Xu et al. [32] MLR typical, temperate FVC, vegetation height ground 0.84
Pang et al. [67] MLR temperate, desert spectral features ground 0.95
Yin et al. [71] Gaussian process regression alpine spectral bands satellite 0.64

John et al. [70] rule-based Cubist model alpine, typical, desert vegetation indices satellite 0.68
Naidoo et al. [61] RF marshy spectral bands satellite 0.64
Zhou et al. [73] RF alpine vegetation indices, products satellite 0.85
Meng et al. [47] RF alpine vegetation indices, products satellite 0.78
Lyu et al. [74] ANN typical vegetation indices, products satellite 0.91
Yang et al. [62] ANN alpine vegetation indices, products satellite 0.76
Zeng et al. [72] ANN semiarid vegetation indices satellite 0.76

2.2. Primary Productivity

The main parameters involved in this field are GPP and net primary productivity
(NPP). GPP is generally defined as the amount of organic carbon fixed by photosynthesis
in unit time by green plants, which is the biggest carbon flux of terrestrial ecosystems,
while NPP is equal to GPP minus autotrophic respiration, which reflects the efficiency of
plants in fixing and converting photosynthetic products and also determines the material
and energy available to heterotrophic organisms. Therefore, the accurate estimates of GPP
and NPP and the precise tracking of their spatial and temporal changes are the basis for
understanding ecosystem dynamics and studying regional carbon uptake and cycling.

It is worth noting that traditional specialized estimation methods in this field mainly
include the process-based biogeochemical approach and the light-use efficiency (LUE)
approach. The process-based biogeochemical approach, mainly including the Biome-BGC
model and the boreal ecosystem productivity simulator model, simulates the physiological
processes in plants such as the photosynthesis and the decomposition of organic matter.
The LUE approach is generally founded on the absorption and conversion of incident solar
radiation by plants, including the vegetation photosynthesis model (VPM) and the CASA
model. Recently, with the widespread use of remote sensing technology, most studies have
combined remote sensing data with traditional methods for estimation and monitoring
at large scales. Among these methods, the CASA model is the most popular and widely
used [75–78]. Based on it, NPP can be estimated by:

NPP = ε × APAR (1)

where ε is the actual LUE and APAR is the absorbed photosynthetically active radiation.

APAR = SOL × FPAR × 0.5 (2)

where SOL is the total solar radiation, FPAR is the fraction of photosynthetic active radia-
tion absorbed by vegetation canopy, and the coefficient of 0.5 is the proportion of vegetation
utilizing active incoming solar radiation, which is a frequently used empirical value.
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ε = Tε1 × Tε2 × Wε × εmax (3)

where εmax is the ideal maximum LUE, Tε1 and Tε2 are the environmental stress coefficients
of temperature, and Wε is the environmental stress coefficients of water. It is worth noting
that Tε1, Tε2, and Wε reflect the restriction of LUE.

Some satellites can directly provide NPP and GPP products. For example, MOD17 is a
set of NPP and GPP products provided by MODIS. Their estimation algorithms are based
on the LUE approach. However, the reliability of MODIS GPP products is still a challenge,
especially with extreme or highly variable climates and high levels of human activities.
Zhu et al. [45] evaluated the performance and robustness of MODIS GPP products in tropi-
cal, temperate, and alpine grasslands, demonstrating the products generally underestimate
the actual GPP by approximately 32%. They attributed this problem to the bias of εmax and
the uncertainty of FPAR. Ye et al. [34] applied a GLOPEM-CEVSA model that belongs to
the LUE approach for NPP estimation and adopted a defoliation formulation model to
calculate the carbon consumed by grazing. Their results showed that grazing would cause
an underestimation of NPP by about 29% in semiarid and arid grasslands. Thus, rather
than directly adopting satellite products, researchers prefer to develop specific models for
the study area to obtain more robust estimates. These models mainly belong to the above
approaches and require numerous parameters to drive and calibrate [79–83]. However,
similar to the problems in [45], most parameters are uncertain and sparse and are difficult
to obtain by same measuring methods.

On this basis, the combination of ground and remote sensing data is fully utilized
in many studies to calibrate the process-based biogeochemical models and LUE models.
Nanzad et al. [79] combined satellite products and meteorological data to drive a boreal
ecosystem productivity simulator model. You et al. [80] introduced NDVI-driven pheno-
logical indices to improve the Biome–BGC model and obtained an increase of 0.08 in R2

compared to the original model (R2 = 0.84). Biudes et al. [81] adopted vegetation indices
and products from MODIS data to drive multiple models for GPP estimates in tropical
savanna, demonstrating the VPM model performed best. Irisarri et al. [82] also utilized the
NDVI to drive a LUE method and quantified the effects of temperature, precipitation, and
human activity on NPP in arid grasslands. Yu [83] developed a LUE–VPM model based on
satellite products for GPP estimation in alpine grasslands, which achieved a large decrease
of 36.21 in the root mean square error (RMSE) metric compared to MODIS GPP products.

Meanwhile, Zhao et al. [75] optimized a CASA model for NPP estimation in temperate
grasslands, which simulated SOL based on meteorological data, estimated FPAR based
on the NDVI and the ratio vegetation index (RVI), and derived ε based on temperature
and LSWI. Their results demonstrated that the optimized model outperformed MODIS
NPP products with 0.06 improvement in R2. Then, the CASA model was also improved
by Luo et al. [77], who modified the calculation of Wε by LSWI, achieving an increase of
0.04 in R2 and a decrease of 0.11 in RMSE compared to original model. Zheng et al. [76]
also constructed a CASA model, which estimated FPAR based on the NDVI and proved a
strong correlation between spring phenology and NPP in alpine grasslands. In addition, the
NDVI time series were built by Blanco et al. [84] using MODIS data to estimate FPAR by a
linear model, and NPP was calculated by a LUE method. Gaffney et al. [85] constructed the
NDVI time series with high spatial and temporal resolution by fusing Landsat and MODIS
data to fit the APAR for semiarid rangelands, and the above-ground NPP was estimated by
a linear model similar to Equation (1). Their results pointed out the potential confounding
effect of dead vegetation biomass on APAR, especially in grasslands with a long growing
season. Similarly, Liu et al. [86] also fused Landsat and MODIS data to construct the NDVI
time series for FPAR estimates and then calculated APAR according to Equation (2). They
assumed that annual grassland production is equal to APAR accumulated during the
growing season and obtained R2 of 0.83 on California grasslands. In addition, the selection
of εmax is also crucial for a CASA model; many studies usually just rely on an empirical
value [76,77], which is not suitable for all grasslands. Thus, Jin et al. [78] modified the
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calculation of εmax based on the least error criterion between the estimated and ground-
measured NPP and established the quadratic u-curve functions of εmax for different types
of grasslands, which achieved a boosting of 0.09 in R2 compared to the original model
based on empirical values.

There are also some studies that have developed statistical regression models such
as linear [40,87], exponential [88,89], power function [48], and MLR [28,90]. Most of these
studies focused on the selection of driving variables for their models. In [40], the perfor-
mance of the red-edge and non-red-edge vegetation indices was compared, which showed
that the red-edge chlorophyll index could improve GPP estimation at large scales. In [88],
the performance of several vegetation indices was also contrasted, which indicated that
MSAVI based on an exponential model worked best. Sakowska et al. [87] adopted various
vegetation indices from satellites and airplanes with linear models to investigate the scale
dependency of NPP estimation, which showed that the near-infrared difference index
(NIDI) performed best, and they further proved the potential of Sentinel multispectral
images for large-scale estimation. Matthew et al. [91] applied a piecewise function between
the maximum NDVI and the NPP considering the asymptotic and saturated nature of the
NDVI to estimate the long-term annual production in the Great Plains, achieving R2 of
0.79. Cerasoli et al. [28] simulated satellite images from ASD hyperspectral images and
constructed an MLR model for GPP estimation in the Mediterranean. Unlike previous
studies that only focused on vegetation indices, spectral band was also considered in [28]
and proved to be as essential as vegetation indices. Then, Xu et al. [90] constructed an MLR
model based on phenological variables and the maximum of GPP, both of which were de-
rived from the EVI and land surface temperature products. In addition, Dieguez et al. [92]
applied a harmonic oscillation function based on the obtained maximum and minimum
NPP data from satellite products to fit the NPP dynamic curve for Uruguayan grasslands
considering the effects of climate and grazing. Meroni et al. [93] estimated GPP by the
assimilation of MODIS NDVI into a crop growth model that was driven by meteorological
variables. The results showed that the assimilation method outperformed MODIS products
with a 0.14 improvement in R2.

Table 3 lists more details of most studies mentioned above. The values of R2 are
from the best experimental results of the involved studies. In addition, it is necessary to
take environmental and human factors into account if we want to obtain highly accurate
estimates. Many of the above studies have focused on the spatial and temporal variation
of primary productivity and exploring the factors that cause changes. Gómez et al. [94]
adopted MODIS GPP products to quantify the contribution of climate factors, sunshine,
and nitrogen deposition for GPP estimation in alpine grasslands using MLR models. The re-
sults demonstrated that precipitation and temperature were the first and second most
important variables, while nitrogen deposition also had a significant impact. The results
in [84] also demonstrated that the temporal variability of NPP could be largely explained
by the precipitation during growing seasons. Many others studies have also pointed out
that precipitation and temperature directly affect the distribution and accumulation of
primary production [48,75,79,82,92,94]. Apart from climate factors, the impact of graz-
ing [34,77,82], fertilization treatment [28], beginning of growing season [76], and grassland
policies [48] were also investigated. In addition, the influence of dead vegetation biomass
and below-ground biomass should also be considered, especially in grasslands with long
growing seasons [85,95]. In [95], the significant underestimation of NPP using peak live
biomass alone was experimentally demonstrated, particularly in tropical grasslands, due
to the neglect of dead vegetation and below-ground biomass. Therefore, adding some
appropriate variables to the estimation process, depending on the characteristics of the
grassland under study, can help improve the accuracy of the results.
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Table 3. Detailed information on the involved estimation studies for primary productivity.

Authors Methods Grassland Type Remote Sensing Data Data Source R2

Ye et al. [34] GLOPEM-CEVSA semiarid, arid NDVI satellite 0.80
You et al. [80] Biome-BGC alpine NDVI satellite 0.92
Liu et al. [86] LUE mixed NDVI satellite 0.83

Zhao et al. [75] CASA temperate NDVI, RVI, LSWI satellite 0.72
Jin et al. [78] CASA typical, desert NDVI satellite 0.57

Zheng et al. [76] CASA alpine NDVI satellite 0.79
Luo et al. [77] CASA alpine EVI, LSWI satellite 0.48
Lin et al. [40] linear regression typical red-edge chlorophyll index satellite 0.77

Sakowska et al. [87] linear regression alpine NIDI satellite 0.90
Li et al. [88] exponential regression typical, desert MSAVI satellite 0.72

Zheng et al. [48] power function regression typical, desert NDVI satellite 0.74
Dieguez et al. [92] harmonic oscillation function typical NPP product satellite 0.78
Matthew et al. [91] piecewise regression mixed maximum NDVI satellite 0.79
Cerasoli et al. [28] MLR typical spectral bands, vegetation indices ground, satellite 0.80

Xu et al. [90] MLR typical EVI, land surface temperature satellite 0.89
Gómez et al. [94] MLR alpine GPP product satellite 0.80
Meroni et al. [93] assimilation typical NDVI satellite 0.67

2.3. FVC

FVC is defined as the percentage of the vertical projection of green vegetation over
the entire calculated area, which is the basic parameter for describing the characteristics
of the grassland ecosystem and for obtaining the condition of grassland vegetation with
its changes. Its accurate estimation is of great practical significance for regional grassland
environment evaluation, management, and degradation monitoring.

The commonly used ground measurement methods of FVC for the accurate verifi-
cation in most estimation methods are different from those of the previous parameters.
Although sampling methods for ground measurements exist, the most commonly used
method is the threshold-based photographic method that usually employs digital cameras
or spectrometers to shoot the ground. Some studies focused on FVC estimation at near-
surface and proved the validity of the photographic method [24,96,97]. In [24], the excess
green index was calculated based on UAV RGB images for each pixel with a threshold to
distinguish vegetation and non-vegetation pixels through an iterative algorithm. Then,
the effect of the degree of vegetation fragmentation on the number of required sample
images for validation was also investigated in [24]. Xu et al. [96] adopted ground-based
RGB images, which set thresholds for the pixel difference values between different bands
of RGB images to distinguish photosynthetic vegetation and senescent vegetation and then
estimated the coverage. In addition, Kim et al. [97] also utilized ground-based RGB images
but transformed them into three types of color spaces, and the histogram algorithm based
on HIS color space achieved the best performance for arid and semiarid grasslands with
R2 of 0.97. However, their estimates failed on the regional scale with a very large RMSE,
which might be due to the disturbance of both soil background and vegetation types and
the mismatch of data at different scales.

For larger scale estimates, one of the most classic approaches is the mixed pixel decom-
position method supported by the assumption that each pixel of an image may consist of
multiple components such as bare ground, shrubs, and grassland. Thus, the information
in the pixels can be decomposed to distinguish the different components, and FVC can be
considered as the proportion of vegetation. Among various mixed pixel decomposition
methods, the most classical and commonly used method is the linear pixel dichotomy, which
supposes that the pixels are only composed of vegetation and bare soil components. Since
the NDVI has proven to have a strong correlation with FVC, this method can be expressed as:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
× 100% (4)

where NDVIveg represents the NDVI value of the whole vegetation cover pixel, and
NDVIsoil is the NDVI value of the whole soil cover pixel. Generally, the values of NDVIveg
and NDVIsoil should be verified by ground measurements for different types of grasslands.
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In addition, in specific studies, the NDVI can also be replaced by other vegetation indices
or spectral bands that prove to be more closely related to FVC than the NDVI.

Zhang et al. [98] developed a linear pixel dichotomy model for the grasslands in
Qaidam basin and compared its performance with that of an NDVI-based linear regression
model, demonstrating that both had similar results in the evaluation of metrics but that
the linear pixel dichotomy model suffered from a significant underestimation problem.
Therefore, some studies attempted some other assumptions and utilized different remote
sensing data. He et al. [99] assumed each pixel was composed of vegetation, bare soil,
and water components, and they utilized the ground-based hyperspectral images to select
the most relevant spectral bands to these components in semiarid grasslands, which
achieved R2 of 0.86. Recently, Vermeulen et al. [100] assumed that pixels were composed of
grassy, woody, and bare soil components, and multiple vegetation indices and bands were
combined to drive the model, which achieved the lowest RMSE value for FVC estimation
of grassy components.

Meanwhile, models based on statistical regression or machine learning have also
emerged in many studies. For statistical regression models, Zhang et al. [36] compared them
with pixel decomposition methods and gradient difference methods for alpine, temperate,
and desert grasslands, which showed that the logarithmic regression model obtained the
best results on all types of grasslands, but all models were performed with low accuracy
for alpine grasslands. Jansen et al. [101] studied the effect of different phenological periods
on FVC estimation in grazing grasslands through linear regression models and found that
the optimal driving variable of linear models was varied for each phenological period so
that they further integrated the NDVI and set thresholds for it to automatically identify
phenological periods and select variables. For machine learning methods, Meng et al. [102]
evaluated the effectiveness of both statistical regression and machine learning methods in
alpine grasslands, and all the machine learning methods were driven by both satellite and
ground data. The results showed that the accuracy of machine learning models far exceeded
that of statistical regression models, with the RF model achieving the best performance
but suffering from poor stability. Then, Ge et al. [103] developed a SVM model for alpine
grasslands, which significantly outperformed both linear pixel dichotomy models and
statistical regression models in terms of R2, RMSE, and F-test. Gao et al. [104] established
an RF model by combining satellite and ground data as variables. Meanwhile, to validate
the reliability of MODIS NDVI, a linear regression model was developed between MODIS
NDVI and ground-based NDVI, and the NDVI finally adopted in the model was the mean
value of them. Lin et al. [105] compared regression methods, linear pixel dichotomy method,
and machine learning methods, which proved that the RF model outperformed others.
The original RF model in [105] was driven only by vegetation indices achieving R2 of 0.86,
and the model was further optimized by adding spectral bands and topographical data to
the driving variables, achieving a 0.06 improvement in R2. Liu et al. [106] also adopted an
RF model that was driven by vegetation indices, meteorological data, and topographical
data, which obtained results with R2 of 0.92 for grasslands.

Table 4 shows the details of the above methods with their best R2 values. In addition,
in terms of long-term monitoring, Yang et al. [107,108] focused on the spatiotemporal
distribution of FVC in Chinese grasslands. In [107], they estimated and mapped the distri-
bution for grasslands in western China over 300 years. They first simulated FVC without
human disturbance, and then added this disturbance based on an historical cropland
dataset and an empirical model built from modern land use data. Then, the same approach
was adopted in [108] and was further combined with historical forest data to estimate
FVC for grasslands in eastern China from 1700 to 2000. In addition, they also mapped
its spatiotemporal changes and investigated the causes that mainly included population
growth, agricultural expansion, and deforestation.
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Table 4. Detailed information on the involved estimation studies for FVC.

Authors Methods Grassland Type Remote Sensing Data Data Source R2

Xu et al. [96] threshold-based semiarid RGB images ground 0.76
Kim et al. [97] histogram arid, semiarid Hue channel of HIS color space ground 0.94

Zhang et al. [98] mixed pixel decomposition typical NDVI satellite 0.98
He et al. [99] mixed pixel decomposition semiarid red and near-infrared bands satellite 0.86

Zhang et al. [36] logarithmic regression alpine, temperate, desert NDVI satellite 0.93
Jansen et al. [101] linear regression grazing vegetation indices satellite 0.81

Ge et al. [103] SVM alpine vegetation indices, products satellite 0.75
Meng et al. [102] RF alpine vegetation indices, products satellite 0.78
Gao et al. [104] RF alpine vegetation indices, products satellite, ground 0.88
Lin et al. [105] RF alpine spectral bands, indices, products satellite 0.92
Liu et al. [106] RF typical, desert spectral bands, indices, products satellite 0.92

Finally, apart from [96], some studies also concentrated on the FVC of senescent veg-
etation [109–111]. Chai et al. [109] simulated MODIS spectral bands from ground-based
hyperspectral images and then calculated eight vegetation indices, demonstrating that a
linear model driven by the dead fuel index (DFI) performed best with R2 of 0.62. Then,
Yu et al. [110] combined the DFI with the NDVI from MODIS in a linear mixed pixel
decomposition model that supposes each pixel is composed of photosynthetic vegetation,
senescent vegetation, and bare soil components. The results in [110] demonstrated that their
proposed model achieved the best performance for FVC estimation of both photosynthetic
vegetation and senescent vegetation at regional scales. Finally, based on their previous
study [109], Chai et al. [111] directly derived DFI from MODIS data and introduced the
NDVI to set thresholds for DFI to distinguish growing and non-growing periods of grass-
lands. They developed a DFI-based linear model for non-growing periods to estimate FVC
of senescent vegetation at regional scales achieving R2 of 0.6.

2.4. LAI

LAI is normally defined as half of the total green leaf area per unit surface area,
which is closely related to plant photosynthesis, vegetation productivity, and ecosystem
carbon accumulation. It is one of the key indices to reflect the growth status of grassland
vegetation, as well as one of the most fundamental characteristic parameters in many
ecosystem modeling processes.

Apart from direct destructive measurements, researchers can use ground-based optical
sensors such as LAI-2200C and AccuPAR for non-destructive measurements. In addition,
the radiative transfer models founded on physical principles are another approach for indi-
rect measurements, which simulate radiative transfer processes in vegetation and describe
canopy spectral changes as a function of canopy, leaf, and soil background characteristics.
Among these models, the PROSAIL model, which is a combination of the SAIL canopy
reflectance model and the PROSPECT leaf optical properties model, is the most popular and
widely used. The construction of a PROSAIL model requires more than a dozen parameters
including the LAI. Some of them are the physiological and biochemical parameters of the
vegetation canopy and soil indices that can be obtained from satellite data and ground
measurements, while other parameters usually do not have appropriate physical meanings
and are hard to measure, so they are often assumed as empirical values based on prior
knowledge in practice [112–114].

Many studies have focused on the radiative transfer models using both ground and
satellite images. Punalekar et al. [114] adopted the PROSAIL model and estimated the
LAI in grazing grasslands. Both ground and satellite images were adopted; the ground-
based hyperspectral images were used to simulate multispectral images from satellites.
The results showed that the simulated images could provide great accuracy at small
scales (R2 = 0.87), while the actual satellite images only offered relatively low accuracy
(R2 = 0.76) due to the overestimation problem in the case of high vegetation density.
Pacheco-Labrador et al. [115] developed the soil-canopy observation photosynthesis and
energy fluxes (SCOPE) model, which is the combination of radiative transfer model and
soil-vegetation-atmosphere transfer models, and they introduced multiple constraints
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to the model for different parameter estimation using ground images. As for the LAI,
the model constrained by GPP and sun-induced fluorescence provided the best perfor-
mance (R2 = 0.47). Finally, Klingler et al. [116] developed PROSAIL models based on both
simulated and actual satellite images, and the model based on actual satellite images pro-
vided the lowest RMSE value compared to the ground-based sensors. Pu et al. [112] applied
a 3D radiative transfer model to investigate and quantify the uncertainty of MODIS LAI
products caused by algorithms and input parameters, proving a significant underestimate
problem of the products for grasslands with a low LAI.

Apart from the above methods, statistical regression and machine learning have also
been applied in this field. Imran et al. [113] established a linear regression model to verify
the strong correlation between ground measured LAI and the normalized difference index
(NDI). In [113], ground-based hyperspectral images were adopted for the calculation of NDI
and for the simulation of satellite-based NDI, and a PROSAIL model was also utilized to
demonstrate that the grassland structural heterogeneity significantly affected the accuracy
of the LAI estimation. Wang et al. [18] compared the performance of MLR, SVM, and RF
models, which demonstrated that the MLR model driven by optical and radar data had the
best performance with the lowest RMSE value, and the combination of radar data could
further reduce RMSE value compared to using optical data only. For machine learning
models, Karimi et al. [35] developed an RF model driven by the NDVI and meteorological
data, which obtained highly accurate estimated results (R2 = 0.94) in several grassland
sites. Furthermore, in [117], the RF models driven by variables from different sources were
compared, which showed that the model driven by optical variables could obtain a good
accuracy (R2 = 0.63) in semiarid grasslands, while the combination of SAR and DEM data
could achieve a certain promotion (R2 = 0.68). However, the promotion proved to be
limited by the heterogeneity of studied grasslands. Schwieder et al. [118] also constructed
an RF model driven by spectral bands and vegetation indices from satellites, and they
compared the model with an improved PROSAIL model. The results showed that the RF
model is slightly superior with an advantage of less than 0.01 for R2.

In addition, Zhou et al. [119] constructed an ANN model driven by spectral bands
from satellites and gained great performance for grasslands (R2 = 0.85). Then, the model
was combined with an assimilation model and MODIS LAI products to generate time-
continuous LAI data with 30 m resolution. Recently, Danner et al. [120] combined the
PROSAIL model with four machine learning models. Specifically, in [120], the PROSAIL
model was adopted to simulate absent data from ground measurements so that a complete
dataset could be provided for the training of machine learning methods. Then, these models
were further trained with hyperspectral bands, and the results showed that although the
ANN model outperformed others for the estimation of simulated LAI (R2 = 0.98), its
performance in real estimation did not significantly differ from that of other models.
Finally, Table 5 shows the details of the above methods with their best R2 values.

Table 5. Detailed information on the involved estimation studies for LAI.

Authors Methods Grassland Type Remote Sensing Data Data Source R2

Punalekar et al. [114] PROSAIL grazing spectral bands satellite, ground 0.76
Pacheco-Labrador et al. [115] SCOPE typical spectral bands ground 0.47

Imran et al. [113] linear regression, PROSAIL alpine NDI ground 0.8
Lu et al. [117] RF semiarid vegetation indices, SAR satellite 0.68

Karimi et al. [35] RF typical NDVI satellite 0.94
Schwieder et al. [118] RF typical spectral bands, indices satellite 0.79

Zhou et al. [119] ANN, assimilation typical spectral bands satellite 0.85
Danner et al. [120] ANN, PROSAIL typical spectral bands satellite, ground 0.98

3. Operational Applications
3.1. Grassland Degradation Monitoring

Grassland resources, as important land resources, have become significantly degraded
in recent years due to human activities and extreme climates. Therefore, timely and accurate
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monitoring of grassland changes and understanding the degree of degradation are the
foundation of scientific grassland utilization [3]. In this, we review some representative
work based on remote sensing in recent years.

First, some work directly made use of spectral bands and typical vegetation indices
for monitoring. In 2012, Reiche et al. [121] classified the extent of grassland degradation in
Inner Mongolia using a supervised maximum likelihood method based on SAVI and some
specific bands from the Terra satellite. Then, to monitor the distribution of grasslands and
farmlands, Li et al. [122] extracted the meaningful and homogeneous objects of the Mu Us
desert from Landsat images using a multiresolution segmentation method, after which an
assign class algorithm was employed to classify the objects based on RVI. In addition, a 3D
convolution neural network for monitoring Inner Mongolia grasslands was established
by Pi et al. [23], which only adopted UAV images with 231 hyperspectral bands as input.
The experiments in [23] verified that the best results were obtained by using 44–166 bands.

Meanwhile, Lyu et al. [8] monitored the degradation from a new perspective of the
vegetation species composition in the degraded grasslands. In detail, they first extracted
spectral features from EO-1 hyperspectral images and reduced their dimensionality via
PCA. Then, the multiple endmember spectral mixture analysis (MESMA) and the fully
constrained least squares (FCLS) method were used to identify and classify the typical
vegetation species in degraded grasslands. Similarly, Li et al. [123] captured ASD hyper-
spectral images to classify the dominant and degenerative grass species based on PCA,
confidence interval mean difference (CIMD), and stepwise discriminant function. Recently,
Pi et al. [124] constructed a 3D convolution neural network based on UAV hyperspectral
images to classify the typical species in degraded grasslands, providing the quantitative
metrics for degradation levels.

In other studies, some estimated parameters were utilized. In [125], FVC was fully
utilized. A linear regression model between the NDVI and FVC was established to monitor
the extent of desertification in Mongolian grasslands. Wiesmair et al. [126] also considered
applying FVC to assess grassland degradation in the Georgian Caucasus. In [126], FVC
was estimated by two RF models based on the NDVI and the MSAVI separately. The results
showed that there was almost no gap in the mapping performance of the NDVI and
the MSAVI for grassland degradation. Then, other types of grasslands parameters were
also taken into account. Li et al. [127] established a remote sensing gradation system for
grassland desertification in Ningxia, China. In [127], FVC and bare-sand ratio were both
estimated by a mixed pixel decomposition model using Landsat images. Xu et al. [128] also
estimated the bare-sand ratio based on the mixed pixel decomposition model and Landsat
images, which were regarded as the main basis to monitor the variations of desertification in
Tibet grasslands. Then, Wang et al. [129] built a CASA model to estimate NPP representing
the vegetation status of grasslands in the Qinghai–Tibet Plateau, and they further quantified
the impact of human activities and climate changes on desertification. Subsequently,
Zhou et al. [50] considered NPP and FVC as monitoring indices of grassland degradation
in China with reference to the GB 19377-2003 standard of China. In [50], NPP and FVC
were estimated by CASA model and mixed pixel decomposition model, respectively.
Finally, Zhumanova et al. [130] considered the influence of phenology. Specifically, they
estimated FVC in various growing periods based on suitable univariate regression models,
each of which adopted the MODIS NDVI in the corresponding period. Their results
successfully demonstrated the distinctive manifestations of vegetation degradation in
different phenological periods.

Furthermore, the joint use of remote sensing data and ground data further improved
the accuracy of monitoring. Mansour et al. [10] proposed an RF method for mapping grass-
land degradation in the Cathedral Peak of South Africa, which first only used some specific
spectral bands from SPOT satellites. However, they further found that the combination
of three soil indices from ground observation in the model could achieve a nearly 13%
accuracy improvement. Han et al. [131] adopted the multivariate hierarchical analysis
based on both vegetation indices and ground data to classify the degradation on alpine
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grasslands, and they further quantified the significance of each variable on the classifi-
cation accuracy. Then, Lyu et al. [132] combined estimated parameters, NPP and FVC
using MODIS NDVI, with three ground-based parameters, the AGB, soil bulk density,
and soil organic matter to classify the degree of degradation in Inner Mongolia based on GB
19377-2003 standard. Yang et al. [133] introduced a grassland degradation index using six
ground-based parameters to monitor grassland degradation in Shangri-La and applied RVI
to fit this index by regression models, successfully verifying its accuracy for monitoring.

Finally, similarly to [133], some other new indices for monitoring were also created.
A feature space proposed in [41] for monitoring desertification degree of semiarid grass-
lands was constructed by MSAVI and surface albedo, which generated a new index called
the semiarid steppe desertification index. Zhang et al. [42] took the disturbance of climate
fluctuations into account so that a new index, climate utilization efficiency (CUE), was
constructed based on NPP to represent this disturbance. Then, CUE, NPP, FVC, and surface
bareness were processed by PCA to further build a new comprehensive index for monitor-
ing the grassland degradation in the Three-River Source Region of China. Guo et al. [134]
combined an albedo–normalized difference vegetation index and MSAVI from Landsat
images to create an index called the desertification monitoring index and monitored the
desertification in the Naiman Banner based on linear regression models. Qian et al. [135]
established a comprehensive index called the alpine grassland desertification index for
monitoring the alpine grasslands. The index was built from AGB, FVC, and soil moisture,
all of which were estimated from Landsat and MODIS images.

In conclusion, Table 6 lists more details about these studies. It can be seen that nearly
half of the studies adopted the estimated parameters to replace the ground measurements.
Among the estimated parameters, NPP and FVC are frequently adopted, and in most cases,
they are estimated based on remote sensing. For their estimation models, the FVC in most
studies is estimated by the mixed pixel decomposition model according to Equation (4),
while NPP in all is estimated based on a CASA model. In addition, the number of studies
using hyperspectral images is significantly less than that of the multispectral.

Table 6. Detailed information on the involved monitoring studies for grassland degradation.

Authors Monitoring Methods Estimated
Parameters Estimation Models Remote Sensing Data

Li et al. [127] decision-tree FVC, bare-sand ratio both: mixed pixel decomposition multispectral bands

Zhou et al. [50] threshold-based NPP, FVC NPP: CASA, NDVIFVC: mixed pixel decomposition

Zhang et al. [42] PCA, threshold-based NPP, FVC,
surface bareness

NPP: CASA, NDVI, soil temperature,
Others: mixed pixel decomposition multispectral bands

Lyu et al. [132] constraint line method NPP, FVC NPP: CASA, NDVI, EVI,DEMFVC: mixed pixel decomposition

Qian et al. [135] geographical detector,
threshold-based

AGB, FVC,
soil moisture

AGB: logarithmic regression,
FVC: mixed pixel decomposition, vegetation indices, products

soil moisture: exponential regression

Wiesmair et al. [126] threshold-based FVC RF NDVI, MSAVI
Sternberg et al. [125] threshold-based FVC linear regression NDVI

Wang et al. [129] threshold-based NPP CASA NDVI, LAI product
Zhumanova et al. [130] threshold-based FVC univariate regression NDVI

Xu et al. [128] threshold-based bare-sand ratio mixed pixel decomposition multispectral bands
Reiche et al. [121] supervised maximum-likelihood / / vegetation indices

Mansour et al. [10] RF / / multispectral bands
Li et al. [122] multiresolution segmentation / / multispectral bands
Wu et al. [41] feature space / / vegetation indices

Yang et al. [133] multivariate statistical analysis / / vegetation indices
Lyu et al. [8] MESMA, FCLS / / hyperspectral bands
Pi et al. [23] convolution neural network / / hyperspectral bands

Guo et al. [134] linear regression, feature space / / albedo index, MSAVI
Han et al. [131] multivariate hierarchical analysis / / vegetation indices, products

Pi et al. [124] 3D convolution neural network / / hyperspectral bands
Li et al. [123] CIMD, stepwise discriminant function / / hyperspectral bands

3.2. Grassland Use Monitoring

As one of the terrestrial resources with high production value, the main uses of grass-
lands are grazing and mowing. However, overgrazing and over mowing can seriously
disrupt the balance of grassland ecosystems, leading to a decline in ecosystem biodiversity
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and even causing desertification. In recent years, the conservation and wise use of ecosys-
tems have become increasingly important in environmental decision making. Many studies
have shown that moderate grazing can effectively promote grassland productivity and
improve the maintenance of biodiversity [4,59,136]. Thus, the economic needs of humans
and the biodiversity of grasslands need to be balanced. For this purpose, the monitoring
and management of grassland use are necessary, which implies the need for obtaining
accurate related data and parameters at large scales. It also means that remote sensing
data can fully explore its potential to provide effective reference and assistance for policy
making. Here, the studies focused on monitoring the intensity of grazing and mowing
are reviewed.

3.2.1. Grazing Monitoring

Grazing intensity (GI) is generally defined as the number of grazing animals per
hectare of grassland. Since some biophysical parameters such as AGB, FVC, and LAI
proved to have a strong correlation with GI, most studies in this field have tended to select
one of these parameters to demonstrate the same correlation using ground measurements
at a small field scale. Then, the ground-measured parameter was replaced by its estimated
one based on remote sensing data to monitor at a larger scale.

First, many studies directly utilized the AGB as the metric to monitor grazing. Li et al. [137]
applied the AGB to classify different GI based on thresholds, in which the one-way analysis
of variance (ANOVA) and the frequency histograms from sample plots were utilized to
determine the thresholds, and a three-layer ANN was adopted to estimate the AGB. Then,
Xu et al. [59] also demonstrated the significant linear correlation between ground-measured
AGB and GI in temperate meadow grasslands and used the HJ-1 NDVI to estimate the AGB
for monitoring. Similarly, Ma et al. [136] adopted ground-measured AGB in meadow and
semiarid grasslands, and they established a linear model to estimate the AGB by MODIS
NDVI and a power function model to estimate GI. Their results showed an increasing trend
of the AGB with increasing GI under moderate grazing pressure, which proved moderate
grazing could effectively promote grassland productivity.

Meanwhile, other parameters were also adopted. Hall et al. [138] classified grazed and
ungrazed areas by an object-based approach that simultaneously considered the spatial
adjacency and spectral similarity of the pixels of QuickBird images. The performance
of various indices was further validated in [138], and an SR index was chosen to build
a linear model to estimate vegetation height that was adopted as the basis of GI. Then,
Yang et al. [139] investigated the response of grassland biophysical parameters and vegeta-
tion indices to the GI of mixed grasslands. Their results showed that the vegetation height
and the ratio of photosynthetically active vegetation cover to non-photosynthetically active
vegetation cover (PV/NPV) could successfully identify different levels of GI. These two
variables were estimated by MLR models where the modified triangular vegetation index 1
(MTVI1) and SAVI were adopted for PV/NPV and the plant senescence reflectance index
(PSRI) and the normalized canopy index (NCI) were used for vegetation height. Then,
in [140], the LAI was adopted as the basis, and a grazing-led exponential growth function
was built for the LAI to monitor GI. Apart from the above studies, some studies also uti-
lized multiple parameters. Feng and Zhao [141] built the CENTURY model, an ecosystem
analysis tool that can assess climate change and human disturbance, monitoring GI in
Inner Mongolia grasslands. The CENTURY model requires temperature, precipitation, soil
water content (SWC), AGB, and FVC as input. In [141], among these variables, SWC was
estimated by a thermal inertia model, while the AGB was estimated by first calculating
the LAI through a GO-RT reflectance model and then linking the AGB and the LAI by a
logarithmic regression model. Finally, Jansen et al. [142] selected vegetation structure, foliar
cover, and the AGB as the key indices to assess GI, and all the parameters were estimated
by MLR models.

In terms of the direct utilization of remote sensing data, Junges et al. [4] directly
utilized the MODIS NDVI and the EVI time series to calculate their seasonal averages and
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then plotted the average curves to analyze the characteristics under different GI levels
and set thresholds to distinguish them. The results showed that the EVI was suitable for all
seasons, while the NDVI could only work for spring and winter seasons. In addition, it is
worth noting that the average values of the NDVI and the EVI under moderate GI condition
were highest. This phenomenon had also been confirmed by the above studies [59,136].
Then, to detect grazing activities, Awuah et al. [49] adopted WorldView images to construct
multiple machine learning models, including SVM, RF, classification and regression trees
(CART), and multilayer perceptron (MLP), to map the distribution of grazing lawns in
Southern African savannas. The results showed that the classification accuracy produced by
models other than CART was comparable. In addition, Li et al. [143] designed a new index
called the grazing intensity index using MODIS data to quantify the GI. The index was
defined as the ratio of accumulated change in the NDVI over a continuous period relative to
local grassland background, which was linked to GI by a linear regression model. However,
due to the limitations of the NDVI, the GII could only be applied to the growth period.

Then, in canopy spectral measurements, Sha et al. [144] investigated the relation-
ship between different GI in Inner Mongolia grasslands and eight vegetation indices
derived from ground-based hyperspectral images. The results showed that each index
was significantly negatively correlated with GI, and photochemical reflectance index (PRI),
broad-band NDVI, and narrow-band NDVI were sensitive to GI. Then, Lei et al. [145]
adopted UAV images and kernel density estimation (KDE) algorithm to constructed the
GI index at field scale. This index was further combined with Sentinel NDVI to train an
RF model to generate the regional GI. These studies using near-surface data also took full
advantage of the significant relevance of the NDVI to vegetation status. However, the
NDVI is not sensitive to the changes of green vegetation in some cases, especially in arid or
semiarid grassland ecosystems due to its vulnerability to soil and dead plants. Therefore,
Gimenez et al. [146] combined a normalized red-edge vegetation index (NREVI) with its
coefficient of variation from RapidEye images and then used the K-means algorithm to
classify the GI. Yang et al. [30] adopted the NCI calculated by Landsat images to eliminate
disturbance from dead plants and analyze the effects of light on moderate grazing on mixed
grassland production, which constructed a linear regression model between total biomass
and NCI. Franke et al. [147] combined the NDVI and the NREVI with mean absolute
spectral dynamic (MASD) to classify the GI. In their experiments, the classification methods
based on decision-tree and context approaches were compared. Although the results show
a higher accuracy, the decision-tree method suffered from an overfitting problem.

In addition, Li et al. [148] used vegetation indices from EO-1 hyperspectral images,
but they developed an auxiliary spectral index named GMI to fit temporal changes of
GI, which was combined with the AGB estimated by a linear model using a mixed index
composed of the red-edge index (REI) and the cellulose absorption index (CAI). Different
levels of GI were classified based on the threshold approach. Zheng et al. [149] exploited
the characteristic of the red-edge position (REP) that the position would shift when ex-
posed to vegetation stress to detect GI by a linear model between the shift and stocking
rate. They experimentally demonstrated that grazing could lead to a shift of the REP
toward short wavelengths, and the amplitude of the shift was highly related to stocking
rate. However, these conclusions had to be further verified by satellite images. Finally,
Dara et al. [150] also created a new index called grazing probability based on an RF model
with 27 remote sensing indices as the inputs, and this index was successfully applied to
classify the grazing pressure on the grasslands of Kazakhstan.

In conclusion, Table 7 shows more details about these studies. It can be seen that the
AGB is the most frequently adopted parameter in these studies. More specifically, most of
the AGB estimation models are based on statistical regression; only one model was based
on ANN. In addition, most studies have focused on applying linear regression models to
fit GI. Then, they detected different intensities of grassland use based on thresholds, while
a few studies adopted machine learning models to classify different GI.
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Table 7. Detailed information on the involved monitoring studies for grazing intensity.

Authors Monitoring Methods Estimated Parameters Estimation Models Remote Sensing Data

Li et al. [137] threshold-based AGB ANN multispectral bands
Xu et al. [59] linear regression AGB linear regression NDVI

Ma et al. [136] power regression AGB linear regression NDVI
Li et al. [148] threshold-based AGB linear regression REI, CAI

Yang et al. [30] ANOVA, dynamic analysis total biomass linear regression NCI
Hall et al. [138] object-based vegetation height linear regression SR, multispectral bands
Yang et al. [139] linear regression PV/NPV, vegetation height MLR MTVI1, SAVI, PRSI, NCI

Jansen et al. [142] linear regression AGB, foliar cover MLR vegetation indices

Feng and Zhao [141] CENTURY model AGB, SWC, LAI
AGB: logarithmic regression,

multispectral bandsSWC: thermal inertia model,
LAI: GO-RT reflectance model

Junges et al. [4] linear regression / / NDVI, EVI
Li et al. [143] linear regression / / NDVI

Sha et al. [144] linear mixed model / / vegetation indices
Zheng et al. [149] linear regression / / REP

Gimenez et al. [146] K-means / / NREVI
Franke et al. [147] decision-tree, context approach / / NDVI, MASD, NREVI

Yu et al. [140] grazing-led exponential function / / LAI product, land use data
Awuah et al. [49] SVM, RF, MLP, CART / / multispectral bands
Dara et al. [150] RF / / vegetation indices
Lei et al. [145] RF, KDE / / multispectral bands, vegetation indices

3.2.2. Mowing Monitoring

Another form of grassland use is fodder production, which requires mowing and
processing the grass into silage or hay. The frequency and timing of mowing are influential
characteristics of grassland use and can also be used to indicate the degree of grassland use
intensity. However, the monitoring of mowing is somewhat different from that of grazing.
On the one hand, the quality and production of grass are closely related to grassland
phenology such as growing, flowering, and maturation periods. Herders generally choose
the appropriate time to mow according to the type of sheep and cattle they feed. On the
other hand, the duration of the mowing event is very short so that it requires remote sensing
images with higher temporal frequency for monitoring.

Compared with grazing, fewer studies have been conducted for mowing monitoring.
In 2014, Dusseux et al. [151] experimentally demonstrated the effectiveness of the LAI time
series for monitoring grazing and mowing at a small scale, which estimated the LAI by
the PROSPECT model and used the K-Nearest Neighbor algorithm to detect and map the
distribution of grazing and mowing. Then, Asam et al. [152] investigated the performance
of the LAI time series at a larger regional scale, which also utilized the PROSAIL model to
produce the LAI time series from RapidEye data. In their method, the area under the time
series and the mean absolute dynamic of the time series were calculated and then served as
variables to drive a decision-tree model for the classification of grassland use intensities
based on mowing frequency. Meanwhile, the the NDVI time series were directly utilized
in [11,153–155]. Estel et al. [153] employed the NDVI time series from MODIS and applied
a spline-fitting algorithm to detect the troughs of the time series. A threshold was used to
determine the occurrence of mowing. However, the low spatial resolution of MODIS images
affected the accuracy and reliability of their results, which highlighted the significance of
high-resolution remote sensing images for mowing monitoring. Thus, Kolecka et al. [11]
constructed the NDVI time series from Sentinel image;, they monitored mowing frequency
by extracting mutations of time series based on empirical thresholds and took full account of
the effect of the time interval before and after mutations. In their experiments, the effect of
cloud cover leading to a reduction in the number of available images was also investigated;
it showed that cloud cover could cause a significant overestimation of mowing frequency,
and more accurate monitoring required denser time series. Griffiths et al. [154] applied a
best-pixel scoring algorithm [156] to synthesize Sentinel and Landsat images to generate
denser high-resolution images with 10-day intervals. Based on the synthesized images,
the NDVI time series were also calculated and then were compared to the ideal NDVI
time series without mowing where the residuals between the two were measured to
identify potential mowing points. However, the results showed that the method failed to
remove the effects of grazing and monitor the areas that experienced only one mowing.
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Stumpf et al. [155] employed the NDVI to represent the AGB and also generated the NDVI
time series from Landsat images. In their approach, the effects of grazing and mowing
could be distinguished by setting a threshold for changes in the NDVI at adjacent time
points and recording all the changes. The results indicated that for grazing areas, the sum
of recorded changes was lower, and the NDVI series showed a gradual trend, while for
mowing areas, the sum was higher, and the series showed some abrupt changes.

In addition, the potential of radar data was also exploited in [16,17]. There were
several similarities between the two studies. In detail, they adopted the repeat-pass SAR
interferometry and selected X-band for their studies. Both of the experiments proved that
the interferometric coherence of SAR images had a strong correlation with vegetation height
and biomass and that the combination of interferometric coherence and backscattering
coefficient of SAR images had the potential to detect mowing events. However, the ability
to detect mowing still needs further experimental validation and considers various inter-
ference factors, especially in [16], which demonstrated that wind can significantly affect
vegetation height leading to the uncertainty of detection.

In summary, all studies in this field shared a same strategy, i.e., the growth state of the
vegetation is simulated by the time series of some indices in which some abrupt changes
that cannot be explained under normal growth state are marked and are further analyzed
for detecting the real mowing events. Table 8 shows the details about these studies.

Table 8. Detailed information on the involved monitoring studies for mowing events.

Authors Monitoring Methods Parameters Estimation Models Remote Sesning Data

Dusseux et al. [151] K-Nearest Neighbor LAI PROSAIL satellite products
Asam et al. [152] decision-tree LAI PROSAIL satellite products
Estel et al. [153] threshold-based / / NDVI

Kolecka et al. [11] threshold-based / / NDVI
Griffiths et al. [154] threshold-based / / NDVI
Stumpf et al. [155] K-means / / NDVI

Ali et al. [16] correlation analysis / / X-band of SAR images
Zalite et al. [16] correlation analysis / / X-band of SAR images

3.3. Disaster Monitoring and Impact Analysis
3.3.1. Fire

Fire is one of the major disasters and threats to grassland ecosystems; it has an
important impact on grassland ecological functions and species composition, which may be
positive or negative. On the one hand, fire is a process of natural selection in which species
that are adapted or resistant to fire will survive and recover quickly, becoming the dominant
species of the ecosystem. On the other hand, extreme fires can cause unrecoverable damage
under natural conditions, leading to the degradation of grasslands. Thus, effective fire
warning and assessment can contribute to the reduction of fire frequency and damage
and to post-disaster management. Recently, there have been many studies on the use of
remote sensing for fire, which can be divided into the following aspects: risk assessment,
dynamic monitoring, and impact analysis.

First, for risk assessment, Zhang et al. [5] transformed MODIS historical fire data
from the point form to the continuous surface with kernel density estimation, and the
fire risk zones were directly mapped based on the regional density averages. Apart
from it, most studies mainly focused on some indices related to fire, and the accuracy
of these indices seriously affects the reliability. At the beginning, the degree of grassland
curing, which is defined as the proportion of senescent plants, is a critical parameter
for fire research. Martin et al. [157] compared the performance of different indices from
MODIS data on an MLR model for estimating the curing degree, which proved that the
combination of the NDVI and the global vegetation monitoring index (GVMI) achieved
the best performance. Due to the general underestimation and overestimation of MODIS
indices in [157], the model was adjusted to achieve some improvement but was still
limited by the low resolution of images. Chaivaranont et al. [158] also used MODIS
data and established an MLR model similar to [157], but they replaced GVMI with the
vegetation optical depth (VOD)and achieved comparable performance. Furthermore,
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to break the limitations of MODIS images, Li [159] adopted finer Landsat images of the
Greater Melbourne region and calculated the NDVI and global vegetation moisture index
(GVMTI) forming an MLR model to estimate curing degree, achieving comparable accuracy
to ground measurements. Recently, Li [160] further investigated the differences between
Landsat, MODIS, and Sentinel images with different spatial resolutions in the inversion of
curing degree so that recommended images for future studies were given based on their
characteristics of research environment.

Apart from curing degree, the total organic matter available for ignition and com-
bustion is another inescapable parameter in fire research, which is commonly defined as
fuel in many studies. In 2012, Wang et al. [161] proposed a fire danger index based on the
analytical hierarchy process and five estimated parameters, including curing degree and
fuel weight, which was derived from Landsat images. Then, Bian et al. [162] created a
grassland fire risk index that combined fuel, fire climate, accessibility, human–social factors,
and topography data into an MLR model in which the NDVI was applied to represent the
annual continuity of grassland fuels. In their experiments, the proposed index was used
for the classification and mapping of fire risk in Inner Mongolia grasslands. Furthermore,
Sesnie et al. [163] utilized 27 vegetation indices with topographic data and the coverage of
different plant species to drive an RF model that estimated the fuel biomass in semiarid
grasslands. The results indicated that the improvement of model accuracy required remote
sensing data with higher temporal resolution. In addition, Jurdao et al. [164] focused on the
live fuel moisture content (LFMC), which established an MLR model to estimate the LFMC
and then generated the probability of fire for risk assessment based on another MLR model.
Then, Arganara et al. [165] built a linear model between LFMC and EVI. They linked LFMC
to the fire risk and generated a fire danger map in Argentina. Furthermore, a PROSAIL
model was applied for LFMC inversion [166,167]. In [166], LFMC was associated with
the grassland fire events through an MLR model and several thresholds, demonstrating a
marked relationship between the pre-fire LFMC and fire events. Similarly, Yebra et al. [167]
also built an MLR model based on various forms of LFMC to estimate the flammability of
fuel that achieved a certain capability of fire prediction in Australia.

Table 9 statistics show the estimation methods of the above parameters as well as the
remote sensing data utilized in the models. It can be seen that curing degree in all cases is
estimated by an MLR model, and the NDVI is the most effective driving variable of the
model. As for fuel biomass, the NDVI also plays an essential role in the estimation, and the
PROSAIL model has been applied in LFMC estimation.

Table 9. The estimated parameters and their estimation models in the studies of fire risk assessment.

Authors Estimated Parameters Estimation Models Remote Sesning Data

Martin et al. [157] curing degree MLR NDVI,GVMI
Chaivaranont et al. [158] curing degree MLR NDVI,VOD

Li [159] curing degree MLR NDVI, GVMTI
Li [160] curing degree MLR NDVI, GVMTI

Bian et al. [162] fuel biomass NDVI average curve NDVI
Sesnie et al. [163] fuel biomass RF vegetation indices
Wang et al. [161] fuel biomass linear regression NDVI
Jurdao et al. [164] LFMC MLR NDVI, surface temperature

Arganara et al. [165] LFMC linear regression EVI
Luo et al. [166] LFMC PROSAIL satellite products

Yebra et al. [167] LFMC PROSAIL satellite products

Second, for dynamic monitoring, the effective and accurate monitoring of a burned
area can assist in damage assessment, understanding the extent of ecological changes
caused by the fire, and making restoration policies. In 2010, Dubinin et al. [168] performed
a long time series of burned area reconstruction in the southern Russian arid grasslands
by the NDVI and a decision-tree model. They estimated the annual burned area from
1985 to 2007, which was one of the longest time series of the burned area obtained by
remote sensing. Then, Pereira et al. [169] directly segmented the burning area from the
Landsat image through an object-based image segmentation algorithm and mapped the fire
frequency in the Cerrado Savanna. Apart from them, many studies monitored the burning
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area through grassland parameters and vegetation indices. Cao et al. [170] established
an MLR model to monitor the dynamics of burned areas in the Mongolian grasslands,
demonstrating that the dead fuel index was the most effective variable. Lu et al. [6]
investigated the sensitivity of different fire indices derived from Landsat images to burned
areas and degrees, which demonstrated that the mid-infrared burn index (MIRBI) had the
most potential of these indices. The results also pointed out the superior performance of
mid-infrared bands in monitoring post-fire residues. Finally, Li et al. [171] directly adopted
MODIS NDVI or NPP productS as the substitute for fuel and utilized its time series for fire
detection and dynamic analysis.

It is worth noting that a burned area product, MCD64A1, has been freely available
from MODIS since 2001 [172], after which time many studies have employed it on various
types of ecosystems. Alvarado et al. [173] directly adopted MCD64A1 data and investigated
the effects of antecedent rainfall and fuel moisture on fire through MLR models, which
demonstrated that fires in different grasslands might show contrasting responses to these
two variables. However, the low temporal resolution of MODIS images restricted the
accuracy of the MCD64A1 product. In 2020, Scholtz et al. [46] compared the differences
between the MCD64A1 product and its customized products in Kansas Flint Hills Tall
Grass Prairie. Their results showed a significant underestimation of the burned area by the
MCD64A1 product. Therefore, the combination with ground measurements was suggested
in the use of the MCD64A1 product. Meanwhile, Cai and Wang [174] adopted Landsat
images and calculated the difference normalized burn ratio (dNBR) and the relative dNBR,
both of which were associated with burn severity by a linear regression model and achieved
comparable performance in grasslands.

In addition to the above studies that directly focused on the dynamic, some oth-
ers worked on the relationship between environmental factors and fire. Li et al. [12]
investigated the influence of land use on fire events. The results indicated a significant
linear relationship between land use intensity and the number of fire events. Similarly,
Dara et al. [175] mapped the burned area of grasslands in northern Kazakhstan between
1989 and 2016, which demonstrated the significant increase in burn area was strongly
related to agricultural land use. Apart from land use, climate factors were also investi-
gated [176,177]. In [176], a Gaussian generalized linear model was established to verify the
correlation among climate factors and burned area, which showed that extreme rainfall
events had the potential to predict burned areas in arid grassland. In [177], a multivari-
ate nonlinear regression model was constructed between climate factors and the number
of fire events, which indicated that climate factors such as temperature, precipitation,
and humidity were obviously correlated with the number of fire events.

Third, for impact analysis, without human interference fire can cause irreversible
effects on grassland ecosystems such as the reduction of biodiversity, the invasion of other
species, and changes in soil structure. Therefore, the analysis of post-fire impacts is essential
for making grassland restoration policies, leading to the recovery in the direction expected
by human beings. For vegetation recovery, Lu et al. [6] investigated the recovery progress of
semiarid grasslands after fire, which showed that the progress was highly affected by water
availability and burn severity. Adagbasa et al. [178] developed a vegetation response ability
model to simulate the vegetation recovery in a mountain grassland in which environmental
factors, adaptation strategies, and ecological status were taken into account. In [178],
a vegetation recovery index was created for model validation and was calculated based on
the NDVI before and after the fire. The results demonstrated that both elevation and fire
severity were highly important factors influencing the recovery. Steiner et al. [179] focused
on the dynamic changes of the LSWI, the NDVI, and GPP after fire. In [179], GPP was
estimated by a VPM model and had a distinct response to fire, which was first suppressed
for a short time and then grew rapidly. Recently, Han et al. [180] investigated the short-term
effects of fire severity on the recovery; LAI and FVC were estimated by a PROSAIL model to
represent the vegetation status, which indicated that a certain extent of fire would stimulate
the increase of the LAI and FVC.
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Finally, for other impacts, Ratajczak et al. [181] found that the burned areas were
susceptible to the invasion of shrubs and trees, which were difficult to reverse once the
grassland was converted to shrubland and woodland. Ling et al. [13] investigated the
impact on canopy nitrogen content. In their research, the canopy nitrogen content was
retrieved based on a regression model using hyperspectral images from an airplane. Vari-
ogram analysis and heterogeneity metrics were applied to analyze the impacts, and the
results showed an apparent and transient fire stimulus to plant growth, causing a short-term
increase in canopy nitrogen content.

3.3.2. Drought

Drought is a cyclical climatic process but also a costly natural disaster. Prolonged
drought may destroy widespread vegetation and accelerate the desertification of grass-
lands [43]. The research on grassland drought has been going on for a long time [182].
Typically, the occurrence of drought is frequently associated with longer periods of no
rainfall as well as other factors such as temperature, evaporation, and human activities.
On this basis, some remote sensing indices have been directly applied for its monitoring,
such as the water condition index (WCI), the temperature condition index (TCI), the precip-
itation condition index (PCI), the soil moisture condition index (SMCI), the standardized
precipitation index (SPI), the vegetation health index (VHI), and the vegetation condition
index (VCI).

Muthumanickam et al. [183] applied the VCI for drought monitoring, which set thresh-
olds to detect different drought stress levels. Cao et al. [184] applied the temperature
vegetation dryness index calculated only by surface temperature to analyze the drought
frequency in the Mongolian grasslands. However, more studies fused the above indices
to improve the stability. Zhang et al. [185] proposed a new drought index, the microwave
integrated drought index, for monitoring short-term drought in semiarid regions. PCI, TCI,
and SMCI were retrieved from radar images to construct this index, which was proved
to outperform other single microwave indices. Then, another index named the grassland
drought index was built in [19] in which PCI, SMCI, and canopy water content were
adopted in an MRL model. The validation of this index was successfully performed at
regional scales as well as at larger scales. In 2021, Hermanns et al. [186] made full use of
hyperspectral images. They combined a standardized precipitation evapotranspiration
index (SPEI), a fused index considering potential evapotranspiration and precipitation,
with ground-measured soil moisture to represent the drought stress. However, the evalua-
tion of their results was performed using geophysical measurements and vegetation indices
as proxy variables so that it needed further verification with ground data. In addition,
Chang et al. [187] verified the performance of nine indices on Mongolian grasslands, which
suggested that the combined use of a normalized difference water index and the VHI was
most suitable for drought monitoring. Then, depending on their results, Chang et al. [43]
further established a new drought index based on a PCA algorithm using the VHI, the WCI,
and the TCI, which proved to be more suitable for drought monitoring in arid and semiarid
grasslands. Meanwhile, Wei et al. [182] compared many single variable indices and fused
indices, demonstrating that although these indices varied in performance under different
conditions, fused indices were better overall than single indices for monitoring. They also
pointed out that the empirical-based approach worked better than the constrained opti-
mization approach for determining the weights of different variables in the construction of
fused indices.

As for the impact analysis caused by drought, many surveys have focused on the
changes of vegetation growth, which was highly related to vegetation indices and parame-
ters. In 2012, Liu et al. [188] directly adopted the SPI to represent the degree of drought
and the NDVI to represent the status of vegetation, which showed that the vegetation
growth rate was most affected by drought, but the responses were varied among different
types of grasslands. Then, Li et al. [189] also combined the NDVI representing vegetation
condition with an effective drought index that was calculated only by precipitation data
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to investigate the short-term response of grassland vegetation to drought. Apart from a
single variable drought index, SPEI was adopted for drought degree in [190], where the
NDVI was also used for vegetation status and its response. The results showed a significant
positive relationship between the fused index and the degree of vegetation degradation.

In addition, some grassland parameters were also utilized for the impact analysis.
Villarreal et al. [191] studied the combined effects of drought and fire, which adopted the
Palmer drought severity index for drought degree and utilized the SAVI and the NDVI
to estimate FVC. The dynamic changes indicated that the prescribed fire might stimulate
the growth of vegetation during dry periods in desert grasslands. Ding et al. [192] applied
vapor pressure deficit, a fused index combining air pressure, temperature, and specific hu-
midity, to investigate the impact of atmospheric drought on GPP. The results demonstrated
that atmospheric drought had a significant negative impact on GPP, and although this effect
could be mitigated by the increase of carbon dioxide content, it could not be fully restored.
Then, Chen et al. [193] investigated the impact on NPP and net ecosystem productivity
in which the SPEI, the NDVI, and ground-measured AGB were utilized. In detail, NPP
was obtained by the CASA model, and net ecosystem productivity was calculated by an
infrared gas analyzer. Their results also showed a negative impact, but the impact could
be rapidly compensated for under wetting conditions after drought, which indicated the
robust capacity of ecosystems to recover and regenerate. In [194], the impact on biomass
was studied. In detail, they first established a rule-based piecewise regression model to
separated the influence of other factors from that of drought and verified the effectiveness
of different drought indices. The results showed that the SPI, U.S. drought monitor index,
and the evaporative stress index were more suitable in different vegetation growth periods
of semiarid grasslands.

Finally, the moderating capacity of species diversity and functional diversity in dune
grasslands to deal with drought was studied in [195] in which the SPEI and the NDVI were
applied, and the diversity was represented by ground measurements. The results showed
that rich species diversity could resist the negative effect of drought to some extent, while
functional diversity had no significant effect. Then, the effects on grassland phenology were
investigated in [196], where the SPEI was also adopted, which indicated that drought could
lead to an earlier start and a later end to the growing season of grasslands. The impact on
soil moisture was studied in [197]; the temperature vegetation dryness index was applied
and showed a strong linear correlation with ground soil moisture data. Han et al. [198]
explored the impacts on the evapotranspiration in semiarid grassland. In [198], the SPEI was
used to represent drought degree and the results showed that the increase in the frequency
and duration of drought did not certainly lead to significant changes in evapotranspiration;
however, the increase in the drought degree was significantly associated with its decrease.

In conclusion, almost all studies directly employ remote sensing indices for drought
monitoring, and most of these indices are strongly related with precipitation and the water
content of vegetation or soil. Some parameters such as the AGB and GPP are estimated
only as the responses in the impact analysis.

3.3.3. Other Disasters

Apart from fire and drought, grasslands are also exposed to other disasters such
as snowstorms and earthquakes, but few studies have been conducted with grasslands
as the sole site of study. In 2013, Wang et al. [199] established a multivariate nonlinear
regression model for the warning of snow disasters in which snow cover and snow depth
were obtained from optical and radar data, respectively. In 2019, Shao et al. [20] proposed
a new index based on remote sensing and ground data to describe the resilience of the
Tibetan Plateau grasslands to snow disasters. Yang et al. [200] monitored the vegetation
recovery of different vegetation types including grasslands after an earthquake where the
time series of MODIS NDVI were used to represent the vegetation status. For hurricanes,
Hu et al. [201] surveyed the extent of destruction caused by hurricanes to different types of
vegetation on the islands of Dominica and Puerto Rico in which the NDVI was also utilized
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to indicate the damage severity. The results showed that grasslands were the least sensitive
to hurricanes compared to forests, wetlands, and built-up areas.

3.4. Carbon Cycle Monitoring

Carbon cycle monitoring has always been one of the hot topics in ecosystem research.
Grasslands store large amounts of carbon in both soil and vegetation, which occupies an
essential position in the study of the carbon cycle. In this field, carbon flux is one of the
most basic and critical concepts, expressing the total amount of carbon in an ecosystem
passing through a certain ecological section. In grasslands, it is usually defined as the total
amount of carbon cycled per unit area per unit time.

It is worth noting that the definition of carbon flux is similar to that of NPP and GPP.
Thus, many studies directly utilized NPP or GPP to represent it. In 2014, Sakowska et al. [202]
applied GPP for the monitoring of carbon flux in a subalpine grassland. GPP was estimated
based on a linear regression model using the red-edge NDVI. Then, Umair et al. [203]
also utilized GPP for carbon flux, and they further researched the effect of soil moisture,
temperature, relative humidity, and solar radiation on the dynamics of carbon flux. In [203],
the performance of GPP products from three different sources was compared, but the
results showed that there was no robust product, and all had overestimation problems in
some cases. Chen et al. [204] researched the carbon use efficiency of different terrestrial
ecosystems, which can be defined as the ratio between NPP and GPP. In [204], NPP was
estimated by subtracting the respiratory consumption component from MODIS GPP prod-
ucts. The component was calculated by MODIS LAI products, and the results showed that
precipitation strongly affected carbon use efficiency in grasslands.

On the other hand, research has gradually developed into carbon uptake and carbon
emission in which carbon dioxide is the main form of circulation. An ecosystem can be
defined as a carbon sink or carbon source depending on whether it is a net absorber or
a net emitter of carbon dioxide. The concept of net ecosystem exchange (NEE) and net
ecosystem productivity (NEP) has been introduced to describe the property and capacity
of grassland carbon sources and carbon sinks in many studies. In contrast to NPP, NEE or
NEP further considers the effect of heterotrophic respiration, which mainly exists in the
soil. Thus, they can generally be calculated by subtracting soil respiration from NPP or
subtracting ecosystem respiration from GPP.

In 2015, Yan et al. [205] established a semi-empirical model to estimate the NEE
in alpine grasslands. In detail, only ground-measured data were first applied for the
construction of the model. Then, GPP was estimated by a rectangular hyperbola function
of photosynthetically active radiation while ecosystem respiration was estimated by an
exponential function of soil temperature. The parameters in both functions were retrieved
from correlated remote sensing vegetation indices. However, the results showed that the
performance of the model was limited by soil water content. Subsequently, some LUE
models were utilized for the estimation. Berberoglu et al. [206] applied the CASA model to
estimate NEP and studied the impact of climate on the carbon cycle in the Mediterranean
watershed. Balzarolo et al. [14] focused on the relationship between carbon flux and some
hyperspectral vegetation indices. The genetic algorithm and RF model were combined
for the selection of optimal indices, and a LUE model was used for the estimation of NEE.
However, their results indicated that there was no universal vegetation index suitable for
all types of grasslands. Then, Dai et al. [207] also adopted the spatiotemporal characteristics
of NEP to study the dynamics of carbon sources and sinks in the Inner Mongolia grasslands.
In [207], NPP was estimated based on a LUE model, while soil respiration from ground-
measured data was used to calculate NEP, and the impact of climate factors was analyzed,
which showed that the effect of precipitation was significant. Nestola et al. [208] utilized
NEP to investigate seasonal carbon dynamics, which also established a light-use efficiency
model to track seasonal carbon flux.

Furthermore, Noumonvi et al. [209] adopted both GPP and NEE to represent carbon
flux. Three linear regression models based on different constraints (none, photosynthetically



Remote Sens. 2022, 14, 2903 25 of 40

active radiation, LUE) were compared. The results demonstrated that the unconstrained
model performed better overall, and the NDVI, the LSWI, and a modified normalized
difference water index were, respectively, suitable for the estimation in different growth
stages. In addition, the regional carbon flux maps were obtained in [209] for research
on the spatial variation of the carbon cycle. In [210], NEE was calculated by GPP and
ecosystem respiration, and the relationship between precipitation and carbon flux was also
investigated in which GPP products from MODIS were utilized to represent the carbon flux.
The carbon balance was also investigated in [210] through the effect of precipitation legacy
on NEE. The results showed that precipitation legacy determined the carbon balance of
semiarid grasslands by its significant effect on NEE.

In addition, carbon stock is also an important index in the carbon cycle. In 2013,
Kazar et al. [211] directly adopted the AGB, which was estimated by an MLR model using a
Landsat EVI and vegetation greenness products, to monitor the carbon storage on reclaimed
grasslands. Then, Xia et al. [212] constructed a nonlinear regression model based on the
NDVI to estimate NPP as the proxy for mapping and monitoring the dynamics of biomass
carbon stock on a global scale. Ma et al. [7] combined the EVI and ground-measured data
using spatially stratified sampling to estimate different components of carbon stock in
typical, meadow, desert, and alpine grasslands. Ding et al. [213] applied a regression-
kriging model and a hybrid geostatistical method, for the estimation in typical grassland
and meadow grassland. The results showed that the model based on the NDVI achieved the
best performance for a typical grassland, while the model based on the chlorophyll index
worked best for meadow grassland. In addition, in [7], the total carbon stock were divided
into the AGB, below-ground biomass, and soil organic carbon, and the results showed that
soil organic carbon dominated the carbon storage in all cases. Therefore, for the estimation
of soil organic carbon, Dai et al. [214] directly constructed a linear regression model based
on the NDVI. Li et al. [215] built a TECO-R model based on the NDVI, which is an improved
version of the CASA model and proved its robust performance in their experiments. In 2021,
Venter et al. [216] took numerous ground data, satellite indices, and products as input to an
RF model and mapped the soil organic carbon stocks in South Africa.

In conclusion, the monitoring of the carbon cycle is highly associated with produc-
tivity parameters (NPP, GPP, NEP). Most of their estimation model is based on LUE with
few regression models being used. In addition, carbon cycle monitoring has lacked a
comprehensive monitoring framework and evaluation system.

4. Discussion
4.1. Statistical Analysis for Remote Sensing Data

Based on the 196 publications collected in this paper, we first counted the number
of publications using remote sensing data from different platforms, respectively. There is
no doubt that the vast majority of studies work with satellite data. Therefore, we further
counted the number of times different satellites appearing in these studies, and the top six
frequent satellites are shown in Figure 1. It is worth noting that some studies [61,87,154,160]
combined the use of images from different satellites so that these studies were counted
multiple times according to the number of satellites involved.

Obviously, the number of appearances of Terra and Aqua satellites is overwhelmingly
superior to others. The data from Terra and Aqua used in most studies is mainly provided
by a MODIS sensor, which is a multispectral sensor providing 36 spectral bands from visible
to thermal infrared range. Since Terra and Aqua satellites are in sun-synchronous orbits,
the temporal resolution of MODIS images is 1 day. In addition, the MODIS sensor can
also provide multiple vegetation indices and products. Especially for the NDVI, the vast
majority of studies have directly used the NDVI product named MOD13Q1 from the
MODIS sensor, which is also the main reason why Terra and Aqua satellites appear most
frequently in this field. MOD13Q1 products have a temporal resolution of 16 days and a
spatial resolution of 250 m, 500 m or 1 km. In addition, other NDVI datasets are contributed
by the Global Inventory Modelling and Mapping Studies using NOAA satellite data and
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by the VEGETATION PROCESSING Centre using SPOT satellite data, and these NDVI
datasets were also adopted in some studies [125,164]. The NOAA NDVI dataset has a
spatial resolution of 8 km and a temporal resolution of 15 days, while the SPOT NDVI
dataset is constructed with a spatial resolution of 1 km and a temporal resolution of 10 days.
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Figure 1. The number of times the top six frequently occurring satellites in 196 publications.

However, the temporal and spatial resolution of these products and datasets is rel-
atively poor, which is not adequate for some studies [64,153,157]. Thus, many studies
preferred to manually calculate the NDVI and some other remote sensing indices using
raw spectral bands with high resolution from other satellites such as Landsat and Sentinel
satellites [11,145,174,211]. For Landsat satellites, the thematic mapper, enhanced thematic
mapper plus, and operational land imager are their main sensors, which also belong to the
multispectral sensors. Compared to MODIS images, Landsat images have better spatial res-
olution (15 m, 30 m, 60 m) but have fewer spectral bands and a longer repeated observation
period (16 days). Meanwhile, the multispectral instrument sensor is the main multispectral
sensor carried by Sentinel satellites, generating optical images of 13 spectral bands with
high spatial resolution (10 m, 20 m, 60 m) and a temporal resolution of 5 days. Despite
the good spatial resolution of these images, they are separated in time by relatively long
intervals, and their information is often obscured by cloud cover. As a result, several stud-
ies [68,154] fused these images from different satellites to complement missing information
and to enhance the temporal continuity. In addition, many studies [22,24,63,103] installed
multispectral sensors or RGB cameras on UAVs to acquire near-surface multispectral im-
ages. Compare with satellite images, these images have a much finer spatial resolution,
usually less than 10 m, and they are not affected by cloud cover. However, these images
only cover a small region and require a large number of repeat flights to ensure the time
continuity, which does not fundamentally solve the problems.

Apart from multispectral images, some hyperspectral images are provided by EO-1
and HJ-1A satellites. These images have been utilized for AGB estimation [38] and the
monitoring of degradation [8] and grazing [148]. However, compared to multispectral
images, they are rarely used in research due to their massive redundant information. Even
in the above relevant studies [8,38,148], the researchers only selected relevant bands based
on the characteristics of the grasslands they were studying to calculate or create some
vegetation indices whose performance is compared to determine the most appropriate
index for the research. In addition, this strategy has also been applied to ground-based
hyperspectral images [26,123]. In addition, these ground-based hyperspectral images were
utilized for the simulation of multispectral images from satellites in [28,67] and for the
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replacement of ground measurements in [104,108]. However, none of the above studies
makes full use of the rich spectral information of hyperspectral images.

Finally, some studies [18,69,117] have made use of radar data, especially the SAR
images. These SAR images can usually be acquired from ALOS, Sentinel, and Aqua
satellite. Compared to optical images, the greatest advantage of SAR imagery is its ability
to penetrate cloud cover to obtain information. Some research used them alone and
proved their potential for estimation [69] and monitoring [16,17]. However, the utilization
of SAR images is also limited by the low spatial resolution and some environmental
interference. Fortunately, many studies [18,61,117] fully demonstrated the effectiveness of
their combined use with optical images in enhancing model performance.

4.2. Characteristic Analysis of Estimation Methods and Monitoring Applications
Estimation Methods

From Tables 2–5, we can see that statistical regression and machine learning are the two
main types of estimation methods. Especially in the estimation of the AGB, all the studies
were based on these two methods. For statistical regression, all the models started by
selecting some remote sensing-based vegetation indices related to the estimated parameter
based on prior knowledge and performed correlation analysis between them, after which
the most relevant one or several vegetation indices were extracted to construct the models
based on a pre-assumed functional relationship. As for machine learning, we can see that
RF and ANN models are more commonly used than others. In particular, many recent
studies based on machine learning have started to combine ground-measured data and
remote sensing data as the driving variables of their models and have shown that it can lead
to better performance [47,73]. In addition, many studies have demonstrated that machine
learning models outperform statistical regression models. However, based on the results in
these tables, we can find that some of the machine-learning-based results are not excellent
and sometimes even worse than the results of statistical regression models.

Apart from statistical regression and machine learning, some traditional methods
that estimate parameters at the field scale using ground data only boost their estimation
scales by combining remote sensing data and have been developed by many studies for
the estimation of primary production, FVC, and LAI. For primary production, the light
utilization efficiency approaches have proven to be effective in most cases, especially the
CASA model that has been widely used in many studies. As shown in Table 3, some of the
light utilization efficiency approaches can obtain comparable or even superior results to
statistical regression methods. Then, for FVC, there have also been some studies focusing
on mixed pixel decomposition methods in which the linear pixel dichotomy model based
on the NDVI was most frequently used, while for the LAI, the radiative transfer models
have been commonly used, especially the PROSAIL model. From Tables 4 and 5, we
can also see the excellent performance of these traditional methods in some cases when
compared to statistical regression and machine learning models.

In terms of the selection of driving variables for the above models, we can see that
some studies [18,26,38,39] directly chose some well-established and robust indices, such as
the NDVI, the EVI, the SAVI, and the CAI. Due to the strong absorption of red and blue
light and the strong reflection of near infrared light by vegetation, the NDVI and the EVI
were frequently used to reflect the state of vegetation and the spatial density distribution of
vegetation. In some cases, some models driven only by the NDVI could achieve remarkably
precise results [35,80,98] with R2 over 0.9. However, in alpine and arid grasslands, as well
as some grasslands with high spatial heterogeneity and complex grass species, the NDVI
and the EVI generally did not obtain acceptable results. The models driven by the NDVI or
EVI in [68,77] failed to obtain robust results with R2 less than 0.5. Therefore, in response
to this problem, many more suitable vegetation indices were developed or created based
on the respective characteristics of the vegetation and environment under different stud-
ies [26,38]. Some of these studies also further considered and quantified the interference
of environmental factors (phenology, precipitation, temperature) [76,89,94] and human
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activities (population, land use, grazing) [34,48,73]. In addition, many studies have started
to feed large amounts of raw data or spectral bands directly into MLR models or machine
learning models [28,105,106]. According to their results presented in tables, most of the
above refinements have achieved some certain effect.

4.3. Monitoring Applications

From an overall perspective, although part of the studies used the estimation methods
covered in this paper to retrieve some parameters, the majority of studies directly used
remote sensing data or satellite products. For grassland degradation monitoring, previous
research directly made use of spectral bands and vegetation indices such as the SAVI,
the MSAVI, and the RVI. After that, some estimated parameters are utilized. It can be
seen that NPP and FVC have been frequently used in many studies, and almost all of
these studies have applied the CASA model for the estimation of NPP and the mixed
pixel decomposition model for FVC. Finally, some recent studies have begun to take
some soil indices into account, but most of these indices were measured from ground
observation [10,132,135].

In the monitoring of grassland use, many studies of grazing monitoring have also
adopted some vegetation indices and estimated parameters, which is similar to the develop-
ment of research on degradation monitoring. The difference is that the AGB has been most
frequently used and in some cases has been combined with total biomass and FVC [30,141].
Moreover, the estimation models of the AGB in these studies have not been in a uniform
form. Most of them are statistical regression models based on the NDVI or other vegetation
indices. In addition, due to the limitations of the NDVI, recent studies have tended to
apply or design some more robust vegetation indices such as NCI [30], CV [146], GII [143],
and REP [149]. In contrast, for mowing monitoring, due to the temporal sensitivity of the
mowing events, all the studies share the same strategy. In detail, the growth state of the
vegetation has been simulated by the NDVI time series in most studies, and some potential
mowing events have been discovered when comparing the simulated state with the ideal
state and have been further analyzed to verify their authenticity. The latest research has
focused on generating finer time series to improve the accuracy of monitoring [11,154,155].

For disaster monitoring, some specialized estimated parameters (curing degree, fuel
biomass, LFMC) and remote sensing indices (PCI, TCI, SMCI) have been adopted in most
studies. Some indices and products of fire from remote sensing satellites have been utilized
in fire monitoring such as MIRBI [6] and MCD64A1 [46]. Similarly, some drought indices
driven by single variable and multiple variables have been applied in drought monitoring,
and the multivariate or fused indices have proved to have better performance in many
studies [182,187]. Meanwhile, some estimated parameters have been employed in the
impact analysis of disasters. It can be seen that the canopy nitrogen content, FVC, and the
LAI have been utilized in the fire impact analysis [13,179,180], while the AGB and GPP
have been involved in the drought impact analysis [192–194,196].

Finally, for carbon cycle monitoring, NPP and GPP have been fully utilized, and some
new parameters such as NEP and NEE have been created based on them. The estimation
of these indices in previous studies was mainly based on regression models. In contrast,
recent studies have mainly focused on LUE approaches.

4.4. Limitations

Based on the above work, we have summarized the following limitations of remote
sensing image processing technology in grassland studies.

Due to technical limitations, obtaining higher spatial resolution images means longer
intervals between repeated shots, which also implies the reduction in temporal resolu-
tion. Reflecting on parameter estimation and applications, we can gain more accurate
information and results by adopting higher spatial resolution images, but lower temporal
resolution can lead to serious losses. On the one hand, high quality spatial information is
necessary. It can be seen that MODIS images were most frequently adopted in most previ-
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ous studies, but their poor spatial resolution had always impeded further improvements of
the results. In particular, some MODIS products even suffer from severe underestimation
of ground-measured values in some cases [34,45,46]. Therefore, since the launch of many
advanced satellites, most subsequent studies have begun to rely on remote sensing images
with better spatial quality such as Landsat and Sentinel images, which have achieved
certain enhancements and breakthroughs in the results. On the other hand, the decrease in
temporal resolution inevitably leads to a number of problems. Especially in the monitoring
of mowing events, which are more sensitive to temporal resolution, the key of the research
is the accurate construction of time series of some related indices or estimated parameters,
where high temporal resolution is very critical to the results despite the fact that the quality
of spatial information also plays a role.

In addition, all these common remote sensing images belong to optical images, which
will inevitably be affected by cloud cover and shadowing, resulting in the lack of spatial
information and breaks in temporal continuity. Although there were a few studies utilizing
UAV or airplane images [23,186] and radar data [19,117,185], it still has failed to fundamen-
tally solve the problem. UAV images have significant limitations on the shooting locations
and coverage size. For radar images, the emitted microwaves can pass through the clouds
and fogs and do not require lighting conditions, which means that they can work all the
time. Meanwhile, they are also sensitive to water-related information, such as material
water content, soil moisture, and humidity, which are suitable for drought monitoring.
However, radar images can also be disturbed by other environmental factors and the spatial
resolution of radar images is much lower than that of optical images, which restricts the
wide applications of radar images.

Tuning to the perspective of estimation methods, most parameters were estimated
based on statistical regression models in the applications. More notably, among these
models, univariate models were the most common. However, statistical regression models
are not good at elucidating the complex mechanisms of change in parameters, especially
those univariate models that are more susceptible to interference. As shown in Tables 2–5,
we can find that some univariate models can give the best results. However, it is mainly
attributed to the simple spectral characteristics of the grassland they study, and it can also
be seen that more univariate models give very poor results in alpine and arid grasslands.
Therefore, the relationship established by univariate statistical regression models for a
certain type of grassland cannot be transferred to other regions or larger scales that contain
various types of grasslands or with high spatial heterogeneity.

Another main class of approaches is machine learning, such as RF, ANN, and SVM,
which have stronger generalization ability and can be easily fit to nonlinear relationships.
Although this type of method allows more variables as input to improve the stability and
the resistance against disturbances, excessive input variables not only lead to a loss of
efficiency but also do not always yield the best results. Many studies have tried different
combinations of variables, most of which determined the variables based on significance
and correlation analysis. The optimal combination of variables for different types of
grasslands and study sites can vary greatly, but there has been a lack of uniform and
comprehensive criteria. In addition, the training of machine learning models requires large
amounts of remote sensing data. Although non-parametric models can generally get better
results, their accuracy significantly depends on the quantity and quality of statistical data.
In practice, it is complex and time-consuming to obtain a large amount of field statistical
data to match remote sensing data for the same study area, and the registration problems
between various data sources can also dramatically affect the results. As a result, the non-
parametric model may not perform better than the parametric model under the condition
of less available data, as shown in Tables 2–5.

In addition, some specific models and integrated frameworks based on certain theories
or previous research are fully utilized, but they also face the problem of generalization.
For example, the CASA model is preferred for the estimation of NPP in most studies for all
kinds of grasslands, but it was originally established based on the vegetation conditions in
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North America. Therefore, the model structure and some empirical parameters need to
be adjusted according to the characteristics of the study area. Simultaneously, there may
also be challenges in obtaining some necessary indices, especially the required soil indices.
The accuracy of these indices can severely affect the results.

Although a number of innovative estimation methods have been proposed, they have
not been adopted in the applications. The estimation methods applied in most applications
are still stuck on simple linear models, which require further breakthroughs.

Finally, when it comes to the use of remote sensing data, the NDVI has always been
the first and preferred index to be considered in all fields, but it is hard to cope with
grasslands under extreme weather or complex environments. Other popular indices such
as the EVI, the RVI, and the SAVI also face the same problem. The causes can be attributed
mainly to both environmental and human factors. On the one hand, according to [217,218],
greenness-based vegetation indices are highly correlated with soil moisture, and this
correlation can also be influenced by soil properties, topography, and climate. Therefore,
in arid and semiarid regions, where vegetation is dry or senescent for most of the year,
the robustness of these green-based vegetation indices in monitoring vegetation status is
significantly diminished. It can be seen that [219,220] demonstrated that the variability
of some green-based vegetation indices during the dry season was mainly influenced by
solar illumination effects rather than the changes in vegetation. In addition, the NDVI has
also proved to be very sensitive to soil optical properties under conditions of incomplete
vegetation cover [26,38], which can result in the effectiveness of the NDVI being susceptible
to the soil background noise when vegetation is sparse. In contrast, when vegetation is
dense, especially when the density reaches a certain threshold, the NDVI will become
saturated and insensitive to vegetation growth. On the other hand, many human factors
can also affect the accuracy of grassland monitoring, especially some human activities such
as grazing and mowing which can result in some abrupt changes in vegetation status. How
to accurately quantify and promptly track these human activities has always been an issue
in this field. However, few studies have directly considered feeding these human factors
into their models, and many of them have just conducted some impact analysis during
model validation.

4.5. Future Work

The application of remote sensing technology in grassland study has been booming
and has achieved certain achievements. However, through the above analyses, we can also
put forward several suggestions for future work.

First, the combination of optical and radar images should be considered. Although radar
images have started to be applied in many fields, their utilization has been limited by the
low spatial resolution and some environmental interference. Meanwhile, the optical images
are always suffering from interference from clouds and fogs. Thus, we should make full
use of the complementary information of both to eliminate the defects. Furthermore, we
can see that Griffiths et al. [154] synthesized Sentinel-2 and Landsat-8 optical images to
improve the temporal resolution of images with the maintenance of spatial resolution and
achieved better results. Similarly, some studies [85,86] fused Landsat and MODIS data
to the constructed NDVI with high spatial and temporal resolution, achieving significant
improvements in estimation accuracy. Following these ideas, we can also apply image
fusion technology to address the irreconcilable conflict between spatial and temporal
resolution. Meanwhile, this technology can also be used to improve the availability of
hyperspectral images.

Second, most researchers working on the monitoring applications should consider
further exploiting the potential of parameter estimation methods rather than directly
using non-robust satellite products, especially when studying some unusual grasslands
with extremely complex conditions. Meanwhile, those researchers who have already
used the estimated parameters should adopt advanced estimation methods instead of
simply working with linear regression models or other univariate models. In particular,
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although the NDVI has many limitations as we mentioned above, it does not mean that the
utilization of the NDVI should be abandoned. Some studies [63,93] have proved that the
combined use of the NDVI can sometimes yield significant enhancements to their results.
Thus, to obtain robust results, it is essential to select a right combination of variables
according to the environmental and spectral characteristics of the grassland under study or
to create more suitable vegetation indices [44].

Finally, we need to further adopt some new methods to improve the accuracy of the
estimation. Since deep learning has proven its superior performance in processing high-
dimensional data and nonlinear relationships, it has been widely used in many domains of
image processing. However, very few studies have been conducted using this method in
this area, and all of them have stayed on some shallow neural networks. We should further
promote and explore the use of deep learning in this field. Especially, The high-dimensional
data of hyperspectral images have been difficult to process by traditional methods, which
also means that deep learning is a good choice to make full use of them. In addition, deep
neural networks can also easily cope with multi-source inputs and can adaptively learn
weights to fuse key information from them.

5. Conclusions

In this article, the remote sensing estimation methods of four key parameters of
grasslands and their applications in remote sensing monitoring are reviewed. Based on
the statistics and analysis of related work, we point out the limitations of current studies
and make suggestions for future work. In general, although some machine learning
methods and improved traditional methods have been proposed, most studies are still
using simple statistical regression to estimate these parameters. Meanwhile, these methods
have suffered from defects in the selection of driving variables and the generalization
ability to different types of grassland. In addition, the quality of remote sensing images
has also hindered the advancement of research. For these reasons, we recommend the
combined use of different remote sensing images such as radar and optical images to take
advantage of complementary information, which also means that image fusion techniques
should be employed to generate high-quality images. Finally, deep learning is suggested
to be applied in most domains due to its ability to process high-dimensional data and fit
non-linear relationships, which can extract and make full use of valuable information from
hyperspectral images or multi-source images, improving the accuracy and robustness of
estimation results.
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